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We investigate the demand for money and the degree of substitutability among monetary
assets in the United States using the generalized Leontief and the Minflex Laurent (ML)
models as suggested by Serletis and Shahmoradi (2007). In doing so, we merge the
demand systems literature with the recent financial econometrics literature, relaxing the
homoskedasticity assumption and instead assuming that the covariance matrix of the
errors of flexible demand systems is time-varying. We also pay explicit attention to
theoretical regularity, treating the curvature property as a maintained hypothesis. Our
findings indicate that only the curvature constrained ML model with a Baba, Engle, Kraft,
and Kroner (BEKK) specification for the conditional covariance matrix is able to generate
inference consistent with theoretical regularity.
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1. INTRODUCTION

This paper focuses on the demand for money in the United States and investigates
the degree of substitutability among monetary assets using the flexible functional
forms approach. This approach, introduced by Diewert (1971), has been widely
used to investigate the interrelated problems of estimation of monetary asset
demand functions and monetary aggregation issues. See, for example, Barnett
(1983), Ewiss and Fisher (1984, 1985), Serletis and Robb (1986), Fisher and
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TABLE 1. A summary of flexible functional forms estimation of monetary assets
demand

Curvature Homoscedasticity
Author(s) Model used imposed assumed

Barnett (1983) Minflex Laurent � �
Ewis and Fisher (1984) Translog �
Ewis and Fisher (1985) Fourier �
Serletis and Robb (1986) Translog �
Serletis (1987, 1988) Translog �
Fisher and Fleissig (1994, 1997) Fourier �
Fleissig (1997) Minflex, GL, �

Translog
Fleissig and Swoflord (1996) AIM �
Drake, Fleissig, and Mullineux (1999) AIM �
Fleissig and Serletis (2002) Fourier �
Drake, Fleissig, and Swoflord (2003) AIM �
Drake and Fleissig (2004) Fourier �
Serletis and Shahmoradi (2005) AIM and Fourier � �
Serletis and Shahmoradi (2007) GL, BTL, AIDS, � �

Minflex, NQ
Drake and Fleissig (2010) Fourier �
Serletis and Feng (2010) AIM � �

Notes: GL, generalized Leontief; AIM, asymptotically ideal model; BTL, basic translog; AIDS, almost ideal demand
system; NQ, normalized quadratic.

Fleissig (1994, 1997), Fleissig and Serletis (2002), and Serletis and Shahmoradi
(2005, 2007), among others.

As noted by Barnett (2002), the usefulness of flexible functional forms depends
on whether they satisfy the theoretical regularity conditions of positivity, mono-
tonicity, and curvature, and in the empirical monetary demand literature there
has been a tendency to ignore theoretical regularity, as can be seen, for example,
in Table 1. In this regard, as Barnett (2002, pp. 199) put it, without satisfaction
of all three theoretical regularity conditions, “. . . the second-order conditions
for optimizing behavior fail, and duality theory fails. The resulting first-order
conditions, demand functions, and supply functions become invalid.”

Motivated by these considerations, in this paper we follow Serletis and Shah-
moradi (2005, 2007) and estimate the degree of substitutability among monetary
assets paying explicit attention to theoretical regularity, treating the curvature
property as a maintained hypothesis.

Furthermore, in the empirical demand systems literature, existing studies typ-
ically assume that the covariance matrix of the error terms associated with the
demand equations is homoskedastic, as summarized in Table 1. In this paper,
we merge the demand systems literature with the recent financial econometrics
literature by following Serletis and Isakin (2017) to incorporate heteroskedastic
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variance in the demand system estimation subject to full satisfaction of regularity
conditions. In particular, we relax the homoskedasticity assumption and instead
assume that the covariance matrix of the errors of flexible demand systems is time-
varying. By doing so, we achieve superior modeling using parametric nonlinear
demand systems that capture certain important features of the data.

To obtain our estimates of the demand for money in the United States, we use the
monthly time series data on monetary asset quantities and their user costs recently
produced by Barnett et al. (2013) and maintained within the Center of Finan-
cial Stability (CFS) program Advances in Monetary and Financial Measurement
(AMFM). Our investigation is in the context of the best performed flexible func-
tional forms in Serletis and Shahmoradi (2007): The generalized Leontief (GL)
model of Diewert (1973, 1974) and the Minflex Laurent (ML) model introduced
by Barnett (1983) and Barnett and Lee (1985). Our findings indicate that only the
curvature constrained ML model with a Baba, Engle, Kraft, and Kroner (BEKK)
specification [see Engle and Kroner (1995)] for the conditional covariance matrix
is able to generate results consistent with theoretical regularity.

The rest of the paper is organized as follows. Section 2 provides a discussion
of the representative agent’s problem and Section 3 presents the two locally
flexible functional forms, paying explicit attention to the imposition of curvature.
Section 4 discusses the data, whereas Section 5 focuses on related econometric
issues and on the way to incorporate the BEKK specification for the conditional
covariance matrix. Section 6 presents the empirical results and the final section
briefly concludes the paper.

2. THE REPRESENTATIVE AGENT’S PROBLEM

We assume that the representative consumer has the following utility function:

u = u(c, l,x), (1)

where c is a vector of consumption goods, l is leisure, and x is a vector of monetary
asset quantities. The consumer maximizes (1) subject to the budget constraint:

q′c + wl + p′x = m,

where q is a vector of prices of the consumption goods, c, w is the wage rate, p
is the corresponding vector of monetary asset user costs, and m is total income.

We assume that monetary assets are as a group separable from consumption
goods, c, and leisure, l. That is, it is possible to write (1) as

u = u [c, l, f (x)] , (2)

where f (x) is the aggregator function over monetary assets, x. The requirement
of (direct) weak separability in x is that the marginal rate of substitution between
any two components of x does not depend upon the values of c and l, meaning
that the demand for monetary assets is independent of relative prices outside

https://doi.org/10.1017/S1365100517001006 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100517001006


2944 DONGFENG CHANG AND APOSTOLOS SERLETIS

TABLE 2. Monetary assets/components

A
1 Currency
2 Travelers checks
3 Demand deposits
4 Other checkable deposits at banks including Super Now accounts
5 Other checkable deposits at thrifts including Super Now accounts

B
6 Savings deposits at banks including money market deposit accounts
7 Savings deposits at thrifts including money market deposit accounts

C
8 Small denomination time deposits at commercial banks
9 Small denomination time deposits at thrift institutions

the monetary sector—see Leontief (1947) and Sono (1961). Under the weak
separability assumption, we will focus on the representative agent facing the
following problem:

max
x

f (x) subject to p′x = y, (3)

where x = (x1, x2, . . . , x9) is the vector of monetary asset quantities described in
Table 2, p = (p1, p2, . . . , p9) is the corresponding vector of user costs, and y is
the total expenditure on the services of monetary assets. For details regarding the
theory of multistage optimization in the context of consumer theory, see Strotz
(1957, 1959), Gorman (1959), and Blackorby et al. (1978).

Because the functional forms that we use in this paper are parameter intensive,
we face the problem of having a large number of parameters in estimation. To
reduce the number of parameters, we follow Serletis and Shahmoradi (2007) and
separate the group of assets into three collections based on empirical pretesting.
Thus, the monetary utility function in (3) can be written as

f (x) = f
[
fA(x1, x2, x3, x4, x5), fB(x6, x7), fC(x8, x9)

]
,

where the subaggregate functions fi (i = A,B,C) provide subaggregate measures
of monetary services.

Instead of using the simple-sum index, currently in use by the Federal Reserve
and most central banks around the world, to construct the monetary subaggre-
gates, fi (i = A, B, C), we follow Barnett (1980) and use the Divisia quantity
index to allow for less than perfect substitutability among the relevant monetary
components. The Divisia index (in discrete time) is defined as

log MD
t − log MD

t−1 =
n∑

j=1

s∗
jt(log xjt − log xjt−1),
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according to which the growth rate of the aggregate is the weighted average of the
growth rates of the component quantities, with the Divisia weights being defined
as the expenditure shares averaged over the two periods of the change, s∗

jt =
(1/2)(sjt + sj,t−1) for j = 1, . . . , n, where sjt = πjtxjt/πktxkt is the expenditure
share of asset j during period t , and πjt is the nominal user cost of asset j , derived
in Barnett (1978),

πjt = p∗
t

Rt − rjt

1 + Rt

,

which is just the opportunity cost of holding a dollar’s worth of the j th asset.
Above, p∗

t is the true-cost-of-living index, rjt is the market yield on the j th asset,
and Rt is the yield available on a benchmark asset that is held only to carry wealth
between multiperiods.

3. FLEXIBLE DEMAND SYSTEMS

In this section, we briefly discuss the GL and the ML models that we use to
approximate the unknown underlying indirect utility function of the representative
economic agent as well as the procedure of imposing the curvature conditions in
each model. Both models are locally flexible and capable of approximating any
unknown function up to the second order.

3.1. The Generalized Leontief

According to Diewert (1974), the GL flexible functional form has the following
reciprocal indirect utility function:

h(v) = a0 +
n∑

i=1

aiv
1/2
i + 1

2

n∑
i=1

n∑
j=1

βijv
1/2
i v

1/2
j , (4)

where v = [v1, v2, . . . , vn] is a vector of income normalized user costs with
vi = pi/y, where pi is the user cost of asset i and y is the total expenditure on
the n assets. B = [

βij
]

is an n × n symmetric matrix of parameters and a0 and
ai are other parameters, for a total of (n2 + 3n + 2)/2 parameters. The GL share
equations, derived using the logarithmic form of Roy’s identity are

si =
aiv

1/2
i +

n∑
j=1

βijv
1/2
i v

1/2
j

n∑
j=1

ajv
1/2
j +

n∑
k=1

n∑
m=1

βkmv
1/2
k v

1/2
m

, i = 1, . . . , n. (5)

Since the share equations are homogeneous of degree zero in the parameters,
we follow Barnett and Lee (1985) and impose the following normalization in

https://doi.org/10.1017/S1365100517001006 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100517001006


2946 DONGFENG CHANG AND APOSTOLOS SERLETIS

estimation:

2
n∑

i=1

ai +
n∑

i=1

n∑
j=1

βij = 1. (6)

Curvature condition of the GL reciprocal indirect utility function requires the
Hessian matrix to be negative semidefinite. Local curvature can be imposed using
the Serletis and Shahmoradi (2007) procedure by evaluating the Hessian terms of
(4) at v∗= 1, as follows:

Hij = −δij

⎛
⎝ai +

n∑
j=1, j �=i

βij

⎞
⎠ + (

1 − δij
)
βij,

where δij is the Kronecker delta (that is, δij = 1 when i = j and 0 otherwise).
Replacing H with −KK ′, where K is an n × n lower triangular matrix so

that −KK ′ is by construction a negative semidefinite matrix. The above can be
written as

− (
KK ′)

ij = −δij

⎛
⎝ai +

n∑
j=1, j �=i

βij

⎞
⎠ + (

1 − δij
)
βij. (7)

Solving for the ai and βij terms as a function of the
(
KK ′)

ij, we can get the
restrictions that ensure the negative semidefiniteness of the Hessian matrix.

In particular, when i �= j , equation (7) implies that

βij = − (
KK ′)

ij , (8)

and when i = j , it implies that

(
KK ′)

ii
= ai +

n∑
j=1, j �=i

βij.

Substituting βij from (8) into the above equation, we get

ai =
n∑

j=1

(
KK ′)

ij
. (9)

for i, j = 1, . . . , n. See Serletis and Shahmoradi (2007) for an example with
n = 3.

3.2. The Minflex Laurent Model

The ML model, introduced by Barnett (1983) and Barnett and Lee (1985), is a spe-
cial case of the Full Laurent model also introduced by Barnett (1983). Following
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Barnett (1983), the Full Laurent reciprocal indirect utility function is

h(v) = a0 + 2
n∑

i=1

aiv
1/2
i +

n∑
i=1

n∑
j=1

aijv
1/2
i v

1/2
j − 2

n∑
i=1

biv
−1/2
i

−
n∑

i=1

n∑
j=1

bijv
−1/2
i v

−1/2
j , (10)

where a0, ai, aij, bi , and bij are unknown parameters and vi denotes the income
normalized price, pi/y.

By assuming that bi = 0, bii = 0 ∀i, aijbij = 0 ∀i, j , and forcing the off diagonal
elements of the symmetric matrices A ≡ [aij] and B ≡ [bij] to be nonnegative,
(10) reduces to the ML reciprocal indirect utility function:

h(v) = a0 + 2
n∑

i=1

aiv
1/2
i +

n∑
i=1

aiivi +
n∑

i=1

n∑
j=1

i �=j

a2
ijv

1/2
i v

1/2
j −

n∑
i=1

n∑
j=1

i �=j

b2
ijv

−1/2
i v

−1/2
j .

(11)
Note that the off diagonal elements of A and B are nonnegative as they are raised
to the power of two.

By applying Roy’s identity to (11), the share equations of the ML demand
system are

si =

aiv
1/2
i + aiivi +

n∑
j=1
i �=j

a2
ijv

1/2
i v

1/2
j +

n∑
j=1
i �=j

b2
ijv

−1/2
i v

−1/2
j

n∑
i=1

aiv
1/2
i +

n∑
i=1

aiivi +
n∑

i=1

n∑
j=1

i �=j

a2
ijv

1/2
i v

1/2
j +

n∑
i=1

n∑
j=1

i �=j

b2
ijv

−1/2
i v

−1/2
j

. (12)

Since the share equations are homogeneous of degree zero in the parameters, we
follow Barnett and Lee (1985) and impose the following normalization in the
estimation of (12):

n∑
i=1

aii + 2
n∑

i=1

ai +
n∑

j=1
i �=j

a2
ij −

n∑
j=1
i �=j

b2
ij = 1. (13)

Hence, there are

1 + n + n(n + 1)

2
+ n(n − 1)

2

parameters in (11), but the n (n − 1) /2 equality restrictions, aijbij = 0 ∀i, j ,
and the normalization (13) reduce the number of parameters in equation (12) to(
n2 + 3n

)
/2.
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As shown by Barnett (1983, Theorem A.3), (11) is globally concave for every
v ≥ 0, if all parameters are nonnegative, as in that case (11) would be a sum
of concave functions. If the initially estimated parameters of the vector a and
matrix A are not nonnegative, curvature can be imposed globally by replacing
each unsquared parameter by a squared parameter, as in Barnett (1983).

4. DATA

We use monthly data on monetary asset quantities and their user costs for the
nine items listed in Table 2, recently produced by Barnett et al. (2013) and
maintained within the CFS program AMFM. The sample period is from 1967:1
to 2015:3 (a total of 579 observations). For a detailed discussion of the data
and the methodology of the calculation of user costs, see Barnett et al. (2013)
and http://www.centerforfinancialstability.org. As we require real per capita asset
quantities for our empirical work, we have divided each measure of monetary
services by the United States Consumer Price Index (US CPI) (all items) and total
US population in each period.

Because demand system estimation requires heavy dimension reduction (as
already noted in Section 2), we use the Divisia index to reduce the dimension
of each model by constructing the three subaggregates shown in Table 2. In
particular, subaggregate A (M1) is composed of currency, traveler’s checks, and
other checkable deposits, including Super NOW accounts issued by commercial
banks and thrifts (series 1 to 5 in Table 2). Subaggregate B (savings deposits) is
composed of savings deposits issued by commercial banks and thrifts (series 6
and 7), and subaggregate C (Time deposits) is composed of small time deposits
issued by commercial banks and thrifts (series 8 and 9). Divisia user cost indices
for each of these subaggregates are calculated by applying Fisher’s (1922) weak
factor reversal test.

5. ECONOMETRIC ISSUES

In order to estimate share equation systems such as (5) and (12), a stochastic
version must be specified. Also, since only exogenous variables appear on the
right-hand side, it seems reasonable to assume that the observed share in the ith
equation deviates from the true share by an additive disturbance term ui . Thus, the
share equation system for each model at time t can be written in matrix form as

st = g(pt , yt , ϑ) + ut , (14)

where s = (s1, . . . , sn)
′, g

(
pt , yt , ϑ

) = (
g1

(
pt , yt , ϑ

)
, . . . , gn

(
pt , yt , ϑ

))′
, ϑ is

the parameter vector to be estimated, and gi

(
pt , yt , ϑ

)
is given by the right-hand

side of each of (5) and (12).
In this literature, it has been typically assumed that

ut ∼ N (0,�) , (15)
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where u = (u1t , . . . , unt )
′, 0 is a null matrix, and � is the n×n symmetric positive

definite error covariance matrix.
Since the budget shares sum to 1, the disturbance covariance matrix � is singular.

To address this issue, Barten (1969) showed that maximum likelihood estimates
can be obtained by arbitrarily dropping any equation in the system. We follow
Barten (1969) and drop the last equation in each model.

In this paper, we follow Serletis and Isakin (2017) and relax the homoskedastic-
ity assumption in (15) by assuming that the n-dimensional error vector is normally
distributed with zero-mean and time-varying covariance matrix �t with respect to
information set It−1

ut | It−1 ∼ N (0,�t ) . (16)

As before, the error terms of the demand system sum to zero and we drop the last
equation to avoid singularity and consider the corresponding (n − 1) × (n − 1)

covariance matrix �t . We also assume the BEKK GARCH(1,1) with K = 1
representation for the conditional variance matrix

�t = C
′
C + B

′
�t−1B + A

′
εt−1ε

′
t−1A,

where εt = (
u1t , u2t , . . . , un−1,t

)
. In our case of 3 goods, each of the demand

systems with a BEKK specification for the covariance matrix �t has the following
conditional variance and covariance equations

h11,t = c2
11 + b2

11h11,t−1 + 2b11b21h12,t−1 + b2
21h22,t−1

+ a2
11u

2
1,t−1 + 2a11a21u1,t−1u2,t−1 + a2

21u
2
2,t−1

h12,t = c11c12 + b11b21h11,t−1 + (b11b22 + b12b21)h12,t−1 + b21b22h22,t−1

+ a11a12u
2
1,t−1 + (a11a22 + a12a21)u1,t−1u2,t−1 + a21a22u

2
2,t−1 (17)

h22,t = c2
12 + c2

22 + b2
12h11,t−1 + 2b12b22h12,t−1 + b2

22h22,t−1

+ a2
12u

2
1,t−1 + 2a12a22u1,t−1u2,t−1 + a2

22u
2
2,t−1.

See Serletis and Isakin (2017) for a detailed discussion. All estimations are per-
formed in Estima RATS.

6. EMPIRICAL EVIDENCE

In Tables 3 and 4, we report a summary of results from the GL and ML models in
terms of parameter estimates (with p-values in parentheses) for the mean equations
(5) and (12), and the variance equations (17). We also report positivity, monotonic-
ity, and curvature violations, Lagrange Multiplier test results for autoregressive
conditional heteroscedasticity (ARCH) effects, as well as log likelihood values,
when the models are estimated without the curvature conditions imposed (in the
first column), with the curvature conditions imposed (in the second column), and
with both BEKK errors and curvature conditions imposed (in the last column).
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TABLE 3. Generalized Leontief parameter estimates

Curvature BEKK errors and
Parameter Unrestricted imposed curvature imposed

Mean equations
a1 0.245 (0.000) 0.186 (0.000) −0.038 (0.000)

a2 0.360 (0.000) 0.154 (0.000) 0.029 (0.000)

β11 0.494 (0.000) −0.159 (0.000) 0.031 (0.007)

β12 −0.655 (0.000) 0.044 (0.000) 0.247 (0.000)

β13 0.181 (0.000) 0.194 (0.000) 0.226 (0.000)

β22 0.421 (0.000) 0.159 (0.000) 0.303 (0.000)

β23 −0.091 (0.000) −0.061 (0.000) −0.131 (0.000)

β33 0.028 (0.000) 0.030 (0.000) −0.047 (0.000)

Variance equations (with the 3rd mean equation deleted)
c11 0.002 (0.000)

c12 0.002 (0.015)

c22 0.001 (0.039)

a11 −0.625 (0.000)

a12 0.044 (0.111)

a21 0.010 (0.610)

a22 −0.639 (0.000)

b11 0.897 (0.000)

b12 0.018 (0.158)

b21 0.003 (0.680)

b22 0.862 (0.000)

Violations

Positivity 0 0 0
Monotonicity 0 0 0
Curvature 579 268 287

LM test
(
χ 2

)
û1 530.498 (0.000) 512.215 (0.000)

û2 486.963 (0.000) 508.604 (0.000)

Log L 2212.805 2113.510 3011.555

Notes: Sample period, monthly data 1967:1–2015:3 (579 observations).
Numbers in parentheses are p-values.

As can be seen in the first column of Tables 3 and 4, both models satisfy positivity
and monotonicity at all sample observations when the curvature conditions are not
imposed, but both unrestricted models violate curvature when curvature is not
imposed. Because regularity has not been attained (by luck), we follow Barnett
(2002) and estimate the models by imposing the curvature conditions, using the
methodology discussed in Section 3. The results are disappointing in the case of the
GL model. As can be seen in the second column of Table 3, the imposition of local
curvature on the GL model reduces the number of curvature violations, but does
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TABLE 4. Minflex Laurent parameter estimates

Curvature BEKK errors and
Parameter Unrestricted imposed curvature imposed

Mean equations
a1 −0.086 (0.000) 0.062 (0.000) 0.000 (0.000)

a2 −0.209 (0.000) 0.004 (0.000) 0.030 (0.000)

a3 −0.174 (0.000) 0.000 (0.000) 0.000 (0.000)

a11 0.469 (0.000) 0.299 (0.000) 0.148 (0.000)

a13 −0.498 (0.000) −0.278 (0.000) −0.412 (0.000)

a33 0.138 (0.000) 0.016 (0.000) 0.061 (0.000)

a22 0.846 (0.000) 0.405 (0.000) 0.395 (0.000)

b12 0.039 (0.000) 0.044 (0.000) 0.028 (0.000)

Variance equations (with the 3rd mean equation deleted)
c11 0.005 (0.000)

c12 0.003 (0.000)

c22 0.001 (0.003)

a11 0.161 (0.008)

a12 0.144 (0.013)

a21 0.042 (0.000)

a22 0.330 (0.046)

b11 −0.995 (0.000)

b12 0.034 (0.959)

b21 −0.008 (0.121)

b22 −0.936 (0.000)

Violations

Positivity 0 0 0
Monotonicity 0 0 0
Curvature 579 0 0

LM test
(
χ 2

)
û1 531.524 (0.000) 502.545 (0.000)

û2 497.551 (0.000) 507.133 (0.000)

Log L 2273.443 2066.706 2852.363

Notes: Sample period, monthly data 1967:1–2015:3 (579 observations).
Numbers in parentheses are p-values.

not completely eliminate them. Only the curvature restricted ML model satisfies
full theoretical regularity (see the second column of Table 4). Moreover, when
we relax the homoskedasticity assumption and model the curvature constrained
demand systems with the BEKK GARCH(1,1) errors specification, we find that
only the curvature constrained ML model with BEKK errors satisfies all three
regularity conditions at all data points (see the last column of Tables 3 and 4).
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To verify that homoskedasticity is not a good assumption in this literature, we
report χ2 statistics of Lagrange Multiplier tests for the models estimated under the
homoskedasticity assumption (see the first and second columns) in Tables 3 and 4.
Results show statistically significant evidence of ARCH effects when the models
are estimated under the homoskedasticity assumption. This is also supported by
the plots of the estimated squared residuals, û2

1 and û2
2, of the unrestricted and

curvature restricted ML model in Figures 1 and 2, respectively; similar figures for
the GL model are available upon request. Overall, based on our evidence, only the
curvature constrained ML model with a BEKK specification for the conditional
variance matrix is able to provide inference that is consistent with full theoretical
regularity and the time series properties of the data.

In the demand systems approach to the estimation of economic relationships,
the primary interest, especially in policy analysis, is in how the arguments of
the underlying function affect the quantities demanded. This is conventionally
expressed in terms of the income and price elasticities and the Allen and Morishima
elasticities of substitution. These elasticities can be calculated from the estimated
budget share equations by writing the left-hand side as

xi = siy

pi

, i = 1, . . . , n.

In particular, the income elasticities can be calculated by

ηiy = 1 + y

si

∂si

∂y
, i = 1, . . . , n

and the Marshallian (or uncompensated) price elasticities by

ηij = pj

si

∂si

∂pj

− δij, i, j = 1, . . . , n

where δij is the Kronecker delta (that is, δij = 1 when i = j and 0 otherwise). The
Allen (1938) elasticities of substitution can be calculated by

σa
ij = ηiy + ηji

si

= σa
ji , i, j = 1, . . . , n

and the Morishima (1967) elasticities of substitution by

σm
ij = si(σ

a
ji − σa

ii), i, j = 1, . . . , n.

We report the income and the own- and cross-price elasticities evaluated at the
mean of the data (with p-values in parentheses) in Table 5, the Allen elasticities of
substitution in Table 6, and the Morishima elasticities of substitution in Table 7.
We do so for each of the three monetary subaggregates, A, B, and C, and only for
the curvature constrained ML model with a BEKK specification for the conditional
variance matrix, since this is the only model that satisfies full theoretical regularity
and reflects the data generating process. Since the elasticities are functions of the
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FIGURE 1. Squared residuals of the two estimated share equations of the unrestricted ML model.
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FIGURE 2. Squared residuals of the two estimated share equations of the curvature constrained ML model.
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TABLE 5. Curvature Constrained Minflex Laurent with a BEKK Specification:
Income and Price Elasticities

Elasticities

Income Own- andcross-price

Subaggregate i ηi ηiA ηiB ηiC

(A) 1.171 (0.000) −0.988 (0.000) −0.154 (0.000) −0.028 (0.000)

(B) 0.864 (0.000) −0.177 (0.000) −0.639 (0.000) −0.020 (0.000)

(C) 2.304 (0.000) −0.800 (0.000) −0.488 (0.000) −1.015 (0.000)

Notes: Sample period, monthly data 1967:1–2015:3 (579 observations).
Numbers in parentheses are p-values.

TABLE 6. Curvature constrained Minflex Laurent with a BEKK specifi-
cation: Allen elasticities of substitution

Allen elasticities

Subaggregate i σ a
iA σ a

iB σ a
iC

(A) −1.944 (0.000) −0.409 (0.000) −0.247 (0.000)

(B) −1.697 (0.000) −0.173 (0.000)

(C) −8.840 (0.000)

Notes: Sample period, monthly data 1967:1–2015:3 (579 observations).
Numbers in parentheses are p-values.

TABLE 7. Curvature constrained Minflex Laurent with a BEKK
specification: Morishima elasticities of substitution

Morishima elasticities

Subaggregate i σm
iA σm

iB σm
iC

(A) 0.811 (0.000) 0.188 (0.000)

(B) 0.485 (0.000) 0.152 (0.000)

(C) 0.987 (0.000) 0.995 (0.000)

Notes: Sample period, monthly data 1967:1–2015:3 (579 observations).
Numbers in parentheses are p-values.

parameter estimates, we construct the reported standard errors using the Delta
method.

As expected, all the income elasticities reported in Table 5, ηA, ηB , and ηC ,
are positive and statistically significant (ηA = 1.171 with a p-value of 0.000,
ηB = 0.864 with a p-value of 0.000, and ηC = 2.304 with a p-value of 0.000),
implying that M1 (A), savings deposits (B), and time deposits (C) are all normal
goods, which is consistent with economic theory and the existing literature. The
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own-price elasticities, ηii , are all negative, as predicted by the theory, and sta-
tistically significant (ηAA = −0.988 with a p-value of 0.000, ηBB = −0.639
with a p-value of 0.000, and ηCC = −1.015 with a p-value of 0.000). For the
cross-price elasticities, ηij, economic theory does not predict any signs, but we
note that the off-diagonal terms in Table 5 are negative, indicating that the assets
taken as a whole are gross complements. This is (qualitatively) consistent with
the evidence reported by Serletis and Shahmoradi (2005) using the Fourier and
AIM (asymptotically ideal model) globally flexible functional forms and that by
Serletis and Shahmoradi (2007) using the ML and GL models.

In addition to the standard Marshallian income and price elasticities, we show
estimates of the Allen elasticities of substitution in Table 6, evaluated at the
means of the data. As expected, the three diagonal terms of the Allen own elas-
ticities of substitution for the three assets are negative (σa

AA = −1.944 with a
p-value of 0.000, σa

BB = −1.697 with a p-value of 0.000, and σa
CC = −8.840

with a p-value of 0.000). However, because the Allen elasticity of substitution
produces ambiguous results off diagonal, we use the Morishima elasticity of sub-
stitution to investigate the substitutability/complementarity relationship between
monetary assets—see Blackorby and Russell (1989) for more details. Based on the
Morishima elasticities of substitution shown in Table 7, the assets are Morishima
substitutes, with all Morishima elasticities of substitution being less than unity.

7. COMPARISON WITH OTHER STUDIES

It is difficult to provide a comparison between our results and those obtained in
previous studies using different flexible functional forms and different monetary
assets. Moreover, as we have already mentioned, most of the money demand
studies listed in Table 1 do not produce inference consistent with neoclassical
microeconomic theory, and all of the studies listed in Table 1 are based on the
homoskedasticity assumption.

Our results, however, are generally consistent with those reported by Serletis and
Shahmoradi (2007) who investigate the same monetary assets using the ML model
as we do in this paper. That is, the monetary assets are Morishima substitutes,
with all the Morishima elasticities of substitution being less than unity. This is
evidence against what Barnett (2016) refers to as the “Linearity Condition,” which
requires infinite elasticities of substitution. It is also consistent with much of
the earlier literature that was based on different demand systems and different
monetary assets. It means that the simple-sum monetary aggregates used by the
Federal Reserve (and other central banks around the world) are inconsistent with
neoclassical microeconomic theory, and therefore should be abandoned.

8. CONCLUSION

We investigate the demand for money and the degree of substitutability among
monetary assets in the United States in the context of four of the most widely
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used flexible functional forms. We also merge the demand systems literature
with the recent financial econometrics literature, relaxing the homoskedasticity
assumption. In doing so, we make a valuable and novel contribution to the demand
systems literature by showing how one can use standard time series techniques
in order to obtain improved estimates of the income and price elasticities and the
Allen and Morishima elasticities of substitution. The evidence indicates that the
elasticities of substitution among the monetary assets are very low, implying that
approximation with a linear index, such as the simple sum index, requiring infinite
elasticities of substitution is invalid.
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