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We consider a dilute gas of electrically charged granular particles in the homogeneous
cooling state. We derive the energy dissipation rate and the transport coefficients from
the inelastic Boltzmann equation. We find that the deviation of the velocity distribution
function from the Maxwellian yields overshoots of the transport coefficients, and
especially, the negative peak of the Dufour-like coefficient, μ, in the intermediate granular
temperature regime. We perform the linear stability analysis and investigate the granular
temperature dependence of each mode, where the instability mode is found to change
against the granular temperature. The molecular dynamics simulations are also performed
to compare the result with that from the kinetic theory.
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1. Introduction

Dilute granular gases have been subject of intensive research in the past decades and
by now there is a large body of knowledge regarding the fluid mechanical and kinetic
properties of granular gases; see, e.g.Garzó (2019), Puglisi (2015), Brilliantov & Pöschel
(2004), Goldhirsch (2003), Pöschel & Brilliantov (2003) and many references therein.
There is an obvious similarity of ordinary molecular gases and granular gases which
allows us to apply the mathematical toolbox of statistical physics and kinetic theory
also to granular gases, however, modifications are needed to account for the loss of
mechanical energy due to dissipative particle collisions. The irreversible transfer of
energy from the mechanical degrees of freedom on the particle level to the thermal
(sub-particular) degrees of freedom is characterized by the coefficient of restitution,
e, defined as the ratio between the normal components of the pre-collisional and
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post-collisional relative velocities of the colliding grains. In the absence of external driving
mechanisms, therefore, the kinetic energy of granular gases decays monotonously. For
the case of a homogeneous granular gas and for a constant coefficient of restitution,
this decay is described by Haff’s law (Haff 1983) predicting decay of energy with time
∝ t−2. Similar results apply to gases of viscoelastic particles characterized by an impact
velocity dependent coefficient of restitution (Brilliantov et al. 1996) where energy decays
∝ t−5/3 (Schwager & Pöschel 2008). The dissipative nature of particle interaction implies
that granular gases are always in non-equilibrium, which gives rise to many interesting
phenomena, such as non-Maxwellian velocity distribution (Goldhirsch, Noskowicz &
Bar-Lev 2003), overpopulation of the high-energy tail of the velocity distribution function
(Esipov & Pöschel 1997) or the instability of the homogeneous state in the long-time
evolution (Goldhirsch & Zanetti 1993) which may be transient, depending on the particle
characteristics (Brilliantov et al. 2004).

Much less is known when it comes to granular gases of electrically charged particles
despite the fact that, for many applications of practical interest, it is known that electrical
charges have significant influence or even dominate their macroscopic behaviour, e.g.
Kumar et al. (2014), Laurentie, Traoré & Dascalescu (2013), Lee et al. (2015), Jungmann
et al. (2018). Systems of charged particles – mostly due to triboelectricity – are not only
ubiquitous in industrial processes (Kanazawa et al. 1995; Watanabe et al. 2007), but also in
natural phenomena such as volcanic eruptions (Genareau et al. 2015) and in protoplanetary
discs (Muranushi 2010). Although the triboelectric effect has been known since ancient
times, the underlying physics is still the subject of intense scientific debate, e.g.Pan &
Zhang (2019) and Lacks & Shinbrot (2019). Some recent work on this phenomenon can be
found in Kolehmainen et al. (2016), Yoshimatsu et al. (2017), Singh & Mazza (2018) and
Singh & Mazza (2019).

The presence of charges changes the collisional behaviour of granular particles
significantly. For uncharged particles, the properties of a collision are independent of
the unit of time. Particle interactions are instantaneous events resulting in a change of
the particle velocities due to a collision rule. Independent of the incoming velocity,
the absolute value of the relative particle velocity (in normal direction) reduces by a
fraction described by the coefficient of restitution. This is different for charged particles.
Here, a dissipative collision can only occur if the particles overcome an energy barrier
induced by the electrical charges. In contrast to Haff’s law, the kinetic energy decays
∝ log−1(t) rather than ∝ t−α (Scheffler & Wolf 2002). The same result with somewhat
different reasoning was obtained by Pöschel, Brilliantov & Schwager (2003). For both
results, a Maxwellian velocity distribution was assumed. While this assumption simplifies
the algebra significantly, it ignores pronounced deviations from the Maxwellian as a
consequence of inelastic collisions; see Goldshtein & Shapiro (1995), van Noije & Ernst
(1998), Brey et al. (1998), Brilliantov & Pöschel (2000), Goldhirsch et al. (2003). When
taking these deviations into account (Takada, Serero & Pöschel 2017), the functional form
of the earlier result was reproduced, but the parameters and details are modified. That is,
in the homogeneous cooling state of charged granular gases, initially the evolution of the
granular temperature follows Haff’s law (Haff 1983) followed by a later stage where the
evolution follows the inverse of the logarithm of time.

In the current paper we continue the description of granular gases of charged particles
by deriving the transport coefficients and, in particular, their dependence on granular
temperature, especially in the discontinuous limit of the effective restitution coefficient.
We expand our previous theory to the next order of the Sonine polynomial expansion of the
velocity distribution function. We perform a linear stability analysis of the homogeneous
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cooling state and find that the route to instability of a granular gas of charged particles
differs from the route of uncharged particles. For a large granular temperature, the sound
mode is stable and the heat mode is unstable for a small wavenumber, similar to granular
gases of uncharged particles. For a small granular temperature, the heat mode becomes
stable and the sound mode becomes unstable for a small wavenumber. This behaviour is
not observed for uncharged gases. Instead, the shear mode is always dominant compared
with the heat mode in the latter system (Brey et al. 1998; Brilliantov & Pöschel 2004).

For our analysis, we assume a dilute granular gas, that is, a small volume fraction of
the particles. An extension to moderately dense systems would require an expression for
the pair correlation function, which is however unknown for granular particles carrying
charges.

In the next section we calculate the transport coefficients. In § 3 we perform the
linear stability analysis for this system, and study the result in dependence on granular
temperature. Finally, in § 4 we perform numerical simulations to validate the theoretical
results. Some extensive calculations have been moved to the appendices so as not to disturb
the flow of reading. In Appendix A we determine the Sonine coefficients a2 and a3 from
the Boltzmann equation. Appendix B describes the derivation of Ωe

η and Ωe
κ needed for

the transport coefficients. Finally, in Appendix C we explain the numerical method to
compute the transport coefficients.

2. Kinetic theory and transport coefficients

2.1. General method for the computation of transport coefficients
We consider a system of charged monodisperse hard-sphere particles of mass m and
diameter σ . For a small impact rate, charged particles interact elastically due to
Coulomb’s force law, while for a large rate, mechanical dissipative interaction dominates,
characterized by a (constant) coefficient of restitution. Both regimes are separated by a
critical rate v∗, depending on the values of mass and charge. The resulting step function,
e(vn), is inconvenient for an analytical treatment, therefore, we chose a smooth step
function e(vn, β) depending on a further parameter. Thus, our results will depend on
this parameter β. The result concerning the step function is then obtained for β → ∞.
Following Takada et al. (2017), we describe the particle–particle interaction using the
impact-rate dependent coefficient of restitution

e(vn) = e∗ exp
[
β(vn − v∗)

]+ 1
exp [β(vn − v∗)] + 1

, (2.1)

where vn is the normal component of the relative velocity, v∗ is a characteristic velocity
and β is related to the slope of the change near v∗ (see Takada et al. (2017), figure 1). The
function (2.1) takes into account that, for vn � v∗, the particles collide elastically, due to
the repulsive charges. For vn � v∗, the collision takes place as for uncharged particles,
since inertia dominates the collision. Here, the coefficient of restitution assumes the value
e∗ = limvn/v∗→∞ e(vn). For β → ∞, we recover the step function used by Pöschel et al.
(2003),

lim
β→∞

e(vn) = 1 −Θ(vn − v∗)(1 − e∗), (2.2)

where Θ(x) is the Heaviside function. In the homogeneous cooling state the granular
temperature of the system decays due to inelastic collisions. This decay can be obtained
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from the Boltzmann equation (Brilliantov & Pöschel 2004) as

dT
dt

= −2
3

nσ 2

√
2T
m
μ2T, (2.3)

where n is the particle number density of the system and μ2 is the second moment of the
dimensionless collision integral. We expand the distribution function in terms of Sonine
polynomials up to third order,

f̃ (c) = φ(c)[1 + a2S2(c2)+ a3S3(c2)], (2.4)

where c is the dimensionless velocity c = v/
√

2T/m, c = |c|, f̃ is the dimensionless
velocity distribution function, φ(c) is the dimensionless Maxwell distribution function
φ(c) = π−3/2 exp(−c2) and Sp(x) (p = 2, 3) are Sonine polynomials defined as
(Brilliantov & Pöschel 2004; Chamorro, Reyes & Garzó 2013)

Sp(x) =
p∑

n=0

(−1)n
(

1
2

+ p
)

!(
1
2

+ n
)

!( p − n)!
xp. (2.5)

For μ2, we obtain (Takada et al. 2017)

μ2 =
√

2π(S1 + a2S2 + a3S3), (2.6)

where the explicit forms of S1, S2 and S3 are, respectively, given in Appendix A,
(A5a)–(A5c). Similarly, we obtain the higher moments of the dimensionless collision
integral

μ4 =
√

2π(T1 + a2T2 + a3T3), (2.7)

μ6 =
√

2π(D1 + a2D2 + a3D3), (2.8)

where T1, T2, T3, D1, D2 and D3 are, respectively, given in Appendix A, (A6a)–(A7c).
Exploiting the properties of the collision integral, we can determine the coefficients a2
and a3 in linear approximation as

a2 = N2

D
, a3 = N3

D
, (2.9a,b)

with

N2 ≡ (T1 − 5S1)
(
−105

4 S1 + 105
4 S3 − D3

)
− (5S3 − T3)

(
D1 − 105

4 S1

)
, (2.10a)

N3 ≡ (5S1 + 5S2 − T2)
(

D1 − 105
4 S1

)
− (T1 − 5S1)

(
315
4 S1 + 105

4 S2 − D2

)
, (2.10b)

D ≡ (5S1 + 5S2 − T2)
(
−105

4 S1 + 105
4 S3 − D3

)
− (5S3 − T3)

(
315
4 S1 + 105

4 S2 − D2

)
.

(2.10c)

(The detailed derivation is provided in Appendix A.)
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Now, let us derive the transport coefficients where we follow the steps in Brilliantov &
Pöschel (2003). Using the same procedure as the Chapman–Enskog method, we define

Ωe
η ≡

∫
dc1

∫
dc2

∫
dk̂Θ(−c12 · k̂)

∣∣∣c12 · k̂
∣∣∣φ(c1)φ(c2)

× [1 + a2S2(c2
1)+ a3S3(c2

1)]D̃αβ(c2)Δ[D̃αβ(c1)+ D̃αβ(c2)], (2.11)

with (Brilliantov & Pöschel 2004)

D̃αβ(c) ≡ cαcβ − 1
3 c2δαβ. (2.12)

Greek characters {α, β} stand for {x, y, z}, and we adopt Einstein’s rule for the summation.
We have also introduced Δψ(ci) ≡ ψ(c′

i)− ψ(ci) for an arbitrary function ψ (Brilliantov
& Pöschel 2004). Substituting (2.1) into (2.11), we obtain

Ωe
η =

√
2π(ωe

η,1 + a2ω
e
η,2 + a3ω

e
η,3), (2.13)

where Ωe
η,1, Ωe

η,2 and Ωe
η,3 are, respectively, given in Appendix B, (B5a)–(B5c).

Similarly, we define

Ωe
κ ≡

∫
dc1

∫
dc2

∫
dk̂Θ(−c12 · k̂)

∣∣∣c12 · k̂
∣∣∣φ(c1)φ(c2)

× [1 + a2S2(c2
1)+ a3S3(c2

1)]S̃(c2)Δ[S̃(c1)+ S̃(c2)], (2.14)

with (Brilliantov & Pöschel 2004)

S̃(c) ≡
(

c2 − 5
2

)
c. (2.15)

We obtain
Ωe
κ =

√
2π(ωe

κ,1 + a2ω
e
κ,2 + a3ω

e
κ,3), (2.16)

where Ωe
κ,1, Ωe

κ,2 and Ωe
κ,3 are, respectively, given in Appendix B, (B8a)–(B8c).

2.2. Discontinuous limit of the restitution coefficient
Consider the transport coefficients in the discontinuous limit, βv∗ → ∞. In this limit,
(2.6)–(2.8), (2.13) and (2.16) read as

μ
(∞)
2 =

√
2π
(

S(∞)
1 + a(∞)

2 S(∞)
2 + a(∞)

3 S(∞)
3

)
, (2.17a)

μ
(∞)
4 =

√
2π
(

T(∞)
1 + a(∞)

2 T(∞)
2 + a(∞)

3 T(∞)
3

)
, (2.17b)

μ
(∞)
6 =

√
2π
(

D(∞)
1 + a(∞)

2 D(∞)
2 + a(∞)

3 D(∞)
3

)
, (2.17c)

Ωe(∞)
η =

√
2π
(
ω

e(∞)
η,1 + a(∞)

2 ω
e(∞)
η,2 + a(∞)

3 ω
e(∞)
η,3

)
, (2.17d)

Ωe(∞)
κ =

√
2π
(
ω

e(∞)
κ,1 + a(∞)

2 ω
e(∞)
κ,2 + a(∞)

3 ω
e(∞)
κ,3

)
, (2.17e)

whose explicit forms are given in Appendices A and B. Hereafter, we focus on the
discontinuous limit βv∗ → ∞; we drop the superscript (∞) for simplicity.
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Let us start with the coefficients a2 and a3. Figure 1 shows a2 and a3 as functions
of granular temperature given by (2.9a,b) in the limit βv∗ → ∞. In the figure we
have introduced the characteristic granular temperature, T∗ ≡ mv∗2/2, given by the
characteristic rate v∗ (Takada et al. 2017). We also show a2 as obtained when the third
term in (2.4) is neglected, that is, with the assumption a3 = 0. The explicit form of a2 with
a3 = 0 is given in Takada et al. (2017, equation (10)). For a high granular temperature, we
obtain limT→∞ a2(T) = a(HC)

2 and limT→∞ a3(T) = a(HC)
3 , where a(HC)

2 and a(HC)
3 are the

Sonine coefficients for a gas of hard spheres (Brilliantov & Pöschel 2006),

a(HC)
2 (e∗) ≡ N(HC)

2 (e∗)
D(HC)(e∗)

, (2.18a)

a(HC)
3 (e∗) ≡ N(HC)

3 (e∗)
D(HC)(e∗)

, (2.18b)

with

N(HC)
2 (e∗) ≡ 16

(
1623 − 1934e∗ − 895e∗2 + 364e∗3 − 3510e∗4

+7424e∗5 − 3312e∗6 + 480e∗7 − 240e∗8
)
, (2.19a)

N(HC)
3 (e∗) ≡ −128

(
217 − 386e∗ − 669e∗2 + 1548e∗3 + 154e∗4

−1600e∗5 + 816e∗6 − 160e∗7 + 80e∗8
)
, (2.19b)

D(HC)(e∗) ≡ 214 357 − 172 458e∗ + 112 155e∗2 + 25 716e∗3 − 4410e∗4

− 84 480e∗5 + 34 800e∗6 − 5600e∗7 + 2800e∗8. (2.19c)

The coefficient a3 has both a minimum and maximum in the intermediate regime, while a2
has only a minimum in this regime. The position of the minimum of a3 coincides almost
with the position of the minimum of a2. From (2.3), the dissipation rate ζ is written as

ζ = 2
3

nσ 2

√
2T
m
μ2. (2.20)

Figure 2 shows the dissipation rate as a function of granular temperature. Here, we
introduce a new variable

ζ ∗ ≡ ζ

ζ (HC)(e∗)
, (2.21)

where

ζ (HC) (e∗) = 4
3

(
1 − e∗2

)
nσ 2

√
πT
m
μ
(HC)
2

(
1 + 3

16
a(HC)

2
(
e∗)+ 1

64
a(HC)

3
(
e∗)) . (2.22)

In the limit of high granular temperature, the dissipation rate is consistent with the
hard-sphere limit while it decreases to zero as the granular temperature becomes
sufficiently smaller than the characteristic granular temperature.

Next, we consider the shear viscosity, η, as a function of granular temperature, using the
technique introduced in Takada, Saitoh & Hayakawa (2016). Then, the shear viscosity is
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0.01

a3

a2
(a3 = 0)

a2

0

–0.01

–0.02

–0.03

a2, a3

–0.04

10–2 10–1 100

T/T ∗ 101

Figure 1. The coefficients a2 and a3 as functions of the granular temperature for e∗ = 0.8. For the computation
of the blue curve, we neglected a3 in (2.4), that is, a3 = 0 was assumed. The explicit form of a2(T)with a3 = 0
is given by (2.18).

1.0

0.8

0.6

0.4

ζ∗

0.2

0

10–1 100 101

T/T ∗

Figure 2. Dissipation rate as a function of granular temperature, obtained from the kinetic theory up to order
a3 for e∗ = 0.8, where ζ ∗ is given by (2.21).

given by the solution of the differential equation

− 2
3

Tμ2
∂η

∂T
− 2

5
Ωe
ηη = 1

σ 2

√
mT
2
. (2.23)

Here, we define a new variable

η∗ ≡ η

η(HC)(1)
, where η(HC)(1) = 5

16σ 2

√
mT
π

(2.24)

is the shear viscosity of the elastic hard-sphere gas. Using η∗, (2.23) reads as

10xμ2
∂η∗

∂x
− (5μ2 + 6Ωe

η)η
∗ = 24

√
2π; x ≡ T∗

2T
. (2.25a,b)

To solve this equation perturbatively, we expand η∗ = η∗(0) + η∗(1) + . . . and assume that
the first term on the left-hand side of (2.25a,b) is of higher order than the other terms.
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For justification and discussion of this assumption, see § 5. Then we can perturbatively
solve (2.25a,b). To this end, we expand the viscosity η∗ = η∗(0) + εη∗(1) + . . . , where ε
is a perturbative parameter relating to the inelasticity (1 − e∗2). Since μ2 corresponds to
the energy dissipation rate, μ2 ∼ O(ε). Using these assumptions, (2.25a,b) is rewritten as

10xεμ2
∂

∂x
(η∗(0) + εη∗(1) + . . . )− (5μ2 + 6Ωe

η)(η
∗(0) + εη∗(1) + . . . ) = 24

√
2π.

(2.26)
Collecting terms in each order and setting ε = 1, we obtain

η∗ =
∞∑

n=0

η∗(n) =
∞∑

n=0

(
10xμ2

5μ2 + 6Ωe
η

∂

∂x

)n

η∗(0), (2.27)

with

η∗(0) = − 24
√

2π

5μ2 + 6Ωe
η

. (2.28)

Note that
∂

∂x
= −2T2

T∗
∂

∂T
(2.29)

holds true. Figure 3 shows the shear viscosity as a function of granular temperature, (2.27),
up to the first order. In the limit of high granular temperature, we recover the result for an
inelastic hard-sphere gas while, for a low granular temperature, we find the result for the
elastic hard-sphere gas. This agrees with the intuition that, for a high granular temperature,
nearly all collisions are dissipative while, for a low granular temperature, elastic collisions
dominate. In the intermediate region we obtain a negative overshoot around T/T∗ � 0.1.
This behaviour is also observed when we assume a Maxwell distribution function (not
shown in figure 3). We also show the numerical solution of the differential equation
(2.25a,b); details are discussed in Appendix C. The numerical result is consistent with
the perturbative solution, that is, the numerics support the validity of the theoretical result.

Similarly, the thermal conductivity and the Dufour-like coefficient μ (see Garzó 2019;
Shukla, Biswas & Gupta 2019; Gupta, Shukla & Torrilhon 2020) are, respectively, given
by the solutions of the differential equations

∂

∂T

(
4μ2κT3/2

)
+ 8

5
κT1/2Ωe

κ= −15
2

T
σ 2

√
2
m
(1 + 2a2), (2.30)

−4μ2
∂μ

∂T
− 8

5
T−1Ωe

κμ = 4
n
μ2κ + a2

15
2nσ 2

√
2T
m
. (2.31)

Introducing new variables

κ∗ ≡ κ

κ(HC)(1)
and μ∗ =

nμ
T

κ(HC)(1)
(2.32a,b)

with the thermal conductivity of the elastic hard-sphere gas

κ(HC)(1) = 75
64σ 2

√
T

πm
, (2.33)
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0.10

0.010

0.005

–0.005

0

0.05η∗ – 1

0

10–1

0 0.1 0.2 0.3

T/T ∗
100

Perturbative solution

Numerical solution

Simulation

101

Figure 3. Shear viscosity as a function of granular temperature obtained from the kinetic theory perturbatively
(solid line) and numerically as discussed in Appendix C (open circles) for e∗ = 0.8, where η∗ is given by (2.24).
The filled squares show results obtained from an event-driven molecular dynamics simulation. The dashed line
is the shear viscosity of a hard-sphere gas, η(HC)(e∗)

/
ηHC(1), (C1). The inset shows a magnification of the

intermediate regime.

we can rewrite (2.30) and (2.31),

5xμ2
∂κ∗

∂x
−
(

10μ2 − 5x
∂μ2

∂x
+ 2Ωe

κ

)
κ∗ = 8

√
2π(1 + 2a2), (2.34)

10xμ2
∂μ∗

∂x
− (

15μ2 + 4Ωe
κ

)
μ∗ = 2μ2κ

∗ + 16
√

2πa2. (2.35)

Similar to the shear viscosity, we can perturbatively obtain the solutions as

κ∗ =
∞∑

n=0

κ∗(n) =
∞∑

n=0

(
5xμ2

10μ2 − 5xμ′
2 + 2Ωe

κ

∂

∂x

)n

κ∗(0), (2.36)

μ∗ =
∞∑

n=0

μ∗(n) =
∞∑

n=0

(
10xμ2

15μ2 + 4Ωe
κ

∂

∂x

)n

μ∗(0), (2.37)

respectively, with

μ′
2 = ∂μ2

∂x
, (2.38)

κ∗(0) = − 8
√

2π(1 + 2a2)

10μ2 − 5xμ′
2 + 2Ωe

κ

, (2.39)

μ∗(0) = −10μ2κ
∗ + 16

√
2πa2

15μ2 + 4Ωe
κ

. (2.40)

Figures 4 and 5 show the thermal conductivity, (2.36), and the Dufour-like coefficient μ,
(2.37), as functions of granular temperature. Again, the numerical solution supports the
validity of the analytical results.
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10–1

–0.1

Perturbative solution

Numerical solution
0

κ∗ – 1
0.1

0.2

0.3

0.4

T/T ∗
100 101

Figure 4. Thermal conductivity as a function of granular temperature, obtained from the kinetic theory
perturbatively (solid line) and numerically as discussed in Appendix C (open circles) for e∗ = 0.8, where
κ∗ is given by (2.32a,b). The dashed line is the thermal conductivity of a hard-sphere gas κ(HC)(e∗)

/
κ(HC)(1)

(C 7).

0.3

0.2

0.1

μ∗

0

10–1

T/T ∗
100 101

Perturbative solution

Numerical solution

0.002

0.001

–0.001

–0.002

0 0.05 0.10 0.15

0

Figure 5. The granular temperature dependence of the Dufour-like coefficient μ obtained from the kinetic
theory perturbatively (solid line) and numerically as discussed in Appendix C (open circles) for e∗ =
0.8, where μ∗ is given by (2.32a,b). The dashed line shows the result for an inelastic hard-sphere gas,
nμ(HC)(e∗)/(κ(HC)(1)T) (C9). The inset shows a magnification of the intermediate regime.

The thermal conductivity has both negative and positive peaks at around T/T∗ � 0.1
and 0.2, respectively. Similar to the case of the shear viscosity, these peaks are not found
when a Maxwell distribution function is assumed. The Dufour-like coefficient μ behaves
similar to the shear viscosity, however, the value becomes negative in this region as shown
in the inset of figure 5. This means that the heat flux is directed from dilute regions to
dense regions. We will discuss this phenomenon below.
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Transport coefficients for charged granular gases

3. Linear stability analysis of the homogeneous cooling state

From the zeroth, first and second moments of the Boltzmann equation, we obtain a set of
hydrodynamic equations,

∂n
∂t

+ ∇ · (nu) = 0, (3.1a)

∂u
∂t

+ u · ∇u = − 1
nm

∇p + η

nm

[
∇2u + 1

3
∇(∇ · u)

]
, (3.1b)

∂T
∂t

+ u · ∇T = −ζT + 2
3n

(
κ∇2T + μ∇2n

)
− 2

3n
p(∇ · u)

+ 2
3n
η

[
(∇αuβ)(∇βuα)+ (∇βuα)(∇αuβ)− 2

3
(∇ · u)2

]
, (3.1c)

with the static pressure p = nT . We linearize the equations around the homogeneous
cooling state,

n(r, t) = nH + δn, (3.2a)

T(r, t) = TH + δT, (3.2b)

where the subscript H indicates the quantities due to the homogeneous system and consider
only linear terms with respect to

ρ ≡ δn
nH
, w ≡ u

vT
, θ ≡ δT

TH
, (3.3a–c)

with the thermal velocity vT ≡ √
2T/m. We introduce dimensionless time and space

variables, τ and r̂, by

τ ≡
∫ t

0
dt′νH(t′), (3.4a)

r̂ ≡ 2νH(t)
vT(t)

r, (3.4b)

with the collision frequency for the elastic hard-sphere gas

νH = 16
5

nσ 2

√
πT
m
. (3.5)

After linearization and Fourier transformation, the set of hydrodynamic equations
becomes

∂

∂τ
ρk = −ikwk‖, (3.6a)

∂

∂τ
wk‖ = −1

2
ikρk +

(
1
4
ζ ∗ − 4

3
η∗k2

)
wk‖ − 1

2
ikθk, (3.6b)

∂

∂τ
wk⊥ =

(
1
4
ζ ∗ − η∗k2

)
wk⊥, (3.6c)

∂

∂τ
θk =

(
−1

2
ζ ∗ − 5

2
μ∗k2

)
ρk − 2

3
ikwk‖ +

(
−Aζ ∗ − 5

2
κ∗k2

)
θk, (3.6d)
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with

ζ ∗ = ζ
η(HC)(1)

nT
(3.7)

and

A ≡ 1
4

+ 1
2

T
∂

∂T
logμ2 = 1

4
− 1

2
x
∂

∂x
logμ2. (3.8)

In the limit x → 0 we obtain A → 1/4, which is consistent with the result for hard-sphere
gases (Brilliantov & Pöschel 2004). The variables Ψk(= ρk,wk, θk) denote the Fourier
component of the quantity Ψ ,

Ψk(τ ) =
∫

d r̂Ψ (r̂, τ )e−ik·r̂ (3.9)

and wk‖ and wk⊥ are the longitudinal and transversal components of the velocity field with
respect to the dimensionless wave vector k.

Equation (3.6c) can be easily solved as

wk⊥(τ ) = wk⊥(0) exp (λ⊥τ) , (3.10)

with
λ⊥=1

4ζ
∗ − η∗k2, (3.11)

and the threshold for this shear mode is given by

k⊥=1
2

√
ζ ∗

η∗ . (3.12)

From (3.6a), (3.6b) and (3.6d), the other three eigenmodes λi (i = 1, 2, 3) can be
obtained as the solutions of the third-order equation

λ3 +
[(

A − 1
4

)
ζ ∗ +

(
4
3
η∗ + 5

2
κ∗
)

k2
]
λ2

+
[
−1

4
Aζ ∗2 +

(
5
6

+ 4
3

Aζ ∗η∗ − 5
8
ζ ∗κ∗

)
k2 + 10

3
η∗κ∗k4

]
λ

+
[(

A
2

− 1
4

)
ζ ∗k2 + 5

4
(κ∗ − μ∗)k4

]
= 0. (3.13)

We can numerically obtain the thresholds for the heat mode and the sound modes from
(3.13).

Figure 6 shows the wavenumber dependence of each mode. In the regime of high
granular temperature, the real part of the heat mode becomes positive for small k, rendering
the heat mode unstable. In contrast, the sound mode is unstable for all k. For T � 1.6T∗
and large k, the real parts of the heat mode are almost equal to those of the sound modes.
For a smaller granular temperature, the real part of the heat mode is negative for all k and
the real parts of the sound modes become positive for small k, which is not observed for
hard-sphere gases. Figure 7 shows the granular temperature dependencies of the threshold
values for the shear mode, the heat mode and the sound mode, where kh and ks are the
wavenumbers where (3.13) is satisfied. In the limit of high granular temperature, both
thresholds correspond to elastic or dissipative hard-sphere gases. On the other hand, the
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0

0

0

0

–0.1

–0.1

Reλi

–0.1

0.1

0.1

0.1

–0.2

–0.2
0.2

–0.2
0.2

0.2
Heat mode
Sound mode 1
Sound mode 2

T/T∗ = 0.1

T/T∗ = 1.6

T/T∗ = 10

0.1 0.2 0.3
k

Figure 6. The wavenumber dependence of the real parts of the heat mode (solid line) and the sound mode
(dashed and dotted lines) for T/T∗ = 10, 1.6, and 0.1 and e∗ = 0.8.

threshold for the heat mode becomes imaginary below 0.5T∗, while that for the shear
mode decreases to zero. Below 1.6T∗, as shown in figure 6, the real part of the heat mode
becomes negative while those of the sound modes become positive for small k. In addition,
the threshold for the sound modes has a peak around 0.3T∗.

We wish to mention that in the limit x → 0, we obtain A → 1
4 and the structure of (3.11)

and (3.13) is consistent with previous results obtained by Garzó (2005) for hard spheres.

4. Numerical confirmation of the results

In order to validate the theoretical results presented in the preceding sections, we
performed event-driven molecular dynamics simulations of the granular system. In
particular, here we focus on the numerical measurement of the shear viscosity. Obviously,
the shear viscosity in a system operating in the homogeneous cooling state is different from
the shear viscosity in a uniformly sheared phase (Santos, Garzó & Dufty 2004; Takada
et al. 2016; Takada & Hayakawa 2018). Consequently, we must not determine numerically
the value of shear viscosity in the traditional way. Instead, for systems in the homogeneous
cooling state, Brey & Cubero (2001) introduced a protocol to determine the shear viscosity
from a relaxation process, that is, a perturbation is added to the system and the relaxation
is observed.

We consider a set of N = 3000 particles of mass m and diameter σ homogeneously
distributed in a cubic box of side length L = 54 σ with periodic boundary conditions. The
given parameters correspond to a packing fraction of φ = 1.0 × 10−2 (corresponding to

935 A38-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.37


S. Takada, D. Serero and T. Pöschel

0

0.1

0.2

10–1 100 101

Shear mode
Heat mode

Sound mode

T/T ∗

Figure 7. Threshold values of the shear mode (solid line), the heat mode (dashed line) and the sound modes
(dotted line) as functions of the granular temperature for e∗ = 0.8. The dotted black line shows the value of the
shear mode for a hard-sphere gas. The dot-dashed line refers to the heat mode of a hard-sphere gas. The dashed
green line highlights the value T/T∗ ≈ 0.4 where the threshold for the heat mode turns imaginary.

the number density nσ 3 � 1.9 × 10−2). We add a velocity perturbation via

uy(x, t = 0) ∝ sin
(

2π

L
x
)

(4.1)

and observe the relaxation back to the uniform state in the course of time. Following Brey
& Cubero (2001) and using (3.3a–c) and (3.10), the value of the shear viscosity, η∗, can
be obtained from

uy(x, t) ∝ exp(−η∗k2τ). (4.2)

Figure 3 (black square symbols) shows the shear viscosity determined by means of (4.2)
in comparison with the theoretical results. In the whole range of the granular temperature,
the result is consistent with the theory (2.27). Small deviations of the molecular dynamics
simulation data from the theory arise due to the statistical nature of the particle system
(Brey & Cubero 2001).

Note that an molecular dynamics numerical confirmation of the thermal conductivity
and the Dufour-like coefficient μ in a granular system is much more complicated since
these two coefficients are coupled (Dufty & Brey 2002; Brey & Ruiz-Montero 2004; Brey
et al. 2005).

5. Discussion

To check the validity of the perturbative solution of (2.25a,b) to derive the shear viscosity,
we relate the first terms of (2.27) and obtain

η∗(1)

η∗(0) = 10xμ2

5μ2 + 6Ωe
η

∂

∂x
log η∗(0)

= − 10xμ2

(5μ2 + 6Ωe
η)

2

(
5
∂μ2

∂x
+ 6

∂Ωe
η

∂x

)
. (5.1)
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0
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0.10

10–1 100 101

0.8

0.5

0.3

η
∗(1

) /
η

∗(0
)

T/T ∗

Figure 8. The ratio η∗(1) to η∗(0) of the first terms of (2.27) as a function of granular temperature for the
restitution coefficient e∗ = 0.8 (solid line), e∗ = 0.5 (dashed line) and e∗ = 0.3 (dotted line).

Figure 8 shows this ratio as a function of the granular temperature for various values
of the coefficient of restitution, e∗. Even for moderately large inelasticity, we obtain
η∗(1)/η∗(0) � 1, justifying the perturbation solution.

Let us analyse the crossover behaviour of the viscosity. We define the effective
restitution coefficient eeff (Takada et al. 2017) as

1 − e2
eff = (1 − e∗2)(1 + x)e−x, (5.2)

where the right-hand side of (5.2) is equivalent to S1 for βv∗ → ∞ given by (A10a). The
hard-sphere limit of a2 with this effective restitution coefficient is known to reproduce the
peak value of a2 in figure 1 (Takada et al. 2017). Let us define the effective shear viscosity
as

ηeff = 15
2(1 + eeff )(13 − eeff )σ 2

√
mT
π

[
1 + 3(4 − 3eeff )

8(13 − eeff )
a2,eff + (7 − 4eeff )

32(13 − eeff )
a3,eff

]
,

(5.3)

with a2,eff ≡ a(HC)
2 (eeff ) and a3,eff ≡ a(HC)

3 (eeff ). Figure 9 represents the granular
temperature dependence of the effective shear viscosity (5.3). This simple effective theory
(5.2) well reproduces the crossover granular temperature between two regimes.

We also consider the reason for the negativity of the coefficient μ in the
intermediate granular temperature regime. Upon considering the relaxation dynamics of
the hydrodynamic fluxes by mean of a Grad expansion pertaining to granular gases, it
was shown by Sela & Goldhirsch (1998), Serero et al. (2009) and Serero (2009) that
the origin of the contribution to the heat flux proportional to the gradient of the density
could be traced back to the time dependence in granular gases of the microscopic time
scale (the means free time). In the case of the heat flux, this dependence manifests itself
through the emergence in the post-relaxation expression of the heat flux of a gradient of
the cooling coefficient (Serero et al. 2009; Serero 2009) (expressing the difference in the
dynamics of the granular temperature on the sub-resolved scale), giving rise to a gradient
of the density (see Serero (2009) and Serero et al. (2009) for a detailed derivation in the
case of a monodisperse and bidisperse system of inelastic hard spheres, respectively). In
the present case, this mechanism can yield a negative μ coefficient when combined with
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0
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0.05

10–1 100 101

Eq. (2.26)
Effective

η∗ – 1

T/T ∗

Figure 9. The granular temperature dependence of the shear viscosity obtained from the kinetic theory up to
a3 order (solid line) and that from the effective theory (dotted line). The dashed line is the shear viscosity of
hard-sphere gases η(HC)(e∗). The crossover regime (10−1 � T/T∗ � 101) is highlighted in grey.

–0.005

0

0.005

0.010

0.05 0.10

μ∗

0.15

a3 order
a2 order
Maxwellian

T/T ∗

Figure 10. The granular temperature dependence of the coefficient μ obtained from the kinetic theory up to a3
order (solid line), that up to a2 order (open circles) and that determined from the Maxwell distribution function
(dot-dashed line) for e∗ = 0.8.

the particular form of the distribution function at hand, as detailed below. Note that this
cannot be observed when we only use the Maxwell distribution function to determine
the coefficient μ as shown in figure 10, which means that the origin of the negativeness
comes from the deviation of the distribution function from the Gaussian. Let us consider
two regions, one of which is slightly denser (system I) and the other is diluter (system
II) with the same granular temperature around T/T∗ � 0.1. Although the distribution
function is the same, the number of particles is different. Because the number of particles
whose velocity is higher than v∗ in system I is larger, the number of inelastic collisions
increases, and the granular temperature of the former decays slightly faster than that of
the latter. As a result, the granular temperature in system I is slightly smaller than that in
system II (TI � TII), and this yields a2(TI) � a2(TII). In addition, as our previous paper
(Takada et al. 2017) reported, the population of the particles having 1 � v/vT � 2 and
v/vT � 2 in system I are higher and lower than those in system II, respectively (in this
case, vT � 0.3v∗). Therefore, the heat flux goes from system II to system I, because the
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number of particles having higher velocities is larger in system II. This is the reason for the
negative overshoot of μ in the intermediate granular temperature regime. It is noted that
the transient behaviour of the thermal conductivity is similarly explained. Note that the
effect of a negative coefficient μ was also reported for driven granular gases by González
& Garzó (2019) and for confined quasi-two-dimensional granular gases by Brey et al.
(2015) and Garzó, Brito & Soto (2018).

6. Conclusion

In this paper we have derived the granular temperature dependence of the transport
coefficients for charged granular gases in the discontinuous limit of the effective restitution
coefficient. The negative overshoots of the transport coefficients appear because of the
non-Gaussianity of the distribution function. Especially, we have found that the coefficient
μ becomes negative in the intermediate granular temperature regime. We have also
performed the linear stability analysis for the homogeneous cooling state, which shows
that the stability of the thermal and sound modes become reversal in the low granular
temperature regime, and this threshold is about 0.5T∗. We have also performed the
molecular dynamics simulation and we have obtained a consistent result with that from
the kinetic theory.
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Appendix A. Computation of the Sonine coefficients a2 and a3 from the Boltzmann
equation

We expand the distribution function in Sonine polynomials up to third order, a3; see (2.4).
Then, we rewrite the expression of the pth moment of the collision integral in the form

μp = −1
2

∫
dC dc12 dk̂Θ(c12 · k̂)

∣∣∣c12 · k̂
∣∣∣φ(c1)φ(c2)

× {
1 + a2

[
S2(c2

1)+ S2(c2
2)
]+ a3

[
S3(c2

1)+ S3(c2
2)
]}
Δ(cp

1 + cp
2), (A1)

where we have neglected the terms proportional to a2
2, a2

3 and a2a3. The product of the
dimensionless distribution function is then

1 + a2
[
S2(c2

1)+ S2(c2
2)
]+ a3

[
S3(c2

1)+ S3(c2
2)
]

= 1 + a2

[
C4 + 1

2 C2c2
12 − 5C2 + 1

16 c4
12 − 5

4 c2
12 + (C · c12)

2 + 15
4

]
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+ a3

[
−1

3 C6 − 1
4 C4c2

12 + 7
2 C4 − 1

16 C2c4
12 + 7

4 C2c2
12 − C2(C · c12)

2 − 35
4 C2

− 1
192 c6

12 + 7
32 c4

12 − 1
4 c2

12(C · c12)
2 − 35

16 c2
12 + 7

2 (C · c12)
2 + 35

8

]
, (A2)

and the terms Δ(cp
1 + cp

2) for p = 2, 4 and 6 are, respectively, given by

Δ(c2
1 + c2

2) = −1 − e2

2
(c12 · k̂)2, (A3a)

Δ(c4
1 + c4

2) = −(1 − e2)C2(c12 · k̂)2 − 1
4
(1 − e2)c2

12(c12 · k̂)2

− 4(1 + e)(C · c12)(C · k̂)(c12 · k̂)

+ 2(1 + e)2(C · k̂)2(c12 · k̂)2 + (1 − e2)2

8
(c12 · k̂)4, (A3b)

Δ(c6
1 + c6

2) = −3(1 − e2)

2
C4(c12 · k̂)2 − 3(1 − e2)

4
C2c2

12(c12 · k̂)2

− 12(1 + e)C2(C · c12)(C · k̂)(c12 · k̂)+ 6(1 + e)2C2(C · k̂)2(c12 · k̂)2

+ 3(1 − e2)2

8
C2(c12 · k̂)4 − 3(1 − e2)

32
c4

12(c12 · k̂)2

− 3(1 + e)c2
12(C · c12)(C · k̂)(c12 · k̂)+ 3(1 + e)2

2
c2

12(C · k̂)2(c12 · k̂)2

+ 3(1 − e2)2

32
c2

12(c12 · k̂)4 − 3(1 − e2)

2
(C · c12)

2(c12 · k̂)2

+ 3(1 + e)(1 − e2)(C · c12)(C · k̂)(c12 · k̂)3

− 3(1 + e)2(1 − e2)

2
(C · k̂)2(c12 · k̂)4 − (1 − e2)3

32
(c12 · k̂)6. (A3c)

Using (A2)–(A3c), we can calculate μp for p = 2, 4 and 6 from (A1) as

μ2 =
√

2π(S1 + a2S2 + a3S3), (A4a)

μ4 =
√

2π(T1 + a2T2 + a3T3), (A4b)

μ6 =
√

2π(D1 + a2D2 + a3D3), (A4c)

with

S1 = 1
2

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12 exp
(
−1

2 c2
12

)
, (A5a)

S2 = 1
32

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12(15 − 10c2
12 + c4

12) exp
(
−1

2 c2
12

)
,

(A5b)
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S3 = 1
384

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12

× (105 − 105c2
12 + 21c4

12 − c6
12) exp

(
−1

2 c2
12

)
, (A5c)

T1 = 1
8

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12

× [
10 + 2c2

12 − (1 − e2) cos2 θc2
12
]

exp
(
−1

2 c2
12

)
, (A6a)

T2 = 1
2

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e) cos3 θc5

12 exp
(
−1

2 c2
12

)

+ 1
128

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12 exp
(
−1

2 c2
12

)
× [

2(−25 − 7c2
12 − 5c4

12 + c6
12)+ cos2 θc2

12(17 + 10c2
12 − c4

12)

+ e2 cos2 θc2
12(15 − 10c2

12 + c4
12)
]
, (A6b)

T3 = 1
8

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e) cos3 θ(1 − cos2 θ)c7

12(7 − c2
12) exp

(
−1

2 c2
12

)

+ 1
1536

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12 exp
(
−1

2 c2
12

)
× [

2(−525 + 168c2
12 − 54c4

12 + 16c6
12 − c8

12)+ cos2 θc2
12(567 + 9c2

12 − 21c4
12 + c6

12)

+ e2 cos2 θc2
12(105 − 105c2

12 + 21c4
12 − c6

12)
]
, (A6c)

D1 = 1
32

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12 exp
(
−1

2 c2
12

)
× [

3(35 + 14c2
12 + c4

12)− 3(1 − e2) cos2 θc2
12(7 + c2

12)+ (1 − e2)2 cos4 θc4
12
]
,

(A7a)

D2 = 3
16

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e) cos3 θc7

12

× [
2 − (1 + e) cos2 θ

][
7 + c2

12 − (1 − e2) cos2 θc2
12
]

exp
(
−1

2 c2
12

)

+ 1
512

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12 exp
(
−1

2 c2
12

)
× [

3(−595 − 28c2
12 + 14c4

12 + 4c6
12 + c8

12)

+ 3(1 − e2) cos2 θc2
12(35 + 19c2

12 + 3c4
12 − c6

12)

+ (1 − e2)2 cos4 θc4
12(15 − 10c2

12 + c4
12)
]
, (A7b)

D3 = 3
64

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e) cos3 θc7

12 exp
(
−1

2 c2
12

)
× [

2 − (1 + e) cos2 θ
][

35 − c4
12 − (1 − e2) cos2 θc2

12(7 − c2
12)
]
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+ 1
6144

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 − e2) cos3 θc5

12 exp
(
−1

2 c2
12

)
× [

3(−5145 + 1575c2
12 + 798c4

12 − 74c6
12 + 7c8

12 − c10
12)

+ 3(1 − e2) cos2 θc2
12(735 − 126c2

12 + 24c4
12 − 14c6

12 + c8
12)

+ (1 − e2)2 cos4 θc4
12(105 − 105c2

12 + 21c4
12 − c6

12)
]
. (A7c)

Here, we use the relations between the moments μp of different order,

μ4 = 5μ2(1 + 2a2), (A8a)

μ6 = 105
4 μ2(1 + 3a2 − a3). (A8b)

Substituting (A4) into (A8), we obtain

(5S1 + 5S2 − T2)a2 + (5S3 − T3)a3 = T1 − 5S1, (A9a)(
315
4 S1 + 105

4 S2 − D2

)
a2 +

(
−105

4 S1 + 105
4 S3 − D3

)
a3 = D1 − 105

4 S1. (A9b)

Using (A9), we obtain the coefficients a2 and a3 in the form given by (2.9a,b).
In the discontinuous limit, βv∗ → ∞, (A5a)–(A7c) read as

S(∞)
1 (x) =

(
1 − e∗2

)
(1 + x)e−x, (A10a)

S(∞)
2 (x) = 3

16

(
1 − e∗2

)(
1 + x + x2

3

)
e−x, (A10b)

S(∞)
3 (x) = 1

64

(
1 − e∗2

) (
1 + x − 2x2 + 28

3 x3 − 8
3 x4
)

e−x, (A10c)

T(∞)
1 (x) =

(
1 − e∗2

) [9
2

(
1 + x + x2

9

)
+ e∗2

(
1 + x + x2

2

)]
e−x, (A11a)

T(∞)
2 (x) = 3

32

(
1 − e∗2

) [
69
(

1 + x + 119x2

207
+ 32x3

207
+ 4x4

207

)

+10e∗2
(

1 + x + x2

2
+ 2x3

15
+ 2x4

15

)]
e−x

− 2
(
1 − e∗) (1 + x)e−x + 4, (A11b)

T(∞)
3 (x) = − 1

128
(1 − e∗2)

[
117

(
1 + x + 19

117
x2 + 10

13
x3 + 4

39
x4 + 8

351
x5
)

+10e∗2
(

1 + x + x2

2
+ x3

3
− 2x4

3
+ 4x5

15

)]
e−x

+ 1
2
(1 − e∗)(1 + x + 2x2)e−x − 1, (A11c)
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D(∞)
1 (x) = 3

16
(1 − e∗2)

[
115

(
1 + x + 22x2

115
+ 4x3

345

)
+ 44e∗2

(
1 + x + x2

2
+ x3

33

)

+8e∗4
(

1 + x + x2

2
+ x3

6

)]
e−x, (A12a)

D(∞)
2 (x) = 3

256
(1 − e∗2)

[
5737

(
1 + x + 2850x2

5737
+ 2120x3

17 211
+ 248x4

17 211
+ 16x5

17 211

)

+1572e∗2
(

1 + x + x2

2
+ 221x3

1179
+ 62x4

1179
+ 4x5

1179

)

+280e∗4
(

1 + x + x2

2
+ x3

6
+ 4x4

105
+ 2x5

105

)]
e−x

+ 3
2
(1 + e∗)

[
20
(

1 + x + 9x2

40

)
− 9e∗

(
1 + x + x2

2

)

+10e∗2
(

1 + x + x2

2
+ x3

10

)
− 6e∗3

(
1 + x + x2

2
+ x3

6

)]
e−x

− 45
(

1 + x + 2x2

15

)
e−x + 45, (A12b)

D(∞)
3 (x) = − 3

1024
(1 − e∗2)

[
9161

(
1 + x + 4528x2

9161
+ 2132x3

9161
+ 1640x4

27 483

+ 128x5

27 483
+ 32x6

27 483

)

+1636e∗2
(

1 + x + x2

2
+ 140x3

1227
+ 76x4

1227
+ 32x5

1227
+ 8x6

3681

)

+280e∗4
(

1 + x + x2

2
+ x3

6
+ x4

21
− 2x5

105
+ 4x6

315

)]
e−x

− 9
8
(1 + e∗)

[
20
(

1 + x + 71x2

120
+ 3x3

20

)
− 9e∗

(
1 + x + x2

2
+ x3

3

)

+10e∗2
(

1 + x + x2

2
+ 7x3

30
+ x4

15

)

−6e∗3
(

1 + x + x2

2
+ x3

6
+ x4

9

)]
e−x

+ 135
4

(
1 + x + 28x2

45
+ 4x3

45

)
e−x − 135

4
. (A12c)

It can be shown that in the limit x → 0, the above expressions are identical to the
corresponding expressions for a hard-sphere gas (Brilliantov & Pöschel 2006; Santos
& Montanero 2009; Chamorro et al. 2013). Using (A9), we can also obtain explicit
expressions for a2 and a3. These expressions are rather cumbersome and not shown here.
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Appendix B. Calculation of Ωe
η and Ωe

κ given by (2.11) and (2.14)

Using the definition of D̃αβ(c), (2.12), we obtain

D̃αβ(c2)Δ[D̃αβ(c1)+ D̃αβ(c2)]

=
(

c2ic2j − 1
3
δijc2

2

)[
c′

1ic
′
1j + c′

2ic
′
2j − c1ic1j − c2ic2j − 1

3
δij

(
c′2

1 + c′2
2 − c2

1 − c2
2

)]

= 1 − e2

6
C2(c12 · k̂)2 + 1 + e

2
c2

12(C · k̂)(c12 · k̂)− (1 + e)(5 + e)
24

c2
12(c12 · k̂)2

− (1 + e)(C · c12)(C · k̂)(c12 · k̂)+ (1 + e)(2 + e)
6

(C · c12)(c12 · k̂)2

+ (1 + e)2

2
(C · k̂)2(c12 · k̂)2 − (1 + e)2

2
(C · k̂)(c12 · k̂)3 + (1 + e)2

8
(c12 · k̂)4.

(B1)

We also use the expressions of the Sonine expansion as

1 + a2S2(c1)
2 + a3S3(c2

1)

= 1 + a2

[
1
2 C4 + 1

4 C2c2
12 + C2(C · c12)− 5

2 C2 + 1
32 c4

12

+1
4 c2

12(C · c12)− 5
8 c2

12 + 1
2 (C · c12)

2 − 5
2 (C · c12)+ 15

8

]
+ a3

[
−1

6 C6 − 1
8 C4c2

12 − 1
2 C4(C · c12)+ 7

4 C4 − 1
32 C2c4

12 − 1
4 C2c2

12(C · c12)

+ 7
8 C2c2

12 − 1
2 C2(C · c12)

2 + 7
2 C2(C · c12)− 35

8 C2 − 1
384 c6

12

− 1
32 c4

12(C · c12)+ 7
64 c4

12 − 1
8 c2

12(C · c12)
2 + 7

8 c2
12(C · c12)

−35
32 c2

12 − 1
6 (C · c12)

3 + 7
4 (C · c12)

2 − 35
8 (C · c12)+ 35

16

]
. (B2)

Substituting (B1) and (B2) into (2.11), we obtain

Ωe
η ≡

√
2π
(
ωe
η,1 + a2ω

e
η,2 + a3ω

e
η,3

)
, (B3)

with

ωe
η,1 = − 1

12

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e)

[
5 + e − 3(1 + e) cos2 θ

]
× cos3 θc7

12 exp
(
−1

2 c2
12

)
, (B4a)

ωe
η,2 = − 1

384

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e)

[
5 + e − 3(1 + e) cos2 θ

]
× cos3 θc7

12(63 − 18c2
12 + c4

12) exp
(
−1

2 c2
12

)
, (B4b)

ωe
η,3 = − 1

4608

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e)

[
5 + e − 3(1 + e) cos2 θ

]
× cos3 θc7

12(693 − 297c2
12 + 33c4

12 − c6
12) exp

(
−1

2 c2
12

)
. (B4c)
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For βv∗ → ∞, these quantities reduce to

ω
e(∞)
η,1 = −4 + (1 − e∗)

[
(1 − e∗)(1 + x)− 2

3 (1 + e∗)x2]e−x, (B5a)

ω
e(∞)
η,2 = 1

8 − 1
32 (1 − e∗)

[
(1 − e∗)(1 + x)+ 6(9 + e∗)x2

− 4(13 + 7e∗)x3 + 8(1 + e∗)x4]e−x, (B5b)

ω
e(∞)
η,3 = 1

32 − 1
128 (1 − e∗)

[
(1 − e∗)(1 + x)+ 4

3 (31 + 4e∗)x2 − 8
3(24 + 11e∗)x3

+16
3 (4 + 3e∗)x4 − 16

9 (1 + e∗)x5
]

e−x. (B5c)

In a similar way, we deriveΩe
κ defined by (2.14). Using the definition of S̃(c), (2.15), we

write

S̃(c2) ·Δ
[
S̃(c1)+ S̃(c2)

]

=
(

c2
2 − 5

2

)[
(c′

1 · c2)c′2
1 + (c′

2 · c2)c′2
2 − (c1 · c2)c2

1 − (c2 · c2)c2
2

]

= −1 − e2

2
C4(c12 · k̂)2 + 1 + e

2
C2c2

12(C · k̂)(c12 · k̂)− 1 − e2

8
C2c2

12(c12 · k̂)2

− 2(1 + e)C2(C · c12)(C · k̂)(c12 · k̂)+ (1 + e)(5 − 3e)
4

C2(C12 · c12)(c12 · k̂)2

+ (1 + e)2C2(C · k̂)2(c12 · k̂)2 − (1 + e)2

2
C2(C · k̂)(c12 · k̂)3

+ 5(1 − e2)

4
C2(c12 · k̂)2 + 1 + e

8
c4

12(C · k̂)(c12 · k̂)

− (1 + e)c2
12(C · c12)(C · k̂)(c12 · k̂)

+ (1 + e)(3 − e)
16

c2
12(C · c12)(c12 · k̂)2 + (1 + e)2

4
c2

12(C · k̂)2(c12 · k̂)2

− (1 + e)2

8
c2

12(C · k̂)(c12 · k̂)3 − 5(1 + e)
4

c2
12(C · k̂)(c12 · k̂)

+ 2(1 + e)(C · c12)
2(C · k̂)(c12 · k̂)− (1 + e)(3 − e)

4
(C · c12)

2(c12 · k̂)2

− (1 + e)2(C · c12)(C · k̂)2(c12 · k̂)2 + (1 + e)2

2
(C · c12)(C · k̂)(c12 · k̂)3

+ 5(1 + e)(C · c12)(C · k̂)(c12 · k̂)− 5(1 + e)(3 − e)
8

(C · c12)(c12 · k̂)2

− 5(1 + e)2

2
(C · k̂)2(c12 · k̂)2 + 5(1 + e)2

4
(C · k̂)(c12 · k̂)3. (B6)

With (B2), (B6) and (2.14), we obtain

Ωe
κ ≡

√
2π
(
ωe
κ,1 + a2ω

e
κ,2 + a3ω

e
κ,3
)
, (B7)

935 A38-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.37


S. Takada, D. Serero and T. Pöschel

with

ωe
κ,1 = 1

16

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e) cos3 θc5

12

× [
25(1 − e)− (15 − 7e)c2

12 + 4(1 + e) cos2 θc2
12
]

exp
(
−1

2 c2
12

)
, (B8a)

ωe
κ,2 = 1

512

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e) cos3 θc5

12 exp
(
−1

2 c2
12

)
× [

175(1 − e)+ 7(35 + 37e)c2
12 − (85 + 59e)c4

12 + (5 + 3e)c6
12

− 4(1 + e)(63 − 18c2
12 + c4

12) cos2 θc2
12
]
, (B8b)

ωe
κ,3 = 1

6144

∫ ∞

0
dc12

∫ 1

0
d(cos θ)(1 + e) cos3 θc5

12 exp
(
−1

2 c2
12

)
× [−1575(1 − e)+ 252(45 − e)c2

12 − 54(85 + 3e)c4
12 + 4(125 + 7e)c6

12

− (15 + e)c8
12 − 8(1 + e)(693 − 297c2

12 + 33c4
12 − c6

12) cos2 θc2
12
]
. (B8c)

For βv∗ → ∞, these quantities reduce to

ω
e(∞)
κ,1 = −4 − 1

8 (1 − e∗)
[
(17 + 33e∗)(1 + x)+ 22(1 + e∗)x2]e−x, (B9a)

ω
e(∞)
κ,2 = −1

8 + 1
256(1 − e∗)

× [
(13 − 3e∗)(1 + x)+ 2(67 + 3e∗)x2 − 4(23 + 7e∗)x3 + 8(1 + e∗)x4]e−x,

(B9b)

ω
e(∞)
κ,3 = − 1

16 + 1
1024(1 − e∗)

[
(11 − 21e∗)(1 + x)+ 16(43 + 7e∗)x2

−8
3 (439 + 231e∗)x3 + 16

3 (79 + 63e∗)x4 − 112
3 (1 + e∗)x5

]
e−x. (B9c)

Appendix C. Numerical solution of the transport coefficients

Here, we provide some details of the numerical solution of the differential equations for the
transport coefficients. Consider first the shear viscosity. Special care is in order since the
corresponding differential equation (2.25a,b) is singular due to the fact that the coefficient
of ∂η∗/∂x vanishes in both limits x → 0 and x → ∞.

Also the proper boundary conditions of this equation requires attention. In the high
granular temperature limit all particles are expected to collide inelastically with one
another, while in the limit of low granular temperature elastic interactions dominate. Thus,
in the limit of high granular temperature, we expect the shear viscosity of a granular gas
with coefficient of restitution e∗. For a low granular temperature, we expect to obtain the
shear viscosity of a granular gas, corresponding to the coefficient of restitution 1. The
proper boundary condition reads, therefore, as

lim
x→0

η∗=η
(HC)(e∗)
η(HC)(1)

, (C1)
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with

η(HC)(e∗) ≡ 15
2(1 + e∗)(13 − e∗)σ 2

√
mT
π

×
[

1 + 3(4 − 3e∗)
8(13 − e∗)

a(HC)
2 (e∗)+ (7 − 4e∗)

32(13 − e∗)
a(HC)

3 (e∗)
]

(C2)

(see also Brilliantov & Pöschel 2004).
For the numerical solution of (2.25a,b), we decompose the interval x ∈ (0,∞) into three

intervals, (i) x ∈ (0, e−1), (ii) x ∈ [e−1, ee/2) and (iii) x ∈ [ee/2,∞).
In case (i) we introduce the new variable y1 ≡ log x with y1 ∈ (−∞,−1). Equation

(2.25a,b) then reads as

10μe
2e−ey1 ∂η

∗

∂y1
− (

5μ2 + 6Ωη
)
η∗ = 24

√
2π, with μe

2 ≡ μ2ex, (C3)

and the correspondingly boundary condition as

lim
y1→−∞ η

∗ = η(HC)(e∗)
η(HC)(1)

. (C4)

In the next region (ii), we can directly solve (2.25a,b) since the coefficient of the derivative
of η∗ in (2.25a,b) is not small. The corresponding boundary condition reads as

lim
x→e−1+0

η∗ = lim
x→e−1−0

η∗, (C5)

where the right-hand side of this equation should be evaluated in terms of (C3).
Finally, when considering region (iii), we introduce y2 ≡ ex with y2 ∈ (e/2,∞). Equation
(2.25a,b) then reads as

10μe
2 log y2

∂η∗

∂y2
− (

5μ2 + 6Ωη
)
η∗=24

√
2π. (C6)

In a similar way we solve numerically the differential equations (2.30) for the thermal
conductivity and (2.31) for the coefficient μ. The corresponding boundary conditions read
as

lim
x→0

κ∗=κ
(HC)(e∗)√

T
, lim

x→0
μ∗=μ

(HC)(e∗)√
T3/2

, (C7a,b)

with

κ(HC)(e∗)≡ 75
2(1 + e∗)(9 + 7e∗)σ 2

√
T

πm

×
[

1 + 797 + 211e∗

32(9 + 7e∗)
a(HC)

2 (e∗)+ 27 − 59e∗

128(9 + 7e∗)
a(HC)

3 (e∗)
]
, (C8)
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μ(HC)(e∗)≡ 750(1 − e∗)
(1 + e∗)(9 + 7e∗)(19 − 3e∗)nσ 2

√
T3

πm

×
[

1 + 50 201 − 30971e∗ − 7253e∗2 + 4407e∗3

80(1 − e∗)(19 − 3e∗)(9 + 7e∗)
a(HC)

2 (e∗)

+ 459 − 646e∗ − 69e∗2

64(19 − 3e∗)(9 + 7e∗)
a(HC)

3 (e∗)
]

(C9)

(see also Brilliantov & Pöschel 2004).
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