

X-ray powder diffraction data for 5, 6-dihydro-3-(4-morpholinyl)-1-[4-(2- ∞ o-1-piperidinyl)phenyl]-2(1H)-pyridinone, C₂₀H₂₅N₃O₃

Qing Wang, Xia Zeng, Shan Shan Li, Xiao Li Ma, and Hui Li^{a)} College of Chemical Engineering, Sichuan University, Chengdu 610065, China

(Received 1 November 2015; accepted 16 June 2016)

X-ray powder diffraction data for 5,6-dihydro-3-(4-morpholinyl)-1-[4-(2-oxo-1-piperidinyl)phenyl]-2(1H)-pyridinone, $C_{20}H_{25}N_3O_3$, are reported [a = 5.989(2), b = 6.669(3), c = 24.605(5)Å, $\alpha = 84.466$ (7)°, $\beta = 89.859(6)°$, $\gamma = 69.074(4)°$, unit-cell volume V = 913.11 Å³, Z = 2, and space group P-1]. No detectable impurities were observed. © 2016 International Centre for Diffraction Data. [doi:10.1017/S0885715616000385]

Key words: pharmaceutical intermediate, anticoagulant, apixaban, single crystal

I. INTRODUCTION

Apixaban (Eliquis[®]) is a novel oral pyrazole-based direct FXa inhibitor; this drug was developed by Bristol-Myers Squibb and Pfizer to treat and prevent thrombotic disorder (Watson *et al.*, 2011). Since May 2011, Apixaban has been approved for VTE prevention in adult elective hip or knee replacement patients in various countries, such as the USA, China, Brazil, Australia, New Zealand, and some European countries (Deeks, 2012). The title compound is an intermediate in the synthesis of the anticoagulant, Apixaban (Jiang and Ji, 2013). Presently, the crystal structure of the title compound has not been reported.

II. EXPERIMENTAL

A. Sample preparation

The sample (Figure 1) was prepared using 5-chloro-N-[4-(5,6-dihydro-3-(4-morpholinyl)-2-oxo-1(2H)-pyridinyl)phenyl]-pentanamide (CAS: 1643330-62-4) (Wang *et al.*, 2015). The melting point and measured density of the title compound are 203–205 °C and 1.274 g cm⁻³, respectively. Crystallization of the title compound at room temperature was successful using methanol as solvent. Then, parts of crystals were dried and ground into powder and mounted on a flat zero background plate.

Figure 2. X-ray powder diffraction pattern of title compound using $CuK\alpha$ radiation. The inset is the ORTEP drawing of molecular structure of title compound with the labeling of non-H atoms.

B. Diffraction data collection and reduction

X-ray powder diffraction measurement was performed at room temperature using an X'Pert PRO diffractometer (PANalytical Co., Ltd., Netherlands) with a PIXcel onedimensional (1D) detector and CuK α radiation (generator setting: 40 kV and 40 mA). The sample was mounted on a flat

Figure 1. Synthesis of the title compound.

^{a)}Author to whom correspondence should be addressed. Electronic mail: lihuilab@sina.com

TABLE I. X-ray powder diffraction data for 5,6-dihydro-3-(4-morpholinyl)-1-[4-(2-oxo-1-piperidinyl)phenyl]-2(1H)-pyridinone, $C_{20}H_{25}N_3O_3$. The *d*-values were calculated using $CuK\alpha_1$ radiation ($\lambda = 1.54056$ Å).

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}({\rm \AA})$	I _{obs}	h	k	l	$2\theta_{\rm cal}$ (°)	$d_{\rm cal}({\rm \AA})$	$\Delta 2\theta$
7.2235	12.2276	96	0	0	2	7.2173	12.2380	0.0061
10.8474	8.1493	10	0	0	3	10.8350	8.1587	0.0124
14.2876	6.1940	25	0	1	0	14.2816	6.1965	0.0060
14.3532	6.1658	28	0	1	1	14.3695	6.1588	-0.0163
15.3117	5.7819	13	0	1	2	15.3398	5.7714	-0.0281
15.8369	5.5913	11	1	0	0	15.8390	5.5906	-0.0021
16.1258	5.4918	15	1	0	-1	16.1270	5.4914	-0.0011
16.3753	5.4087	18	1	0	1	16.3714	5.4099	0.0039
16.6773	5.3114	35	0	1	-2	16.6707	5.3135	0.0066
17.0449	5.1977	31	0	1	3	17.0458	5.1974	-0.0009
17.3075	5.1194	19	1	1	1	17.3082	5.1192	-0.0007
17.7014	5.0005	12	1	1	-1	17.0909	5.0093	0.0106
18.0622	4.9018	21	0	0	3	18,1007	4.8932	-0.0243
10 3206	4.7021	100	0	1	-3	10.0520	4.7081	0.0241
19.5290	4 5393	37	1	0	3	19 5390	4 5395	0.0007
19.8023	4 4797	13	1	1	3	19.8002	4 4802	0.0021
20.8133	4.2643	16	1	1	-3	20.7952	4.2680	0.0181
21.1416	4,1988	20	1	0	-4	21.1360	4.1999	0.0056
21.4173	4.1454	40	0	1	-4	21.4092	4.1470	0.0082
21.7718	4.0787	21	0	0	6	21.7684	4.0793	0.0034
23.0717	3.8518	10	1	1	-4	23.0761	3.8510	-0.0043
23.7151	3.7487	9	1	0	-5	23.7236	3.7474	-0.0085
24.2797	3.6628	12	0	1	-5	24.2769	3.6632	0.0028
25.4483	3.4972	7	1	-1	-2	25.4404	3.4983	0.0079
26.4462	3.3674	12	1	-1	-3	26.4496	3.3670	-0.0034
26.5775	3.3511	11	1	-1	2	26.5890	3.3497	-0.0114
27.0896	3.2889	11	1	1	6	27.0752	3.2906	0.0144
27.3653	3.2564	12	1	2	1	27.3556	3.2575	0.0097
27.7592	3.2111	6	1	2	2	27.7689	3.2100	-0.0096
27.9299	3.1918	6	1	-1	-4	27.9131	3.1937	0.0169
28.3471	3.1242	13	1	1	-0	20.3340	3.1234	-0.00//
28.0052	3.0717	0	1	2	_2	20.0437	3.0739	0.0217
29.6237	3 0131	7	1	0	-2 -7	29.6399	3 0115	-0.0161
29.9651	2.9795	6	2	1	0	29.9617	2.9799	0.0035
30.4772	2.9306	7M	0	2	-2	30.4522	2.9330	0.0250
30.4772	2.9306	М	1	2	-3	30.4689	2.9314	0.0083
30.7661	2.9038	5	2	1	2	30.7675	2.9036	-0.0014
30.9499	2.8869	5	2	1	$^{-2}$	30.9494	2.8870	0.0005
31.2388	2.8609	5	0	1	8	31.2258	2.8620	0.0129
31.6064	2.8284	7	1	1	-7	31.6132	2.8278	-0.0068
31.9084	2.8024	7	0	2	-3	31.9028	2.8028	0.0056
31.9872	2.7956	7	2	0	0	31.9912	2.7953	-0.0040
32.3286	2.7669	5	2	0	1	32.3329	2.7665	-0.0043
32.5518	2.7484	5	0	2	5	32.5556	2.7481	-0.0038
32.8669	2.7228	5	1	0	-8	32.8561	2.7237	0.0108
33.5103	2.6720	6	2	0	-3	33.5002	2.6727	0.0101
33.5891	2.6659	6	2	1	-4	33.5879	2.6660	0.0012
34.2456	2.6163	6	2	0	3	34.2367	2.6169	0.0089
34.4103	2.6037	0	1	2	-5	34.4114	2.0040	0.0049
34.3870	2.5912	5	0	1	9	34.0079 34.7083	2.5897	-0.0209
35.0334	2.5850	1	2	-1	5	35 0277	2.5824	-0.0102
35 4273	2.5372	4	2	1	-5	35 4321	2.5350	-0.0037
35.8212	2.5047	4	0	2	-5	35.8211	2.5047	0.0002
36.2151	2.4784	5	1	0	_9	36.2002	2.4794	0.0150
36.4646	2.4620	5	1	1	9	36.4588	2.4624	0.0059
36.8191	2.4391	5	1	2	-6	36.8119	2.4395	0.0072
36.9898	2.4282	6	2	2	-3	36.9722	2.4293	0.0176
37.1080	2.4208	6	2	1	6	37.1087	2.4207	-0.0007
37.4231	2.4011	5	1	-1	7	37.4284	2.4008	-0.0053
38.2110	2.3534	5	0	2	-6	38.1999	2.3540	0.0110
39.1957	2.2965	5	0	2	8	39.1746	2.2977	0.0211
40.3512	2.2334	5	1	-1	8	40.3412	2.2339	0.0100

Continued

TABLE I. Continued

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	Iobs	h	k	l	$2\theta_{\rm cal}$ (°)	$d_{\rm cal}$ (Å)	$\Delta 2\theta$
40.5219	2.2243	4	0	0	11	40.5076	2.2251	0.0143
40.9814	2.2004	3	0	1	-10	40.9745	2.2008	0.0070
41.3622	2.1811	4	1	2	9	41.3622	2.1811	0.0000
41.8874	2.1549	3	0	2	9	41.8622	2.1562	0.0252
42.2945	2.1351	4	2	2	7	42.2876	2.1355	0.0068
42.5833	2.1213	4	2	1	-8	42.5803	2.1215	0.0031
43.0298	2.1003	4	2	0	-8	43.0374	2.1000	-0.0076
43.6731	2.0709	4	0	3	2	43.6527	2.0718	0.0205
43.8045	2.0650	4	0	3	0	43.7922	2.0655	0.0123
44.3822	2.0394	5	0	0	12	44.3764	2.0397	0.0058
45.2094	2.0040	5	1	1	-11	45.1729	2.0055	0.0365
45.4851	1.9925	4	3	1	0	45.4855	1.9925	-0.0004
46.8507	1.9375	3	1	0	-12	46.8463	1.9377	0.0044
47.4021	1.9163	3	3	2	2	47.3922	1.9167	0.0099
48.7152	1.8677	4	3	2	-3	48.6989	1.8682	0.0162
49.4767	1.8407	3	2	3	-5	49.4718	1.8409	0.0050
49.8181	1.8289	2	2	3	7	49.7898	1.8298	0.0283

TABLE II. Crystal and experimental data of title compound.

TABLE III. Continued

Empirical formula	$C_{20}H_{25}N_3O_3$	Atom	X	у	z	U(eq)
Formula weight	355.43	C3	1500(8)	12214(7)	4573.2(18)	51.8(11)
Temperature (K)	293.15	C4	2396(7)	10 428(6)	4208.7(16)	39.8(9)
Crystal system	Triclinic	C5	5629(8)	11 816(7)	3923.7(19)	54.5(12)
Space group	P-1	C6	5052(6)	8827(6)	3507.5(15)	35.0(8)
a (Å)	6.0164(5)	C7	3488(7)	8631(6)	3126.6(16)	42.1(9)
<i>b</i> (Å)	6.6483(8)	C8	4264(7)	7128(6)	2759.9(16)	41.7(9)
<i>c</i> (Å)	24.700(3)	C9	6646(7)	5806(6)	2761.2(15)	36.5(9)
α (°)	83.957(10)	C10	8205(7)	5999(6)	3141.2(15)	38.5(9)
β (°)	89.451(9)	C11	7407(6)	7521(6)	3510.0(15)	37.5(9)
γ (°)	69.222(10)	C12	5967(7)	2962(6)	2275.3(17)	46(1)
Volume (Å ³)	918.17(18)	C13	7535(8)	701(6)	2187.2(19)	54.3(12)
Ζ	2	C14	9306(8)	761(7)	1774.8(18)	50.0(11)
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.286	C15	10032(7)	2441(6)	1682.5(16)	42.2(10)
$\mu (\mathrm{mm}^{-1})$	0.088	C16	9267(7)	4209(6)	2055.1(16)	38.3(9)
F(000)	380.0	C17	12881(9)	674(8)	1025(2)	68.0(14)
Crystal size (mm ³)	$0.3 \times 0.2 \times 0.2$	C18	14 842(10)	964(12)	681(3)	94(2)
Radiation	Mo $K\alpha$ ($\lambda = 0.71073$)	C19	12965(12)	4701(11)	564(2)	99(2)
2θ range for data collection (°)	6.6–52.74	C20	10 940(10)	4516(8)	901(2)	70.6(15)
Index ranges	$-7 \le h \le 7, -5 \le k \le 8, -22 \le l \le 30$	H1A	5602	14 347	4302	82
Reflections collected	6996	H1B	3324	14 849	3934	82
Independent reflections	3732 $[R_{int} = 0.0343, R_{sigma} = 0.0723]$	H2A	2166	14 806	4795	77
Data/restraints/parameters	3732/0/235	H2B	4232	12 608	4970	77
Goodness-of-fit on F^2	1.078	H3A	15	13 253	4415	62
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0947, wR_2 = 0.1745$	H3B	1145	11 594	4922	62
Final R indexes (all data)	$R_1 = 0.1462, wR_2 = 0.2002$	H5A	6039	12 253	3561	65
Largest diff. peak/hole ($e \text{ Å}^{-3}$)	0.26/-0.24	H5B	7100	10973	4124	65
		H7	1897	9527	3119	51
		H8	3192	6995	2510	50
		H10	9797	5105	3150	46

H11

H12A

H12B

H13A

H13B

H17A

H17B

H18A

H18B

H19A

H19B

H20A

H20B

H14

8474

4949

4963

8342

6572

9937

11722

13 528

16 049

15 576

12388

14 155

 $10\,270$

9704

7658

3635

2922

-56

-77

-407

421

-572

1109

-315

5963

4880

5795

4436

3761

1955

2583

2527

2066

1573

797

1294

916

495

297

797

1090

664

TABLE III. Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$).

Atom	X	у	z	U(eq)
01	1476(5)	9078(5)	4211.2(13)	56.6(9)
02	10 302(5)	5503(5)	2063.9(12)	51.6(8)
O3	14 014(8)	2799(8)	291.8(17)	102.4(15)
N1	4228(5)	10 438(5)	3879.3(12)	37.0(7)
N2	7453(6)	4232(5)	2380.5(13)	40.6(8)
N3	11738(6)	2605(6)	1294.9(14)	49.6(9)
C1	4423(9)	13 768(8)	4194(2)	68.3(15)
C2	3106(9)	13 416(8)	4677(2)	64.0(14)

Continued

45

55

55

65

65

60

82

82

112

112

119

119

85

85

Figure 3. (Color online) Crystal packing of the title compound.

zero background plate. The diffraction data were collected over the angular range from 4 to $50^{\circ}2\theta$ with a step size of 0.013 $13^{\circ}2\theta$ and a counting time of 30 ms step⁻¹.

The software package Material Studio 8.0 (Accelrys Co., Ltd., CA) was used to process the data in the Analytical & Testing Center (Sichuan University, Chengdu, China). The X-ray powder diffraction pattern (Figure 2) was pre-treated by subtracting the background, smoothing, and stripping off the $K\alpha_2$ component. Automatic indexing results were obtained by the X-cell method (Neumann, 2003). The preliminary cell from indexing was refined using the Pawley method (Pawley, 1981).

C. Single-crystal X-ray diffraction

X-ray diffraction data for the title compound were collected on an Xcalibur, Eos diffractometer. The crystal was kept at 293.15 K during data collection. The structure was solved with olex2 (Dolomanov *et al.*, 2009), a structure solution program using charge flipping and refined with ShelXL (Sheldrick, 2008) refinement package using least-squares minimization.

III. RESULTS

Pawley refinement results confirmed that the title compound is triclinic with space group P-1 and unit-cell parameters: a = 5.989(2), b = 6.669(3), c = 24.605(5) Å, $\alpha = 84.466$ $(7)^{\circ}$, $\beta = 89.859(6)^{\circ}$, $\gamma = 69.074(4)^{\circ}$, unit-cell volume V =913.11 Å³, Z = 2, and $\rho_{cal} = 1.289$ g cm⁻³ (Table I). The results are in good agreement with the single crystallographic data [a = 6.0164(5), b = 6.6483(8), c = 24.700(3) Å, $\alpha =$ $83.957(10)^{\circ}$, $\beta = 89.451(9)^{\circ}$, $\gamma = 69.222(10)^{\circ}$, unit-cell volume V = 918.17(18) Å³, Z = 2, and $\rho_{cal} = 1.286$ g cm⁻³]. The detail single crystallographic data of title compound and the experimental data were listed in Table II and the fractional atomic coordinates were listed in Table III. The title compound is composed of four rings. Two 2-piperidone rings with sofa-half-chair-conformations are connected by phenyl ring, which are respectively twisted by $47.3(5)^{\circ}$ (C5–N1–C6–C11) and $136.6(4)^{\circ}$ (C12–N2–C9–C10). The morpholine ring with sofa-half-chair-conformation is attached to the piperidone ring twisted by $-5.8(6)^{\circ}$ (C17–N3–C15–C14). It is arranged without intramolecular and intermolecular H bonding (Figure 3).

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at http://dx.doi.org/10.1017/S0885715616000385

ACKNOWLEDGEMENTS

This work was supported by the Applied Basic Research Project of Sichuan Province (Grant No. 2014JY0042), the Testing Platform Construction of Technology Achievement Transform of Sichuan Province (Grant No. 13CGPT0049), and the National Development and Reform Commission and Education of China (Grant No. 2014BW011).

- Deeks, E. D. (2012). "Apixaban," Drugs 72(9), 1271-1291.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., and Puschmann, H. (2009). "OLEX2: a complete structure solution, refinement and analysis program," J. Appl. Crystallogr. 42, 339–341.

Jiang, J. and Ji, Y. (2013) "Alternate synthesis of apixaban (BMS-562247), an inhibitor of blood coagulation factor Xa", Synth. Commun. 43(1), 72–79.

- Neumann, M. A. (2003). "X-cell: a novel indexing algorithm for routine tasks and difficult cases," J. Appl. Crystallogr. 36, 356–365.
- Pawley, G. S. (1981). "Unit-cell refinement from powder diffraction scans," J. Appl. Crystallogr. 14(6), 357–361.
- Sheldrick, G. M. (**2008**). "Foundations of crystallography," Acta Crystallogr. A **64**, 112–122.
- Wang, Y., Xiang, Y. Z., Cen, G. D., Zhang, J. B., Huang, L., Zhou, N., Liu, J., and Qiao, H. (2015). "Pyrazole derivative and medical application," WO Pat., 2015070809.
- Watson, J., Whiteside, G., and Perry, C. (2011). "Apixaban," Drugs 71, 2079–2089.