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Abstract

Objectives: The prevalence of neurodegenerative disorders demands methods of accessible assessment that reliably
captures cognition in daily life contexts. We investigated the feasibility of smartphone cognitive assessment in people
with Parkinson’s disease (PD), who may have cognitive impairment in addition to motor-related problems that
limit attending in-person clinics. We examined how daily-life factors predicted smartphone cognitive performance and
examined the convergent validity of smartphone assessment with traditional neuropsychological tests. Methods:
Twenty-seven nondemented individuals with mild–moderate PD attended one in-lab session and responded to
smartphone notifications over 10 days. The smartphone app queried participants 5x/day about their location, mood,
alertness, exercise, and medication state and administered mobile games of working memory and executive function.
Results: Response rate to prompts was high, demonstrating feasibility of the approach. Between-subject reliability was
high on both cognitive games. Within-subject variability was higher for working memory than executive function.
Strong convergent validity was seen between traditional tests and smartphone working memory but not executive
function, reflecting the latter’s ceiling effects. Participants performed better on mobile working memory tasks when at
home and after recent exercise. Less self-reported daytime sleepiness and lower PD symptom burden predicted a
stronger association between later time of day and higher smartphone test performance. Conclusions: These findings
support feasibility and validity of repeat smartphone assessments of cognition and provide preliminary evidence of the
effects of context on cognitive variability in PD. Further development of this accessible assessment method could
increase sensitivity and specificity regarding daily cognitive dysfunction for PD and other clinical populations.
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INTRODUCTION

The rates of neurodegenerative disorders are rising as the
population ages, and costs of assessment are a barrier to
timely diagnosis and treatment (Hurd, Martorell, Delavande,
Mullen, & Langa, 2013). Persons with Parkinson’s disease
(PD) experience common barriers to assessment found with
other neurodegenerative disorders (Bradford, Kunik, Schulz,

Williams, & Singh, 2009), but motor impairment is an addi-
tional impediment to clinic and lab visits (e.g., slow gait, risk
of falls, challenges to driving or using public transit). These
limitations result in delayed diagnosis for some individuals
long after symptoms emerge (Breen, Evans, Farrell, Brayne,
& Barker, 2013) as well as suboptimal treatment (Hogan
et al., 2008). Nonetheless, clinics and labs are required for cur-
rent methods of assessment of PD symptoms, including non-
motor symptoms such as cognitive impairment.

Neuropsychological testing to characterize cognitive def-
icits requires hours of time from persons with PD, who often
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experience daytime fatigue (Friedman et al., 2007), and cur-
rent methods of testing capture cognitive performance only at
a single time point. This is particularly problematic for per-
sons with PD, which is a disorder marked by fluctuations
in symptoms over time including changes in cognition, mood,
motivation, and arousal level (Cronin-Golomb, Reynolds,
Salazar, & Saint-Hilaire, 2019).

Digital technology has the potential to address limitations
(e.g., access, time, and cost) inherent to neuropsychological
assessment in clinical populations such as PD (Parsey &
Schmitter-Edgecombe, 2013). Emerging digital assessments
use computerized versions of the lengthy analog tests that
only provide a snapshot of cognition in a single session
(Bauer et al., 2012; Rentz et al., 2016); these tests can now
be completed at home for tracking cognitive function. An
emerging literature indicates that smartphone assessments
of cognition in clinical samples show strong convergent val-
idity with their analog traditional neuropsychological assess-
ments (Dagum, 2018; Moore et al., 2020; Pal et al., 2016;
Schuster, Mermelstein, & Hedeker, 2016; Sliwinski et al.,
2018; Timmers et al., 2014).

Another benefit of remote digital assessment is the ability
to easily assess cognitive variability with a higher volume of
trials than one-time testing allows. Intraindividual variability
is a sensitive marker of function and risk for decline in neuro-
degenerative disorders (Christ, Combrinck, & Thomas,
2018; Haynes, Bauermeister, & Bunce, 2017). Specifically
in PD, we know that greater intraindividual variability in
processing speed, beyond mean changes, is associated with
later stages of the disease (de Frias, Dixon, Fisher, &
Camicioli, 2007). Repeated testing of cognition and
state-based variables via a mobile assessment device, such
as a smartphone, allows us to identify changes in disease
symptoms, which can subsequently predict more subtle
changes in disease state or progression. Furthermore, com-
pared to the invasive and costly nature of biomarkers,
within-person variability as measured via intensive longi-
tudinal data could produce a sensitive metric of disease
stage and diagnosis without undue burden to individuals.
The ubiquity of smartphones allows for evidence-based
assessment in the hands of those who may most benefit
from it. The potential of this technology is becoming
increasingly apparent given the ever-shrinking digital di-
vide between younger and older adults as smartphone
ownership among seniors continues to rise (Anderson &
Perrin, 2017).

Few studies to date have used ecological momentary
assessment (EMA) in PD, which refers to frequent, typically
brief assessments delivered in real-world environments
(Csikszentmihalyi & Larson, 1987). Our lab demonstrated
the feasibility of conducting a smartphoneEMA study ofmood
and subjective sleep quality in PD (Wu & Cronin-Golomb,
2020). Further, a single-case EMA study established proof-
of-concept using smartphone technology to track intraindivid-
ual fluctuations in PDmotor symptoms as they related tomood
and then modeled these fluctuations using network analysis;
they found that anxiety was prospectively associated with

more tremor, and cheerfulness with less tremor (van der
Velden, Mulders, Drukker, Kuijf, & Leentjens, 2018).
The mPower Study used a brief repeated-measures smart-
phone design to assess PD motor symptoms including motor
and reaction time over six months (Bot et al., 2016; Lipsmeier
et al., 2018). All elements of the assessment related to at least
one component of the Unified Parkinson’s Disease Rating
Scale (UPDRS); e.g., finger tapping (motor speed) was sig-
nificantly correlated with UPDRS ability to independently
dress oneself without difficulty (Lipsmeier et al., 2018).
Another study used smartphone test data to develop an inde-
pendent and valid disease severity score using a supervised
and weighted machine learning algorithm. The score was sig-
nificantly associated with the UPDRS and other standard PD
motor tests such as Timed Up and Go (Zhan et al., 2018). A
limitation of this latter study was that all assessments
occurred within the clinic setting and no measures of neuro-
psychological function beyond reaction time were included.
To date, no studies have examined patterns of neuropsycho-
logical testing using smartphone technology in PD, although
research has found cognitive correlates in PD (Lo
et al., 2019).

The first purpose of the present study was to use a
smartphone EMA design to assess executive function and
working memory, which are among the earliest cognitive
dysfunctions to arise in PD (reviewed in Cronin-Golomb
et al., 2019; Dirnberger & Jahanshahi, 2013; Miller,
Neargarder, Risi, & Cronin-Golomb, 2013) and are related
to a wide range of other symptoms, including anxiety
(Reynolds, Hanna, Neargarder, & Cronin-Golomb, 2017),
depression and apathy (reviewed in Dirnberger &
Jahanshahi, 2013), and impairments in spatial judgment
(Salazar, Moon, Neargarder, & Cronin-Golomb, 2019)
and gait (Morris et al., 2019). While the cognitive measures
we included are similar to tests used in other app-based
measures of cognition (Moore, Swendsen, & Depp, 2017),
performance on the app-based tests have generally not been
measured alongside performance on the traditional neuro-
psychological tests (Spatial Span [working memory] and
Trail Making Test [executive function]) upon which they
are based. A recent smartphone-based study of perfor-
mance on a Stroop-based task by persons aged 50 years
and above with HIV, a disorder that is like PD in that it
affects the basal ganglia, showed good feasibility and con-
vergent validity with respect to traditional neuropsycho-
logical measures of executive function and working
memory (Moore et al., 2020). We predicted a significant
association in PD between scores on our traditional neuro-
psychological tests and overall mean score (across time
points) on the respective smartphone cognitive assessments.

An additional objective was to examine how PD symp-
toms and individual differences relate to design feasibility
and to intraindividual variability in cognitive performance.
We predicted that the majority of participants, who were
nondemented, would exhibit a completion rate similar to
that seen in other studies of mobile cognitive assessment,
roughly 70%–80% completion of surveys (Moore et al.,
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2017). We hypothesized that those with lower baseline
scores on a global cognitive screening measure, the
Montreal Cognitive Assessment (MoCA), would have
lower rates of response due to difficulty navigating the
smartphone app interface without the assistance of a
researcher or a clinician. We expected that those with
greater symptom burden (higher UPDRS score) would
have lower rates of response due to motor or other impair-
ments (e.g., pain, fatigue).

Because the literature has demonstrated associations
between specific contextual variables and within-person fluc-
tuations in cognition (Weizenbaum, Torous, & Fuford,
2020), we developed exploratory hypotheses regarding con-
textually driven within-person fluctuations. Specifically, we
examined whether lower mood and higher anxiety would be
associated with worse performance on smartphone tasks, as
prior research has shown negative mood (Brose, Schmiedek,
Lövdén, & Lindenberger, 2012; Jefferies, Smilek, Eich, &
Enns, 2008) and stress (Sliwinski, Smyth, Hofer, & Stawski,
2006) to be associated with poorer momentary performance
on attention and working memory tasks, especially in older
adults. Similarly, we assessed whether lower motivation
related to worse smartphone performance due to poor task
engagement, as shown in another EMA study of working
memory (Brose et al., 2012). As older adults typically per-
form best on working memory in the morning (West,
Murphy, Armilio, Craik, & Stuss, 2002), we assessed
whether time of day would be a significant predictor of per-
formance. Subjective alertness can also be predictive of
cognitive performance on attention accuracy tasks (Manly,
Lewis, Robertson, Watson, & Datta, 2002); hence, we
hypothesized that alertness would be positively associated
with performance. Although social activity has been asso-
ciated with improved cognitive performance in certain
domains, including memory and processing speed
(Bielak, Mogle, & Sliwinski, 2017), the visual and audi-
tory distraction in these settings may be less conducive
to optimal performance, and variable noise in the surround-
ing environment is associated with worse working memory
(Lange, 2005). We examined whether being at home
(versus in other environments) would produce a more con-
trolled and familiar sensory environment and hypothesized
that it may lead to improved cognitive performance.

We also considered whether smartphone cognitive per-
formance would be related to self-reported on-off periods
of medication, as off-periods are associated with an
increase in motor symptoms including tremor as well as
nonmotor symptoms such as pain and anxiety (Cheon,
Park, Kim, & Kim, 2009). In those without medication-
related fluctuations, it was predicted that off-periods would
be associated with poorer cognitive performance at that
time point. The final of the secondary contextual hypoth-
eses was whether factors such as recent exercise may be
associated with improved cognitive performance, as pre-
vious work suggests widespread benefit of exercise to cog-
nition in people with PD (Murray et al., 2014; Reynolds
et al., 2017).

METHODS

Participants

We initially recruited 30 community-dwelling participants
who met the clinical criteria for mild to moderate idiopathic
PD, following the United Kingdom Parkinson’s Disease
Society Brain Bank diagnostic criteria (Hughes, Daniel,
Kilford, & Lees, 1992). They were recruited from the
Boston University Center for Neurorehabilitation and the
Parkinson’s Disease and Movement Disorders Center at
Boston Medical Center. Study protocols were approved by
the Boston University Institutional Review Board, with con-
sent obtained according to the Declaration of Helsinki. All
participants were native-English speaking adults who owned
a smartphone with iOS or Android operating systems.
Exclusion criteria included a score of less than 20 on the
Montreal Cognitive Assessment (MoCA) or a motor impair-
ment (e.g., significant tremor or dyskinesia) that prohibited
them from regularly using a smartphone. Out of the 30
enrolled, 27 completed the remote smartphone assessments
in addition to the in-lab initial assessment. One dropped
out due to other time commitments, and the other two
experienced technical failures with their phone and/or
the study app. All but one of the 27 participants were tak-
ing medication to treat PD. We calculated levodopa equiv-
alent daily dosages (LEDD) based on convention
(Tomlinson et al., 2010). See Table 1 for descriptive sta-
tistics of the final sample.

Study Procedure

After enrollment by phone, participants were emailed a
link to online questionnaires to complete before the in-lab
assessment. In-lab (Study Day 0), after the MoCA confirmed
eligibility, the UPDRS was administered by a trained exam-
iner as well as two brief traditional neuropsychological mea-
sures: the WMS-III Spatial Span Test and the Trail Making
Test A & B. Participants then downloaded the study app onto
their own smartphone. Theywere guided through a slideshow
presentation on how to use the app and practiced completing
surveys and games with the researcher present. Immediately
following the visit, participants were emailed the slideshow
of instructions and the structure of smartphone assessment
administration was described to them. On Study Days 1–10,
smartphone assessment notifications appeared consistently at
9am, 12pm, 3pm, 6pm, and 9pm. The smartphone assess-
ments consisted of a brief survey and two games (described
below) and typically required five minutes to complete.
Participants had the opportunity to respond to the assessments
within two hours of the initial notification before the assess-
ment window would close until the next time prompt
(Table 2). Participants were encouraged to contact research-
ers if questions arose andwere also emailed onDay 2 andDay
6 to check-in and troubleshoot any problems encountered
using the study app. Participants were compensated at the rate
of $15/hour for time spent in-lab and $1 for every smartphone
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assessment, with the opportunity to earn a $15 bonus if they
completed at least 80% (40/50) of all assessments.

Study Measures

Online pre-study survey

The following questionnaires were completed online before
the lab visit. Mood and Anxiety Symptoms Questionnaire
(MASQ-short) assesses symptoms of depression and anxiety
(Wardenaar et al., 2010). Positive and Negative Affect Scale
assesses trait positive and negative affect (Watson, Clark, &
Tellegen, 1988). Motivation and Pleasure Scale assesses
motivation and pleasure-seeking behavior (Llerena et al.,
2013). Behavior Rating Inventory of Executive Functioning
assesses self-perceived difficulties in executive functioning
(Roth, Gioia, & Isquith, 2005). Epworth Sleepiness Scale
(ESS) assesses daytime sleepiness (Johns, 1991).

In-lab baseline assessment

The following tests were administered in-lab: UPDRS,
a standard assessment of PD symptoms including in-person
interview and motor examination and Hoehn and Yahr
(H&Y) stage rating (Fahn, Elton, & UPDRS programmem-
bers, 1987); the neuropsychological measures, Spatial Span
(Wechsler Memory Scale-III, Wechsler, 1997) for visual
working memory as the analog of the smartphone
Backwards Spatial Span, and Trail Making Test A & B
(Tombaugh, 2004), for processing speed and complex
attention as the analog of to the smartphone Trails-B test.

mindLAMP smartphone assessments

The app-based assessment included questions of context,
mood state, and cognition using the Mind Learn-Assess-
Manage-Prevent app developed at the Department of
Digital Psychiatry of Beth Israel Deaconess Medical
Center, Boston (Torous et al., 2019). See screenshots of
the app interface in Figure 1a–d. Code for the smartphone
assessments is publicly available at: https://github.com/
BIDMCDigitalPsychiatry

Location & Social Context Survey assessed type of current
location and social context (Figure 1a). Location options
included home, work/school, someone else’s home, public
place indoors, public place outdoors, and transportation.
Social context survey options included alone, strangers,
classmates/coworkers, acquaintances, close friends, family
members, and romantic partner. Mood & Alertness Survey
included five questions relating to mood (happy/sad), anxi-
ety, alertness, and level of motivation to try one’s hardest
on subsequent cognitive games (Figure 1b).

As noted above, executive function and working memory
are among the earliest cognitive domains affected by PD and
also are domains affected by contextual variables and for this
reason we included the following tests:

Backwards Spatial Span Test consisted of four increas-
ingly challenging trials requiring one to tap the sequence
of boxes that appeared on the screen during that trial but in
reverse order (Figure 1c). Trails-B Test consisted of four
increasingly lengthy trials requiring one to tap numbers
and letters on the screen in a sequential and alternating man-
ner (Figure 1d).

Table 1. Participant characteristics (n= 27)

Age (years)
Mean (SD) Men: Women

Education
(years)

Mean (SD)
Race &
Ethnicity

MoCA Score
Mean (SD)

PD Stage
Hoehn & Yahr
Median (Range)

UPDRS Total
Score (SD)

LEDD Mean
mg/day (SD)

63.2 (8.7) 14 Men 17.7 (3.2) 26 White 27.7 (2.5) 2.0 (1.0–3.0) 27.0 (11.3) 420 (244)
13 Women 1 Middle Eastern

1 Native American

MoCA, Montreal Cognitive Assessment; UPDRS, Unified Parkinson’s Disease Rating Scale (disease severity); LEDD, levodopa equivalent daily dose.

Table 2. Study design

Study Component Tasks Timeline Time Required

Individual difference
questionnaires

Online self-report questionnaires related to
trait mood, sleep, and executive function

Following eligibility phone screening,
before in-lab assessment

30 min

In-lab assessment UPDRS, MoCA, Trail Making Test,
WMS-III Spatial Span; download study
app & practice smartphone tasks

Study Day 0 90 min

Remote smartphone
assessments

Brief survey of context, mood, alertness,
motivation, caffeine, recent exercise,
and medication ON-OFF state; Trails-B
task (2 min) and Backwards Spatial
Span task (2 min)

Study Day 1–10; prompted every day
at 9:00a, 12:00p, 3:00p, 6:00p, 9:00p

5 min, 5x/day, 10 days
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Data Analysis

EMA response rate was calculated as the number of com-
pleted smartphone assessments divided by the total possible
number of assessments for each person (50), and then within-
person means were averaged to create a sample response rate
mean. To determine whether there was reliable and system-
atic between-person variability that was greater than within-
person variability in participants’ cognitive tests scores (i.e.,
Backwards Spatial Span and Trails-B), a multilevel modeling

approachwas taken using the softwareMPlusVersion 8.1.7 that
uses between- and within-person variance to calculate between-
person reliability. The formula for reliability is whereVar(BP) is
the total variance in scores that is between persons, Var(WP) is
the total variance in scores that is within persons, and n is the
number of assessments (Sliwinski et al., 2018).

BPReliablity ¼ VarðBPÞ
VarðBPÞ þ VarðWPÞ

n

� �

Scores were aggregated across time points to find the sam-
ple’s average within-person means and standard deviations
across the full study period and by time point and day.
In addition to whole-sample analyses, within-person means
were calculated along with within-person standard deviation
to identify whether a person’s level of variability in score was
associated with the overall performance on the task. Pearson
correlations were used to assess potential convergence
between within-person smartphone cognitive test means
and self-reported executive dysfunction (BRIEF-A). Because
of the repeated nature of smartphone tests compared to the
one-time BRIEF-A questionnaire, a multilevel model maxi-
mum likelihood regression was used with the BRIEF-A as
a Level 2 fixed effect predictor of smartphone test perfor-
mance, which was entered as a Level 1 random effect
outcome variable. To assess convergent validity with tradi-
tional neuropsychological measures, in-lab test scores were
entered as Level 2 fixed effect predictors of Backwards
Spatial Span and Trails-B performance (the Level 1 outcome
variable) each in their own separate model.

We also conducted multilevel model regressions to assess
the extent to which smartphone test performance on the
Backwards Spatial Span or Trails-B task related to context
and state variables collected at the same time point. In this
model, each contextual variable was entered as an indepen-
dent Level-1 predictor of the Level-1 outcome: Backwards
Spatial Span or Trails-B. Survey time point (1–50) and day
of study were independently analyzed as Level-1 predictors
to determine whether smartphone cognitive test performance
improved over the course of the study period as a result of
practice and familiarity with the task. A two-level regression
model was used to determine whether Level-2 fixed effects
(between-person measures) moderated the within-person
relations between context and smartphone score. These
fixed effects included demographics, PD-specific mea-
sures (UPDRS Total Score (Parts I-IV), UPDRS Motor
Subscale (Part III), UPDRS tremor item total (items 20
and 21), H&Y stage), baseline cognitive score (MoCA),
and online questionnaires of trait affect, anxiety, sleepiness
tendency, and motivation.

RESULTS

Association with Sample Characteristics

LEDD was not significantly correlated with any cognitive
measures (in-lab or smartphone) (r’s < .20, p’s> .33). Age

Fig. 1. mindLAMP App Assessments. (a) Location & Social
Context Survey: Indication of type of current location and social
context. (b) Mood & Alertness Survey: five questions including rat-
ing happiness, sadness, anxiety, alertness, and level of motivation to
try one’s hardest on subsequent cognitive games. (c) Backwards
Spatial Span Test: four increasingly challenging trials of a task
requiring one to tap the sequences of boxes that appeared on the
screen during that trial but in reverse order. (d) Trails-B Test: four
increasingly lengthy trials of a task requiring one to tap numbers and
letters on the screen in a sequential and alternating manner.
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was negatively associated with the smartphone Backwards
Spatial Span Task (r=−.59, p< .01), and UPDRS total score
was negatively associated with the smartphone Trails-B task
(r = −.53, p < .01). No other participant characteristics were
associated with smartphone or in-lab cognitive measures.

Feasibility

Adherence was 73% (SD= 10%); on average, participants
responded to roughly 37 out of the 50 possible assessments
over the course of the 10-day study period. Age, disease
severity (UPDRS total), and baseline MoCA score were
not significantly correlated with response rate to EMA
prompts. Responses were captured in a variety of social con-
texts. Participants reported being alone 44% of the time when
completing the surveys and games, followed by 32% with
family members. Overall, responses were evenly distributed

across the course of the day, with most responses in the after-
noon (40%) and evening (37%), which is to be expected as
two prompts occurred in the afternoon and two in the evening.
Responses were most likely to occur within the physical con-
text of being home (71%), with the remaining 29% relatively
evenly distributed across other locations including public pla-
ces indoors, outdoors, work, someone else’s home, and dur-
ing transit (Figure 2).

Smartphone Cognitive Test Psychometrics

Backward spatial span

Within-person mean accuracy was 85.9% (SD = 5.2)
(Table 3). Within-person means were significantly nega-
tively correlated with standard deviation (r = −.70,
p < .001), meaning that high accuracy was associated with

Fig. 2. Summary of Smartphone Survey Responses.

Fig. 3. Examples of Between-Person Variability in the Association Between Time of Day and Smartphone Trails-B Accuracy.

406 E.L. Weizenbaum et al.
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less intraindividual variability. Between-person reliability
was high (.89). Day of the study (1–10) was significantly
related to higher accuracy (B= .33, SE= .13, p= .01), indi-
cating a practice effect; however, no significant residual
variance indicated no individual differences in this effect.
Specifically, when scores were aggregated by day, the
greatest amount of variability occurred on Day 1 (mean
score = 84.0 [SD = 2.1]), after which SD rapidly narrowed
to the study average of 85.9 (SD = 5.2).

Trails-B accuracy

When scores were collapsed across time points within indi-
viduals, Trails-B accuracy was 96.2% (SD= 3.3), indicating
a ceiling effect with little variability around score from
moment to moment within individuals (Table 3). Within-
person means were significantly negatively correlated with
standard deviation (r = −.93, p < .001), meaning that high
accuracy was associated with less intraindividual variability
around the mean. Between-person reliability was .87. There
was no association between day of study (B = .13, SE = .08,
p= .12) and accuracy, nor was there significant residual vari-
ance between persons. This indicates the absence of a practice
effect, but likely reflects the high and unvaried score accuracy
across participants and across the study period.

Smartphone Cognitive Test Convergent Validity

The smartphone Backwards Spatial Span was significantly
predicted by performance on the MoCA, WMS-III Spatial
Span Test (including total score backward and forward and
subtest scores), and the Trail Making Test (time on A &
B) (Table 4). By contrast, smartphone Trails-B task accuracy
was not predicted by any of the traditional neuropsychologi-
cal measures, including baseline cognitive screen (MoCA),
WMS-III Spatial Span Test, or Trail Making Test A & B
Time (Table 4), potentially owing to the limited variability
in scores on the smartphonemeasure. Neither smartphone test
score was predicted by the BRIEF-A questionnaire score nor
was BRIEF-A (subjective self-report) correlated with any of
the traditional in-lab test scores, all from objective task-based
measures.

Individual differences as independent predictors of
smartphone test scores

Using multilevel regression models of between-person
(Level 2) predictors of repeated (Level 1) measurements,

we found that higher scores on the UPDRS tremor items
(B = −.77, SE = .27, p = .005), UPDRS Part III motor sub-
scale (B = −.25, SE = .07, p = .001), and UPDRS Part I-IV
total score (B = −.13, SE = .05, p = .009) predicted lower
overall smartphone Trails-B accuracy scores, but not
Backwards Spatial Span scores. Older age predicted lower
overall Backwards Spatial Span scores, but not Trails-B
scores. Neither the UPDRS Part I mood-mentation-behavior
subscale nor the UPDRS Part II ADL subscale significantly
predicted smartphone test scores, although there was a trend
for an association between the ADL subscale score and
Trails-B accuracy (B=−.280, SE= .149, p= .060) (Table 5).

EMA contextual variables and smartphone test
performance

For Backwards Spatial Span, being at home (vs. other location)
predicted a higher score at the same time point (B= 7.19,
SE= 3.01, p = .02); there was no significant between-person
residual variance in this association. Having reported exercising
in the last 3 h also predicted higher Backwards Spatial Span
score at the same time point (B= 2.16, SE= .78, p= .01); there
was significant between person residual variance associated
with this effect (B= 1.26, SE ≤ .001, p ≤ .001), meaning that
individual differences existed in the strength of the exercise
and Span score association (Table 6). When entered as a
Level 2 predictor, a person’s mean exercise frequency score
(the percent of times a person endorsed having exercised in
the past 3 h) predicted the strength of the relation between exer-
cise and spatial span score. Specifically, when those who gen-
erally exercised less frequently endorsed having exercised in
the last 3 h, Backwards Spatial Span score tended to be
higher (B = −2.42, SE = .10, p < .001). The question
remained as to whether specific individual differences
may predict which participants exhibited variability in
their accuracy scores in relation to context variables.
Based on exploratory correlations between individual
differences and contextual variables, we entered individual
differences as Level 2 predictors in multilevel models. No
individual differences examined predicted the exercise and
spatial span association (Table 7).

For Trails-B, there were no significant associations
between contextual EMA variables and accuracy. There
was a significant level of between-person variability, how-
ever, given the residual variance values in the relation
between time of day and Trails-B score (B= 3.75,
SE= 1.65, p = .02) and being at home (versus another loca-
tion) and Trails-B score (B= 57.76, SE= 23.49, p = .01).
Despite the lack of sample-level relations between Trails-B
score and time-of-day, this association did vary significantly
from person to person in the study, as illustrated by the exam-
ples in Figure 3: Participant 40011 tended to be more accurate
as the day progressed, whereas Participant 40008’s accuracy
did not differ across the morning, afternoon, and evening.

Individual difference variables that were significantly cor-
related with Trails-B accuracy were entered as Level 2 or
between-person predictors in individual multilevel models

Table 3. Smartphone cognitive test psychometrics

Within-
Person
Mean

Accuracy

Correlation
between

Within-Person
Mean and SD

Between-
Person

Reliability
Value

Backwards Spatial
Span

85.9 %
(SD= 5.2)

r = −.70
(p < .001)

.885

Trails-B 96.2%
(SD= 3.3)

r = −.93
(p < .001)

.874
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Table 4. Convergent validity between smartphone and traditional analog cognitive tests

Smartphone Backwards Spatial Span Smartphone Trails-B

Unstd. Beta Coefficient SE p-value Unstd. Beta Coefficient SE p-value

MoCA Total B = .757 .361 <.001 B = .128 .272 .637
Trail Making Test B time B = −.146 .027 <.001 B = −.035 .027 .186
WMS-III Spatial Span Total B= 1.147 .266 <.001 B = .410 .223 .066
BRIEF-A Total B = −1.281 3.465 .712 B = −3.411 2.359 .148

Table 5. Multilevel model results of PD-specific individual differences and smartphone cognitive test scores

Smartphone Trails-B Smartphone Backwards Spatial Span

Unstd. Beta Coefficient SE p-value Unstd. Beta Coefficient SE p-value

H&Y Score −.333 1.298 .797 2.41 1.81 .183
UPDRS Total −.132 .051 .009 −.025 .084 .767
UPDRS Tremor −.768 .271 .005 .122 .456 .789
UPDRS MMB .225 .312 .471 .126 .457 .784
UPDRS ADL −.28 .149 .06 −.301 .228 .186
UPDRS Motor −.246 .074 .001 .026 .129 .841
Age −.096 .075 .202 −.349 .089 <.001

Table 6. Contextual predictors of smartphone score as individual multilevel models

Backwards Spatial Span

Level 1 Predictor

Direct Effect

p-value

BP Residual

Unstd. Beta SE Unstd. Beta (SE) p-value

Day .329 .129 .011 .080(.151) .597
Time point .042 .016 .008 .001(.002) .595
Time of Day .683 .43 .112 .176(.061) .951
Home 7.188 3.012 .017 3.421(5.951) .565
Alone .778 2.069 .715 .368(8.413) .965
Upbeat −.367 2.804 .896 .391(1.391) .779
Nervous −2.017 2.435 .408 .950(.782) .224
Sad 1.651 9.24 .858 .629(7.473) .933
Alert 1.066 1.045 .308 .262(1.023) .798
Motivation −8.075 13.71 .556 1.522(11.482) .895
ON-Med Period 6.538 6.046 .286 8.836(18.118) .626
Caffeine .857 7.806 .940 1.544(7.056) .827
Exercise 2.157 .778 .006 1.262(<.001) <.001
Trails-B
Day .125 .08 .117 .005(.038) .893
Time point .016 .01 .121 <.000 (.001) .607
Time of Day .279 .474 .556 3.753 (1.646) .023
Home 1.259 2.114 .552 57.761 (23.494) .014
Alone .946 1.274 .458 .178(1.057) .866
Upbeat −1.294 2.862 .651 4.762(2.636) .071
Nervous .121 2.303 .958 3.863 (3.144) .219
Sad 2.333 2.887 .419 .147(.366) .688
Alert .568 .756 .452 .756(.401) .059
Motivation −2.274 9.747 .816 1.630(2.300) .554
ON-Med Period 1.21 3.789 .749 31.02 (22.265) .164
Caffeine .587 7.806 .943 1.544(7.056) .827
Exercise .195 .966 .842 1.048(2.668) .694
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of context and performance (Table 7). Those who reported
lower baseline daytime sleepiness tended to perform better
on Trails-B later in the day. No individual difference varia-
bles predicted the strength of a participant’s association
between Trails-B accuracy and being at home.

DISCUSSION

This study examined the utility and feasibility of repeated
smartphone assessment of cognition and context in persons
with PD. There is a paucity of data on smartphone cognitive
assessment in PD, and while a visual working memory task
has been incorporated into other apps used to measure symp-
toms in PD (Bot et al., 2016), to our knowledge this is the first
study to report on remote repeated measurement of working
memory and executive functioning, cognitive domains that
are affected early in PD.

On both smartphone cognitive measures, higher within-
person mean accuracy was associated with lower within-
person variability. This indicates that those who were
performing more poorly were likely to be less consistent. An
implication is that traditional one-time testing may not always
be sufficient to capture the extent of variability (the good days
and bad days) that people with cognitive impairment experi-
ence in day-to-day life. On Backwards Spatial Span, partic-
ipants’ scores increased over time, primarily on the first day
of the study. We found that average performance was very
high on the smartphone Trails-B task, indicating a ceiling
effect. Increasing the difficulty or scoring of this measure
would improve psychometrics. Despite this limitation, the
measure was found to be reliable in differentiating between
participants when taking into account within-person fluc-
tuation of repeated measurements.

Convergent Validity

Performance on the smartphone Backwards Spatial Span task
was related to a number of the traditional in-lab neuropsycho-
logical measures. Most notably, in-labWMS-III Spatial Span
(including total, forward, and backward scores) strongly pre-
dicted an individual’s performance on the smartphone task.
This provides evidence that this smartphone task likely mea-
sures a similar construct as the traditional in-lab neuropsycho-
logical measure and is the first to validate it against traditional
measures. The present study supports use of smartphone
cognitive assessment as a valid adjunct to traditional neuro-
psychological measures, especially because smartphone tasks
can be completed quickly, administered remotely, and
repeated across time points with high reliability.

Performance on Trails-B was not related to performance
on any of the traditional neuropsychological tests adminis-
tered in-lab, likely due to ceiling effects. Further, the smart-
phone Trails-B was a measure of switching accuracy versus
speed, whereas completion time, or speed, is the primary met-
ric of performance in the traditional Trail Making Test B. Our
Trails-B task accuracy reflects inhibition and planning, com-
ponents of executive function, not processing speed. Our
version measured total time per Trails-B game, but the num-
ber of trials within a game varied based on accuracy; hence,
response time was not comparable within or between people.
Updated time measurement and scores based on speed or
screen tap latency could make this task a more sensitive mea-
sure of processing speed and executive function. For exam-
ple, it may be that the latency or response time in between
alternating numbers and letters in the task is what differenti-
ates people more than the accuracy of switches, and this kind
of sensitive timing ability is what differentiates digital assess-
ment from current analog versions of this task.

Table 7. Multilevel model results of between-person predictors of context-smartphone performance association

Smartphone Backwards Spatial Span

Level 1 Direct Effect Level 2 Predictor Unstd. Beta SE p-value

Exercise UPDRS Total .062 .052 .467
Age −.037 .140 .792
MoCA .135 .386 .726

Smartphone Trails-B
Level 1 Direct Effect Level 2 Predictor Unstd. Beta SE p-value
Time of Day UPDRS Total −.022 .016 .163

UPDRS Motor −.364 .023 .218
Time since diagnosis −.243 .037 .586
H&Y score .124 .298 .678
Age −.012 −.618 .536
ESS −.666 .249 .008

Home UPDRS Total .027 .038 .478
Time since diagnosis −.104 .093 .261
Age .027 .055 .627

ON-OFF Meds MoCA .054 .149 .739
UPDRS Total −.096 .075 .199
Time since diagnosis −.091 .252 .723
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When considering the use of smartphone cognitive assess-
ment in clinical populations with motor impairments, such as
PD, it is essential to understand relations between disease
symptoms and performance on the tasks themselves. In our
study, the Trails-B task required quick and spatially precise
taps on small on-screen circles. We found that higher
UPDRS motor and tremor subscale scores were associated
with lower scores on the task itself. If the objective of the
assessment is to measure changes in processing speed and
motor accuracy as a result of disease, this could be valuable
to capture in a smartphone cognitive measure. When the goal
is to understand complex attention, switching, and executive
function; however, it is clear that a participant’s motor
impairments may obscure cognitive ability. By contrast,
the Backwards Spatial Span task was not associated with
PD symptoms as measured by the UPDRS, which signals
its utility in measuring cognitive performance via smartphone
in those with motor speed impairments.

EMA Contextual Variables and Smartphone Test
Performance

An additional aim of this study was to explore the extent to
which cognitive performance varied across different con-
texts. We found that being home rather than in another envi-
ronment, and endorsing recent exercise, predicted higher
Backwards Spatial Span scores. On this measure of working
memory, it seems logical that being in a familiar and perhaps
less distracting environment such as one’s home would be
conducive to stronger performance.

In interpreting the direct effect of exercise on visual work-
ing memory performance, it is important to note that this is an
observational finding only. One possibility is that the physio-
logical effects of exercise could contribute to improved cog-
nitive performance in PD. Indeed, a recent systematic review
showed that a variety of exercise programs can lead to
improvements in global cognitive function, processing speed,
attention, and mental flexibility in people with PD (da Silva
et al., 2018). A number of studies point toward increased lev-
els of blood-derived neurotrophic factor as the mechanism of
action in the relation between exercise and higher cognitive
performance in PD (Hirsch, van Wegen, Newman, & Heyn,
2018). It is also possible that on days when people are feeling
better, broadly, theymay bemore likely to perform better on a
working memory task and be more motivated to exercise. We
found significant residual variance in this association indicat-
ing heterogeneous individual differences in how much recent
exercise associated with Backwards Spatial Span scores.
Specifically, those who least frequently endorsed exercise
were the ones most likely to have a higher score when they
did report recent exercise. This finding may further support
the correlational interpretation that people with PD who exer-
cise more frequently may be exercising unconditionally on
“good” days and “bad” days or despite other factors of vari-
ability in their daily lives. By contrast, those who endorse
exercising less frequently may have a more conditional

relationship with exercise, such that choosing to exercise
may be associated with other factors (e.g., less physical dis-
comfort, a less busy day, etc.) that could also be conducive to
better working memory.

Whereas there were no direct effects between contextual
predictors and Trails-B, there were significant individual
differences in these effects; specifically, those with less
symptom burden (UPDRS total score) and less daytime
sleepiness (ESS score) showed a stronger effect between
Trails-B performance and later time of day.While there is rea-
son to be cautious about these findings given the ceiling effect
and motor confounds seen with Trails-B, it is worth consid-
ering that those with greater disease burden may show less
sensitivity to varying contexts; alternatively, they may be
more homebound and so have less exposure to varying physi-
cal and social contexts. One potential future question is how
variability in context and one’s response to different contexts
relate to stage of a disorder. For example, could a decrease in
the variety of contexts or one’s differential response to them
as measured by repeated mobile testing help to predict
advancing disease state? Alternatively, mobile testing may
be most useful for those in early stages of a disease. It may
also help identify contexts in which performance is lower
and targeted interventions could be of benefit for people
across the spectrum of disease severity.

Results are in line with other studies regarding engage-
ment. Participants completed 73% of the EMA prompts on
average. This response rate is similar to other studies of
mobile cognitive assessment in a variety of clinical samples,
which found average study response to be 79% (Moore et al.,
2017) and is higher than the 61% response rate in a study of
smartphone assessment of PD motor symptoms (Lipsmeier
et al., 2018).

Study Limitations

This study examined a sample of individuals with mild to
moderate PD severity without dementia and cannot general-
ize to individuals with more severe motor and cognitive
symptoms. It is also important to note that participants in this
sample were self-selected and had either previously partici-
pated in research or had expressed interest in participating.
This type of sample often leads to narrow demographics in
terms of socioeconomic status, education, and race, which
poses barriers to community-wide generalization. A limita-
tion in our methods was that one of our smartphone cognitive
measures elicited very high accuracy and was not able to cap-
ture processing speed; nevertheless, the data produced were
useful in regard to assessment of the relation between accu-
racy and performance variability.

Future Directions

In our study design, smartphone assessments were prompted
at fixed times during the day. As such, participants could
anticipate the exact time of an assessment and may have
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altered their routine to accommodate test-taking, which could
have restricted the range of locations and contexts in which
tests were completed. Further investigation is needed to com-
pare performance under conditions of random vs. fixed-time
prompts within daytime intervals. A second avenue of inves-
tigation would be to intentionally time test administration to
coincide with participant-specific activities and routines.
Future studies should also aim to measure cognitive domains
beyond visual working memory and the inhibition and plan-
ning components of executive function, in order to compare
results with those presented here; investigators wishing to use
our tests may do so through this link https://github.com/
BIDMCDigitalPsychiatry. We also suggest expanding the
scope of studies of smartphone-based assessments of cogni-
tion to include measures of activities of daily living (ADLs)
beyond the UPDRS ADL subscale used in our study where a
trend was seen between this score and smartphone Trails-B
accuracy. This line of future investigation is supported by
an extensive literature relating performance on traditional
neuropsychological tests of executive function to ADLs in
older adults with and without cognitive impairment (e.g.,
Bell-McGinty, Podell, Franzen, Baird, & Williams, 2002;
see Overdorp, Kessels, Claassen, & Oosterman, 2016 for a
review), including in PD (Higginson, Lanni, Sigvardt, &
Disbrow, 2013; Kudlicka, Hindle, Spencer, & Clare, 2018).

Conclusion

This study demonstrated that repeated smartphone assess-
ment of cognitive performance in persons with PD is a fea-
sible and useful method of neuropsychological assessment.
Our smartphone measures of executive functioning and vis-
ual working memory both displayed strong between-person
reliability. There was convergent validity for the smartphone
test of visual working memory, with its results predicted by
traditional neuropsychological tests administered in-lab.
Performance on this task was also unrelated to PD motor
impairment and tremor score, which demonstrates feasibility
even in those with notable motor-based symptoms of PD.
Further, we found that certain contexts and conditions (being
at home and recent exercise) differentially predicted perfor-
mance on this task at that same time point. Together these
findings provide support for further investigation of smart-
phone cognitive assessment in PD as a means of understand-
ing idiographic patterns of symptoms, with the potential to
better predict disease progression and provide targeted and
individualized interventions.
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