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Abstract

The aim of this study was to estimate genetic parameters for environmental sensitivities in
milk yield and composition of Iranian Holstein cows using the double hierarchical generalized
linear model (DHGLM) method. Data set included test-day productive records of cows which
were provided by the Animal Breeding Center and Promotion of Animal Products of Iran
during 1983 to 2014. In the DHGLM method, a random regression model was fitted which
included two parts of mean and residual variance. A random regression model (mean
model) and a residual variance model were used to study the genetic variation of micro-envir-
onmental sensitivities. In order to consider macro-environmental sensitivities, DHGLM was
extended using a reaction norm model, and a sire model was applied. Based on the mean
model, additive genetic variances for the mean were 38.25 for milk yield, 0.23 for fat yield
and 0.03 for protein yield in the first lactation, respectively. Based on the residual variance
model, additive genetic variances for residual variance were 0.039 for milk yield, 0.030 for
fat yield and 0.020 for protein yield in the first lactation, respectively. Estimates of genetic cor-
relation between milk yield and macro- and micro-environmental sensitivities were 0.660 and
0.597 in the first lactation, respectively. The results of this study indicated that macro- and
micro-environmental sensitivities were present for milk production traits of Iranian
Holsteins. High genetic coefficient of variation for micro-environmental sensitivities indicated
the possibility of reducing environmental variation and increase in uniformity via selection.

It is frequently supposed that the residual variance is homogeneous in linear models used in
the field of animal breeding. But, distinctions in the residual variance among animals are com-
pletely usual and it would be necessary to comprise heteroscedastic residual effects in the mod-
els used for estimation of customary breeding values (Hill, 1984; Felleki et al., 2012). The
homogeneity of animals or their products is mostly an appropriate breeding objective.
Therefore, methods are required to estimate breeding values and variance components for
the residual variance section of the model. This provides the possibility to select animals
which can fulfill this objective (Felleki et al., 2012). In addition, use of routine methods/models
for the prediction of genetic selection response is deceptive when heterogeneity of variance is
present (Hill and Zhang, 2004; Mulder et al., 2007; Felleki et al., 2012).

In the present dairy enterprise, it is important that dairy cows are resistant to environmen-
tal fluctuations for important characters (Vandenplas et al., 2013). Uniformity variations
between animals for a given character may be depicted based on distinctions in residual vari-
ance (Rönnegård et al., 2013). Some environmental factors are recognizable and can be clas-
sified or measured and therefore are called macro-environmental variables. The remaining
environmental variables are unknown and regarded as micro-environmental variables
(Falconer and Mackay, 1996). Therefore, genetic variance for macro-environmental sensitivity
is the genetic variance because of identified environmental effects and can be declared as the
slope of a reaction norm genetic variance when environments can be measured on a continu-
ous scale. When environments are classifiable, then phenotypes in various environments are
assumed as distinct characters and a criterion for determining genetic variability in macro-
environmental sensitivity is the genetic covariance between different environments. Genetic
heterogeneity of residual variance defined as the existence of genetic variation in
micro-environmental sensitivity or phenotypic plasticity because of the heterogeneous residual
variance between animals. This heterogeneity would be regarded as a character with low her-
itability and applied to ameliorate robustness through selection (Mulder et al., 2007, 2008).
Genetics of micro-environmental sensitivity, which is called environmental variance, has
been examined less substantially than the genetic perspective of macro-environmental
sensitivity (Mulder et al., 2013).
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The double hierarchical generalized linear model (DHGLM)
was proposed by Rönnegård et al. (2010) and Felleki et al.
(2012), concurrently correcting two sets of mixed model equa-
tions (on levels of the mean and residual variance). Rönnegård
et al. (2010) observed the model used has the possibility to
apply on large data sets in dairy industry. An adjustment for cor-
recting the erroneousness of applying estimated residual effects as
a representative for the residual variance for each individual is
conducted in some studies (Iung et al., 2017). Using DHGLM,
selection for uniformity character would be possible in dairy
herds through using these models because breeding values
would justify genetic heterogeneity of residual variance
(Vandenplas et al., 2013).

Different studies reported the estimates of genetic variation in
heterogeneity of residual variance for various character sets in
farm animals (Sorensen and Waagepetersen, 2003; Damgaard
et al., 2003; Mulder et al., 2009; Janhunen et al., 2012;
Rönnegård et al., 2013). In general, these studies obtained consid-
erable genetic variation for heterogeneity of residual variance but
low heritability for individual dispersion (Mulder et al., 2007).
The existence of genetic heterogeneity of residual variance indi-
cated the possibility of selection for modifying residual variance
(Sonesson et al., 2013) To our knowledge, there are few studies
of milk yield and no reports of milk fat and protein yield to
study the genetic heterogeneity of residual variance in the first
three lactations of dairy cows. In addition, milk components are
highly correlated to economic performance and even energetic
efficiency. Therefore, the objective of this study was to estimate
genetic parameters for environmental sensitivities in milk yield
and composition of Iranian Holstein cows using DHGLM method.

Materials and methods

Data

The data set included test-day productive records of cows which
were provided by the Animal Breeding Center and Promotion
of Animal Products of Iran during 1983 to 2014. A pedigree file
was constructed for all animals in the dataset. Detailed description
of pedigree file was reported in a previous study (Ehsaninia et al.,
2016). Descriptive statistics for test-day productive records over
the first three parities are shown in Table 1. For editing data,
records within herd-year classes comprising more than five obser-
vations were kept. Data edition was applied in which records on
daughters of bulls with at least 10 records in at least five herds
were retained. Only herds containing ≥10 cows and sires having
≥5 progenies were considered.

Also, data were edited for errors, redundancy, and incomplete
observations and missing cow identification. Records were elimi-
nated if no registration number was present for a given cow. Age
at calving was limited to be between 18–40 months, 28–49
months, and 40–68 months in the first three parities, respectively.
A record was included in the final dataset if it also contained
information on pedigree, season and year of calving, parity and
herd for each cow. Four seasons were defined based on calving
month classes: April through June (spring), July through
September (summer), October through December (fall) and
January through March (winter).

For considering heterogeneous residual variance in the models
of analysis, test-day records were classified into 10 groups accord-
ing to days in milk: 5–35, 36–65, 66–95, 96–125, 126–155, 156–
185, 186–215, 216–245, 255–285 and 286–305 d in milk.

Individual daily milk yield, milk fat yield and milk protein yield
should be between 5–55, 5–65 and 5–64 kg; 0.2–2, 0.2–2.4 and
0.2–3 kg; 0.2–1.8, 0.2–2.2 and 0.2–2.3 kg over the first three par-
ities, respectively. Each individual should have at least eight test-
day records to include in the final data set.

Double hierarchical generalized linear models (DHGLM)

Test-day productive records were analyzed using the DHGLM
model, proposed by Rönnegård et al. (2010), to estimate variance
components for micro-environmental sensitivities. In the
DHGLM method, fitted animal model included two parts of
mean and residual variance. A random regression model (mean
model) and a residual variance model were used to study the gen-
etic variation of micro-environmental sensitivities. Legendre poly-
nomial functions were chosen to fit the lactation curves in the
framework of a random regression test day model for estimating
(co)variance components. In order to obtain the appropriate ran-
dom regression test day model for the genetic analysis of test day
records, different orders of fit for random regression coefficients
of additive genetic and permanent environmental effects were
evaluated. The difference of these models was based on the
Legendre polynomials applied to fit the covariance functions for
additive genetic and permanent environmental effects.
Maximum logarithm likelihood of the models was compared
and models with the lowest values of this criterion were selected
for further analysis. The order of fit for fixed regression coeffi-
cients was considered to be five for all models. Based on the
selected models, orders of fit for additive genetic and permanent
environmental effects of milk yield, fat yield and protein yield
were (4,4), (4,4) and (5,3); (4,3), (5,4) and (4,4); (4,4), (5,3) and
(5,3) in the first three lactations, respectively. The fitted random
regression model was as follows:

y = Xb+ Zuu+ Zpp+ e

where y = vector of test day records; β = vector of fixed effects for
the mean including herd-test date, year-season of calving, days in
milk and age of animal at calving; u = vector of additive genetic
random regression coefficients for the mean; p = vector of per-
manent environmental random regression coefficients for the
mean and e = vector of random residual effects. X, Zu and Zp

are design matrices associating the records to fixed, random
and permanent environmental effects, respectively. Then residual
variance model was fitted as follows:

V(e) = exp(Xvbv + Zuvuv + Zpvpv)

where bv = vector of fixed effects for residual variance including
the effects of herd-test date, year-season of calving, days in milk
and age of animal at calving; uv and pv = vectors of random addi-
tive genetic and permanent environmental effects for residual
variance, respectively; Xv , Zuv and Zpv = design matrices associat-
ing the records to fixed, random and permanent environmental
effects, respectively. It was assumed that uv and pv had multivari-
ate normal distributions:

pv � N(0, Is2
pv
)

uv � N(0,As2
uv )
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where s2
uv = additive genetic variance for residual variance and

s2
pv
= permanent environmental variance for residual variance.

Also, it was assumed that there was no correlation between u
and uv or between p and pv (Mulder et al., 2013; Rönnegård
et al., 2013; Vandenplas et al., 2013).

In order to consider macro-environmental sensitivities,
DHGLM was extended using a reaction norm model, and a sire
model was used in spite of an animal model because DHGLM
in the context of animal model provided biased estimates of vari-
ance components (Mulder et al., 2013). In the reaction norm
models, it was assumed that environmental parameters which
cause response of genotypes to different environments are

known without error and there is no need to estimate them
from data. The statistical model used for estimating genetic para-
meters and genetic correlations of micro- and macro-
environmental sensitivities was a bivariate sire model as follows:

y
cs

[ ]
= X 0

0 Xv

[ ]
b
bv

[ ]
+ Zs Zx 0

0 0 Zsv

[ ]
×

Sint
Ssl
Sv

⎡
⎣

⎤
⎦+ es

esv

[ ]

where y and ψs = vectors of response variables for the mean and
residual variance models, respectively; Zs and Zsv = design

Table 1. Descriptive statistics for test-day productive records in different lactation stages of the first three parities of Holstein cows

Parity
Lactation stage

(days)

Milk yield Fat yield Protein yield

Number
Mean
(kg)

SD

(kg) Number
Mean
(kg)

SD

(kg) Number
Mean
(kg)

SD

(kg)

5–35 129 414 28.48 6.98 107 074 0.99 0.33 116 881 0.92 0.23

36–65 173 421 32.88 7.28 147 096 1.02 0.33 103 234 1.00 0.23

66–95 159 663 33.60 7.31 132 785 1.02 0.32 134 307 1.03 0.23

96–125 170 550 33.31 7.38 144 476 1.01 0.32 124 908 1.03 0.23

1 126–155 164 868 32.77 7.45 140 765 1.00 0.32 121 390 1.03 0.24

156–185 167 004 32.10 7.47 143 115 1.00 0.32 122 598 1.02 0.24

186–215 158 668 31.36 7.50 136 096 0.99 0.32 116 835 1.01 0.24

216–245 157 389 30.45 7.46 135 052 0.98 0.31 115 980 0.99 0.24

246–275 138 617 29.32 7.44 118 766 0.96 0.31 102 842 0.96 0.24

276–305 136 781 28.25 7.44 116 929 0.94 0.31 81 341 0.94 0.24

5–35 86 930 36.92 9.21 71 378 1.24 0.43 59 424 1.21 0.29

36–65 113 708 40.88 9.64 95 495 1.24 0.43 79 261 1.25 0.29

66–95 104 607 39.84 9.53 86 516 1.20 0.42 71 322 1.23 0.28

96–125 110 419 38.11 9.39 92 758 1.16 0.40 76 398 1.20 0.28

2 126–155 106 139 36.41 9.23 90 050 1.13 0.39 74 036 1.17 0.28

156–185 106 000 34.61 9.01 90 445 1.10 0.38 74 211 1.13 0.28

186–215 99 670 32.71 8.85 85 385 1.06 0.37 69 991 1.07 0.28

216–245 98 385 30.63 8.66 84 210 1.01 0.36 69 012 1.02 0.28

246–275 84 925 28.48 8.46 72 487 0.96 0.35 59 652 0.96 0.27

276–305 83 689 26.49 8.30 71 379 0.91 0.34 58 734 0.91 0.27

5–35 50 732 38.28 9.80 43 499 1.32 0.49 37 241 1.23 0.31

36–65 66 817 42.79 10.48 58 796 1.31 0.49 49 801 1.28 0.30

66–95 61 445 41.65 10.29 53 115 1.27 0.47 45 006 1.26 0.30

96–125 64 953 39.62 10.12 57 049 1.22 0.46 48 586 1.22 0.30

3 126–155 62 060 37.52 9.91 55 093 1.17 0.43 46 861 1.18 0.30

156–185 61 674 35.33 9.60 55 237 1.13 0.42 47 140 1.13 0.29

186–215 57 984 33.11 9.35 51 962 1.07 0.40 44 447 1.07 0.29

216–245 57 320 30.66 9.09 51 371 1.01 0.39 44 149 1.00 0.29

246–275 49 421 28.20 8.88 44 132 0.95 0.37 38 038 0.94 0.28

276–305 47 964 26.01 8.68 42 672 0.89 0.35 36 944 0.88 0.28
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matrices of sire effects for the intercept of the reaction norm and
for the environmental variance, respectively; Zx = is the matrix
with the environmental parameter x as a covariate for the sire
effects for the slope of the reaction norm; Sint, Ssl and Sv = vectors
including estimated effects of sires for intercept, macro-
environmental sensitivities and environmental variance (micro-
environmental sensitivities), respectively. It was assumed that
sire effects of Sint, Ssl and Sv had trivariate normal distributions

of N 0,
1
4
G⊗ A

( )
, assuming that sire (co)variances are a quarter

of the additive genetic variance. Also, it was assumed that resi-
duals of es and esv were independent and had normal distribution
because Cov(e, e2) = 0 (Mulder et al., 2013):

es
esv

[ ]
� N

0
0
,

W−1
s s2

[ 0
0 W−1

sv s
2
[sv

[ ]( )( )

where s2
[ and s2

[sv = are scaling variances for residual variances in
the sire model which their expectations are equal to one becauseWs

= diag(ĉs)
−1and Wsv = diag

1− h
2

( )
already contain the recipro-

cals of the estimated residual variances per record. Also, h is the
diagonal element of the hat matrix corresponding to the same indi-
vidual. All genetic analyses were conducted using the ASReml 4.0
program (Gilmour et al., 2009) to obtain estimates of variance com-
ponents for the studied traits. In each ASReml run, REML-estimates
of the variance components were obtained for the current values of
ψs, Ws and Wsv. The vector ψs and the diagonals of Ws and Wsv

were updated after each run of ASReml. Genetic correlation between
micro- and macro-environmental sensitivities estimated through
iterative reweighted least square (IRWLS) algorithm and in the
basis of mean and residual variance models.

Four statistical models were fitted to estimate and compare the
genetic parameters for micro- and macro-environmental sensitiv-
ities: a combined micro—macro environmental sensitivity model
‘Micro—macro’, a macro-environmental sensitivity model
‘Macro’, a micro-environmental sensitivity model ‘Micro’ and a
simple model ‘Simple’ with only one additive genetic effect for
the phenotype. Micro—macro model is a model accounting for
both macro- and micro-environmental sensitivities; Macro
model is a model with only macro environmental sensitivity;

Micro model is a model with only micro-environmental sensitiv-
ity, and Simple model is a model without macro- and micro
environmental sensitivities:

Simple model: y = μ + Aint + e
Micro model: y = m+ Aint + exp(0.5 ln(s2

E)+ 0.5Av)1
Macro model: y = μ + Aint + Aslx + ε
Micro–macromodel: y=m+Aint+Aslx+exp(0.5ln(s2

E)+0.5Av)1

where y = vector of records; μ = population mean for productive
traits; x = environmental parameter (continuous or discrete)
which cause response of genotypes to different environments
(herd-year-season and age at calving); Aint, Asl and Av = additive
genetic effects for the intercept of the reaction norm, for the slope
of the reaction norm (macro-environmental sensitivities) and for
the environmental variance (micro-environmental sensitivities),
respectively; s2

E = environmental variance of exponential model,
and ε = environmental deviation with variance one. The basic
for these statistical models were DHGLM algorithm which iterates
between linear mixed models for phenotypic observations and
Gamma linear models for residual variance. After convergence,
variance components for corresponding traits, micro- and macro-
environmental sensitivities were estimated. These four statistical
models were examined for goodness of fit using Akaike’s informa-
tion criterion (AIC), Bayesian’s information criterion (BIC) and
adjusted profile h-likelihood (APHL). The AIC is a good statistic
for comparison of models of different complexity and calculated
as follows:

AIC = −2 log (MLk)+ 2pk

where MLk is the maximum likelihood of kth model and pk is the
number of model parameters. Bayesian’s information criterion
(BIC), a criterion for model selection among parametric models
with different numbers of parameters, was estimated as follows:

BIC = −2 log (MLk)+ k log(n)

where k is the model parameters and n is the number of observa-
tions. The adjusted profile h-likelihood (APHL) can be approxi-
mated from the log REML-likelihood (log L) of the bivariate

Table 2. Variance components of micro-environmental sensitivities for milk yield and composition based on DHGLM method in the first three parities of Holstein
cows

Parity Trait

Mean model Residual variance model

s2
a s2

PE
s2
av s2

Pv

Milk yield 38.25 ± 0.45 45.34 ± 0.36 0.040 ± 0.008 0.542 ± 0.007

1 Fat yield 0.23 ± 0.03 0.20 ± 0.09 0.030 ± 0.004 0.401 ± 0.009

Protein yield 0.03 ± 0.06 0.05 ± 0.05 0.020 ± 0.004 0.307 ± 0.008

Milk yield 12.58 ± 0.18 23.47 ± 0.11 0.040 ± 0.008 0.441 ± 0.004

2 Fat yield 0.27 ± 0.09 0.42 ± 0.04 0.020 ± 0.007 0.309 ± 0.003

Protein yield 0.05 ± 0.06 0.04 ± 0.01 0.024 ± 0.004 0.280 ± 0.003

Milk yield 32.02 ± 0.49 25.40 ± 0.29 0.032 ± 0.004 0.412 ± 0.003

3 Fat yield 0.21 ± 0.01 0.18 ± 0.08 0.026 ± 0.002 0.318 ± 0.006

Protein yield 0.04 ± 0.08 0.04 ± 0.04 0.021 ± 0.005 0.241 ± 0.006

s2
a, additive genetic variance for mean; s2

PE
, permanent environmental variance for mean; s2

av , additive genetic variance for residual variance; s2
Pv
, permanent environmental variance for

residual variance.

148 Jamshid Ehsaninia et al.

https://doi.org/10.1017/S0022029919000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029919000293


model taking into account the fact that the adjusted squared resi-
duals from the mean model were fitted for the residual variance
model (Felleki et al., 2012; Mulder et al., 2013):

APHL = −2logL−
∑

e2viwvis
−2
ev

−
∑

ln
s2
ev

wvi

( )

where wvi and evi are weight (i.e. the ith diagonal of Wsv ) and
residual for the variance model for the ith observation, respect-
ively, and s2

ev is the scaling residual variance for the residual vari-
ance model.

Results

Variance components of micro-environmental sensitivities for
milk yield and composition based on DHGLM method in the
first three parities of Holstein cows are shown in Table 2.

Additive genetic and permanent environmental variances for
the mean and residual variance of milk yield were generally the
greatest in the first lactation cows. Additive genetic and perman-
ent environmental variances for the mean of fat yield increased
from first to second lactation, and then decreased to third lacta-
tion. Additive genetic variance of the mean for protein yield
had similar variation to fat yield but, permanent environmental
variance of the mean for protein yield was the greatest in the
first lactation. The greatest additive genetic and permanent envir-
onmental variances for the residual variance of fat yield were
observed in the first lactation. The additive genetic variance of
the residual variance for protein yield had the same variation as
its counterpart in the mean model, but permanent environmental
variance of the residual model for protein yield had decreasing
trend over the first three lactations (Table 2).

Estimates of genetic parameters for micro- and macro-
environmental sensitivities of milk yield, fat yield and protein

Table 3. Estimates of genetic parameters for micro- and macro-environmental sensitivities of milk yield in the first three parities of Holstein cows using different
models

Parity Parameter Simple model Micro model Macro model Micro–macro model

s2
Aint 318 944 ± 9908 319 789 ± 9982 328 142 ± 10 387 330 754 ± 10 742

s2
Asl – – 55 741 ± 4250 55 142 ± 4020

s2
av – 0.026 ± 0.009 – 0.026 ± 0.009

rAint,Asl
– – 0.671 ± 0.051 0.660 ± 0.054

1 rAint,Av – 0.587 ± 0.084 – 0.597 ± 0.080

rAsl,Av – – – 0.487 ± 0.061

APHL 755 494 670 149 682 842 671 768

AIC 755 748 671 384 683 124 671 774

BIC 756 214 671 999 683 762 672 004

s2
Aint 409 774 ± 13 261 410 189 ± 13 584 421 127 ± 14 235 421 795 ± 14 647

s2
Asl – – 64 125 ± 5674 65 647 ± 5731

s2
av – 0.032 ± 0.004 – 0.037 ± 0.007

rAint,Asl
– – 0.544 ± 0.019 0.487 ± 0.024

2 rAint,Av – 0.641 ± 0.047 – 0.698 ± 0.032

rAsl,Av – – – 0.504 ± 0.047

APHL 731 998 660 784 671 712 660 836

AIC 731 452 661 100 681 870 660 121

BIC 732 325 662 150 671 879 660 647

s2
Aint 397 495 ± 14 839 413 842 ± 15 124 426 840 ± 15 483 429 670 ± 15 735

s2
Asl – – 70 632 ± 6628 72 112 ± 6946

s2
av – 0.040 ± 0.009 – 0.043 ± 0.006

rAint,Asl
– – 0.612 ± 0.013 0.540 ± 0.039

3 rAint,Av – 0.487 ± 0.050 – 0.512 ± 0.042

rAsl,Av – – – 0.412 ± 0.032

APHL 712 874 641 364 641 989 642 736

AIC 712 680 642 139 642 217 643 524

BIC 714 785 642 874 642 713 643 821

s2
Aint , additive genetic variance; s2

Asl , additive genetic variance of macro environmental sensitivities; s2
av , additive genetic variance of micro environmental sensitivities; rAint,Av , genetic

correlation between additive genetic variance and micro environmental sensitivities; rAint,Asl , genetic correlation between additive genetic variance and macro environmental sensitivities;
rAsl,Av , genetic correlation between micro- and macro environmental sensitivities; AIC, Akaike's information criterion; BIC, Bayesian information criterion; APHL, Adjusted profile
hierarchical-likelihood.

Journal of Dairy Research 149

https://doi.org/10.1017/S0022029919000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029919000293


yield in the first three parities of Holstein cows using different
models are shown in Tables 3–5, respectively. To this end,
Simple, Micro, Macro and Micro-macro models were fitted to
analyze milk yield and composition. The results indicated consid-
erably better fit of Micro-macro, Micro and Macro models com-
pared with Simple model. The Micro model was the best fitted
model according to the AIC statistic. The lowest values of BIC
and APHL statistics also were for Micro model. Genetic variance
of micro-environmental sensitivities for milk yield and compos-
ition increased considerably from the first through third lactation.
Difference of comparison criteria in Simple model was very large
in comparison with other models, but the difference of BIC
between Micro and Micro-macro models was very low.
Estimated genetic variance of macro-environmental sensitivities
was low compared with the genetic variance of trait.

Estimates of genetic correlations between milk yield and
macro- and micro-environmental sensitivities were high and

varied from 0.487–0.660 and 0.512–0.698 over the lactations,
respectively. These correlations varied from 0.503–0.595 and
0.307–0.553 for fat yield, and ranged from 0.474–0.623 and
from 0.468–0.543 for protein yield over the lactations, respect-
ively. Genetic correlations between macro- and micro-
environmental sensitivities varied from 0.412–0.504 for milk
yield, 0.321–0.412 for fat yield, and 0.412–0.567 for protein
yield in the first three lactations, respectively (Tables 3–5).

Discussion

This study is the first report on the estimation of genetic para-
meters for environmental sensitivities of milk composition in
dairy cows. Genetic variation in environmental sensitivities indi-
cated the differences between animals based on their response to
environmental variables from the genetic perspective. Animals
with greater resistance to environmental fluctuations are more

Table 4. Estimates of genetic parameters for micro- and macro-environmental sensitivities of milk fat yield in the first three parities of Holstein cows using different
models

Parity Parameter Simple model Micro model Macro model Micro–macro model

s2
Aint 261.59 ± 8.68 284.12 ± 10.45 324.84 ± 13.13 327.10 ± 14.82

s2
Asl – – 25.11 ± 0.24 32.27 ± 0.39

s2
av – 0.030 ± 0.007 – 0.031 ± 0.006

rAint,Asl
– – 0.543 ± 0.044 0.503 ± 0.072

1 rAint,Av – 0.455 ± 0.039 – 0.461 ± 0.047

rAsl,Av – – – 0.386 ± 0.020

APHL 645 556 590 588 611 196 591 012

AIC 645 589 590 692 611 219 591 349

BIC 645 637 590 784 601 832 591 742

s2
Aint 349.22 ± 12.73 352.19 ± 14.65 374.68 ± 15.32 393.12 ± 17.81

s2
Asl – – 30.21 ± 0.42 34.42 ± 0.78

s2
av – 0.035 ± 0.008 – 0.037 ± 0.006

rAint,Asl
– – 0.631 ± 0.047 0.548 ± 0.039

2 rAint,Av – 0.501 ± 0.018 – 0.553 ± 0.036

rAsl,Av – – – 0.412 ± 0.030

APHL 619 361 586 685 597 811 587 036

AIC 619 723 587 834 598 138 589 967

BIC 610 124 585 364 599 364 590 456

s2
Aint 209.16 ± 14.39 224.21 ± 17.64 238.39 ± 20.32 249.84 ± 23.44

s2
Asl – – 23.12 ± 0.28 29.18 ± 0.89

s2
av – 0.020 ± 0.004 – 0.021 ± 0.008

rAint,Asl
– – 0.580 ± 0.043 0.595 ± 0.078

3 rAint,Av – 0.361 ± 0.034 – 0.307 ± 0.092

rAsl,Av – – – 0.321±0.010

APHL 601 781 559 641 570 412 560 990

AIC 602 346 560 380 570 784 561 165

BIC 602 732 560 923 571 912 561 654

s2
Aint , additive genetic variance; s2

Asl , additive genetic variance of macro environmental sensitivities; s2
av , additive genetic variance of micro environmental sensitivities; rAint,Av , genetic

correlation between additive genetic variance and micro environmental sensitivities; rAint,Asl , genetic correlation between additive genetic variance and macro environmental sensitivities;
rAsl,Av , genetic correlation between micro- and macro environmental sensitivities; AIC, Akaike's information criterion; BIC, Bayesian information criterion; APHL, Adjusted profile
hierarchical-likelihood.
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appropriate in the dairy production industry. Therefore, genetic
heterogeneity of residual variance could be considered as a char-
acter with low heritability and useful for improving the general
potential of animals to environmental sensitivities via selection.

In some breeding programs and selection experiments, consid-
erable genetic responses were reported for characters with low
heritability (Mulder et al., 2007; Neves et al., 2011;
Formoso-Rafferty et al., 2016). Mulder et al. (2008) reported
that considering residual variance in the breeding goal is crucial
only when the profit equation is non-linear. Even so, in most con-
ditions the optimal index puts more selection pressure on the
mean so that changes in residual variance are minor. Selection
based on the genetic variation of micro-environmental sensitiv-
ities will be important in cases that have individuals with low vari-
ation, and optimum level of the traits would be economically
influential. Considerable levels of genetic variation for residual
variance in different animal species were reported which would

be in the range from 20% or greater (Mulder et al., 2009; Neves
et al., 2012). When the genetic variation for residual variance
and also number of records per sire is large, it appears that selec-
tion for residual variance would be suitable. In addition, low het-
erogeneity of residual variance indicated that cows in their
productive environment had lower sensitivity to unfavorable
environmental situations and this truly could be considered as a
uniformity criterion. Therefore, it is clear that decrease of residual
variance for milk traits through genetic selection and breeding
would be useful (Mulder et al., 2013).

Existence of genetic variation in the level of environmental
variance provides the possibility for modifying it through
selection. Unknown environmental factors are described as
micro-environmental sensitivities. Genetic variance of micro-
environmental sensitivities or genetic heterogeneity of environ-
mental variance is known as the genetic variance arising from
unknown environmental variables. Genetic differences in micro-

Table 5. Estimates of genetic parameters for micro- and macro-environmental sensitivities of milk protein yield in the first three parities of Holstein cows using
different models

Parity Parameter Simple model Micro model Macro model Micro–macro model

s2
Aint 229.76 ± 9.90 232.40 ± 10.12 242.38 ± 12.21 244.76 ± 11.04

s2
Asl – – 31.42 ± 0.36 37.85 ± 0.49

s2
av – 0.038 ± 0.008 – 0.036 ± 0.006

rAint,Asl
– – 0.452 ± 0.045 0.468 ± 0.086

1 rAint,Av – 0.618 ± 0.093 – 0.623 ± 0.074

rAsl,Av – – – 0.567 ± 0.042

APHL 538 143 434 725 446 326 435 912

AIC 538 186 434 902 456 781 435 927

BIC 538 263 435 112 446 903 435 993

s2
Aint 316.00 ± 14.36 328.32 ± 17.58 338.10 ± 21.19 342.64 ± 27.34

s2
Asl – – 34.14 ± 0.28 39.45 ± 0.78

s2
av – 0.041 ± 0.003 – 0.043 ± 0.006

rAint,Asl
– – 0.460 ± 0.043 0.474 ± 0.064

2 rAint,Av – 0.436 ± 0.060 – 0.527 ± 0.082

rAsl,Av – – – 0.493 ± 0.083

APHL 529 874 420 382 436 102 425 300

AIC 529 967 420 904 436 964 425 741

BIC 530 341 420 963 437 521 425 932

s2
Aint 346.11 ± 17.19 354.24 ± 21.14 361.29 ± 26.36 374.68 ± 20.22

s2
Asl – – 39.67 ± 0.84 42.34 ± 0.42

s2
av – 0.052 ± 0.004 – 0.054 ± 0.007

rAint,Asl
– – 0.543 ± 0.044 0.556 ± 0.075

3 rAint,Av – 0.467 ± 0.050 – 0.543 ± 0.060

rAsl,Av – – – 0.412 ± 0.032

APHL 498 632 410 354 412 452 409 367

AIC 498 208 410 836 412 875 409 864

BIC 497 967 411 345 413 238 410 624

s2
Aint , additive genetic variance; s2

Asl , additive genetic variance of macro environmental sensitivities; s2
av , additive genetic variance of micro environmental sensitivities; rAint,Av , genetic

correlation between additive genetic variance and micro environmental sensitivities; rAint,Asl , genetic correlation between additive genetic variance and macro environmental sensitivities;
rAsl,Av , genetic correlation between micro- and macro environmental sensitivities; AIC, Akaike's information criterion; BIC, Bayesian information criterion; APHL, Adjusted profile
hierarchical-likelihood.

Journal of Dairy Research 151

https://doi.org/10.1017/S0022029919000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029919000293


environmental sensitivities could be studied through heterogen-
eity of residual variance among animals. Recent studies showed
that part of environmental variance is under control of genetic
factors and would be heritable (Hill and Mulder, 2010;
Rönnegård et al., 2010; Felleki et al., 2012). Therefore, selection
produces changes in the environmental variability
(Formoso-Rafferty et al., 2016). Selection according to micro-
environmental sensitivities is important when low variation
between animals and also breeding values close to optimum
level are economically critical. For example, broilers with the
same carcass weight and close to average limit are very important
in slaughterhouses. Permanent variations in micro-environmental
sensitivities are possible when genetic variation exists for residual
variance.

The results of this study indicated the possibility of fitting a
model for studying the genetic heterogeneity of residual variance
for a large data set of dairy cows. Existence of greater genetic vari-
ation in environmental sensitivities of milk yield compared with
other productive traits showed better modification of environ-
mental sensitivities for milk yield through selection. In general,
DHGLM method provided useful information for dairy practi-
tioners regarding to the herd management and uniformity of
milk traits through studying the genetic variation of residual vari-
ance and selection for decreased micro-environmental sensitiv-
ities. Therefore, selection for improved potential of animals to
micro-environmental sensitivities is likely.

Reaction norm models combined with DHGLM method were
used to estimate simultaneously the macro- and micro-
environmental sensitivities in the context of a sire model because
the animal model provided greatly biased estimates of variance
components due to the high dependence of the estimated breed-
ing values and residuals on the variance ratio applied in the mixed
model equations (Mulder et al., 2013). Sire models are commonly
applied in combination with reaction norm models (Windig et al.,
2011; Mulder et al., 2013). In addition, an animal model with het-
erogeneous residual variance (in DHGLM method) produced a
poorer APHL statistic than an animal model without homogen-
ous residual variance which indicated the first model in a scenario
with the consideration of both macro- and micro-environmental
sensitivities did not provide better fit (Mulder et al., 2013).
Because of the abovementioned reasons, sire model was used
for the estimation of macro- and micro-environmental sensitiv-
ities. Lillehammer et al. (2009) showed that when heterogeneity
of residual variance was ignored, sire models produced biased
estimates of genetic variance for micro-environmental
sensitivities.

Consistent with the results of this study, Rönnegård et al.
(2013) reported the lowest value of APHL was for Micro model
in Swedish Holsteins. Also, Vandenplas et al. (2013) reported
lower values of AIC, BIC and APHL for milk yield in heteroge-
neous model compared with homogenous model in Walloon
Holstein cows. One unit change in genetic standard deviation of
environmental variance modified the micro-environmental sensi-
tivities of first lactation milk yield, fat yield and protein yield as
0.16, 0.18 and 0.19, respectively, but these values were generally
lower than those in other studies (Hill and Mulder, 2010;
Mulder et al., 2013).

Estimates of genetic correlation between milk yield and macro-
and micro-environmental sensitivities indicated that selection for
more milk yield could increase both macro- and micro-
environmental sensitivities. Therefore, because of the positive cor-
relation between milk production traits and environmental

sensitivities, selection of animals with higher estimated breeding
values for traits of interest would increase the residual variance
of macro-environmental sensitivities. Similar to the current
study, Rönnegård et al. (2013) obtained positive genetic correla-
tions between breeding values of milk yield and residual variance.
Some studies reported negative correlations between mean and
residual variance (Mulder et al., 2009; Wolc et al., 2009), and
some recent studies reported positive correlations (Sae-Lim
et al., 2015; Formoso-Rafferty et al., 2016; Marjanovic et al.,
2016). When the breeding objective is the concurrent improve-
ment of trait mean and increase in the uniformity of end pro-
ducts, positive genetic correlation between mean and residual
variance would not be appropriate. Vandenplas et al. (2013)
estimated the correlation between breeding values of milk yield
and residual variance as 0.47 and 0.41 in bulls and cows,
respectively.

The results of this study showed that macro- and micro-
environmental sensitivities were present for milk production traits
of Iranian Holsteins. There was positive genetic correlation
between macro- and micro-environmental sensitivities so that
selection for each source of sensitivity would influence the other
in similar direction. Paying attention to macro- and micro-
environmental sensitivities is very important in animal breeding.
Therefore, breeding and selection of animals which had suitable
performance and limited environmental sensitivities in a broad
spectrum of environmental conditions is necessary. Reduction
of environmental sensitivities would increase the predicted per-
formance of animals and decreased corresponding threats for
dairy farmers.
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