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Abstract We consider the inverse connection problem consisting of determining a gauge field on R?
from its non-abelian Radon transform along oriented straight lines. The determination is considered
modulo gauge transformations. Our results include: global uniqueness theorems for d > 3, new local
uniqueness theorems for d = 2, constructive proofs (i.e. proofs containing reconstruction procedures),
counterexamples to the global uniqueness for d = 2, a reduction to the attenuated X-ray transform.
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1. Introduction

We consider a collection a = (ay,...,a4), where

a;, i=1,...,d, are sufficiently regular functions on R? taking (1.1)
their values in M (n,C), sufficiently rapidly vanishing at infinity, '

for example,
a; € C’(”H'E(Rd,M(n,(C))7 1=1,...,d, forsomea >0ande>0 (1.1,)

(where « is the degree of regularity and 1+ ¢ is the vanishing rate at infinity in terms of
O(Jz|7'7¢) (in a sense depending on «) as |z| — 00), where we use the notation of §2.
We say also that a is a gauge field on R?.

Let 1 denote the trivial vector bundle with the base R¢ and the fibre C*. The gauge
field a generates the following G L(n, C)-connection on 7: for this connection the covariant
gradient V = (V1,...,Vy) of the sections of 7 is given by

Viy(x) = < 0

oz, —|—ai(m)>w(a:), i=1,....d, zeR? (1.2)

where v is a section of 7.

https://doi.org/10.1017/51474748002000166 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748002000166

560 R. G. Novikov

Concerning the definition of a connection on a bundle and related definitions and facts
see [1].

Let TS?! denote the space of all oriented straight lines in R?. The manifold 7'S%!
can be given by the formula (3.17). The aforementioned gauge field a determines the map
S : TSt — GL(n,C), where S(v) for fixed v € TS?! is the operator of the parallel
transport of the fibre C™ along v (from —oo to +00 on ) according to the connection
given by (1.2) (in terms of the covariant gradient). This definition implies that S is the
scattering matrix for the equation

OVip(z,0) =0, zeR? 9esi (1.3)

where S¢~! is the unit sphere in R?,  is a spectral parameter, V is the covariant gradient
given by (1.2), ¥ € L®(R¢, M (n,C)) for fixed 6. That is

S(x,0) = lim T (z+s6,0), (x,0) TS, (1.4)

s——+o0
where TS~ is given by (3.17), ¥ (-, ) is the solution of (1.3) specified by

lim ¢T(z+s0,0) =1 forzecR? (1.5)
S§——00
where [ is the n x n identity matrix.
We say also that S is the non-abelian Radon transform along oriented straight lines
(or the non-abelian X-ray transform) of the gauge field a. Note that S is invariant under
gauge transformations of the form

a—ad =(dy,...,al), (1.6)
where

9g(z)
8$i ’

1 i=1,...,d, zeR%

a; =g 'ag+9 0, 0Oig(x) =

g is a sufficiently regular function on R? taking its values in} (17)

GL(n,C), sufficiently rapidly approaching I at infinity.

For example, the transform S of a gauge field a satisfying (1.1,) and the property
(1.1,) itself are invariant under gauge transformations of the form (1.6), where

g takes its values in GL(n,C), (L7.)
g—1TeC™ R M(n,C)), 8igeC¥* RY, M(n,C)), i=1,..., ¢

We consider now the following inverse scattering (or inverse connection) problem.

Problem. Given the transform S of a gauge field a with the property (1.1), find a
modulo the gauge transformations (1.6), (1.7) (for example, under the conditions (1.1,),

(1.74)).
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This problem was considered recently in [16] for the compactly supported case. In
addition, related problems were being investigated in many works (see [5,9,10,12,18-
20]). Below in the introduction we give, in particular, some comments in this connection.

Let a}, w € S9=1, denote o’ related with a satisfying (1.1) by (1.6) for g = ¥+ (-, w).

In the present paper we obtain, in particular, the following results (formulated using
the notation of §2).

(I) For d > 3, we show that a gauge field a satisfying (1.1,), a = 2, is determined
modulo the gauge transformations (1.6), (1.7,) by its transform S. In addition, the
proof contains a reconstruction procedure of a} from S, ¢ and an upper bound
for E?Zl laill2,14 for any w € S¥=1. We give, in a parallel way, similar results for
a gauge field a satisfying (3.4b) for i« = 1,...,d, a = 2 and preassigned r. (See
Theorem 6.1 and Corollary 6.1.)

(IT) For d = 2, we show that a gauge field a satisfying (1.1,) and such that

2
> laillaite,
i=1

is small enough with respect to p for fixed «, € and p is determined modulo the
gauge transformations (1.6), (1.7,) by its transform S. In addition, we give a recon-
struction procedure of a from S for any w € S'. We give, in a parallel way, similar
results for a gauge field a satisfying (3.4b) for i = 1,2, d = 2. (See Theorem 5.2
and Corollary 5.3.)

(III) For d = 2, for any o > 0 and € > 0 we show by explicit examples that, in general, a
gauge field a satisfying (1.1,) and considered up to (1.6), (1.7,) is not determined by
its transform S. In the examples in question n = 2, a; = 0, a» is a rational function
on R? taking its values in su(n), S = I and a considered up to (1.6), (1.7,) (as
well as up to the gauge transformations (1.6), where g € C'(R?, GL(n,C))) differs
from a’ = (0,0). (See Theorem 7.1.)

Note also that, for d = 1, a gauge field a satisfying (1.1,) is determined up to (1.6),
(1.7,) from its transform S. In addition, a = 0 for any initial a.

We emphasize that in the aforementioned global (for d > 3) and local (for d = 2)
constructive uniqueness results obtained under the assumptions (1.1,) (with a = 2 for
d > 3) we deal with the least possible vanishing rate at infinity (by assuming that
e > 0 only) in the sense that under the assumptions (1.1,), where @ > 0 and ¢ = 0,
the transform S is not defined, in general (even for & = +o0 and n = 1). In addition,
the aforementioned examples of item (III) show that the global uniqueness under the
assumptions (1.1,) for d = 2 fails (even for oo = 4+00) for any fixed e € |0, +-o0.

The scheme of the proof of the aforementioned results for d > 3 contains the following
the most principle components.

(a) The key point is that S determines a} (in a constructive way if an upper bound
for a suitable norm of a is known). The other is a corollary. (See Theorem 6.1,
Remark 6.1 and Corollary 6.1.)
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(b) We show that S determines a, first, for d = 3 and then, as a corollary, for d > 3.

(c) For d = 3 we show, first, that S determines aJ; on R*\B,, where B, = {z €
R? | |z| < 7} and 7 is large enough in such a way that a restricted to each two-
dimensional plane X C R3\B; is small enough in a suitable sense. We do it using
the aforementioned results of item (II) for d = 2. Further, as an intermediate step,
for any t > 0, we show that S and a, on R3\B; determine the non-abelian X-ray

» of the field aI .

) coinciding with a on B; and being identically
zero on R3\B;. Further, using also that (a;’ )b = a:(

we show that S deter-

transform S:

t)’

mines a)f on R3\B,., where 7;, i = 1,...,k, is a suitable finite sequence such that
T, =0, <Tforj>i,mn=r. (See Propositions 6.1-6.3 and Proof of Theorem 6.1
for d =3.)

This proof is given in detail in §6. From the comments of Uhlmann on this paper, we
learned that the idea to use local uniqueness results for d = 2 to get global uniqueness
results for d = 3 is not new in the sense that such an idea was used earlier (see § 3 of [4])
in proving that the attenuated X-ray transformation (being linear and involving no gauge
invariance considerations) is injective for the regular compactly supported case for d = 3.
In § 8 we obtain the attenuated X-ray transform as a reduction of the non-abelian Radon
transform.

To obtain the aforementioned results for d = 2 of item (II) we proceed from a formal
method of [12] for solving (by means of Riemann conjugation problems) the inverse
scattering problem for the equation

(€CO: — 1O, +B)+ Ay =0, (1.8)

where ( is a spectral parameter, ( € C, |¢| = 1, A, B are sufficiently regular functions
on C taking their values in M (n, C), sufficiently rapidly vanishing at infinity, sufficiently
small in a suitable sense, ¥ € L>=(C, M (n,C)) for fixed ¢, 0, = 8/0z, 0 = 0/0z, z, Z are
the standard coordinates on C. Note that, at least, on a formal level the equation (1.3)
for d = 2 and sufficiently small a1, a2 can be taken to the form (1.8) with A = 0 using
a gauge transformation and a change of variables. We generalize the aforementioned
formal method of [12] to the case of the equation (1.9) for d = 2 and sufficiently small
ag, a1, az and justify the resulting version of the method by a proper analysis. Our
results and proofs in this connection are given in detail in §3 (for d = 2), §4 and §5.
In particular, for the equation (1.9) for d = 2, under our smallness assumptions, the
transform S determines the collection a in its gauge setting a}, (denoting a’ given by
(1.10) for g = g (+,w), where 1 denotes the function ¥+ for the equation (1.9) with ag
replaced by zero) for any w € S by the following scheme:

a written as according to (4.76 a)) determines , @~ . via Riemann con-
S (writt S+ ding to (4.76 a)) determines Q7 1, Q* . via Ri
jugation problems according to Propositions 5.1 and 5.2;

(b) Qi,_, Qi,Jr determine R by the formulae (4.83), (4.84);

(¢) R (written using complex notation) determines Y+ via a Riemann conjugation
problem according to Propositions 5.3 and 5.4;
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(d) 4+ determine the collection a in its gauge setting @ (given by (5.4b)—(5.4¢), (5.5)
using complex notation) according to Proposition 5.3;

(e) a determines a} by (5.32¢), (5.32d).

In addition, the Riemann conjugation problems of inverse scattering arise from the
equations (4.50)—(4.53), (4.85), (4.86) of Propositions 4.1 and 4.2 of direct ‘scattering’
with complex spectral parameter.

Note that results on inverse scattering for (1.8) are given in [12] in the framework of
the inverse scattering method for solving a (2 + 1)-dimensional system suggested in [12]
as a reduction of the self-dual Yang-Mills equation in 2 + 2 dimensions.

To obtain the aforementioned examples for d = 2 of item (III) we use results of [19] and
subsequent results of [18] concerning soliton solutions of an integrable (2+1)-dimensional
system suggested in [19] as a reduction (different from the reduction of [12]) of the self-
dual Yang-Mills equation in 2+ 2 dimensions. The results of [18,19] in question include,
actually, some results on inverse spectral problem for the equation (1.3) ford =2, a1 =0
and complexified § € ¥ = {# € C? | #* = 1}. In addition, the scattering matrix S defined
by (1.4), (1.5) is not considered in [18,19]. See § 7 for details.

Concerning the most recent results (obtained before [14]) on solving the aforemen-
tioned system of [19] by the inverse spectral method involving the spectral problem (1.3)
for d = 2, a1 = 0 see [5]. The scattering matrix S defined by (1.4), (1.5) is not considered
in [5].

In the present paper we consider also the inverse scattering problem for the equation

OVY(x,0) + ag(x)(x,0) =0, zeRY 0esit (1.9)

where 6 is a spectral parameter, V is the covariant gradient given by (1.2), ag is of the
same functional space that a;, i = 1,....,d, ¥(-,0) € L=(R%, M(n,C)). We say that the
equation (1.9) (as well as the equation (1.3)) is the X-ray connection equation.

The scattering matrix S for (1.9) is defined by (1.4), where T (-,6) is now the solu-
tion of (1.9) specified by (1.5). We say also that S is the non-abelian Radon trans-
form along oriented straight lines (or the non-abelian X-ray transform) of the collection
a = (ag,ai,...,aq). The scattering matrix S for (1.9) is invariant under gauge transfor-
mations of the form

a=(ag,ai,...,aq) = a = (aj,ay,...,ay), (1.10)

where
ai =g taig+ g 0g, i=1,...,d, a}=g tagy,
and g is a function satisfying (1.7).
We show that aforementioned results of items (I), (II) for the case of the equation (1.3)
admit a direct generalization to the case of the equation (1.9).
To explain a geometric sense of the equation (1.9), consider the Minkowski space
Rilj'jl with the coordinates (¢,7), t € R, x € R%. For any oriented straight line v in R,

v = (y,0) € TS, we consider the family I(,p), p € R, of light rays in ]Rilj;ll:

l(y,p) ={(t,x) € R‘f;l [t =2"Y2s4p 2 =2"Y2s0+y, s R} (1.11)
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(up to orientation) and it is assumed that the orientation of I(y, p) is given by the vector
2-1/2(1,0), p € R. The scattering matrix S(v) for the equation (1.9) for fixed y € TS?~!
is the operator of the parallel transport along (7, p) (from —oo to +o0 on I(v, p), for an
arbitrary p € R) of the fibre C™ of the trivial vector bundle over R?Zl according to the
GL(n,C)-connection with the covariant gradient V = (Vq, V1,... ,7Vd) of the sections
given by
0
Vi) = 31 +aole) )it ),
i=1,...,d, (t,z) eR{H" (1.12)

Viblt.o) = (o +asle) )it ),

Consider now the scattering matrix S for (1.9) under the additional condition that
a;, 1 =0,1,...,d, take values in M (n,C) for the case n = 1. In this case the following
formula holds:

S(7) = exp(=Pa(v)), (1.13a)

d
Pa(fy)d:ef/zaidxi—&—/aods, (113b)
Y i=1 Y

s is a natural parameter on 7, v € TS?"!. Thus, the scattering matrix S for (1.9) for
the case n = 1 is reduced to the abelian Radon transform along oriented straight lines
Pa of a collection a. For the case when a; = 0, ¢ = 1,...,d, and for the case when
ap = 0, explicit inversion formulae and a characterization of the image (in terms of
differential equations for d > 3) for the transformation P are given in the literature (see,
for example, [6,7,13]). One can generalize these results for the case when the both ag
and Z?_l a; dz; are present in (1.13b). (An inversion way for the latter case is given
in [17].) In addition, concerning the characterization of the image of the non-abelian
Radon transformation along oriented straight lines of collections a, for n > 2, one can
obtain results in this direction, for d > 3, using methods of [8-10].

Consider now the scattering matrix S for (1.9) under the additional assumptions that

_ , po f
:2 i = VU, :].,...,d, = .
n , a 0, =1 ao (0 0)

In this case the following formula holds

S(y) = <exp(—(1)3u(7)) —Pﬂlfm) R 114)

where P is the classical X-ray transformation of the transmission tomography, P, is the
attenuated X-ray transformation of the emission tomography (see §8 for details).

In the present paper, in §§3—-6, the results are given for the case A, that is under the
assumptions (3.4a) (with additional specifications), and, in a parallel way, for the case
B, that is under the assumptions (3.4b) (with additional specifications). Our motivation
to consider the case B consists of the following.
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(1) To prove the results of § 6 for the case A for d = 3, we use, in particular, results of
§83-6 for the case B for d € {2,3}.

(2) The results for the case B and, say, for ap = 0 can be interpreted as results on an
inverse connection problem for the trivial vector bundle over D with the fibre C™,
where D = B, = {z € R? | |2| < r}. In addition, one can generalize these results
for the case when

1.15
compact domain with smooth boundary. ( )

D C R? is a strictly convex (in the strong sense)}

Note that our counterexamples to the global uniqueness for d = 2 (mentioned above
and given in details in §7) are not compactly supported. The global uniqueness problem
of inverse scattering for the equation (1.3), (1.9) with sufficiently regular compactly
supported coefficients remains open for d = 2.

Earlier, the problem of determining a G-connection on a vector bundle over a sim-
ple compact Riemannian manifold (M, §), from the known parallel transport operator
between every two boundary points of M along the geodesic (of the metric §) joining these
points was considered in [16], at least, for the case when the fibre is C" and G = U(n).
In addition, the determination is considered up to an automorphism of the bundle which
is identical on the boundary OM (i.e. up to a gauge transformation). The main result
of [16] on this problem is the uniqueness theorem under small norms assumptions (i.e. a
local uniqueness theorem). In [16], the proof of this result contains no reconstruction
procedure. As an example of a simple compact Riemannian manifold one can take a
domain D satisfying (1.15) with the Euclidean metric. Therefore, the main result of [16]
includes a result on the aforementioned inverse connection problem for the trivial vector
bundle over D satisfying (1.15) with the fibre C™.

The work [16] was preceded by [20]. The work [20] deals with the problem of deter-
mining an n X n matrix function on a compact simply connected planar domain with
smooth boundary from its multiplicative integrals along a family of curves (with suit-
able properties) joining boundary points. The main result of [20] on this problem is
the uniqueness theorem under small norm assumptions and a related stability estimate.
In [20], the proof of this result contains no reconstruction procedure. (Although, in prin-
ciple, proceeding from this result and using considerations with epsilon chains one can
propose some reconstruction procedure of a function of a compact subclass.) As an exam-
ple of a domain with a curves family satisfying the assumptions of [20] one can take a
domain D satisfying (1.15) with the family of geodesics of the Euclidean metric in D.
Therefore, the main result of [20] includes a result on the inverse scattering problem for
the equation (1.9) for d =2, a; =0, as = 0.

The present work was stimulated by [16]. In the present work we deal only with the
case of parallel transport (or multiplicative integration) along Euclidean geodesics. For
this case the progress of the present work in compare with [16, 20] includes: global
uniqueness theorems for d > 3, new local uniqueness theorems for d = 2, constructive
proofs (i.e. proofs containing reconstruction procedures), no restrictions by the limits
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of the compactly supported case, counterexamples to the global uniqueness for d = 2
and, for example, a pure geometric interpretation of the inverse scattering problem for
the equation (1.9). Presentation of the attenuated X-ray transform as a reduction of the
non-abelian X-ray transform (according to the formulae (1.14), (8.5)) is also a new result
of the present work.

Note now that non-abelian Radon transformation of gauge fields on R? along oriented
straight lines discussed in the present paper is a real version of the non-abelian Radon
transformation of gauge fields on C? (or R?) along complex straight lines discussed in [10],
at least, for d = 4. In addition, the latter transformation taken along complex light lines,
only, is called the Radon—Penrose transformation. The non-abelian Radon transform
along complex straight lines of a gauge field a = (ai,...,aq) on R? satisfying (1.1)
is actually some O-‘scattering’ data for the equation (1.3) with complexified § € X =
{6 € C¢ | % = 1}. The work [10] contains, in particular, a global uniqueness theorem
(which remains valid for d > 2) and a reconstruction procedure on determination of a
gauge field from its non-abelian Radon transform along complex straight lines and a
characterization of the image for this transformation. It should be noted, in addition,
that by its construction the non-abelian Radon transform of a gauge field along complex
straight lines contains the condition of unique solvability of inverse problem equations. In
contrast, the non-abelian Radon transform of a gauge field along (real) oriented straight
lines has a completely transparent real geometric sense. As a result, in particular, for
the case of determination of a gauge field from its non-abelian Radon transform along
(real) oriented straight lines there are counterexamples to the global uniqueness for d = 2
and the proof of the global uniqueness theorems for d > 3 is rather complicated from
technical point of view.

Note, finally, that the spectral problem (1.3) (including the case of complexified 6 €
Y = {6 € C?| 62 = 1}) arises as a high energy limit of the Schrédinger equation in
an external Yang-Mills field (see [2,8-10]). (In addition, the spectral problem (1.9) for
n = 1 arises as a high energy limit of the wave equation with first order perturbation
in [17].) Using the global uniqueness theorem (of the present paper) on inverse scattering
for (1.3) for d > 3, one can obtain a global uniqueness theorem on inverse scattering for
the Schrodinger equation in an external Yang—Mills field at high energies for d > 3.

The present paper (without results of §8) corresponds to the preprint [14].

2. Functional spaces and related notation

We consider
C*?(D,V) = {f € ClND,V) | | flla,o < +00}, (2.1)

where o > 0, o > 0, [] is the integer part of «, D is an open domain or the closure of
an open domain in R? (for example, D = R%), V is a subset in M, x,, where M, x,, is
the space of m x n matrices with complex elements, C*(D, V), k € NUO, is the space of
k-times continuously differentiable functions on D with values in V,

Hf”a,a = ||fHoz,a,17 (22)
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where
1£llo.0.p = sup o+ |2)7]f(z)], (2.3)
[fllap = max([[ fllo,0,p: [1f 1.0,)> 0<a<l,
[0 = sup (p+ 2Dyl f(z +y) = fx)], 0<a<], (2.4)
x+yeb,
lyl<1
s = (I3 07 o) Tox f< a1, FEN  (25)
(where 87 = 9171 /gz* .. 0z2, J e (NUO0)?, |J| = 320, J;), where p > 0,
lc| = max |¢;;| for ¢ € Mpxn. (2.6)
1<is<m,
1<j<n

Let D be an open domain or the closure of an open domain in C, « > 0, ¢ > 0,
VY C My, xn and f be a function on D with values in V. Then we write f € C*7(D,V) if
and only if fg € C*7(Dg, V), where Dy = {x € R? | 1 +iz2 € D}, fr(z) = f(z1 +iz2)
for € Dg (the notation f = f(z) does not mean that f is a holomorphic function in z),
and, by definition, ||f|la,0., = |f&lla,0,p, > 0.

We consider also

CH7( Xy, V) ={f € C(X,V) | Iflla,(v),0 < +00}, (2.7)

where 0 <a<1l,020, X = R% Y is a non-zero subspace in X, V C My,xn,

||f| o, (Y),0 = ”f”a,(Y),a,lv (2'8)
where
Hﬂhwmm=Hﬂhmw=¥§@+b®ﬂﬂ@L (2.9)
[ llas(v),o0 = max([[ fllo,o,p0 |, (v),0,0) 0<a<l,
1 1oy ),000 = Sup (p+ 1=yl f(x +y) = f(¥)], 0<a<l, (2.10)
ey,
ly|<1
where p > 0.
Note that
CH7(X,V) = C"(Xx, V),
[ fllae = 1 flla,(x).05 I fllaop = lf ()00 1500 = 115 5,0,

where 0 < a < 1,0 >0, X =R?, f e C(X,V). We use the following abbreviation

1fllo = [1/]

0,0 for f S C(D,V)
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We consider the following special subsets of M, xn:

GL(n,C) = {c € My | detc # 0},
U(n) ={c € Muxn | cc* =1}, u(n)={c€ Muxn|c* = —c},}
SU(n)={ceU(n)|detc=1}, su(n)={ceun)]|trec=0},

where ¢* = €7, I is the n x n identity matrix. The space M, is denoted also as
M(n,C).

3. Direct scattering for the X-ray connection equation

Consider the X-ray connection equation
00, +v(z,0) =0, xR Hesit (3.1)

where S9! = {0 € R? | §2 = 1}, 0 is a spectral parameter,

9 9 ~0
az_(axl,...,axd), aax_;%?’ (3.2)

d
v(z,0) = ap(x) + Z Oia;(x), (3.3)
i=1

a;, 1 =0,1,...,d, satisfy (3.4a) or (3.4b), v satisfies (3.6):
a; € COME(RY Myyn), i=0,1,....,d, (3.4a)

for some o > 0 and some ¢ > 0 or

ai(x) = x4 (r — |z)bi(x), @ eRY, (3.4
bi(z) € C*O(RY, Mpxrn), i=0,1,....d, '
for some o > 0 and some r > 0, where
1 for s >0,
S) = 3.5
x+(8) {0 for s < 0; (8:5)
Y € L®(RY, M,,x)  for fixed 6, (3.6)
where d € N, n € N. For a collection v = (ug,u1,...,uq), u; € C% (R Myxn),
1=20,1,...,d, we use the notation
d
[ullao,r =D Ntillaces  ltllaos = [ullae, o = [ulla; (3.7)
i=0
where a > 0, 0 > 0, p > 0 and for ||u;|la,0p, ¢ =0,1,...,d, we use the definition given
in §2.
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For § € S%~1 we consider the solutions 1% (-,6) of (3.1) specified by the conditions

EI_II PH(x+56,0) =1, (3.8a)
SETOO v (x4 6,0) =1, (3.8b)

where I is the n x n identity matrix, z € R%,
We consider the function

S(z,0) = (¢ (x,0) Wt (z,0), zeRY 0esit (3.9)

(The fact that det ¥~ # 0 follows from (3.40) for ¢» =~ and (3.8b).)

We use the following terminology (going back to the scattering theory for the Schro-
dinger equation): the functions )* are the wave functions and the function S is the
scattering matrix for the equation (3.1).

The following formulae hold:

00,5z, 0) = 0, (3.10)
S(x,0) = SETOOW(Hse,e), (3.11)
S(z,0) =T exp /+OO —v(z +t6,0) dt, (3.12)

Y (z + 56,0) = Texp /s —v(z + 10, 0)dt, (3.13a)
- -
b (2 + 56,0) — (T exp / —o(z + 0,0) dt> , (3.13)

where x € R, § € S4=1, T denotes t-ordering (see, for example, Part II, §25 of [1]).
The formula (3.10) follows from (3.1) for v = 1* and (3.9). The formula (3.11) follows
from (3.8b), (3.9), (3.10). The formulae (3.13) follow from the equation (3.1) written as

(i)w(ﬁsa,e) +v(x + s0,0)(xz+s6,0) =0 (3.14)

for ¢ = ¢* and the conditions (3.8). The formula (3.12) follows from (3.11), (3.13 a).
Due to (3.10),
S(x,0) = S(mpx,0), 6eS!  zeRY (3.15)

where
g is the orthogonal projector of R? on the subspace Xy = {z € R? | 20 = 0}. (3.16)
Due to (3.15), S on R? x S~ is uniquely determined by S on TS?~!, where

TS = {(2,0) |z € RY, e S, 20 = 0}. (3.17)
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We interpret T'S?~! as the set of all rays in R?. As a ray « we understand a straight line
with fixed orientation. If v = (z,6) € TS !, then v = {y € R¢ | y = 2 + tf, t € R}
(up to orientation) and @ gives the orientation of 5. The scattering matrix S(z,0) at
fixed (x,0) € TS ! is uniquely determined by ag(z) and Zle a;(x) dx; restricted to
the ray v = (z,0) (as to the straight line) and by the orientation of . To obtain this
statement we use the equation (3.14) for ¢ = ¥ and the formulae (3.8), (3.9) at fixed
(7,0) € TS L.
The functions ¥ (-, 0) satisfy the following integral equations

1/}+('79) =1I- D—9U91/1+('a9),1/’+('79) € LOO(RdaMnxn)a (318 CL)
V7 (+,0) = I + Dovgth™ (-,0),07(-,0) € LR, M), (3.18b)
where

Dzovof = Dxo(vof), (3.19)

vof (x) = v(z,0)f(x), (3.20)

+oo
Dyp(z) = / o(x + t0) dt, (3.21)
0

where § € S9!z € RY. Due to Lemma A.4, the equations (3.18) are uniquely solvable
by the method of successive approximations.
The following formula holds:

S(') 0) =1- P9U9w+('a 9)7 (322)
where
Povof = Py(vo f), (3.23)
vg is defined by (3.20),
+oo
Pyp(z) = / o(x + t0) dt, (3.24)

where § € ST, x € R%. The formula (3.22) follows from (3.18a), (3.11).

We use the following terminology: the operator Dy defined by (3.21) is the divergent
beam transform at fixed direction § € S?~!; the operator P, defined by (3.24) is the
X-ray transform at fixed direction § € S~1.

Proposition 3.1A. Let a;,i=0,1,...,d, satisfy (3.4a). Let a = (ag, a1, ...,aq). Then
we have the following estimates:

(1) if0 < a < 1, then
vE, 8 e C(RY x 8971, GL(n,C)), (3.25)

max (9= (x,0) — 1], |(¥*(,0)) " — I|) < exp(nes(p, e, 20, 7)|lallo,1+,0) — 1,
(3.26a)
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max([Y* (z +y,6) — (2, 0)], |(v™ (x +y,0)) " — (v (2.6))71])
< 21+8(exp(21+8n01(p76, ievx)”a”a,lJré,p) - 1)|y‘av (3'26 b)

max([|¢F (-, 0)lla0, [ (,0) " la0) < 217 exp(2® e~ ™% lalla,142,0),

(3.26 ¢)
15(2,8) — 1] < exp(@ner(p,, [mozl)allo1sep) — 1, (3:270)
1S(x +y,0) — S(x,0)| < 2'*(exp(2**ner(p, e, Imo]) ») = DIyl%
(3.270)
(2) if1 < a <2, then
wi('79) € Cl(Rda GL(H,(C)), (328)
|8jwi(x,9)| < ney(p, e, 16, x) » exp(8ne~tp~ o) (3.294)
Hajwi('?e)‘lafl,o < 27 ne 1p_8|\a||a’1+£’pexp(24+5n5 IP_EHa”afl,lJrs,p);
(3.29b)
(3) if « =2, then
YE(-,0) € C*(RY, GL(n, C)), (3.30)

where ci(p,e,0,z), c7(p,e,s) are given by (A.6), (A.27), v,y € R%, |y| < 1,0 €
Sdil, p>1, 8]' = 6/6Ij, j=1,...,d.

Let
Dys0 = Diﬁ U Df,é,ea (3.31a)
D)5 ={z eR?||z| <r -4}, (3.31)
D259 ={x €R||x| =1+, |mz| <r— 6}, (3.31¢)

where 0 < § <r, § € S41,

Proposition 3.1B. Let a;, i = 0,1,...,d, satisfy (3.4b). Let b = (bg,b1,...,bs). Then
we have the following estimates:

(1) if0 < a < 1, then
YE,8 € C(RY x %1, GL(n,C)), (3.32)

max (= (x,0) — 1], |(*(2,0)) " — I|) < exp(nes(|moxl,r)[bllo) =1, (3.330)

max ([ (-, 0) — Ilg,0x,),00 | (5 6)) " = 0)
< exp(2nr(bllg.0) — 1+ nca(r)[|blls.0 exp(4nr|blls.0),

0 < B <min(3,a), (3.33b)

exp(nes(|mox|, 7)|[bllo) — 1, (3.340)
0) = L+ nea(r)[[bll g0 exp(dnr(|bl|s.0))ly|°,

0 < B <min(3,a); (3.34b)

1S(z,0) — 1
1S(z +y,0) = S(=,0)]

NN

exp(
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(2) if 1 < a <2, then
¢vE(-,0) € CY(Dy 50, GL(n,C)), (3.35)

1059 (2, 0)] < X+ (/12 — (mo)? & O) x4 (r — | o)
x 2r(1 + (r? — (mz)?)~Y2)n?||b

1,0 exp(4nr||bllo), (3.36a)
||aj’l/1i(',9)"pnl§19”[-}’0 < const.(n, B, ||bllao,7,9), 0< 8 < min(%,a —1); (3.360)

(3) if « =2, then
YE(-,0) € C*(Dy.59,GL(n,C)), (3.37)

where c3(s, 1), ca(r) are given by (A.13), (A.15), the constant of (3.36b) also can be
given explicitly, z,y € R%, |y| < 1,0 €S, 0<§<r, 0, =0/0x;,j=1,...,d.

We obtain Propositions 3.1A and 3.1B using (3.8), (3.9), (3.11), (3.18), Lemmas A.4,,
A .4y, and the following general facts about the equation (3.1):

(i) if ¢ € L®(RY, M, ) satisfies (3.1) for fixed 6, then

00, det ) + tro(z,0)detyp =0, z R4, #eSi (3.38)
(ii) if ¢ € L (R%,GL(n,C)) satisfies (3.1) for fixed 6, then

00,1 —p~o(x, 0) =0, 2,30
60, ()T — (u(z,0) (W )T =0, zeR: Hesil. (3.39)

More precisely, the proof of Propositions 3.1A and 3.1B consists of the following.

(1) Using (3.8), (3.38) for ¢ = 1)* we obtain that
—+oo
det *(z,0) = exp <:F/ tro(x F t6, 6) dt) £0, zeRY 9eSTL (3.40)
0

(2) The estimates (3.26), (3.33) for ¥y (not yet for (¢p*)~1) follow from the equa-
tions (3.18) (which we solve by the method of successive approximations) and the
estimates (A.43), (A.44), (A.49), (A.50).

(3) To obtain (3.25), (3.32) for ¢»* we use the proof of (3.26), (3.33) for 1»* and the
formulae (3.40), (A.47), (A.54). The properties (3.25), (3.32) for S follow from
(3.25), (3.32) for o»* and (3.9).

(4) The fact that ¢* are specified by (3.8), the properties (3.25), (3.32) for ¢*, the
equation (3.39) for ¢ = ¥, the equality || — fT||s, 50,55 = || flls1,50,55 and the
estimates (3.26), (3.33) for »* imply the estimates (3.26), (3.33) for (y*)~1.

(5) The estimates (3.27), (3.34) follow from (3.26), (3.33) for ™ and (3.11).
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(6) For the case 1 < a, using (3.18) we obtain that 9;4*(-,6) are solutions (given by
the method of successive approximations) of the following equations

Oj* (-, 0) = [ (- 0) - D_aveaﬂz)*(-ﬁ),} (3.41)
959~ (,0) = f; (-,0) + Dovgdjp~ (-, 0)
where
fi(@,0) =7 /O o szi(m F16,0)dt, (3.42)

where € RY 9 € S4=1 j € {1,...,d}. In addition, for the case of the conditions
(3.4b), the following is valid:

811(;?0) =26(r* — 2%z u(z,0) + v(z,0),
’ (3.43)
(e0) == ) ZEE (o) = bo(o +Z€b
f(2,0) = £71(2,0) + f75(2,0), (3.44a)
fi@,0) =7F /+Oo vz T 10,0)9™ (z F 10, 0) dt, (3.440)
0
f; £ (x,0) = g (x ,0)m; (7T9$ 9) + g5 (z, 9) o (moz,0), (3.44¢)

mfl(ﬂgx,e) ((moz); — /1% — (m9x)26;)
u(mpx — /12 — ()20, 91/)i (mox — /72 — (mpx)?26), 9

r2 — (myx)?
me(Wgac,H) = F((mox); + /12 — (mwgx)20;)
u(mpx + /12 — (mp) Hﬂwi (mozx + /12 — (mpx) 09

2

r2 — (mgx)?
(3.444d)
+
xr,0) = r — |mox|) x4 (£ (/72 — (mpx)? + 62))
gi( )= x+( [mox|) X 0 } (3.44¢)
95 (,0) = x4 (r — |moz|) x4 (£(=/1% — (me2)? + b))

;0% (x,0) = @f(m,@) + i (z,0)m (m;x 0) + pi (z,0)m (7r9m 0),  (3.45)

where goji (-,0), uE (-, 0), i (-, 0) are the solutions (given by the method of successive
approximations) of the following equations

¢ (,0) = f;7(-,0) F Dxovoy (-, 6), (3.46)
Mit(aa) =0 (79) :FD¥9U9/U‘1 (,9),}

(3.47)
M;E(’ 9) = g2i(7 0) + D:FQU@,U’Qi('a 0)7
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and (as a corollary of the equations (3.18) and (3.47), the method of successive
approximations and the identities vgg; (-,0) = vol, vogy (-,0) = 0, veg; (+,0) = 0,
vogy (-, 0) = vol)

:uir('ve) - gl+('79) = ¢+("0) -1, N;r('ve) = g;('ve)v}

B . B _ B (3.48)
H1 ('79):91 ('70)7 Ho ('70)792 (79):7/} (70)71

(7) The estimates (3.28), (3.29) follow from the equations (3.41), the formula (3.42),
the estimates (3.26 a), (3.26 ¢), (A.43), (A.46), Remark A.1, and the inequality

23/26_1p_€

< arlp,e, 20, 2)(exp(n2* e~ p ™ [allo,ge,) — 1)

(exp(n01 (p7 g, iaa 37) Ha||0,1+€~ﬁ) - 1)

The estimates (3.35), (3.36) follow from (3.44d), (3.44¢), (3.45), (3.46), (3.48),
(3.1) for ¢ = ¥*, (3.33), (A.49)—(A.52) and Remark A.1,.

(8) The proof of (3.30), (3.37) is similar to the proof of (3.28), (3.35).

In this paper we also use the following statement.

Statement 3.1. Let the assumptions (3.4a) or (3.4b) be valid and a;, i = 0,1,...,d,
take values in u(n). Then 1% take values in U(n).

Proof of Statement 3.1. If ¢ € L>°(R%, GL(n,C)) satisfies (3.1) for fixed § then
OV, (v~ H* — (v(z,0) (W H* =0, zeR? Hesi (3.49)
Statement 3.1 follows from (3.49) for ¢ = %, the fact that )* are specified by (3.8),
the definition (3.3) and the definitions of u(n) and U(n). The proof is completed. O
4. Direct ‘scattering’ for the two-dimensional X-ray connection equation with
complex spectral parameter

Consider the two-dimensional X-ray connection equation

00,0 +v(z,0)p =0, zcR? HecX, (4.1)
where
T={0ecC?|0*=0?+035 =1}, (4.2)
o 0 0 0
v(x,0) = 01a1(x) + Ozaz(x) + ap(x), (4.4)

a;, o = 0,1,2, satisfy (3.4a) or (3.4b) for d = 2, ¢ satisfies (3.6) for d = 2, § € X.
Consider
St={0ecR?*|6*=1}.
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In (4.1) the spectral parameter 6 is complex, in general, and it is real if and only if it
belongs to S!. The equation (4.1) for § € St is the equation (3.1) for d = 2.

For § € X\S' we consider the solution 9(-,0) of (4.1) defined as the solution of the
following integral equation (provided that it is uniquely solvable):

w('a 0) =1- Govaﬂ)('»g)a d}(? 9) € LOO(R2aMn><n)7 (45)
where
Govef = Go(vof), (4.6)
vo f(x) = v(z,0)f(z),
Gowp(x / Gz —y,0)e(y) dy, (4.8)

sgn(Ref; Im 03 — Re f2 Im 6;)
727Ti(921'1 — 011’2) ’

00,G(z,0) = 5(x), (4.10)

G(z,0) =

where § € X\S!, z € R2.

Statement 4.1. Under assumptions (3.4a) or (3.4b) for d = 2, for § € X\S!, a function
1 with the properties

Y € C(R*, Mpxn), (z)—1 as]|z|— oo (4.11)

is a solution of (4.1) if and only if it is a solution of (4.5).

We obtain this statement using (4.10) and Lemma A.10.
For 0 € S! we consider the solutions 14 (-,0) of (4.1) defined as the solutions of the
following integral equations (provided that they are uniquely solvable):

1/}+(’7 0) =1I- G+,0’Uell)+('79)7 1/J+(',9) € C&O(RQanXn)a <4 12)

Y- (,0) = I = G vt (-.0), ¥-(-,0) € CPO(R?, Muxa), '

where

< B < « under assumptions (3.4 a), 113
< B < min(3,a) under assumptions (3.4b), (4.13)
Giﬂvgf = Gi,g(vgf), (4.14)
vo f(x) =v(x,0)f(x), (4.15)
Giﬂ(p(m) = Oiigo Gw(ie)@(w)a (416)

= /14204 it € 2\S'  for e #0,
V14+e2>0 forecR,0F = (—6,60,) for 6= (61,6,),
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Grap(o) = [ Galo = 0)(0)dy, (1.17)
G (2,0) = Qm(oilq: i00z)’ (4.18)
00,G(z,0) = 6(z), (4.19)

where 0 € S!, x € R2. Note that the functions 1. defined by (4.12) differ (in general)
from the wave functions ¢* (for d = 2) defined in §3.
The following formulae hold:

Gi(z,0) =p.v. 5ri0ls + 36(0+2) sgn(fz), (4.20)
Ca00(x) = H(D_op(x) —~ Dop(x)) + 5 H P o(0"2), (4.21)
G f () = 3(D_gvof (@) ~ Dovof () & g HPFvof(0°),  (4.22)

where Dy, Py are defined by (3.21), (3.24), d = 2,
P f(s) = Ppf(s0F), 6eS', scR, (4.23)
and H is the Hilbert transform:

t
Hg(s) = %p.v./R g dt, seR. (4.24)

We use the formula (4.22) in order to obtain the estimates for G gvg given in Lemma A.8.
These estimates are necessary for us in order to deal with the integral equations (4.12),

(4.5).
In addition to the variables € R?, § € X, we use also the variables z € C, A € C,
where
z = x1 + 9, Z =11 — g, A =01 +1i65,
1 2 » 1 2 . 1 - 2 (4.25)
01 =(A+X1)/2, O = (A= X"1)/(20).
In the variable A the surface X is C\0 and the circle S is
T={\eC]||N=1} (4.26)
We use also the following notation
D ={\eC||\ <1}, Dy=D, UT, (427
D_={\eC|[|\>1}, D_=D_UT, '

where C = CU oo = CPL.

Using the variables z, A, we write aforementioned a;(x), v(z,0), ¥(z,8), G(x,0), Gy,
vg, where z € R2, 0 € X, and ¢4 (,0), G4(z,0), G+ 9, where x € R?, § € S, as a;(2),
v(z,A), ¥(z,A), G(z,A), Ga, vx, where z € C, A € C\0, and ¥4 (2, \), Gi(2,A), Gx »,
where z € C, A e T.
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In the variables z, A the equations (4.1), (4.5), (4.12) take the form (4.28), (4.31),
(4.36), the formulae (4.3), (4.6)—(4.9), (4.14)(4.16) take the form (4.29), (4.32)~(4.35),
(4.37)~(4.39):

(A, + AP0 + (2, N =0, z€C, XeC\0, (4.28)

where 0, = 0/0z, 0; = 0/0%,
v(z,\) = Aa_(2) + X tay (2) + ao(2), (4.29)
0 (2) = (@(2) —im(2)/2 ay(2) = (ma(z) + iaa(2))/2: (4:30)
w(W >‘) =I- G)\'U)\'(/)('v /\)v 11[}(7 )‘) € LOO((C’MTLXTL)7 (431)

where

Ghupnf = G,\(’U,\f) (4.32)
urf(z) = v(z,A)f(2), (4.33)
Grp(z /G (z =& Np(€) dérdér,  &r =Re&, & =1Im¢, (4.34)
Gz ) = —gnd = [A) (4.35)

27mi(i/2)(Az — 2/A)’
where z € C, A € C\(0UT);

(5 A) =T = Geponde(5 ), ¥x(,A) € CP0(C, Muxn), (4.36)
where [ satisfies (4.13),

G onf = Gea(oaf), (4.37)
urnf(z) =v(z,A) f(2), (4.38)
Giap(z) = Oiiaﬂ_lm Gxene(2), (4.39)
where z € C, A € T. The following formulae hold:
885\ Gunf(z) = AeC\(TU0), (4.40)
lim Groaf(2) = Cay f(2), (4.41)
Jim Ghorf(2) = Caf(2), (4.42)
where
Cayf=Clasf), Ca_f=Cla_f), (4.43)
ax f(z) = ax(2)f(2), (4.44)
_ 1)
Cote) = -1 [ A ag g (1.45)
() = L [ 2E&)
Coplz) = —= /C £ den e (4.46)

where a;, i = 0,1, 2, satisfy (3.4a) or (3.4b),d=2, f € L>®(C, M%), z € C.
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Due to (4.41), (4.42), the equation (4.31) for A = 0 takes the form (4.47) and for A = oo
takes the form (4.48):

Yio=1—-Caypig, Yio€ L7(C, Myxn), (447 a)

’1/17’0 =1- CQ,¢,70, ’1/17’0 € LOO((C, Man) (448 CL)

Under assumptions (3.4a) or (3.4b) for d = 2, the following statements are valid:
a function ¢4 ¢ is a solution of (4.47a), if and only if

Ozyo0+ar(2)Yr0=0, 9i9€C(C,Mpxn), VYio(z)—I—=0 as|z| = o0;
(4.470)
a function ¢_ o is a solution of (4.48a), if and only if

OY_o+a_(2)v_0=0, ¢Y_o€C(C,Mpxn), WY_o(z)—I—=0 as]z| = cc.
(4.48b)
These statements are similar to Statement 4.1.

Proposition 4.1A. Let a;, i = 0,1,2, satisfy (3.4a),0 < a < 1,d =2, a = (ag, a1, as)
and
8 =neig(a,e,0,€")p" ~F|lalla,14e, < 1, (4.49)

for some & € 10,¢[, where cig(a,e,e’,¢”) is the constant of Lemma A.8,. Then the
equation (4.5) for 0 € X\S', (4.12) for 6 € S, (4.31) for A € C\(T'U0), (4.36) for \ € T,
(4.47), (4.48) are uniquely solvable and the following formulae hold:

%¢(z, A) =0 forAeC\(TUO0), ze€C, (4.50)
Yi(z,-) € C(Dy,GL(n,C)), z€C, (4.51a)

where
Yil(z2N) Ep(z,0) for A€ DO, 1y (2,0) E whyo(2), (4.510)
Y_(z,-) € C(D_,GL(n,C)), z€C, (4.52a)

where
(2, 0) Lz, A) for A€ D_\oo,  ¥_(z,00) L p_g(2), (4.52b)
R(z,) € C(T,GL(n,C)), (4.53a)

where
Rz, N) ¥ (W_(2,0)We(z,)), 2€C, XeT, (4.53b)

(A, + A1O:)R(2,\) =0, 2€C, NeT, (

max(|[1+ (5 A) = .o, |02 (- A) 7 = T|a0) < 6(1 —68)" forA€ Dy,  (4.55
IR(A) = Tllao <26(1=8) "' (1 +nd(1=6)""), AeT, (
|R(z,-) = Illo <6(1—=8)"12+ns(1-6)""Y), ze€C, (

where in (4.50)—(4.57) we use the variables z, A.
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Proposition 4.1B. Let a;, i = 0,1,2, satisfy (3.40),0 < a < 1,d =2, b = (by, b1,b2)
and

§ =n2c21(B,,0)(2 +7)ca(r)(1 + ca1(B,£,0)(2 + 7)ca(r))(||blls.0)* < 1 (4.58)

for # = min(3,a) and some € > 0, where cs(r) = 23/271/2 4 21, ¢51(B,¢,€') is the
constant of Lemma A.8,. Then the equations (4.5) for € X\S!, (4.12) for § € S*, (4.31)
for A € C\(T'U0), (4.36) for A € T, (4.47), (4.48) are uniquely solvable, the formulae

(4.50)—(4.54) are valid and the following estimates hold:

max([[v( A) = Ilgo, (Y (X)) = Illgo) <p  for A€ Da, (4.59)
max([[$ (-, 0) = Illg,xp),00 | (@£ (- 0) ™" = Illg,(xp)0) <q forf €S, (4.60a)
max(|[vx (-, A) = Ilo, |(¢£( )™ = Illo) < g for A€ D, (4.600)
[R(A) = Illgo <2p(1+np), AT, (4.61)

where
p=p+v+5(1—-8"11+u+v), (4.63)
q=p(l—p), (4.64)
p=mnea(f,e,0)(2 + 1) ea(r)l|b] g0 < 6172, (4.65)
v =n||b||z,0, (4.66)

where in (4.59), (4.60b), (4.61)—(4.66) we use the variables z, A\, in (4.60a) we use the
variables x, 0; Xy is defined in (3.16).

We obtain Propositions 4.1A and 4.1B, using (4.31), (4.36), (4.39), (4.40), (4.47),
(4.48), Statement 4.1, Lemmas A.8, A.9 and the following general facts about the equa-
tion (4.1):

if 1 € L®(R?, M, ) satisfies (4.1) for fixed 6, then
00, det ) +tro(x,0)detyy =0, z€R? e (4.67)
if ¢ € L>°(R?,GL(n,C)) satisfies (4.1) for fixed 6, then

00,0~ — " tu(z,0) =0,
e (465)
00.(¢v™")" — (v(z,0))" (¥v™7)" =0.
More precisely, the proof of Propositions 4.1A and 4.1B consists of the following.
(1) Using Statement 4.1 and the equation (4.67) we obtain that
det (x,0) = exp (— Gz —y,0)trov(y, ) dy) £ 0, (4.69)
R2

where 1) is a solution of (4.5), § € X\S!, G is given by (4.9).
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(2) The estimate (4.55) for ¢ — I follows from the equations (4.31), (4.36), (4.47 a),
(4.48 @) (which we solve by the method of successive approximations) and the esti-
mates (A.85), (A.96), (A.98), (A.100). To obtain the estimate (4.59) for ¢+ — I we
use the equations

Y(-, A) =T — Gaoal + (Gava)?(-,A)  for A € C\(T'U0), (4.70a)
G A) = I = Gepond + (G )*P(-,A) for A€ T, (4.70b)
b0 =1—Cayl+ (Cay)*hy o, (4.70¢)

Y o=1-Ca_I+ (Ca_)*yp_p, (4.70d)

(which we solve by the method of successive approximations) and the estimates
(A.89), (A.91), (A.92), (A.101), (A.102), (A.104), (A.106).

(3) To obtain the properties (4.50)—(4.52) we use the proof of (4.55), (4.59) for ¢+ — I
and the formulae (4.39), (4.40), (A.86), (A.94), (4.22), (A.4), (A.12), (A.25), (A.26),
(A.34), (A.35), (A.80), (4.69).

(4) To obtain (4.60) for 11 — I we use (4.50)—(4.52), (4.36), (A.89) and the maximum
principle for holomorphic functions.

(5) Statement 4.1, the properties (4.51), (4.52), the equation (4.68) for a solution
of (4.5), the equality || — f%s,.50.55 = | flls1.50.5, and the estimates (4.55), (4.59),
(4.60) for v+ — I imply the estimates (4.55), (4.59), (4.60) for ()~ ! —I.

(6) The properties (4.53a), (4.54) follow from (4.51a), (4.52a), (4.530), (4.1), (4.68).
The estimates (4.56), (4.57) follow from (4.53b), (4.55). The estimates (4.61), (4.62)
follow from (4.53b), (4.59), (4.60).

Under assumptions of Proposition 4.1A or Proposition 4.1B we consider
R(z,0) = (- (2,0)) 0 (2,0) (4.71)
(the formula (4.53b) in the coordinates x, 6),
Q-‘r,:l:(xa 9) = SBI:EIOO 77[}-‘1- (:C + 507 9),

4.72
Q—,i(xae) = sgrzgloow_(m+50,0)7 ( )
where € R?, § € S'. The following formulae hold:
00, R(z,0) =0 (4.73)
(the formula (4.54) in the coordinates z, 6),
00:Q+,+(x,0) = (4.74)
00,Q— +(z,0) = '
(0.0 = Qo (1:0) Q2.0 )
S(Iﬁ): (2, 0)(Q-~(2,0)) ", '

where 2 € R?, § € S'.
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Taking into account (3.15), (4.73), (4.74), we use the following notation

S*(p,0) = S(po ™, 0), (4.76 a)
R*(p,0) = R(pf*,0), (4.76b)
Qi,i(pa 9) = Q-i—,i(pel) 6)7 Qf,i(]% 9) = Q—,i(pel, 9), (476 C)

where p € R, 6 € S*.
The following formulae hold:

1

Qi,i('ae) =1- 5H¥P9J_U9w+('aa)7
] (4.77)
QJ—_,:I:('a 9) =1+ EH:I:PGLUQw—(W 0)7
1
det Qi7i(~,9) = exp <—21H:FP9L tro(s, 0)),
: (4.78)
det Qf’i(yH) = exp(ﬁHiP@L tro(-, 9))7
where
Hyg(s) = Hg(s) Fig(s), seR, (4.79)

H is defined by (4.24), Pel is defined by (4.23), # € S*.
To obtain (4.77) we use (4.72), (4.12), (4.22), (3.20), (3.21), (3.24), (4.79). To obtain
(4.78) we use (4.72), (4.69), (4.51a), (4.52a), (4.16), (4.22), (3.20), (3.21), (3.24), (4.79).
There are the formulae

1 g(t)
H = | —Z _dt R. 4.80
+9(5) W/Hgsj:iO—t » 8€ (4.80)
We use the notation
Ci={s€C|+Ims>0}, Ci=CrURUOoo. (4.81)

In addition to Hyg(s) for s € R, we consider

1 t
Hyig(s) = - /R % dt for s € Cy. (4.82)

Proposition 4.2A. Let the assumptions of Proposition 4.1A be valid. Then the following
formulae hold:

R(z,0) = R (x6,0), (4.83)
R*(s,0) = (Q _(5,0))7'Qx _(s,0), (4.84a)
RY(5,0) = (Q 4 (5,0) ' Q1 4 (5,0), (4.84D)

i,Jr(S’e)(Qi,f(&a))_l = SL(S’9)7 (4'850')
QL . (5,0)(Qt _(5,0))7t = S*(s.0), (4.85b)
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where x € R?, s € R, 6 € S';

Q.(0), QL_(.0)€C(Cs,GL(n,C)), feS, (4.86 a)
%Qii(s,ﬁ) =0, %Qjﬂs, 0)=0 forscCqg, 60cS (4.86b)
where
Qt(5,0),QF 4(s,0) forseCy are defined by (4.77), (4.82), (4.86 ¢)
Qt (00, 0) I, QF (00,0) € I (4.86d)
St(.,0) € C(R,GL(n,C)), (4.87 a)
1S 0) = Tlaer < me™ 20/ 2 55 2 la]| 1 o, exp(ne ™ 25/2¥ 0% [a] o 14c,),

(4.87b)

where § € S*, 0 < ¢’ K¢
+(.0) € C(R,GL(n,C)), (4.88a)

max (]| Qi (+,0) = Ilaers Qi (- 0) ™" = Ilaer)

< neis(ae e’ €”)pf " lallate,(1—0) 71 (4.88b)

where i € {—,+}, j € {—,+}, 0 €S, 0 <& <min(1,&").
Remark. The estimates (4.87) are valid without the assumption (4.49).

Proposition 4.2B. Let the assumptions of Proposition 4.1B be valid. Then the formulae
(4.83)—(4.86) are valid and the following estimates hold:

SL(-,0) € C(R,GL(n,C)), (4.89 a)
1S(,60) = Il < 2n(2+7)ca(r)||bll5,0 exp(4nr(|b]|5,0), (4.890)
+i(-.0) € C(R,GL(n,C)), (4.90a)
max([| Qi (-, 8) = Illg.er, 1(Qi; (-, 0) " = Illg,er)
< near (8,6, (2 + r)%ea(r)||b]|go(1 — 6271, (4.90b)

where i € {—,+},j € {—,+},0 €S, e>0,0<e <min(l,e).
Remark. The estimates (4.89) are valid without the assumption (4.58).

The proof of Propositions 4.2A and 4.2B consists of the following.

The formulae (4.83)—(4.85) follow from (4.71)—(4.76).

The estimates (4.87) follow from (3.25), (3.27), (4.76 a). The estimates (4.88 a), (4.88b)
for QiL,j — I and the properties (4.86), under assumptions of Proposition 4.1A, follow from
(4.55) for vy — I, A€ T, (4.77), (4.78), (A.63), (A.73), (A.75). The proof of (4.88b) for
(Qi;)~' — I is similar to the proof of (4.55) for (1p+)~" —I.

The estimates (4.89) follow from (3.32), (3.33) (4.76 a). The estimates (4.90a), (4.90b)
for Qf-] — I and the properties (4.86), under assumptions of Proposition 4.1B, follow from
(4.60a) for L — I, (4.77), (4.78), (A.69), (A.70), (A.73), (A.74). The proof of (4.90b)

for (Qi.)~! — I is similar to the proof of (4.60a) for (¢+)~1 — I.
0.
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5. Inverse scattering for the two-dimensional X-ray connection equation

Proposition 5.1. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid.
Then at fixed § € S the scattering matrix S*(-,0) on R uniquely determines Qi,i('v 0)
on Cs (as functions with the properties (4.85a), (4.86a), (4.86b), (4.86d)), Q* .(-,0)
on Cy (as functions with the properties (4.85b), (4.86a), (4.86b), (4.86d)) and R(-,0)
on R? (using (4.83), (4.84)).

The problem of finding Q+ (-, #) with the properties (4.85a), (4.86 a), (4.86b), (4.86d)
from S+ (-,6) and the problem of finding Q£7i(~, 0) with the properties (4.85b), (4.86 a),
(4.86d) from S+ (-,0) are regular Riemann conjugation problems with fixed normaliza-
tion. It is well known that any regular Riemann conjugation problem with fixed normal-
ization has, at most, one solution (see [11]).

Proposition 5.2. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid.
Then the functions Qf _(-,6), Q* _(-,0) on R at fixed 6 € S' satisfy the equations

Qf(0) = S H (55,0 = DQE _(0) = 1. (510)
QL_(+0) + 5 H((S(-0) = DQE _(,0)) =T (5.10)

(where we use the estimates (4.87)—(4.90), (A.74)). If, in addition,
neys(o, €', 0)[|1SH(,0) — Iaer < 1 (5.2)

for some « € ]0,1[, ¢’ > 0, then equations (5.1) are uniquely solvable in C*°(R, My, x»)
by the method of successive approximations.

The deduction of (5.1) consists of the following. From (4.85) it follows that

Qr () —IT=Qy _(-0)—I+(S"(0) - Qy _(-.0), (5.3a)
Qf,—k('aa) —I= QJ—_,—(UO) -1+ (SJ-(’Q) - I)Qi_,—(aa) (5.3b)

Applying the operator H, to the both sides of (5.3 a) and the operator H_ to the both
sides of (5.3 b), using (4.86 a), (4.86b), (4.86d), (4.87)—(4.90) and properties of the Cauchy
integral we obtain (5.1a), (5.1b).

Proposition 5.2 completes Proposition 5.1 by an effective method for determination
of Qiﬁ, Qf’f and, as a corollary, of Qi,w Qf# from S+, at least, under additional
assumption (5.2).

Under assumptions of Proposition 4.1A or Proposition 4.1B, we consider

Pi(z,A) = (9(2)) "Wx(2,), A€ Dx, (5.4a)
ay(2) = (9(2)) " ay (2)g(2) + (9(2)) ' 0zg(2), (5.4b)
a—(2) = (9(2)) ta—(2)g(2) + (9(2)) 1 09(2), (5.4¢)
ao(2) = (9(2))'ao(2)g(2), (5.4d)
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where
g(Z) = w—,O(Z)a zeC. (54 6)

The collection (a.4,a—,ap) is obtained from (a4, a—, ag) by the gauge transform given
by the function g(z) = ¥_ o(2).
From (4.48b), (5.4¢), (5.4¢) it follows that

a_(z)=0, zeC. (5.5)

From the equation (4.28) for ¢4 (2, ), 0 < IANJ*! < 1, and the formulae (5.4), (5.5) it
follows that 11 (z,\), 0 < |A|*! < 1, satisfy the equation

AN, + A1) 4+ 0(2,\p =0, zeC, XeC\o, (5.6)
where

(2, \) = A tay (2) + ao(2). (5.7)

Under assumptions of Proposition 4.1A, the following is valid:
oo — 1€ CP(C, Mpxy), (5.8a)
($—0) "t =T € CP<(C, Mpn), (5.8b)
85,(/)—,0 S COL,EN ((C7 Mnxn)7 (58 C)
do,ay € O (C, Myxn), (5.9)

where 0 < f< 1,0 < &’ <min(e, 1), 0 < e” <min(1l +¢,2).
Under assumptions of Proposition 4.1B, the following is valid:

Y_o—1€CP(C, Muxn), (5.10)
(Y_0) ™" =T € C”N(C, Mpxn), (5.10b)
9:¢—0 € L™(C, Mpxn), (5.10¢)

O_ 0 € C* (2.5, Muxcn), (5.10d)

do,dy € L(C, Muxn), (5.11a)
ao,a+ € C*2(2r5, Muxn), (5.11)
ap(2) =0, 0.a4(2)=0 for |z| >, (5.11¢)

where 0 < < 1,0 < d < r; (2,5 is defined by (A.120).

The property (5.8a) follows from (4.48a), (3.4a), d = 2, (4.55) and Lemma A.10,.
The property (5.8b) follows, for example, from (5.8a) and the property dety_o # 0
(according to (4.52a). The property (5.8 ¢) follows from (4.48a), (3.4a), d = 2, (5.8a)
and Lemmas A.3 and A.11,. The property (5.9) follows from (5.4b), (5.4d), (5.4e),
(3.4a),d=2, (5.8).

The property (5.10a) follows from (4.48a), (3.4b), d = 2, (4.60b) and Lemma A.10;.
The property (5.10b) follows, for example, from (5.10a) and the property det¢_ o # 0
(according to (4.52 a)). The properties (5.10 ¢), (5.10 d) follow from (4.48 a), (3.4b), d = 2,
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(5.10a) and Lemmas A.3 and A.11;. The properties (5.11) follow from (5.4b), (5.4d),
(5.4¢), (3.4b), d =2, (5.10), (4.48b).

Under assumptions of Proposition 4.1A or Proposition 4.1B, from Proposition 3.1, the
formulae (5.4), (5.5) and properties (5.8)—-(5.11), (4.48b) it follows that the scattering
matrix for the equation (4.28), A € T, coincides with the scattering matrix for the
equation (5.6), A € T.

From (4.50)—(4.53), (5.4 a) it follows that at fixed z € C,

Y+ (2,-) € C(Dy,GL(n,C)), (5.12a)
(2N =9U_(2, )R(z,\), MeT, (5.120)
(;A)@ (z,A\) =0, \e€ Dy, (5.12¢)
<8X) =0, AeD_\oo, (5.12d)

P_(z,00) =1. (5.12¢)

From (5.6) for ¢, (z,\), 0 < || < 1, (5.124a), (5.12¢) it follows that

iy (2) = —(0:91.0(2)) (WVy0(2) 1, (5.13a)
where } }
Vi,0(2) = ¥4(2,0). (5.13b)
From (5.6) for ¢¥_(z,)), 0 < |\ <1, (5.12a), (5.12d), (5.12¢) it follows that
ao(z) = —0.0_ 1 (2), (5.14a)
where
(2, N) =T+ A" 1(2) + O(A"2) as A — oo (5.14b)

Proposition 5.3. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid.
Then at fixed z € C the function R(z,-) on T uniquely determines ¥ (z,-) on D1 (as
functions with the properties (5.12)). In turn, ¥y on C x Dy uniquely determine ao, ay
on C (using (5.6) or (5.13), (5.14)).

The problem of finding ¢+ (2, -) with the properties (5.12) from R(z, -) is a regular Rie-
mann conjugation problem with fixed normalization. Any regular Riemann conjugation
problem with fixed normalization has, at most, one solution (see [11]).

Proposition 5.4. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid.
Then the function ¢¥_(z,-) on T at fixed z € C satisfies the equation

b (2,) = C_(p_(2,)(R(z,) = 1)) =1, (5.15)
where

_ 1 f(§)d¢
CfN) =5 eaaro MeT (5.16)
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If, in addition,

n||[R(z,-) — Ifo <1, (5.17)
then the equation (5.15) is uniquely solvable in L*(T, M,,«,,) by the method of successive
approximations.

The deduction of (5.15) consists of the following. From (5.12b) it follows that

Applying the operator C_ to the both sides of (5.18), using (5.12a), (5.12¢)—(5.12¢€) and
properties of the Cauchy integral we obtain (5.15). Proposition 5.4 completes Proposi-
tion 5.3 by an effective method for determination of ¥_ and, as a corollary, 1;+ from R,
at least, under additional assumption (5.17).

Propositions 5.1-5.4 imply the following result.

Theorem 5.1. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid.
Then the scattering matrix S+ on R x S! for the equation (4.1) uniquely determines ao,
ay on C (and ¥4+ on C x D).

Theorem 5.1 and the formulae (5.4), (4.48 a) imply the following corollary.

Corollary 5.1. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid
and, in addition, a_ = 0 on C. Then the scattering matrix S+ on R x S! for the equation
(4.1) uniquely determines ag, a4 on C.

Under assumptions (3.4a) or (3.4b), we consider further

v (@, 0) = (W (2,w)) T (2, 0), (5-19.a)

Ui (2,0) = (v (z,0)) "~ (2, 0), (5.190)
af,i(x) = (w(:)t(wi))_lai(x)zp(:)t(wi) + (w(:)t(m7w))_1aiiw(:)t(wi)v i=1,....d,

(5.19¢)

azo(z) = (V5 (z,w)) " ao(2)¢hg (2, w), (5.194d)

where z € R 0,w € S?1 ¢*(z,0) are the wave functions for the equation (3.1),
Vi (x,0) are the wave functions for the equation

00,100 + vo(x,0)0 =0, x€RY eSSt (5.20)
where

d
vo(x,0) =Y bia;(x). (5.21)
i=1

In addition, if ap = 0 on R?, then vy = v, i = ¢* on R x S,
From (5.19¢), (5.20) for ¢, (5.21) (and the property det i # 0) it follows that

d
Zwiaii(aﬂ) =0, zecR%L (5.22)
i=1
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From the equation (3.1) for ¥* and the formulae (5.19) it follows that ¥=%(x,0),
Y~ (z,0) satisfy the equation

00,0F +vE (2,0 =0, zeR? Hesit, (5.23)

where .,
vf(m, 0) = Z Hiaii(ac) + aio(x). (5.24)

i=1

In addition, the fact that ¢+ and 9T are the wave functions for (3.1) and (5.20), respec-
tively, the estimate (3.26 a) or (3.33a) and the formulae (5.19a), (5.19b) imply that

lim 5 (z+s0,0) =1, 6+ Fw, (5.25a)
S——00

lim VE(x450,0) =1, 6+ +w, (5.25b)
S—+00

S(x,0) = (Y~ (x,0) T (x,0), (5.25¢)

where z € R, 0, w € ST1 S(x,0) is the scattering matrix for the equation (3.1).
Taking into account (5.25) we say that ¢ F, ¢~ are the wave functions for the
equation (5.23) and that the scattering matrix for (5.23) coincides with the scattering
matrix for (3.1).
Under assumptions (3.4a), from (5.19a), (5.190), (5.19d) and Proposition 3.1A it
follows that

v’ (-,0) € C*°(R?,GL(n,C)), (5.26.a)
057 (-, 0)[lavo < A1(n, e, llalla,4e,p), (5.26b)
al,o € CVME(RY, Mysen), (5.27a)
lag,olla,i+e < A2(n, pye, [|alla,1te,), (5.27b)

where 4,7 € {—,+}, 6,w € S¥7!, the bounds A;, Ay can be written explicitly.
Under assumptions (3.4b), from (5.19a), (5.190), (5.19d), Proposition 3.1B (and the
equations (3.1), (5.20) for ¥, w(jf), it follows that

Wi (-,0) € CPO(RY, GL(n, C)), (5.28a)

1457 (.0l g0 < As(n, p, B, [|bl|a,0), (5.28b)

ag,o(x) = x+(r = [2)bl, o (), @ €RY, (5.28¢)

bl € CPO (R, M), (5.29a)

||bciu,0||5’0 < A4(”7P7B7 ||b||a,0>7 (529 b)

where i,7 € {—,+}, f,w € S¥1, 3 = min(%,a), the bounds Az, A4 can be written
explicitly.

Under assumptions (3.4a) or (3.4b), aij, j=1,...,d, are generalized functions (dis-

tributions), in general.
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Under assumptions (3.4a), o € [1,2], from (5.19¢) and Proposition 3.1A it follows

that
a; € CTVORY, Myn), (5.30a)
Iaf,i(‘x)l g Cl(paga iwax)A5(nap7€’ Ha’||a,1+€7p)7 X eRda (530[))
a3 illa—1,0 < As(n, p. ¢, l|alla,14e,0), (5.30¢)
where i = 1,...,d, w € S¥1, the coefficients A5, Ag can be written explicitly.
Under assumptions (3.4b), the formula (5.19 ¢) and Proposition 3.1B imply the follow-
ing:
(1)
if 1 <a<2, then al,; € C(Dysw, Mnxn), (5.31a)
laZ (@) < x4 (Vr? = (mo)? + (n2)w)x+ (r — [moz])
x(r? — (mox)?) Y2 A7(d,n, 7 |[bll10), x €RY, (5.31b)
0z 1,50 15,0 < As(d,n,7,6, B, [[Blla0), (5.31¢)
(2)
if =2, then al; € CY(Dy s, Muxn), (5.31d)

where i = 1,...,d,w € ST1, § €]0,7[, B € [0, min(% a — 1)], the coefficients A7, Ag can
be written explicitly.
Under assumptions of Proposition 4.1A or Proposition 4.1B, the following formulae

hold:
v (@, 0) = (P (z,0)) T (2,0), (5.32a)
U5 (,0) = (5 (z,w) M (2,0), (5.32)

0 (0) = () (o) .0 + (0 0.0 (5 ) o), i= L2
(5.32¢)
aZo(@) = (5 (w,w)) " o (2)dg (z,w), (5.32d)
where z € R?, 0,w € S', v+, ¢~ af,, i = 0,1,2, are defined by (5.19) for d = 2,

ai, i =0,1,2, are defined using (5.4b)—(5.44d), (4.30), ¢F are the wave functions for the
equation (5.6), woi are the wave functions for the equation (5.6) with ag replaced by zero
(and we use (4.25)). The formulae (5.32) follow from (5.19) and the formulae

(@, 0) = (9(2) '™ (x,0), (5.33a)
bo (w,0) = (9(2)) g (. 0), (5.330)

where
g(x) =v_o(z), ze€R? (5.33¢)
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(where the function g is the same as in (5.4), but written now, using the coordinates
x € R?). The formulae (5.33) follow from (5.4b)-(5.4¢), (5.5), (5.8)~(5.11) and the
definition of ¥, &, F, Y.

Theorem 5.1 and the formulae (5.32) imply the following result.

Theorem 5.2. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid.
Then the scattering matrix S+ on R x S! for the equation (4.1) uniquely determines
YET BT onR2 x ST, e, i =0,1,2, on R? for any w € S*.

w,?

If
d
Zwiai(x) =0, zeR? forsomew e S (5.34)
=1
then
Yi(zw) =1, R, (5.35a)
T (@,0) =T (2,0), Y5 (2,0) =y (x,0), zeR! Hes (5.350)
af(z)=ai(z), i=0,...,d, xeR" (5.35¢)

Theorem 5.2 and the formulae (5.34), (5.35) imply the following corollary.

Corollary 5.2. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid
and, in addition, (5.34), d = 2, holds. Then the scattering matrix S* on R x S' for the
equation (4.1) and the vector w uniquely determine a;, i = 0, 1,2, on R2.

Using Theorems 5.1 and 5.2, we obtain the following corollary.

Corollary 5.3. Let the assumptions of Proposition 4.1A or Proposition 4.1B be valid
for a collection a = (ag,a1,az) and for a collection o' = (ay, a},ah). Let the scattering
matrix S+ for a coincides on R x S' with the scattering matrix S+ for a’. Then

Y (x,0) = (h(z)) " "Y(x,0), 6 D\S, (5.36a)
VE(x,0) = (W(z) W5 (2,0), €S, (5.36 )
al(x) = (h(x)) ra;(z)h(z) + (h(z)) " (ai)h(x), i=1,2, (5.36 ¢)
ag(z) = (h(x)) " ag(z)h(z) (5.36.d)

for
h(z) = (WL o(2)) - o(z), zeR? (5.36¢)

(where we use the coordinates x, 6; ' denotes the correspondence to a’). In addition: under
assumptions of Proposition 4.1A with fixed a and € in (3.4a),

h—1I,h~ ' —T¢cC" 5 (R? Myxn), (5.37a)
)

. a,l+e 2 . =
&h E C (R 7Mn><n)7 81 3:E,-7

i=1,2 (5.37b)
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under assumptions of Proposition 4.1B with fixed o and r in (3.4b),

h,h=t € C* (B, Myxn), (5.38a)
h=1 onR*B,, (5.38b)
where B, = {x e R? | |z| <7}, B, = {z e R? | |z| < r}.
If, in addition, a;,al, i = 0,1,2, take values in u(n), then h takes values in U(n).
We obtain (5.36) using Theorem 5.1 and the formulae (5.4). The final statement of
Corollary 5.3 follows from the formula
h(z) = (Y (z,w)) WE (r,w), weS! (5.39)

(this formula follows from Theorem 5.2) and Statement 3.1. Using (3.25), (3.26 a), (5.39)
for different values of w we obtain that

h—1I,h "t —1¢€C"(R? Muxn). (5.40)
Using (3.4 a), (5.36 ¢) and (5.40) we obtain (5.37). Using (3.32), (5.39) we obtain that
h,h=! € C(R%, Myxr,). (5.41)

Using (3.4b), (5.36¢) and (5.41) we obtain (5.38a). Using (3.33a), (5.39) for all w € S*
we obtain (5.38D).

6. Inverse scattering for the X-ray connection equation in dimension d > 3

Let S denote the scattering matrix for the collection a = (ag,as,...,aq) (i.e. for the
equation (3.1) with the coefficients ag(x), a1(x), ..., aq(z)).

Theorem 6.1. For d > 3 the following statements are valid.

(1) Let ag satisfy (3.4a),0 < a <1,a;=0,i=1,...,d. Then S on TS*' uniquely
determines ag on RY.

(2) Let ag satisfy (3.4b),0 < a <1,a; =0,i=1,...,d. Then S on TS*! uniquely
determines ag on RY.

(3) Let ap = 0, a;, i = 1,...,d, satisfy (3.4a), « = 2. Then S on TS*! uniquely
determines aii, i=1,...,d, on R¢ for any w € S%1.

(4) Letap =0, a;,i=1,...,d, satisfy (3.4b), « = 2. Then S on TS*~! and r of (3.4b)
uniquely determine at . i=1,...,d, on R? for any w € S41.

wyi?
Remark 6.1. In Theorem 6.1 we do not assume that the following is known: « and &
of (3.4a) in item (1); a and r of (3.4b) in item (2); € of (3.4a) in item (3). However,
the a priori knowledge of the following is necessary for the reconstruction procedure
contained in the proof of the relevant item: «, ¢ and an upper bound for |la||a,14< for
the case of item (1); @ and an upper bound for ||b]|4,0 for the case of item (2); £ and an
upper bound for ||al|2,1+¢ for the case of item (3); an upper bound for ||b||2,0 for the case
of item (4), where a = (ag, a1, ...,aq), b = (bo,b1,...,bq).
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To prove Theorem 6.1 we use, in particular, Proposition 6.1, Statement 6.1, Proposi-
tion 6.2 and Proposition 6.3 given below.
Let

X,s={reR®|ve=s}, ves? scR, (6.1)
TSY(X,s) = {y € TS? | v lies in X, }.

Let
Sa(n, B,e,€", 2, N) = neig(B,e,0,€") (1 4 2)° ~2C2)/2 N, (6.3a)

whereneN,0<f3<1,0<e" <eg,2>0,N>0.
Let

61)(”7 ﬂv €, %, N) = 277?021(57 g, O)(2 + 2)504(2)(1 =+ 621(ﬁ7 g, O)(2 + Z)€C4(Z))N2? (63 b)
wheren € N,0<3<1,6>0,2>0, N>0.
(We remind the reader that cig, 21, ¢4 are defined in Appendix A.)
Proposition 6.1A. Let a;, i = 0,1,2,3, satisfy (3.4a), d = 3 and a = (ag, a1, az, as).
Let v € S?, s € R and
5a(n767575//7 |S|7 Ha’”ﬁ,lJrE) <1 (6'40')

for some 3 and €” such that 0 < 8 < 1, 0 < ¢’ < e. Then S restricted to TS' (X, s)
uniquely determines af’o(x) and Zle aii(:v) dz; restricted to X, s for any w € S?,
wr = 0.

Proposition 6.1B. Let a;, i = 0,1, 2,3, satisfy (3.4b), d = 3 and b = (bg, b1, b2, b3). Let
veS? seR and

(n, B,,1(r;8), [bllg.0) <1, Urs) = x4 (r = |s])Vr? — 52, (6.4b)

for some 3 and ¢ such that 0 < 8 < %, e > 0. Then S restricted to TS'(X, ) uniquely
determines aio(a:) and Z?Zl af’i(aj) dw; restricted to X, s for any w € S*, wv = 0.

Remark 6.2. Let a;, i = 0,1,2,3, satisfy (3.4b), d = 3. Let v,w € S?, wv = 0, s € R,
|s| = r. Then aii(x) =0,7=0,1,2,3, for v € X, 5. Therefore, Proposition 6.1B is
non-trivial only if |s| < 7.

Remark 6.3. If in Proposition 6.1A or 6.1B the number « of (3.4a) or (3.4b) is smaller
than 1, then (as indicated in §5) a2

w,?

1 =1,2,3, are ‘generalized’ functions, in general.
+

However, under assumptions of any item of Theorem 6.1, a;;;, ¢ = 1,2,3, are usual

functions.

Proof of Propositions 6.1A and 6.1B. There is an orthogonal 3x3 matrix M = (m;;)
such that

2
Xus = {x R | wi = myy; +migs, i =1,2,3, y=(y1,42) € RQ}, (6.5)

Jj=1
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where we consider y as Euclidean coordinates on X, ;. In addition,

2
@_E:mmbi—LZ&f—W&éﬂey}. (6.6)

{0682|91/—0}—{0682
j=1

A solution ¥(z,0), fv = 0, of (3.1), d = 3, restricted to X, s and written as (y, &)
satisfies the equation

§0y Y + (&1ua () + Eaua(y) + ao(y))y = 0,

3 (6.7)
ui(y) =Y mijai(y), j=12,
i=1
where a;(y) = a;|x, , in the coordinates y, i = 1,2,3.
In addition,
2 3
Z ui(y)dy; = Z a; dxi|X in the coordinates y. (6.8)
i=1 i=1 -
If feCPIHE(R3 Myxn), 0< B <1,e>0, then
Hf|XV,5 B,14+€,1+s < 2(1+€)/2l|f||ﬁ,1+67 (6‘9)
where f|x, , is considered as a function of y.
If f(z) = x4 (r—|z))g(x), 2 € R3, g € OFO(R3, Mpxn), 0 < B < 1, then
Fy) =x+Ur.s) = lyg(y), vyeR,
(6.10)
lglx...lls.0 < llgll 5.0,

where f(y) = f|x, . considered as a function of y, g(y) = g|x, . considered as a function
of y.

Under assumptions of Proposition 6.1A or Proposition 6.1B, from (6.7), (6.9), (6.10),
the inequalities [m;1|+|mao| < V2,4 = 1,2,3, and Theorem 5.2 it follows that S restricted
to T'S'(X, s) uniquely determines

ago(y) = (g (4,)  ao W)y (1, €),

uf (y) = (W5 (4, ) () (v, €) + (W5 (4, €)) " ( (6.11)

0
Jy;
y€R? ¢S, i=1,2, where wgt are the wave functions for (6.7) with ag replaced by 0.

In addition, @[J(:)t (y,&) are the wave functions 1/}6—L (z,0), 0v =0, for (5.20), d = 3, restricted
to X, s and written in the coordinates y, &.

)ﬁm&

Finally,
azo (y) = ag,| . in the coordinates y,
- & (6.12)
Zugil(y) dy; = Z affi dxi|XU _ in the coordinates y
i=1 =1

for ¢ € St and 0 € S? related as in (6.6).
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Propositions 6.1A and 6.1B are proved. O

Let
Y(gw)={z R |z =q+sw, scR}, ¢cR3 weS% (6.13)
Statement 6.1. Let d=3,¢q € R3 w,v,v/ € S , wv=w/ =0, v#1, j € {—,+}. Let
D be an open neighbourhood in R? of a point x € Y (q,w). Then Y (q,w) = X, o N Xy g0
and the following is valid.

(A) Ifa;, i =1,2,3, satisty (3.4a), a = 1, then

3
Z ;(w)dzs|x, ,,np and Zawz x)dwg|x, /D
i=1

=1

uniquely determine @’, ;, i = 1,2,3, on Y(q,w)ND.

(B) Ifa;,i=1,2,3, satisfy (3.4b), « =1, then

3

Zai) ( )dxl|Xuqu nD;, Zawl dmZ|X /qu/ﬁD

i=1

and r of (3.4b) uniquely determine a’

w,?

i=1,2,3, on Y(q,w)ND.

Remark 6.4. We remind the reader that o’
Let

w.ir ©=1,2,3, are independent of ag.

Crow={reR||z|=r}Uu{zcR?||moz| =1}, r>0, weSh (6.14)

Remark 6.5. In item (B) of Statement 6.1 we assume that r of (3.4 b) is known in order

to know a priori the set C).,, (containing all discontinuity points of aw 5 1=1,2,3).
Statement 6.1 follows from elementary geometric facts and the properties (5.30), (5.31)
ofawz, i=1,2,3.
Let
By ={zeR’||z| <7}, 720, (6.15)
B, be the closure of B, in R%. )
Let
2,(D) = {y € TS | 5 intersects D}, (6.16 a)
25(D,w) = {y € (D) | v has the direction w}, (6.16b)
23(D) = TS "\ 2(D), (6.16 c)
24(D,w) = {y € 23(D) | v has the direction w}, (6.16d)

where D is an open bounded convex domain in R¢, w € S~ 1.
Consider the equation (with respect to z)

da(n,B,e,",2,N) =5, 220, (6.17)
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where
neN, 0<fB<1l, 0<e’<e N2=20, 0<r<l (6.18)

Under conditions (6.18), the following is valid:
da(n, B,e,6" 21, N) > 64(n, B,e,&", 22, N) (6.19a)
for z9 > 21,21 20, 20 2 0, N > 0;

da(n,B,e,",2,N) = 0 as z — +o0; (6.19)
da(n, B,e,e",2,0)=0, 2>0. (6.19¢)

Therefore, under conditions (6.18), the equation (6.17) has, at most, one root.
Under conditions (6.18), we use the following definition: let z,(n, 3,¢,e”, N, k) be the
root of (6.17), if it has a root; let z4(n, B8,¢,e”, N, k) = 0, if (6.17) has no root.
Consider the equation (with respect to z)

op(n,B,e,2,N) =k, 220, (6.20)

where
neN, 0<pf<3, >0, N>20, 0<r<Ll (6.21)

Under conditions (6.21), the following is valid:
op(n, B,€,21, N) < 0p(n, B, €, 22, N) (6.22a)

for 21 < 29, 21 =0, 20 2 0, N > 0;

61)(”’6’570’]\[) =0; (622[))
op(n,B,e,2, N) = +00 as z — +oo, for N > 0; (6.22¢)
op(n, B,¢,2,0) = 0. (6.224d)

Therefore, under conditions (6.21), the equation (6.20) is uniquely solvable for N > 0
and (6.20) has no solution for N = 0.

Under conditions (6.21), we use the following definition: let z;(n, 8, e, N, k) be the root
of (6.20), for N > 0; let z(n, B3,¢,0,k) = +oo.

Proposition 6.2. For d = 3, k € |0, 1], the following statements are valid.

(1) Let ag satisfy (3.4a), 0 < a < 1,a; = 0,7 = 1,2,3, and ||ao|la,1+e < N. Let
T=2z4(n,a,e,6" N, k), 0 <e” <e. Then S on 23(B;) uniquely determines ay on
R3\B, .

(2) Let ag satisfy (3.4b), 0 < a < %, a; =0,1=1,2,3, and ||by|la,0 < N, r < ry. Let
T =xX4(r1 —20)\/1% — 22, 2 = zp(n, o, e, N, k), € > 0. Then S on £23(B;) uniquely
determines ag on R3\ B .
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(3) Letap =0, a;, i = 1,2, 3, satisty (3.4a), a =1, a = (ag, a1, a2, a3), and ||a||g,14= <
N for some 3 € ]0,1[. Let 7 = z,(n,3,¢,",N,k), 0 < & < e. Then S on TS?
i=1,2,3, on R3\B, for any w € S%.

uniquely determines aii,

(4) Let ap =0, a;, i = 1,2,3, satisfy (3.4b), a =1, b = (bo, b1, b2, b3), and ||b]|g,0 < N
for some (3 € 0, %] Let 7 = x4 (r — z)\/1% — 27, 2 = z(n, 8,€, N, k), € > 0. Then
S on TS? and r uniquely determine at . i=1,2,3, on R3\ B, for any w € S?.

Proof of Proposition 6.2. Item (1) of Proposition 6.2 follows from Proposition 6.1A,

the properties (6.19) and the definition of z,. Item (2) of Proposition 6.2 follows from
Proposition 6.1B, the properties (6.22), the definition of z, and the following properties:

lrys) <l(r1,s) forr<ry, r>0,r 20, seR, (6.23)
Ur,s1) =2 l(r,se) forr >0, |sa] = |s1] )
Proof of items (3) and (4) of Proposition 6.2.
Consider the following conditions for « and w:
reRN\B,, weSs? (6.24a)
reRN\(B,UC,,), weS? (6.24b)
(where C,, is defined by (6.14), d = 3),

Y(z,w)N B, =10, (6.25
Y(z,w) N B, # 0. 6.26
0

Statement 6.2.

(A) Let the assumptions of item (3) of Proposition 6.2 be valid. Then S on (23(B;)
uniquely determines aii(x), 1 =1,2,3, for any x and w satisfying (6.24a), (6.25).

(B) Let the assumptions of item (4) of Proposition 6.2 be valid. Then S on (23(B,) and
r uniquely determine aii(x), i =1,2,3, for any x and w satisfying (6.24b), (6.25).

Proof of Statement 6.2. From (6.25) it follows that there are v,/ € S%, 5,5’ € R such
that
Y(z,w)=X,sNXyy, XosNBr=0, X, ogNB =0 (6.27)

and, as a corollary,

Is|>7, |§|>7, vw=Vvw=0, v#V, s=vz, s§ =1z, (6.28)
TSY(X,s) C 23(B;), TS' (X, «) C 23(B;). (6.29)

Under the assumptions of items (A) or (B) of Statement 6.2, from Propositions 6.1A,
6.1B, Statement 6.1 and the formulae (6.27), (6.28), it follows that

5|TS1(X,,S) and S‘Tsl(X,,,,S/)
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(and 7, under assumptions of item (B) of Statement 6.2) uniquely determine aii on
Y(z,w), i = 0,1,2,3, and, in particular, af}i(x), ¢ = 1,2,3. In addition, taking into
account (6.29) we obtain Statement 6.2. The proof of Statement 6.2 is completed. O

Statement 6.3.

(A) Let the assumptions of item (3) of Proposition 6.2 be valid. Let x and w satisfy
(6.24a), (6.26). Then S on (25(B;) U £22(B;,w) uniquely determines af,i(x), 1=
1,2,3.

(B) Let the assumptions of item (4) of Proposition 6.2 be valid. Let x and w satisfy
(6.24b), (6.26). Then S on §25(B;) U {25(B,,w) and r uniquely determine aii(x),
i=1,2,3.

Proof of Statement 6.3. Let
YE(q,0) ={z €R® |z =q+s0, sc R U0}, ¢eR? 0cS§? (6.30)
P(Q7970/) = P+(q)079/) UP7 (q79?01)7 (63]‘)

where
P%(q,0,0') = Urer, oY (¢ +10,0)), q€R3, 6,0 €S* 0 49,

where Ry =10, +oo[, R =] — 00,0][.
From (6.26) and (6.24 a) or (6.24b) it follows that either

Y (z,w)N B, =10 (6.32a)
or
Y~ (2,w)N B, = 0. (6.320)
Consider w’,w” € S? such that
Y(z,o)YNB, =0, Y(z,o")NB, =0, " #u, " #-w. (6.33)

If (6.32a) holds, then due to (6.33):

Pt (z,w,' )N B, =0, Pt (z,w,0")N B, = 0. (6.34a)

If (6.32b) holds, then due to (6.33):
P~ (z,w,)N B, =0, P (z,w,0")N B, = 0. (6.34b)
(]

Lemma 6.1A. Let the assumptions of item (A) of Statement 6.3 be valid. Let § €
{w',w"}, where W', w" satisfy (6.33). Then the following is valid.

(1) If (6.32a) holds, then S on 25(B,) uniquely determines aei’i(y), 1=1,2,3, for any
y € PT(x,w,0).
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(2) If (6.32b) holds, then S on {23(B;) uniquely determines a;'fi(y), 1=1,2,3, for any
y € P~ (z,w,0).

Lemma 6.1B. Let the assumptions of item (B) of Statement 6.3 be valid. Let 0 €
{w',w"}, where W', w" satisty (6.33). Then the following is valid.

(1) If (6.32a) holds, then S on {25(B;) and r uniquely determine a;,t,i(y), 1=1,2,3,
for any y € Pt (z,w,0)\Cyg.

(2) If (6.32b) holds, then S on §25(B;) and r uniquely determine a;t’i(y), i=1,2,3, for
any y € P~ (z,w,0)\Cr .

Items (1) of Lemmas 6.1A and 6.1B follow from (6.34 a) and Statement 6.2. Items (2)
of Lemmas 6.1A and 6.1B follow from (6.34b) and Statement 6.2.

Remark 6.6. Note that

P(z,w,0)NCrg=0 for|y|>r,
P(z,w,0) N Crg={§ eR* | [§] =1} U{{ e R? | |mcé| ="} for |y'| <,

where £ are Euclidean coordinates on P(z,w, #) with centre at the point g’ which is the
nearest to 0 in R?, 7/ = \/r2 — [y/[2, ( = &(y' +0) —&(y) for |y'| < r, where § € {w',w"}.
Therefore, for the case of item (1) of Lemma 6.1B, ajéi on Pt (z,w,0)\C,pg uniquely
determines a . on P*(z,w,0) (for example, in Llloc(PL“(x,w,G),Mnxn)) and for the
case of item (2) of Lemma 6.1B, aé’i on P~ (z,w,0)\C, ¢ uniquely determines agi on

P~ (z,w,0) (for example, in L (P~ (z,w,0), Myxn)), where i € {1,2,3}, j € {—, +}

loc

Lemma 6.2.

(1) Let the assumptions of item (1) of Lemma 6.1A or item (1) of Lemma 6.1B be valid.
Then ap ;, i = 1,2,3, on P*(x,w,0) uniquely determine ¢y~ (-,w) on P*(z,w,0),
where j € {—,+}.

(2) Let the assumptions of item (2) of Lemma 6.1A or item (2) of Lemma 6.1B be valid.
Then ay ,;, i = 1,2,3, on P~ (v,w,0) uniquely determine Y5 (w) on P~ (z,w,0),
where j € {—,+}.

Proof of Lemma 6.2. Under the assumptions of items (1) or (2) of Lemma 6.2, using
(5.23), (5.24), (5.25a), (5.25b) we obtain that

d ; i
(35 + el Vi) =0 (6.35)
éjw(s) — I ass— —oo, (6.36a)
¢éi;,w(s) — I ass— 400, (6.36b)
where
V) yw(8) = vy +sww), Uiy () =yiT(y+sww), yeRY seR. (6.37)
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Item (1) of Lemma 6.2 follows from the following facts:
(1) Y+(yaw) - P+(.’L‘,UJ,9) for ye P+(x,w,9);
(ii) ag 4 1=1,2,3, 0on Y *(y,w) uniquely determine Ug,y,w on [0, +00[;
i) v’ on [0, +o00[ uniquely determlnesw on [0, +oo[ by means of (6.35), (6.36 b);
0,y,w 0,y,w
(V) ¥ (y,0) = ¥y ., (0).
Item (2) of Lemma 6.2 follows from the following facts:

(i) Y~ (y,w) C P~ (z,w,0) for y € P~ (z,w,0);

(i) a(, . i=1,2,3, on Y~ (y,w) uniquely determine v} Ly o1 ] — 00,05

(iii) Ue,y,u on | — 00,0] uniquely determines w@yw on | — 00,0] by means of (6.35),
(6.36a);

(iv) ¥ (yw) = ¢y, (0).

Remark 6.7.

(A) If a4, ¢ = 0,1,2,3, satisfy the assumptions of item (3) of Proposition 6.2, then
vgyw(s) O(|s|¢) as |s| — et (since w ¢ {—0,0}). Therefore, for this case the
proof of the uniqueness of we’ "y defined by means of (6. 35) (6.36) is standard for
e > 1 and consists of the following for ¢ < 1. If some 1/)] ., satisfy (6.35), then

Y (5) = Uit (Y + sw,w) AT, AT € My, (6.38)

since 1/)9 "y defined by means of (6.37) satisfy (6.35) and detw *(y 4 sw,w) £ 0.
Using (6 36) (6.38) one can show that A* = I.

(B) If a;, i = 0,1,2,3, satisfy the assumptions of item (4) of Proposition 6.2, then
veyw( s)=0 as [s | — 00 (since w ¢ {—6,0}) and for this case the proof of the
uniqueness of % "y defined by means of (6.35), (6.36) is standard.

The proof of Lemma 6.2 is completed. ([
Lemma 6.3.

(1) Let the assumptions of item (1) of Lemma 6.2 be valid. Then
S on 2y(B,,w) U 24(B;,w) and ¢}~ (-,w) on P*(z,w,0)
uniquely determine 1/)g’+(-,w) on PT(x,w,0), where j € {—,+}.
(2) Let the assumptions of item (2) of Lemma 6.2 be valid. Then
S on (25(Br,w) U 24(B;,w) and w§’+(-,w) on P~ (z,w,0)

uniquely determine wé’f(-,w) on P~ (z,w,0), where j € {—,+}.
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Proof of Lemma 6.3. From (5.25¢) it follows that
vy (2,w)S(@,w) = ¥ (a,w). (6.39)

The formulae (6.39), (3.25), (3.32) and definitions imply Lemma 6.3. The proof is com-
pleted. O

Lemma 6.4.

(1) Let the assumptions of item (1) of Lemma 6.2 be valid. Then 7*(-,w) and ag’i(),
i=1,2,3, on PT(x,w,0) uniquely determine

3

Z ai,i(y) dyi‘pﬂz,w’e)

=1
_ 3 i
= ( Yy, w <(Z a’@ i dyz) é’k(ya w) + ; W dyi>

P+(x,w,0)’
(6.40a)

where j,k € {—,+}.

(2) Let the assumptions of item (2) of Lemma 6.2 be valid. Then ¢§’k(-7 w) and agvi(-),
i=1,2,3, on P~ (x,w,0) uniquely determine

3
Z af),i (y) dyl |P_ (z,w,0)
=1
= (5" (y,w) ™
(F bt 0L

where j,k € {—,+}.

, (6.40b)
P~ (z,w,0)

Proof of Lemma 6.4. Using (5.19) and that ¢F = ¥ on R? x S~ for ag = 0 on R?
we obtain that, under assumptions of item (3) or (4) of Proposition 6.2

. _ . . a¢j7k y7w
ot (y) = <¢§"“(y7w)) ) ) + S, (6.41)
where y € R?, 0,w € §?, j,k € {—,+}, i € {1,2,3}. The formula (6.41) implies (6.40)
and Lemma 6.4. The proof is completed. 0

Lemmas 6.1-6.3 and Statement 6.1 imply Statement 6.3. The proof of Statement 6.3
is completed.

Statements 6.1 and 6.2 imply items (3) and (4) of Proposition 6.2. The proof of Propo-
sition 6.2 is completed.
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Let
ari(r) = x4 (7 — [2))ai(z), z€RY 7>0, i=0,1,...,d, (6.42a)
and
S(r) denote the scattering matrix for the collection a(;y = (aro,...,ar4q). (6.420)
Let

at -(x):X+(T—|x\)af7i(sc), reRY wesS™ 7>0, i=0,1,...,d, (6.43a)

w,T,%

and

Sf(T) denote the scattering matrix for the collection af (r) = (ai at_,...a

w,7,00 Yw,T,1> ,d

as ..q)-
6.430)

Proposition 6.3. Let a;, i = 0,1,...,d, satisfy (3.4a) or (3.4b). Let 7 > 0. Then the
following are valid.

(1) 7, S on £21(B;) and a;,i = 0,1,...,d, on R\ B, uniquely determine S(ry on TS41
by the formulae:
Siry(v) =1 forv € 25(B;); (6.44a)

S (1) =¥ (z + V72 = 220,0)S(v) (VT (x — V72 — 220,0)) 7 (6.440)
for v = (x,0) € £21(B;), where for ¢* the formulae (3.13) hold.

(2) Fora>1,7,8 on 2,(B,) and d, »1=0,1,....d, on RY\ B, uniquely determine

S’w,(T) on TSd N\ (25(B;,w) U 25(B,, —w)) (where j € {—,+}, w € S¥=1) by the

formulae:
Sj H()=1 forvye Qg(B ); (6.45 a)
(’y VI (/12— 220,0)S () (Wh T (x — /12 — 226, 0)) (6.45b)
for v = (x,0) € £1(B;)\({22(B-,w) U 22(B;, —w)), where

+o0 —1
YI 7 (x + 50,0) = <T exp/ —vl (x4 10, 0) dt) )
s (6.46)

wg.;Jr(x +50,0) = Texp/ —’UZ,(J? +10,0)dt

— 00

for s € R and (z,0) € TS, 0 ¢ {~w,w}.
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The next remark is similar to Remark 6.7.

Remark 6.8.

(A) Ifa;, i =0,1,...,d, satisfy (3.4a), o = 1, then vJ (x +t0,0) = O(|t| %) as |t| — oo
(0 ¢ {—w,w}). Therefore, for this case the justification of the fact that the right-
hand sides of (6.46) are well defined is standard for e > 1 and consists of the
following for € < 1. There are the formulae:

Texp/ —vd (x4 10,0) dt )~ (z + 50,0) = i~ (z + 10, 0),
s (6.47a)

¢Z;—(x +70,0) > 1 asr— +oo, 0¢{-w,w};

Tex fvf)ert@,@ dt f;+a:+r9,0 = Zﬁxqts@,ﬂ,
R R O R A CER 0N [,

VI +70,0) =T asr— —oo, 0¢{—w,w}

These formulae imply the formulae (6.46) together with the fact that the right-hand
sides of (6.46) are well defined for € > 0.

(B) If a;, i = 0,1,...,d, satisfy (3.4b), a = 1, then vJ(x+t0,0) =0 as |t| — oo
(0 ¢ {—w,w}) and for this case the justification of the fact that the right-hand
sides of (6.46) are well-defined is standard (in addition, the formulae (6.47) are also
valid).

Proof of Proposition 6.3. The formula (6.44 a) follows from definitions. The formula
(6.44b) follows from (3.13) and the formula

400
S(vy) = Texp/ —v(z +t0,0)dt S+ (7)
N
T
X Texp/ —v(z +t6,0)dt

for v = (z,0) € £4(B;), (6.48)

where (6.48) follows from (3.12) (for S and S(,)).
The formula (6.45 a) follows from definitions. The formula (6.45b) follows from (6.46)
and the formula

—+oo

S(7) = Texp / —vl (e +16,6)dt 57, ()

N
T
X Texp/ —vl(x +10,0)dt

for v = (x,0) € 1(B;), 0¢{-w,w}, (6.49)

where (6.46) follows from (6.47), to obtain (6.49) we use, in particular, (5.25¢) (the
formula (6.49) is similar to (6.48)). The proof of Proposition 6.3 is completed. O
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Remark 6.9.

(A) If a;, i = 0,1,...,d, satisfy (3.4a), « > 1, then (due to the properties (5.27a),
(5.30a), the definitions (6.43) and Proposition 3.1B) Sf () I8 continuous on TS1
and, as a corollary, for d > 2, Sf(T) on TS\ (§25(B,,w) U 25(B,, —w)) uniquely
determines Sf_(T) on TS 1,

(B) If a;, : = 0,1,...,d, satisfy (3.4b), a > 1, then for 7 < r (due to the properties
(5.28¢), (5.31b), the definitions (6.43) and Proposition 3.1B) Sf () 18 continuous

on T'S% 1 and, as a corollary, for d > 2, Sf(T) on TS\ (£22(B;,w) U §25(B,, —w))
uniquely determines Sf(r) on TS 1.

Proof of Theorem 6.1 for d = 3. Proof of items (1), (2) of Theorem 6.1 for d = 3.
For d = 3, item (1) of Theorem 6.1 follows from item (1) of Proposition 6.2, item (1) of
Proposition 6.3 and item (2) of Theorem 6.1.

For d = 3, item (2) of Theorem 6.1 follows from item (2) of Proposition 6.2 and item
(1) of Proposition 6.3 by the induction method. The step of the induction (the jth step,
j € N) consists of the following.

(a) Due to item (2) of Proposition 6.2, S(,,_,) on §23(B;,) uniquely determines a,; , o
on R*\ B (i.e. ag on B,,_,\B;,), where

Tj = X+(Tj271 - 2) 7']'271 — 2, 7']271 =17 — (- 1)z

(where 71, 2z are the numbers of item (2) of Proposition 6.2).
b) Due toitem (1) of Proposition 6.3, S(,,_,y on £21(B..) and ag on B,._,\ B,. uniquely
(T5-1) J Jj—1 J
determine S,y on TS?. If 7; = 0, then the reconstruction of ag on R? from S on
TS? is completed by the part (a) of the jth step.
Only a finite number of steps is necessary. Items (1), (2) of Theorem 6.1 for d = 3

are proved.

Proof of items (3), (4) of Theorem 6.1 for d = 3. For d = 3, items (3), (4) of Theorem 6.1
follows from items (3), (4) of Proposition 6.2, item (2) of Proposition 6.3, Remark 6.9,
the formula (5.22) and the following statement.

Statement 6.4. Let d = 3. Let ag = 0, a;, @ = 1,2,3, satisfy (3.4b), « = 1, and
Zle w;a; = 0 for some fixed w € S?. Then S on T'S? and r of (3.4b) uniquely determine
a;,i=1,2,3, on R3.

Proof of Statement 6.4. Statement 6.4 follows from item (4) of Proposition 6.2, the
formulae (5.34), (5.35) and item (1) of Proposition 6.3 by the induction method. The
step of the induction (the jth step, j € N) consists of the following.

(a) Due to item (4) of Proposition 6.2 and the formulae (5.34), (5.35), S(-,_,) on T'S?
and 7;_; uniquely determine a;, i = 1,2,3, on B, ,\B,,, where

T = X+(Tj2—1 - Zg)\/ Tj2—1 -2, Tj2—1 =’ —(j -1z

(where zp, is the number of item (4) of Proposition 6.2).
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(b) Due to item (1) of Proposition 6.3, S(;,_,) on $1(B;;) and a;, i = 1,2,3, on
B:,_,\B:, uniquely determine S,y on T'S*. If 7; = 0, then the reconstruction of
a;, i =1,2,3, on R? from S on T'S? is completed by the part (a) of the jth step.
Only a finite number of steps is necessary. Statement 6.4 is proved. Items (3), (4)
of Theorem 6.1 for d = 3 are proved.

The proof of Theorem 6.1 for d = 3 is completed. g

Proof of Theorem 6.1 for d > 3. Proof of items (1), (2) of Theorem 6.1 for d > 3.
To determine ag(z') at a point 2’ € R? we consider in R? a three-dimensional plane X
containing z’. We consider in TS?! the subset TS?(X), which is the set of all rays lying
in X. We restrict S on TS?(X). Due to items (1), (2) of Theorem 6.1 for d = 3, these
data uniquely determines ag(z’). Ttems (1), (2) of Theorem 6.1 for d = 3 are proved.

Proof of items (3), (4) of Theorem 6.1 for d > 3. To determine aii(x’), 1=1,...,d, at
a point ' € R? (for the case of item (4) we suppose that 2’ ¢ C,.,) for fixed w € S¥~! we
consider in R? three-dimensional planes X;, i = 1,...,[d/2] (where [d/2] is the integer
part of d/2) such that:

Y('w)={zeR|z=2"+sw, seR}C X;, i=1,...,[d/2];

the convex hull of UZ[-d:/f]Xi is R9. For each i € {1,...,[d/2]} we consider in TS ! the
subset T'S?(X;), which is the set of all rays lying in X;. For each i € {1,...,[d/2]} we
restricted S on T'S?(X;) (for the case of item (4) we consider also r; defined as the radius
of the ball B, N X;). Due to items (3), (4) of Theorem 6.1 for d = 3, these data uniquely
determine a (z')¢ = 2?21 aij (z)¢; for any & € T,y X; (the tangent space to X; at ).
If for each i € {1,...,[d/2]} and each ¢ € T, X; the product af(z')¢ is known, then

aij(x'), j=1,...,d, are known. Items (3), (4) of Theorem 6.1 for d > 3 are proved.
The proof of Theorem 6.1 for d > 3 is completed. O

Using items (3), (4) of Theorem 6.1 we obtain the following corollary.
Corollary 6.1. Let the assumptions of item (3) for fixed ¢ in (3.4a) or (4) for fixed r

in (3.4b) of Theorem 6.1 be valid for a collection a = (ag, a1, .- .,aq) and for a collection
a’ = (ag,a},...,al;). Let the scattering matrix S for a coincides on TS*~1 with the
scattering matrix for a’. Then
V'E(z,0) = (h(z)) " WE(z,0), 6esit (6.50 a)
cia) = () o)) + () (G Jhlo) = td (6500
for
h(z) = (P'*(z,w) W (z,w), zeRY wesi! (6.50 ¢)

(where ' denotes the correspondence to a'). In addition: under assumptions of item (3)
of Theorem 6.1 for fixed € in (3.4a),

h—1I, h™'—TeC** R My, (6.51a)
oih € CP'TERY Myyn), i=1,....d; (6.51b)
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under assumptions of item (4) of Theorem 6.1 for fixed r in (3.4b),

h,h=t € C3(B,, Myxn), (6.52a)
h=1 onR\B,. (6.52b)
If, in addition, a;, a}, i = 1,...,d, take values in u(n), then h takes values in U(n).

To obtain (6.50) we use items (3), (4) of Theorem 6.1, the formulae (5.19) (and, for
example, the fact that a} ,, i =0,1,...,d, uniquely determine v}*).

w,T?

Using (3.25) for ¢*, (3.26 a), (6.50 ¢) for different values of w we obtain that
h—1I, h™'—Te€C"(RY M) (6.53)

Using (3.4 a), (6.50b) and (6.53) we obtain (6.51).
Using (3.32) for ¢*, (6.50 ¢) we obtain that

h,h=t e C(RY, Myxn). (6.54)

Using (3.4b), (6.50b) and (6.54) we obtain (6.52a).

Using (3.33a), (6.50¢) for all w € S?~! we obtain (6.52b).

The final statement of Corollary 6.1 follows from the formula (6.50 ¢) and Statement
3.1.

Note now that Theorem 6.1 admits the following generalization.

Theorem 6.2. For d > 3, we have the following results.

(A) Let a;, i =0,1,...,d, satisfy (3.4a), a = 2. Then S on TS?! uniquely determines
at. i=0,1,...,d, on R for any w € S 1.

(B) Let a;, i = 0,1,...,d, satisfy (3.4b), « = 2. Then S on TS ! and r of (3.4b)
uniquely determine aii, i=0,1,...,d, on R? for any w € S%1.

To obtain Theorem 6.2 we consider

0
(“)xi

it (@) = W (@, w)) ()t (o,0) + (w%,w))l(

ag(a) = (¥ (2,w)) " ao(2)9* (,w),

)’l/):t(wi)7 izla"'vda

where x € R?, w € S1, T are the wave functions for the equation (3.1).
We obtain, first, the following result.

Proposition 6.4. For d > 3, the following statements are valid.

A) Let a;,i=0,1,...,d, satisfy (3.4a), « = 2. Then S on TS*"! uniquely determines
Y y

at. i=0,1,...,d, on R? for any w € S41.

(B) Let a;, i =0,1,...,d, satisfy (3.4b), a = 2. Then S on TS*"! and (3.4b) uniquely

determine a* ., i=0,1,...,d, on R? for any w € S%1.

w,i?
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The proof of Proposition 6.4 is similar to the proof of items (3), (4) of Theorem 6.1.

Theorem 6.2 follows from Proposition 6.4 and the fact that, under the assumptions
in question, a;, ;, i = 0,1,...,d, on R? for fixed w’ € S¥! and s € {+,—} uniquely
determine af,i, i=0,1,...,d, on R? for any w € S41.

Using Theorem 6.2 we obtain the following generalization of Corollary 6.1.
Corollary 6.2. Let the assumptions of item (A) for fixed € in (3.4a) or (B) for fixed r in
(3.4b) of Theorem 6.2 be valid for a = (ag,a1,...,aq) and a’ = (ag, a,...,al;). Let the
scattering matrix S for a coincides on TS~ with the scattering matrix for a’. Then the
formulae (6.50) hold and, in addition, afy = h='agh. In addition: under assumptions of
item (A) of Theorem 6.2 for fixed € in (3.4 a), the formulae (6.51) hold; under assumptions
of item (B) of Theorem 6.2 for fixed r in (3.4b), the formulae (6.52) hold. If, in addition,
a;, al, i=0,1,...,d, take values in u(n), then h takes values in U(n).

7. Non-trivial transparent SU(2)-connections in dimension d = 2

The equation (1.3) for d = 2 for any fixed complexified § € ¥ = {# € C? | 62 = 1},
05 # 0, can be written in the form

(CV1 —Va)p(z,() =0, zeR?* (eC, (7.1)

where p(z,¢) = ¥(x,0), ( = —01/62. Due to [19], we have the following statement.
Let 4 € C\R and f be a function of € R? of the form

f(z) =p(2)/q(z), where p,q are polynomials of z = z1 + pxs, (7.2)
where ¢ Z 0. Let
T RVET NI
so<,<)—<0 1>+C—u1+ff<f ff>, ¢eC, (7.3)
_ _a(roB (1 f
“=0 “2_81<1+ff<f ff))’ 74)

where 0y = 0/0x;. Then the equation (7.1) (with ¢, a1, as given by (7.3), (7.4)) is
fulfilled for all z € R? and ¢ € C and, in addition,

QO(J:’E)* :w(a’UC)ilv det(p(x7<) = (C_,B')/(C_,U')v £ €R27 C € (Cv (7 5)
as € C1(R?, su(2)) (i.e. ay € C™(R? su(2)) Vm € N), '

where * denotes complex conjugate transpose.
Note that if, in addition,
[l =degp—degq >0, (7.6)

then

. 1 0
‘xl‘linoosp(xv Q) =c(()= <0 (C—p)/(C - u)) , C€ (C\:U’v (77)

ag € C°OML(R2 su(2))  (ie. ag € C™!THR? su(2)) Vm € N). (7.8)
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Let
x(@,¢) = oz, O)(e(¢) (7.9)

where ¢, ¢ are given by (7.3), (7.7). Then the equation (7.1) with x in place of ¢ and
with a1, ag given by (7.4) is fulfilled for all 2 € R? and ¢ € C and, in addition,

(10 1 op—p. 10 1 p—p 1 p—p (0 f
X("O‘<o 1>+s—u ”ff<f 0>+C—u1+ff€“—u1+ff<0 —1>’
(7.10)
x(#,¢)" = x(x,¢)7",  detx(z,() =1, (7.11)

where z € R?, ( € C.

For y from the beginning defined by (7.10), it is a statement contained in [18] that the
equation (7.1) with y in place of ¢ and with a1, az given by (7.4) is fulfilled for all x € R?
and ¢ € C. It seems, however, that the formula (7.9) relating a construction of [19] and
a construction of [18] is new.

If (7.6) holds, then

x(x, () =T+ O(\m|_l) as |z| = oo (7.12)

for any ¢ € C\(p U fz) and uniformly in ¢ € R, where I is the 2 x 2 identity matrix and
we consider O(|z|~!) using the norm (2.6).
Let

P(z,0) = x(x,—01/6:), x€R* HecX={0cC?|0*=1)}, (7.13)

where we assume that x(z,00) = I. Let (7.6) hold. Then the equation (1.3), d = 2, with
ai, as, ¥ given by (7.4), (7.13) is fulfilled for all z € R? and # € X and, in addition,

Y(x,0) =T+ 0(z|™) as|z| = oo (7.14)

uniformly in § € S*. Therefore, the considerations given in this section imply the following
result.

Theorem 7.1. For the equation (1.3), d = 2, with a1, as given by (7.4), where (7.6)
holds, the following is valid:

(1) the wave functions ¥* = 1, where 1) is given by (7.10), (7.13) for 6 € S*;
(2) the scattering matrix S = I;

(3) the formulae (7.8), (7.14) hold;

(4) the gauge field a = (a1, az) considered up to the gauge transformations (1.6), d = 2,
g € CH(R?,GL(2,C)), differs from a’ = (0,0).

Remark 7.1. A similar result is valid also if aj, ay are given by (7.4), where | =
degp —degq < 0.
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If a = (a1,a2) is a gauge field of Theorem 7.1, then a; = 0, ay € CH(R2 su(2))
and a generates a SU(2)-connection on 7 (by means of (1.2), d = 2), where 7 is the
trivial vector bundle over R? with the fibre C2. Since, in addition, S = I, we say that
this connection is transparent. Since, in addition, we have item (4) of Theorem 7.1, we
say that this connection is non-trivial.

8. The attenuated X-ray transform as a reduction of the non-abelian
Radon transform

Consider the equation (1.9) for the case when

. (751 v
-2 a;=0 fori=1,....d, ay= , 8.1
n=2 a or i ag (0 u2> (8.1)

where

u1, us2, v are complex-valued sufficiently regular functions on R?

sufficiently rapidly vanishing at infinity, (8.2)

for example,
Uy, ug, v € C¥1FE(RY,C)  for some o > 0 and € > 0. (8.24)

For this case the equation (1.9) takes the form

_ (1/111 1/’12)
Vo1 Yoz )’
00,11 + u1(2)P11 + v(x)a1 =0,
00,112 + w1 (@) Y12 + v(x)h22 = 0,
(
(

)

)
00,121 + uz(w)h2r =0,
00,1022 + ua(x)1haa = 0,

and its solution ¢ specified by (1.5) is given by the formulae

77[11+1 (:L', 9) = eXp[—D,9u1 (1‘)]7
Uiz(x,0) = — exp[=D_guy ()]

0 T € Rd,
x / exp[D_guyi(x + t0) — D_gus(z + t0)]v(z + ) dt, 5 si-1
—oo € )

reRY fesi (8.3)

b3y (,0) = 0,
135(, 0) = exp[—D_guz(2)],

(8.4)
where Dy is defined by (3.21). Therefore, under the assumptions (8.1), (8.2), the scatter-
ing matrix S for the equation (1.9) takes the form

S11 Sio
S = , 8.5
<521 522> (8:5)
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where
S11(7) = exp[—Pui(7)]
ng; _ o,exp[PUQ( Wormt@ 4 ¢ g, (8.6)

Sa2(77) = exp[—Puz(v)],

where P is the classical X-ray transformation, P, is the attenuated X-ray transformation;
the transformations P and P, are defined by the formulae

y) = /Rf(x + s6) ds, (8.7)

Puf(2) = [ expl=Dona +s0)}f(a + 36) ds, (8.8)

where f and p are complex-valued sufficiently regular functions on R? sufficiently rapidly
vanishing at infinity, f is a test function, p is considered as a parameter (attenuation
coefficient), v = (z,6) € TS?! presented by (3.17), Dy is defined by (3.21).

Thus, under the assumptions (8.1), (8.2) the non-abelian Radon transform S of the
collection a is reduced to the classical X-ray transforms Pu,, Pus and to the attenuated
X-ray transform P, _,v. The classical X-ray transformation P is a basic transformation
of the transmission tomography; the attenuated X-ray transformation P, is a basic trans-
formation of the emission tomography (see, for example, [13,15] and references given
there). The theory of the classical X-ray transformation P is well-developed for a long
time already (see, for example, [7,13]). Concerning results given in the literature for the
attenuated X-ray transformation P, see [4,13,15] and references given there. Explicit
inversion formulae for the attenuated X-ray transformation P, in dimension d > 2 were
obtained only recently in [15] using techniques of [6,12,14].

Under the assumptions (8.1), (8.2,), the formula (8.5), well-known results for the
two-dimensional transformation P and the explicit inversion formula of [15] for the two-
dimensional transformation P, imply that the non-abelian Radon transform .S uniquely
determines ag.

Appendix A. Estimates for operators

We give, first, estimates for the operators Dy, Py, P~ defined by (3.21), (3.24), (4.23).
We use x4+ defined by (3.5) and 7y, Xy defined by (3.16).

Lemma A.1,. Let

feCut T (RY Minyrn), (A1)
[ fllo1+e,p < F1, (A.2)
116 14e,p < P2 (A.3)
where 0 < a<1,e>0, p>0, m,n &€N. Then
|D of (@) < ci(p,e, 0, 2)F, (A4)
[D-of(z+y) = Dof(z)] < cr(p, e, 0, 2)Fay|*, (A.5)
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y det 200+9)/2(1 4 x4 (A2))

c p,s,&x = ’ A6
! e(V2p + [mp| — Bux+ (—62))¢ (A0
|D_gf(x) = Do f(2)| < c2(p,e, 8,0,0',2)F|6 — 0", (A7)
(3+¢)/2 _ 1\ .\ \e
er(prer 5.0,0',2) def 2 (35 26 3x+(2max(0z,0 x) 1)(2max(fz,0'z)) )7
ey (Vap + min(maz], [mora)):
(A.8)

forz,y €R, |y <1,0,0/ €S, |10 -0|<1,0<B<¢, B<a, F=max(F, F).

Remark A.1,. Let (A.1), (A.2) be valid, where & = 0, ¢ > 0, p > 0, m,n € N. Then
(A.4) holds and D_yf € C(R%, Mypxr) for z € R, 0 € S 1.

Lemma A.1,. Let

f@) = x4(r = |z])g(z) forz e R, (A.9)
where
g€ CRY Mpyn), >0, myneN,
[f(@)| < Fy forz € R (A.10)
and

|f(x +y) — f(x)] < Faqly|® for fixed § € S*1, (A1)
forz,y e RY, |zl <r, |z4yl<r, Oy=0, Jy <1, 0<a<l '

Then

[D—of(@)| < cs(|moxl|,m) FY,

def
c(|mozl,r) = 2x4(r — |mo|)/12 — [mox?,

(A.12)
(A.13)
|D_gf(z +y) — D_gf(z)] < ca(r)Fly|?, (A.14)
(A.15)

cq(1) def 93/2,.1/2 + 2r,
forz,y € R4, 0y =0, |y <1, F = max(Fy, Fy 1), = min(%,a);

|D_of(x+y) — D_gf(x)] < Fily| forz,y € RY HeS¥1  my=0. (A.16)

Let (A.9), (A.10) be valid and, in addition,

z+y)— flz)| < Falyl®
) |fz+y) — f@)] < Flyl (A17)
forz,y e R |z|<r, |z4+yl<r, |y<1l, O0<a<l
Then
[D-of(x) — Do f(x)| < c5(r, ) |0 — 0", (A.18)
es(r, o) d:emeax(ﬂ'r, (2r)2t1), (A.19)
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TR |z| <7, 0,0 €S 10— 0| < 1, F = max(Fy, Fy);
|D_of() = Do f ()| < es(|l,m, a) FIO —¢'|7, (A.20)
ce(|x],ry @) o 2max (2% 201/ 2|z|V2 2r(|z| + )%), (A.21)
rERY x| =7, 0,0 €S 10— 0'| <1, F =max(Fy, Fy), 8 =min(3,a).

27

Remark A.1;. If (A.9), (A.10) are valid, then (A.12) holds and D_gf € C(RY, M)
for z € R? and (any) 0 € S~1.

Lemma A.2,. Under the assumptions of Lemma A.1,, the following estimates hold:
[ Pof ()|

|Pof(z+y) — Pof(z)
|Pof(x) = Py f(2)| <

in addition, for d = 2,

c1(p, e, 0, mpx) Fy, (A.22)
c1(p, e, 0, mox) Faly|®, (A.23)
(CQ(pv g, ﬁv 03 0,7 :L’) + CQ(pv g, ﬁv —9, _9/’ x))FW - 9/|B7 (A24)

<2
<2

|P0 (8)| C7(P,5, S)Flv (A25)
[Py f (s +0) — Py f(s)] < 2¢r(p, e, 5) Fa 0], (A.26)

def 2(1+5)/2

cr(p,e,s) = m, (A.27)

|Pg f(s) — Par f(s)| < cs(e, B)F|6 — 07, (A.28)
(5+€)/2 _ €

csle, )2 2 Z (3§_2ﬂ+3(%>), (A.29)

where x,y € RY |y| < 1,0,0/ €S 10 -0 <1,0< B<¢, f<a, F=max(F|, ),
5,0 ER, 0] <1

Lemma A.2,. If (A.9)—(A.11) are valid, then

|Po f(2)| < es(|mo|, ) F1, (A.30)
|Pof (2 +y) = Pof ()] < ca(r) Fly|” (A.31)
forz,y € R%, 0 € S71 |y| < 1, F = max(Fy, Fp), B = min(%,a).
If (A.9), (A.10), (A.17) are valid, then
IPof(x) — Porf(@)| < 2e5(r,0)Fl0 — 01" (4.32)
forx € RY, |z| <7, 0,0/ €S¥L 10— 0| < 1, F = max(Fy, Fy);
| Py f(x) — Py f(2)] < 2¢6(|z], 7, 0)F|0 — 0'|° (A.33)

forz € RY, x| =7, 0,0/ € ST, |0 — 0| <1, F = max(Fy, F»), = min(3, ).
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In addition:

(i) if (A.9)—(A.11) are valid for d = 2, then

P f(s)

< C3(|s|7T)F17
[Py f(s +6) = P f(s)] <

|
| <ea(r)Flo)°,

0eS, s, 6 €R, 8] <1, F=max(Fy, Fe1), = min(%,a);

(ii) if (A.9), (A.10), (A.17) are valid for d = 2, then
IBH1(6) = PE(5) < collsh ) FlO = 01
c9(|5|’ T, a) &of 16 max(?r, 37’1+D‘)’
0,0/ €SH |0 —-0'|<1,s€R, F=max(F|, ), = min(%,a).

Lemmas A.1 and A.2 are proved in Appendix B.

611

In the next lemma we present an estimate for the product of two matrix-functions.

Lemma A.3. Let
f€C¥ (RY, Mixm),
g e CQ’T(R%aMan),

0<a<1l,0>0,7>0,Y is a non-zero subspace in R%, I, m,n € N. Then

fg € CHTTT(RY, Mixy),
I fg lg

||fg||oz,(Y),cr+‘r,p < 21+min(077—)m”fHa,(Y),a,p”g”a,(Y),‘r,pv

0,0+7,p < m”f”O,a,p |O,T,p7

p=1l

This lemma is elementary.

(A.38)

(A.39)
(A.40)

(A.A1)

We give now estimates for the operators (D+v)?, p € N, and Pyvg, where Drgvg,

Pyvg are defined by (3.19), (3.20), (3.23), where v(z, 0) is defined by (3.3).
Lemma A.4,. Let (3.4a) be valid and
f € C*ORY, M)

where 0 < oo < 1. Then

| —

[(Dx6v)” f ()| <

|(nc1(pa57 ie?‘T)Ha’ 0,1+57P)p||f”07

3
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9(1+e)(p+1)
|(Dovo)” f (@ +y) = (Dov)” f(2)] < = (ner(ps &, 20, 2)alla,11e,)"
X || fllas0lyl, (A.44)
|Dxove f(2 +y) — Dxove f(2)| < 2nei(p,e, £0,2)lalla, 14,0/l flla0 (A.45)
204+ n|al| o1y
D p < & TEP a,0s A.46
(Do) (e, aag
2
(Dsava = Do) 1) < 20( 2 4 calp2,0,20,2 )
1, (A.47)
where
d
lalla+e,p = D llailla,ite,p, (A.48)
=0

forpeN, 2,y €RY, |y <1,0,0/ €S |0 -0|<1,p>21,0<B<¢ < a

Remark A.2,. Let (3.4a), (A.42) be valid for &« = 0 and some ¢ > 0. Then (A.43)
holds and (D+gvg)? f € CO°(R?, My, 51 for p € N, 6 € S41.

Lemma A.4p. Let (3.4b), (A.42) be valid, where 0 < o < 1. Then

1

|(Dx0v9)” f(z)| < ];(n ses(|mo, m)[[bllo)” [l fllo (A.49)
ca(r
Isov0 s < (EF + 3 N bl o,
j:l
(A.50)
|Dxove f(z +y) — Drovo f(z)| < nllbllol| fllolyl,  mey =0, (A.51)
1(Dx6v0)* fllg.0 < c10(r)(nlbll5.0)? 1 £ 15,0, (A.52)
c1o(r) def drey(r) + 22 + 2r, (A.53)
|(Dzove — Dxorver) ()| < 2ncrs (2], 7, @) |6l a0l flla0l0 — 617, (A.54)
e (|zl, r, @) def max(cs(r, ), c(|z], 7, @) + 7, (A.55)
where

d

1Blla0 = > lIbillacos — 1IBllo = [[Blo.0, (A.56)

forpeN, z,y R4 0,0 €S |0-0'|<1,8= mm(z,)

Remark A.2p. Let (3.40), (A.42) be valid for o = 0 and some r > 0. Then (A.49) holds
and (D+gvg)?P f € COO(RY, M,y 5y, for p €N, 6 € S41.

Lemma A.4 is proved in Appendix B.
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Lemma A.5,. Under the assumptions of Lemma A.4,, the following estimates hold:

|Pova f(x)] < 2nci(p,e,0, mox)||allo,1ve,pll fllo, (A.57)

| Pove f(x +y) — Pove f ()| < 4nci(p, €, 0, mox) olyl?, (A.58)

|Pyve f(z) — Pyrvg f(2)| < nera(p,e, 3,0,0,2)||alla14e0ll fllaol0 — 07, (A.59)
d f

612(p35aﬂa039/ax) (62()0’8 ﬂaa 9, )
C2

+ (pa<g 57 67—917.'1?) +Cl(p7579/7ﬂ-0’x))7 (A6O)

in addition, for d = 2,

|Pgroaf (s)] < 2ncr(p, e, 8)llallo,ive,oll fllos (A.61)

|Pirvg f(s +6) — Pirugf(s)| < 4ncr(p, g, 5) (A.62)
1Pg 00l c.vmp < 4n2(t+e)/2— (A.63)

|Pgrvaf(s) — Pyrver f(s)| < nerz(e, B)|alla,i+e 7, (A.64)
cis(e, B) % 2(es(e, B) + er(p, <, 0)), (A.65)

where 7,y € R?, |y| < 1,0,0/ € ST |0 -0'|<1,0<B<e,B<a,50€ER, [0 <1

Lemma A.5,. Under the assumptions of Lemma A.4,, the following estimates hold:

|Pove f ()] < nes(|mox],r)|[bllo] f]lo, (A.66)

0 < 2nea(r) (A.67)

| Povg f(x) — Pyrve f ()] < 4near (x|, 7, a) |8, (A.68)

in addition, for d = 2,

|Pgrvaf(s)] < nea(lsl,r)|1llo]lf o, (A.69)

1P5v0 flls.0 < 2nca(r)| ).05 (A.70)

|Py-vaf(s) — Pyroe f(s)| < newa(lsl,r, a) 17, (A.71)
c1a(|s],m, @) & 2¢q(|s], 7, ) + 03(\8\,7“), (A.72)

where z € R?, 0,0/ € S71, |10 — 0’| < 1, s € R, 8 = min(3, a).

Lemma A.5 follows from Lemmas A.2, A.3.
We present now estimates for the operators H, Hy defined by (4.24), (4.80), (4.82).

Lemma A.6. Let f € C**(R, My,xn), where 0 < a < 1, ¢ >0, m,n € N. Let Hy f(s)
for s € RUCy be defined by (4.80), (4.82). Then

g_Hif( )=0 forseCy (A.73)
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and the following estimates hold:

[Hx f(s (@, &) fllae (14 [s) ™, / } (A74)
[Hy f(s+0) — Hi f(s)| < crs(a, &) || fllael0]* (1 +Is)) 7=,

)l
)|
Ho f(s)] < mia,g,e’)pE”‘EIIfIIw,p(H|S|)_El’ } (A.75)

< C15
<

|Hf(s+0) = He f(5)| < cas(,”,€)0% | Fllae ol (1 + [s]) ¢

C15(Ot, g, !

is a positive constant,
for s,s+0 € RUCL, |0| < 1,0< e <min(l,e), e <e”" <¢e, p>1.
The formulae (A.73), (A.74) for m,n € N follow from these formulae for m =n = 1.

For the latter case these formulae were given in Lemma 1.3 of [3]. The estimates (A.75)
follow from (A.74) and the inequalities

[fllaer < Nfllaerp < 07 " fllave.ps (A.76)
0<a<l,0<e"<e, p=1.

Lemma A.7. Let f € C**(R, My, xn), where 0 < o < 1, ¢ >0, m,n € N. Then

Hf € C% (R, Myxn), (A.77)
||Hf||a e X 015(aa€a€/)‘|f||a,€a (A78)
1 H fllaer < c15(ae”,€)p" = fllae.s (A.79)

for 0 <&’ <min(l,e), e’ <&’ <e, p=21;

1H fllo < 2(m@) || flla,00% + 27~ (|1 1n8] +1n7)| fllo + c16(e, B) fllo..r 7, (A.80)

c16(e, B) is a positive constant

for0 <6< 1,7>1,0< 8 <min(l,e), where || f|ho < [|f]ls0.:-

The formulae (A.77)-(A.79) follow from (4.79), (A.74), (A.75).
The estimate (A.80) is proved in Appendix B.
We give now estimates for the operators G gvg defined by (4.14)—(4.16) for d = 2.

Lemma A.8,. Let (3.4a), (A.42) be valid, where d =2, 0 < o < 1. Then

|G v f ()] < merr(a,e,e,e")p™ == (14 |67 2)) ™ [alla12,0l fllao, (A.81)
cr(ay e, e, ") X g1t 23 + 2¢15(a, ", ), (A.82)
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|G1 v f(x+y) — Grovof(x)] < neis(a,e,e,e”)
x o TS (1410 2)) " lallave ol Fllaolyl®, (A.83)
cig(a,e,e’,e”) def e 120+")/2(3 4 2¢15(a, €”, €')), (A.84)
IG+.6v6flla0 < ners(a,g,0,6")p" % lallasenll o, (A.85)
G t,0v0f(2) — Gaorve f(2)] < nerg(e, e, B)(1 + [z]%)

* [lalla,i+e1 ]l fllao(1 + |0 — 6'[])]6 — 6|7,
(A.86)

/

cio(a, €, 3) is a positive constant,
where 7,y € R?, |y| < 1, 6,0/ € S', |06 —0'| < 1,0 < ¢ < min(l,¢), ¢ < &’ < ¢,
0<fB<e f<Lap=1.

Lemma A.8p. Let (3.4b), (A.42) be valid, where d = 2, 0 < a < 1. Then

|Gt gva f ()] < 11+ c15(B,e,€))(2 + r)fea(r) (1 + |01 z]) =
x [16lls,0ll fll,(x6),05 (A.87)
|Gx0vof(x+y) — Geovof(x)| < n(2+ c15(8,¢,€"))(2 + 7)°ca(r)
x (1+160%2]) = |Ibll g0

Fllg.xoolyl?, v € Xo,

(A.88)
1G+.6ve fllp,(xq),0 < nc20(B,,7)[bl 5.0l fll 3. (x0),05 (A.89)
def

c LELT) = ¢ ,€,0)(2 4+ 7)%cq(r),

20(f )def 21(83,€,0)(2 + 7)%ca(r) (A.90)
021(576,51) =2 + Cl5(ﬁ3535/)a

|G+.9vof(z+y) — Gxovg f(x)| < nllbllo] fllolyl, moy = 0, (A.91)
1(G+.0v6)* fllg.0 < n’caa(B,,7)(1bllg.0)° [ 1 5.0, (A.92)
C22 (6a g, ’I") dZEf C20 (6a g, 7‘)(1 + c20 (/67 g, ’I")), (A93)

G000 f(x) — Gx0vp f(2)| < neaz(B,7) (1 + |z]M/?)
x |bllgoll fllg,o(1+1n|0 —¢'])]6 — 6'|°, (A.94)

co3(B, 1) is a positive constant,

where z,y € R?, |y[ < 1,0,6' € S*, [0 —¢'| < 1,e> 0,0 <& < min(l,¢), 8 = min(3, a).

Lemma A.8 is proved in Appendix B.
We give now estimates for the operators Gyvy, Cay, Ca_ defined by (4.32)-(4.35),
(4.43)—(4.46), where v(z, \), a1 (z) are given by (4.29), (4.30).

Lemma A.9,. Let (3.4a), d =2, be valid and

f € 0¥ (C, Mpxm), (A.95)
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where 0 < o« < 1. Then

|Gava flla,0
lGxvafllo

neig(a,e,0,€”)p°
e e (1— )

X (lla+]lo,1+¢,p + [Alllaollo,1+e

for |\| #1, (A.96)

//\ //\

) fllo
for |\| <1, (A.97)
[(Gava — Cay) fllo < 4nep== (1 — [AP) A
x (laollo,14e.p + I (layllo,14e,0 + lla—llo,1+¢,0) [ fllo
for |\| <1, (A.98)
[Groafllo < 4ne™'p~=(1— |A|7%)~!
X (lla—llo,142.p + IX 7 laollo,te.o + M laglloa+e.0) [ fllo
for [\| >1, (A.99)
1(Gava = Ca_)fllo <4ne™'p~=(1— A7)~ A
X (llaollo4e.p + A7 (lasllo,14e.0 + lla—lo,14<,0)) 1 fllo
for [\| > 1, (A.100)

where 0 <&’ <e, p>1,AeC.

Lemma A.9p. Let (3.4b), d = 2, and (A.95) be valid, where 0 < o < 1. Then

1Gxoxfllgo <L+ c20(B,e,m)[[bllg0ll flls.0, for [A[ # 1, (A.101)
1(Gava)* fllg.o < ne2a(B,€,7)([1Bll5,0)° ]| 1l 5.0 for [A[#1,  (A.102)
IGxoafllo < 4nr(1 =A%) " (llatllo + Mlaollo + IMlla—lo)[L.fllo

for |\| <1, (A.103)
1(Gava = Car) fllo < 4nr(L = IA2) 7 A (llaollo + [A[(lla+llo + la—[lo)]lfllo
for |\| <1, (A.104)
IGaoafllo < dnr(1 = X727 (llallo + [N laollo + A [l [lo)l| £llo
for [\| > 1, (A.105)
1(Gava = Ca) fllo < dnr(L— A7) THAI™!
% (laollo + A" (lax lo + la_lo)l|fllo for [\ > 1, (A.106)
where ¢ > 0, # =min(},a), A € C.
Lemma A.10,. Let (3.4a) be valid, where d =2, 0 < aw < 1. Let f € L>®(C, My xm)-
Then
G0 fllg.er < meaa(e e, B)p" ~=(1+ AP)(1 = [AP) 2

o+ AP lalloase.p)[1fllo
for |A| <1, (A.107)

ICay fllg.er < mesale, e, 8" [l o140 llos (A.108)

X (llayllo,1+e
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G A fllg.er < neaale e’y B)p% ~5(1+ A7) (1 — A7) 72
X (la=lloate,p + A aollo, 14,0 + A "2llatllo,14<.0) 1 Fllo
for A > 1, (A.109)

ICa—fllg.er < meaa(e,e’s )" =lla—llo,1repllf o (A.110)
c24(g, €', B) is a positive constant,
where 0 < &’ <min(e,1),0< <1, p>1,AeC.
Lemma A.10p. Let (3.4b) be valid, where d =2, 0 < a < 1. Let f € L>®(C, Mpxm).

Then
IGavafllg1 < neas(B) max(r' =7, 72) (1 + [A2)(1 = [A]*) 72
x (||a+||o+\/\||\ao||o+|>\| lla—{lo)Il.fllo for Al <1, (A.111)
ICay fllgn < neas(B) max(r' =%, 72)[lat o fo, (A.112)
1Gxorfllg < neas(B) max(rt=7, ) (14 [A]72) (1 — A7)
x ([la— Ho+|/\| 1Hao||o+|)\| lapllo)Ifllo for A >1,  (A.113)
ICa fllg,1 < neas(8) max(r' =%, 72)[la—lo] flo. (A.114)

co5(0) is a positive constant,
where 0 < 3 < 1.

Lemmas A.9 and A.10 are proved in Appendix B.
We give, finally, estimates for the operators C’, C’ defined by the formulae

C'o(z) = 0,Cp(2), C'o(z) = 0:Cop(2), (A.115)
where C, C are defined by (4.45), (4.46), 0, = 0/0z, 0 = 0/0%, ¢ is a test function.
Lemma A.11,. Let ¢ € C*¢(C, M, xn), where 0 < a < 1, ¢ > 0, m,n € N. Then

Jp € C% (C, Mumxn), (A.116)
[T¢llaer < c26(ct&,€)[@llaes (A.117)
ca6(a, g,€') is a positive constant,
where J = C" or J = C’, 0 < & < min(2,¢).
Lemma A.11,. Let
p(2) = x+(r = [2))v(2), ¥ € C¥(C, Munxn), (A.118)
r>0,0<a<1, mné&N. Then
Jp € CY* (2,5, Mmxn), (A.119)
2,5 ={z€C||lz|—r| =20}, 0<d<m, (A.120)
176l @ 5.0.2 < carla,,0)|9]a,0, (A.121)

car(a, r,0) is a positive constant,
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| To(2)] < cas(e, )1+ [2) 7 [[¢]lao for z € C, (A.122)

cos(a, 1) is a positive constant,

where J = C" or J = C".

Appendix B. Proofs of estimates for operators

Proof of Lemma A.1,. First,

(A.2)
ID_of(2)] < Fili(x,6), (B.1)

I ( G)d—ef/o &
O o+ mew + 60z + )

</° dt
S Jeoo (p 2712 (|mga| + [0 + t])) e
Ou 2(1+2)/2 4
/,oo (21/2p + |mpx| + |s|)1+e

I (2,0), (B.2)

9(1+¢)/2
e(2Y2p + |mgx| — Ox)°
I 0) < 262 for 6 0
’ X > 0.
2(x, 0) S+ ]’ or Oz

The estimate (A.4) follows from (B.1)—(B.3). Second,

Iy (z,0) = for 6z <0,

0
ID_gf(x +y) — D_of(x)] < / [zt y+t0) — f(x+ t0)|dt

(A.3)
< Bly|*LL(z,0). (B.4)

The estimate (A.5) follows from (B.4), (B.2), (B.3). Third,

0
ID_of(x) — D_g f()] < / o +10) — f(x+ 0] dt

— 00

:Ig(x,9,6") +I4(£L‘,9,9/), (B5)

—|6—6'|71
13(%9,9’)‘*:&/ F(z+10) — flz+ 10')| dt

— 00

—l6—0'|71 —|6—6'|7?1
g/ |f(x+t9)|dt+/ F(z + t0)| dt

(A.2)
< F1(I5(.13,9,9/)+15($,9/,9)), (BG)
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0.0 %t o= dt
I x? b =
ol ) /_oo (p+ 2712 (mpz| + [0z + t]))1+e
Oz—|0—0"| "1 9(1+e)/2 4
:/ i : (B.7)
—o0 (21/2p + |mox| + |s])1F<

2(1+a)/2|9 _ 9/|a
=+ (272 + [mge] — 02)[0 — 0])F

I5(x,0,0") = for |0 — 6’|~ > 6z,

Is(x,0,0') < e 12043210 —¢') for 0x|0 — 0| < L, (B.8a)
9(3+¢€)/2
e(21/2p + |moz|)

I5(x,0,0") < everywhere, (B.8b)

(3+6)/2X+ (201. _ 1)
@72 + [roal)

2 20x)°
15(x,0,0’)<51(2<1+3€>/2+ ( 2) >|99’|€ for |6 — 0’| < 1,

(B.9)
0
14@,9,9/)@/ \f(z +10) — f(z + t6")] dt
—|6—0’|—1
4 /° Fft(0 —6")|* dt
= S (o |+ 2O
0<f<e, B<a /0 Fylt|? dt 0— /)P
h o—er-1 (p+ 2712 (|moa] + |02 + t])) <
/09: 2(1+5)/2F2\3—0x|5ds \0—9/|ﬁ
—o (212p + |mgx| + |s])1Fe
< 2092y (Ig(2, 0) + I7(2,0))|0 — 0')°, (B.10)
Ox I6]
def |s|” ds
Is(z,0) =
@0 [ o e T
/GI ds
<
oo (212p + |mg| + |s|)1He0
2
< , B.11
D)@ 1 [maa) 7 (B11)
Ox
|0x|° ds
Ir(z,0) =
"(,9) /,oo (212p + |mox| + |s])1+e
2 1 X+ (0 — 1)(0x)?
< - s B.12
g<(21/2p+|m|)eﬁ " (21/2p + |mgu|)® (B.12)

where 0 < 8 < €, 8 < a. The estimate (A.8) follows from (B.5), (B.6), (B.9)-(B.12).
Lemma A.1, is proved. a

Proof of Lemma A.1p. Let
A;,e,r ={s€]—00,0]||x+ s8] <7} (B.13)
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and A, | denote the length of A, . Note that

r°

< 2x4 (12 = |mpz|2) /12 — |2 (B.14)

To prove (A.12), under the assumptions (A.9), (A.10), it remains to note that

z,0,r

A5

x,0,r

Doof@l< [ Fids=FRla,,| (B.15)
z.0.r

Consider now A 2.0 and Ax+y 0.0 Ay = 0. Suppose that

|A9c+y 0,r < A;,Q,r : (B]-G)
Then

A;—i—y,@,r g Am_,eﬂ‘) (B17 CL)
1Az 0.0l = [Aaiy 0.1 < 2v/2ryl. (B.17b)
The proof of (B.17b) consists of the following. If [A ", | = 0, then (B.17b) holds. If
Aol = 145y 00 S 2(V/12 = [mozf? — /12 — (Impz| + h)?) (B.18)

for some h such that 0 < h < |y|, |mpx| + h < r. Finally, for 0 <I< I+ h <7,

l+h r

tdt tdt

V2= 2 \/r2 (I + h)? / 7</ S
! 2_t2 r—h 2

r r? —t2
=+/r2—(r—h)2 < V2rh. (B.19)

Taking into account (B.14), (B.17), to prove (A.14), under assumptions (A.9)—(A.11),
(B.16), it remains to note that

Dol +n) =Doof@I < [ Rulyias [ Fuds

Aty.o,r Ao\ iy o

_F2 1|Ax+y6r||y|a+F1<‘A |Az+y0r|) (B20)

rﬂr‘

The estimate (A.14) for the general case follows from this estimate for the case (B.16).
The estimate (A.16) follows from (A.9), (A.10) and the formula

%D_ef(x +t0) = f(z +t0). (B.21)

Consider now /1;9,7, and A;79,7r. Consider, first, the case |z| < r. Suppose that

1Az 0.1 < 1A g0 .l (B.22)
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Then
Aa_:,e,r g Aa_:ﬂ’,r’ (B23 CL)
Ay gl = [Ag g | < 7r]0 — 6] (B.23b)
The proof of (B.23b) consists of the following. Suppose that d = 2. Consider A;@(cp) , for

x=(1,0),0<I<r, 0(p) = —(cos p,sinp). We have

\/1;9(@ | =—lcosp+ \/m7 (B.24a)

d _ lcos
— |4 :lsingp<1—), B.24b
<d(p> x,@((p),r' \/m ( )

d\, -
() emo

< 2r. (B.24¢)

Therefore,

||A;9(¢/),7-| - |A;9(¢),r|| < 2rfp — <PI|

2

N
3

X

272 arcsin %|9(<p) —0(¢")|

<
< mrlo(e) — 6(¢)]. (B.25)

Therefore, (B.23b) holds for d = 2 and as a corollary for d > 2. From (A.9)—(A.11),
(B.23) it follows that

|D_gf(x) — D_g f(x)]

g/ |f(x+59)ff(:c+st9’)|ds+/ |f(x + s6')|ds
A;,O,r A;yg/’r\A;,G,r
2r|6—6'|<1

< @) R0 - 0|+ TFyr|0 — 6. (B.26)

On the other hand, from (A.12) it follows that
|D_gf(z) — D_g f(x)| < 4F14. (B.27)

From (B.26), (B.27) it follows that (A.18) holds, under the assumptions (B.22) and, as
a corollary, for the general case.
Consider, finally, A A g . for the case |z| > r. Suppose that (B.22) holds. Then

x,0,r°

A;ﬁ,r < A;:,G/,r’ (B28 (l)

Az 00 | = 145 0,01 < 24/2r]]|0 — 0] (B.28b)

1,077‘|
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The proof of (B.28) consists of the following. Suppose that d = 2. Consider A 0(e).r for
x = (=1,0), r <1, 0(p) = —(cosp,sin ). We have

AL ooy = [—54,—s_], (B.29a)

s+ =lcosp £ 1/r2 —[2sin? p, (B.29b)
|A;9(¢) =242 =12 sin? ¢ for |sin | < r/l; (B.29¢)

d l
<>s_ = Zsingo(l + W) >0, (B.30a)
de V2 = 2sin® o
d l
()s+ = lsing@(—l - COS"") <0, (B.30b)
de r2 —12sin” o
d - .
(dQD) |A$,9(Lp),7" < 0 for0 < 2 < arcsm(r/l) < 77/27 (B30 C)
A;e(wﬂ, =( for |sing| > r/l; (B.31)
_ _ 0’ <p</2 (B.19) : i
|Am,0(ap’),r| - |Am,0(ap),r| § 2\/21"” Sin ¢ — s (p"

< 2/200[6(5) - 0(¢)]- (B.32)

Using these formulae we obtain (B.28) for d = 2 and, as a corollary, for d > 2. Using
(B.28) we prove (A.21) in a similar way with (A.19). Lemma A.1; is proved. O

Proof of Lemma A.2,. The estimates (A.22)—(A.24) follow from (A.4), (A.5), (A.7)
and the formulae

Pyf(x) = D_gf(x) + Dof(x), (B.33a)
Py f(x) = Ppf(mox). (B.33b)

The estimates (A.25), (A.26) follow from (4.23), (A.22), (A.23). The estimate (A.28)
follows from (A.24) and the formula

POLf(S) - PG'L’f(S) = P@f(x(97 917 S)) - P9’f<x(070/5 S))> (B34)
where x(0,0',s) = s0- + t0 = s6'+ — t0' for some t = t(0,6', s), where, in particular,

0'|<

10—0'|<1
[t = [sll0 = 0')//A—10—012 < [s]/V3.

Lemma A.2, is proved. O

Proof of Lemma A.2,. The estimates (A.30), (A.31) follow from (A.12), (A.14),
(B.33b) and the formula

Pyf(a) = lim D of(x+s0) (B.35)
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The estimates (A.34), (A.35) follow from (4.23), (A.30), (A.31). The estimates (A.32),
(A.33) follow from (B.33a), (A.18), (A.20). The estimate (A.36) follows from (A.32),
(A.33), (A.34) and the formula (B.34), where, in particular,

9—6'|<1
o] = |s|/V/1—10—0']2/4 < 2[s|/V3.
Lemma A.2; is proved. |
Proof of Lemma A.4. We use the formulae
(D_gva)'f(a / / Vol Oos1s - sp) o+ (51 oo+ sy)0) dsy - dsy
P P
(B.36)
where p € N, x € R?, § € S4-1,
Vo(z,0,81,...,8p)
p—j+1
—_—~
=v(x+5p0,0) x - xv(@+(sj+--+5p)0,0) x - xv(x+ (s1+ -+ 5p)0,0);
P
(B.37)
‘/;l)(x+ya0a317~'~78p)f('r+y+(81+"'+S;D)9)
—Vp(2,0,81,...,85)f(x+ (s14+ -+ 5p)0 ZQP’J’ (B.38)
where p e N, 2,y € R, € S s, €R,i=1,...,p,
QP,O = ‘/P(I +y705517 .. '7517)
X (f@ty+ (it et s)f)— @+ (it ts)0),  (B39a)
Qp,l_ (x+y79825"'7 )
X (W@+y+(s1+--+5p)0,0) —v(@+ (st + - +5p)0,0))
X [+ (514 + 5,)0), (B.390)
Qp,2 - ($+y79 83, .. )
( (x +y+(32+-~-+sp)9,9)—v(x+(32+---+sp)6,9))
x Vi(z,0,81,...,8p)f(@+ (s1 4+ +5p)0) (B.39¢)
for p > 2,

Q;D,j = V;D—j(w +ya075j+17 o '7513)
X (v +y+(sj+--+5p)0,0) —v(x+ (s;+---+5p)0,0))
X Vi_i(z,0,s1,...,8j—2,8j—1+ -+ sp)f(x+(s1+---+sp)0) (B.39d)
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for 3 < j < p, where Vj = 1;

0 0 p p p
,0, s; | dsy---ds —/ dty---dt x,0,t
/ / H cp( Z ) b P 0<ty <ta <<ty ! P H #l 2

- k=1 i=k k=1
1 0 p
== (/ o(z,0,t) dt) (B.40)
P \J-
for p(x,0,-) € L*(] — o0,0],C).
Under the assumptions (3.4a), (A.42), 0 < a < 1, the following estimates hold:
‘Vp('T? 97 S1y--vs S;D)f(x + (81 +o SP)0)|
p p 1+e
< GlalossepPIflo T (4o + (0)9]) (B.41)
k= i=k

p 14¢€

@il < 20490 (a4 12.,) |f||ao|yaH(p+ w(Z&-)@) ,
k=1 i=k

(B.42)

S|

where p € N, j €NUO0,0<j<p, z,y €RL |y <1,0 €S4 L p> 1.
Under the assumptions (3.4 b), (A.42), 0 < a < 1, the following estimates hold:

[Vo(z,0,81,...,8p) f(x+ (s1+ -+ 5p)0)]

< (nlollo)”11 f1lo ﬁ X+ (7“ — e+ (Zp: si)OD, (B.43)

k=1 i=k

x4yt (is)@‘) (B.44a)

i=k

p
1@l < (b0} 1 15, cx0r0l81® T x+ ( -

k=1
0 0
‘/ / Qpjdsy---ds

<

n|Vo—j(@+y,0,8541,...,5p)

0
></ (v(z+y+ (s +-+5p)0,0) —v(x+(s5+ - +5)0,0))
X gj—1(x + (s + -+ 5p)0,0)ds;|, (B.44b)

where

gj-1(z,0) = / / Vii(@,0,s1,...,85-1) f(x + (s1 4+ -+ 5;-1)0) ds1 - - - ds; 1,
s (B.44¢)
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‘/0 (v +y+(s; +1)0,0) —v(x + (s; +1)8,0))h(z + (s; +1)0) ds;

< nea(r)[bllsollkllolyl®  for b € COO(RY, M), (BAdd)

where p,j € N, j < p, VOZ]-axERdayGX@a |y‘ 1, ﬂ HIIH(;,CV)

Every estimate of Lemma A.4 for (Dpuvg)Pf follows from the related estimate of
Lemma A.4 for (D_guvg)? f. Taking into account this fact we complete below the proof of
Lemma A 4.

The estimate (A.43) follows from (B.36), (B.41), (B.40), (A.4). The estimate (A.44)
follows from (B.36), (B.38), (B.42), (B.40) and the formula

P 1+¢)(p+1
S 2+ = 20IEED 1052 iy o) (B.45)

2(1+e) — 1
The estimate (A.45) follows from (A.5), (A.41). The estimate (A.46) follows from
(A.43), (A.44). The estimate (A.47) follows from (A.7), (A.4) and the formula

D_gvof — D_givg f = (D,g — D,G/)Ugf + D,Q/(’Ug — vg/)f. B.46)

(
The estimate (A.49) follows from (B.36), (B.43), (B.40), (A.12). The estimate (A.50)
follows from (A.49), (B.36), (B.38), (B.44), (B.43), (B.40), (A.12). The estimate (A.51)
follows from (B.21), (A.40). The estimate (A.52) follows from (A.49)—(A.51). The esti-
mate (A.54) follows from (A.18), (A.20), (A.12), (B.46).
Lemma A.4 is proved. O

Proof of (A.SO). We have

str oo t—s|l—r
/*“ (1) - ( [ / VAl g [ Wl
s—r |t75| s—r +6 ‘t78| s—4 |t75|

=2[| flo(nr —Ind) + 20| f]]7,,06%, (B.48)

J G X Py g ST
oo |t — s e e A T R

< const.(a,ﬂ)r_ﬁHfHoﬁ. (B.49)

The estimate (A.80) follows from (B.47)—(B.49). O

Proof of Lemma A.8. The estimate (A.81) follows from (4.22), (A.43) with p = 1,
(A.63), (A.79). The estimate (A.83) follows from (4.22), (A.45), (A.63), (A.79). The
estimate (A.85) follows from (A.81), (A.83). The estimate (A.86) follows from (4.22),
(A.47), (A.79), (A.80) with 6 = |0 — 0’|, r = |0 — ¢'| 7, (A.63), (A.64) and the formula
HPjvgf(0+2) — HPyrvg f(0'* )
= H(P;tvgf — Pyrvg f) (0 2) + (HPjrve f (0 x) — HPsbvg: f(6'41)). (B.50)
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The estimate (A.87) follows from (4.22), (A.49) with p = 1, (A.69), (A.70), (A.78) and

the estimate 5 E

((1:|ZI))E >xi(r+1—]s]), seR. (B.51)

The estimate (A.88) follows from (4.22), (A.49) and (A.50) with p = 1, (A.69), (A.70),

(A.78), (B.51). The estimate (A.89) follows from (A.87), (A.88). The estimate (A.91)

follows from (4.22), (A.51). The estimate (A.92) follows from (A.89), (A.91). The estimate
(A.94) follows from (4.22), (A.54), (B.50), (A.79), (A.80), (A.69)—(A.71).

Lemma A.8 is proved. ]

Proof of Lemma A.9. The estimate (A.96) follows from (A.85), (4.39), (4.40), the
boundedness of Gvy f(z) with respect to A at fixed z and the maximum principle for

holomorphic functions.
The proof of (A.97), (A.98) consists of the following:

—1
Gror s < Il / Aot 'T;“f ;'T(LA'_ 29 a
<nr(1 |>\|

X (latlloate,p + [Mllaollo,ite.o + A lla=ll0,142,0) 1 f lo

d¢r dG
| @ (52
e ity | QL NP Q1 oo Q)
(G = Car)f(2)] < sy | ISR LRt agrag

[Al<1
< (- IAI2>‘1IA\

X (laollo,1+e,p + [Al(llatlloa+e,0 + lla~llo,14¢,0)) 1 Fllo

d¢r d¢q
B.53
. /@ =0+ DT (B-53)

d¢r d¢ _ ( ) d¢r d¢q
c lz=Clp+I¢hHe /|g<z—4|+/¢|;|z—c| |z = Cl(p + [¢])He
d(r d(r dr d(r
< [ e e,
/|<|<|z—g ICI(p + [¢])1Te - /|g|>|z—g |z = Cl(p+ |z — ¢)tTe

d¢r d¢r
<2 SR
s /c|c<p+|c|>l+f
= 4me~tp7E. (B.54)

The proof of (A.99), (A.100) is completely similar to the proof of (A.97), (A.98).

The estimate (A.101) follows from (A.89), (A.91), (4.39), (4.40), the boundedness
of Gyvyf(z) with respect to A at fixed z and the maximum principle for holomorphic
functions. Further, using (A.92) we obtain (A.102).
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The proof of (A.103)—(A.106) is similar to the proof of (A.97)—(A.100); in this case,
instead of (B.54) we use the estimate

c lz=d

X+ (r = [¢])
= + " d(r d
(/|<|<z—< /<>|z—<|> |z =] e

X+ (r = [¢]) X+(r =z =)
< dég d 2 ddrd
</<|<|z—<| Cr CH-/ Cr d(r

q czla—c 2=l
< 2/ d(r d(
LS
= 47r. (B.55)
Lemma A.9 is proved. |

Proof of Lemma A.10. The estimate (A.107) follows from (B.52), (B.54) and the

following estimates

[t < A dG
C |Z — <|(P+ |C|)1+g X Cl<lz—c| |Z/2|5l‘C|178/(P+ ‘<|)1+E
d¢r A
! /|<|>zc lz=Cl(p+12/2])¢ (p+ |z — ¢|)tHe—e

< 21+E’/ d¢r d¢1
Szl Je [Klp 4 ¢l
22+¢' 1

IERCEE

|Gavaf(z + h) — Ghoaf(2)|

» RIAT = M(Mla— (O] + Jao(©)] + A as ()
s ”f””/cmmﬁoA1<z+h<>|A<z<‘>Al(zodCRdﬁ
we 1+ M) (Jas (1 + Mao(Q)] + ARla—(O)])
< nm 1||f||0|h|/(C (1—|)\‘2)2‘Z+h—<||2—<| dCRdCI

<nr N4 AP A = IAP) 2 (laslloatep + [Mlaollogte, + AP lla—lo14e,)

d¢r d¢
<Mfloll | = e — el F e

(B.56)

/ d¢r d¢r
clz+h =z =(l(p+[C)HHe

B d(r d(r
B (/z+h<<|z<| +/|z+h<|>zc) |z +h —(|lz = Cl(p + |C])HHe
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0<g<1/ d¢g dG
S Jithecigia—c) 2R = CP0R/20 (p+ [C])1 e
+/ d¢r dr
leth—c|3le—c| 12 = CI2T0 R/2[% (p + [C])1He
20 1 1 ) d¢r dé
< + , B.57
|h5/<c(|2+h<|25 |z = ¢[27% ) (p+|¢])He (B.57)

/ d¢r dg L 2ne / d¢r dG
¢ e = P20+ [CDTFE T Tl e [P0 + )
9l+e’ d¢r dé
< o .
B /c <122 (p + 1<)

The estimate (A.108) follows from (A.107), (A.98). The proof of (A.109), (A.110) is
completely similar to the proof of (A.107), (A.108).

The proof of (A.111)-(A.114) is similar to the proof of (A.107)-(A.110); in this case,
instead of (B.54), (B.57), (B.58) we use (B.55) and the estimates

(B.58)

T — r<[zl/2 2 22
c lz—( 2] Ji¢i<r ||
X+ (r — [¢]) d¢r d¢p 0<o<1 20 / 1 1
S e —|¢]) dCg d,
/c |z 4+ h —(llz = (] R |z+h—(\2—5+\z—<|2—5 X (= [C]) dCr Gy
(B.60)
X+ (r —[C]) / dégd¢G 4
T Wrda <2 =—, B.61
/C |z — (29 CrdG ci<r 1C128 5 ( )
X+ (r —[¢]) r<lzl/2 22=07y2
Lemma A.10 is proved. (]
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