
Robotica: (2020) volume 38, pp. 207–234. C© Cambridge University Press 2019
doi:10.1017/S0263574719000560

CWave: Theory and Practice of a Fast
Single-source Any-angle Path Planning
Algorithm
Dmitry A. Sinyukov†∗ and Taşkin Padir‡
†Robotics Engineering Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
‡Electrical and Computer Engineering Department, Northeastern University, Boston,
MA 02115, USA
E-mail: t.padir@northeastern.edu

(Accepted March 27, 2019. First published online: May 15, 2019)

SUMMARY
Path planning on a two-dimensional grid is a well-studied problem in robotics. It usually involves
searching for a shortest path between two vertices on a grid given that some of the grid cells are
impassable (occupied by obstacles). Single-source path planning finds shortest paths from a given
source vertex to all other vertices of the grid. Singles-source path planning enhances robot autonomy
by calculating multiple possible paths for various navigation scenarios when the destination state is
unknown. A high-performance algorithm for single-source any-angle path planning on a grid called
CWave is proposed here. Any-angle attribute implies that the algorithm calculates paths which can
include line segments at any angle, as opposed to standard A* that runs on an 8-connected graph,
which permits turns with 45◦ increments only. The key idea of CWave is to abandon the graph model
and operate directly on the grid geometry using discrete geometric primitives (instead of individual
vertices) to represent the wave front. In its most basic form (CWaveInt), CWave requires only inte-
ger arithmetics. CWaveInt, however, can accumulate the distance error at turning points. A modified
version of CWave (CWaveFpuSrc) with minimal usage of floating-point calculations is also devel-
oped to eliminate any accumulative errors, which is proven mathematically and experimentally on
several maps. The performance of the algorithm on most of the tested maps is demonstrated to be
significantly faster than that of Theta*, Lazy Theta*, Field A*, ANYA, Block A*, and A* adapted
for single-source planning (on maps with lower number of isolated obstacles, CWaveFpuSrc is 2−3
times faster than its fastest tested alternative Block A*). An N-threaded implementation (CWaveN)
of CWave is presented and tested to demonstrate an improved performance (multithreaded imple-
mentation is 1.5−3 times faster than single-threaded CWave). The paper discusses foundations and
experimental validation of CWave, and presents future work to address the limitations of the current
implementations and obtain further performance enhancements.

KEYWORDS: Any-angle path planning; Single-source path planning; High-performance algo-
rithm; Path planning on a grid; Parallelized algorithms.

1. Introduction
Navigation in cluttered and dynamic environments via a low-throughput human–machine interface
(LTI; an interface that substantially limits the amount of control information from the operator into
the controlled system) remains to be a challenging problem for making robots practical in real-life
applications. One example that motivated this work is path planning for a robotic wheelchair when
the user intent is inferred via a brain–computer interface or facial gestures.1, 2 In this problem, the
user-intended destination is not always deterministically known, but an optimized navigation system

∗ Corresponding author. E-mail: dsinyukov@wpi.edu

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560
https://orcid.org/0000-0002-6786-9486
mailto:t.padir@northeastern.edu
mailto:dsinyukov@wpi.edu
https://doi.org/10.1017/S0263574719000560

208 CWave: theory and practice

for a given criterion still can be achieved if all possible navigation scenarios are pre-computed. For
example, the total time to destination can be minimized. The pre-computation of possible scenarios
requires a high-performance algorithm that is able to calculate distances from a given point to all
other points on the map. A similar problem arises when the destination is unknown for other reasons.
For example, in exploration tasks, each point on a given map may have a certain degree of explo-
ration interest assigned. These values weighed by the distances from the current robot position can
determine the robot direction of motion.

The problem of finding the shortest paths from a given vertex to all other vertices on a uniform
grid where some grid cells can be blocked is known as the single-source shortest path planning
problem. This distinguishes it from other three related variations: single-pair, single-destination, and
all-pair shortest path problems. They ask, respectively, for the shortest paths between two vertices,
all vertices and one destination, and all pairs of vertices on the grid.

In this paper, we present the development of a high-performance algorithm, CWave, for single-
source any-angle path planning on a two-dimensional (2D) grid. Two-dimensional grid is a popular,
but not the only method to represent a 2D environment. Other representations include Navigation
Meshes,3 Circle-Based Waypoint Graphs,4 and Probabilistic Quadtrees,5 but these require an addi-
tional pre-processing of the map. A 2D grid is simple, easy to use, and is often a direct output of
simultaneous localization and mapping (SLAM) algorithms.6 A grid representation of the environ-
ment is also internally used in many autonomous and semi-autonomous robot navigation systems1, 7

and video games.8

The common approach to finding the shortest path on a grid is to represent the grid as a 4- or
8-connected graph. Various graph search algorithms can then be employed to find the shortest paths.
The problem, however, is that these paths will be suboptimal, because the graph representation of the
grid restricts path segment angles to 90◦ (4-connected graph) or 45◦ (8-connected graph). Increasing
the connectivity of the graph by including second-order neighbors can find paths closer to the opti-
mal, but it cannot solve the fundamental problem arising from the graph representation of the grid. In
addition to that, since only 45◦ turns are allowed, these suboptimal paths are usually unnatural. Path
planning algorithms which do not restrict path segment angles are called any-angle path planning
algorithms. They are used on various mobile robots including such advanced systems as the Mars
Rovers Spirit, Opportunity, and Curiosity.9, 10

Most of the graph search algorithms designed for single-pair path planning can be modified to
solve single-source path planning problems. Indeed, if the search is not stopped when the desti-
nation is reached, it will eventually find distances to all vertices. Thus it makes sense to consider
existing any-angle path planning algorithms. It is clear, however, that algorithms that first find a
suboptimal path and then smooth it (e.g. A* on a graph with post smoothing11) are not suitable for
high-performance tasks, because they process each destination separately.

Algorithms which can be easily adapted for single-source path planning include Theta*12 and its
modifications,13 as well as Field A*.14 Theta* developers9 consider these algorithms as interleaving
the A* search and the smoothing. These algorithms assume a graph representation of the grid.

Another approach is to first identify special points on the map (usually associated with corners
of obstacles), and then do a search in the graph constructed from these points. Visibility graph15 is
a method of this type, but search in this case is typically slow, since the number of edges can grow
quadratically in the number of vertices.16 Another method which can be considered an adaptation of
visibility graphs for a grid17 is Subgoal Graphs.18 These are shown to be very fast for point-to-point
path planning,17 but they have to pre-process the map, requiring the knowledge of the whole map in
advance. Contrarily, CWave has the potential to be applicable for partially known maps evolving as
the environment is explored. Initial preprocessing required to construct Subgoal Graphs is reported19

to be in the order of 100 ms which is about 50 times slower than a single run of CWave on the tested
maps. Moreover, Subgoal Graphs, as opposed to CWave, are not optimal in terms of the path length
and have not yet been adapted for single-source planning.

Conceptually CWave is a wave-propagation algorithm and, in this sense, is a special case of the
Fast Marching Method,20 where the interface velocity is constant. It is also similar to a well-known
wave (Lee) algorithm21 that deals with octagonal or square waves propagating over 8- or 4-connected
graphs, respectively. In case of CWave, however, the wave front has a circular shape (that’s what “C”
stands for in “CWave”) to the extent permitted by the grid. The main idea of CWave is to abandon the
graph model and operate directly on the grid geometry using discrete geometric primitives (discrete
circular arcs and lines), instead of individual vertices, to represent the wave front.

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 209

Fig. 1. The gradual expansion of a circular wave from the start source point A (blue wave) allows to assign
distances to all points directly visible from A. Then at every point where the wave meets an obstacle (corner
points B, C, D, and E), a new source point can be placed. Simultaneous expansion of circular waves from new
sources (green waves expanding from points B, C, D, and E) allows to further assign distances to points in
the bounded area. At a certain moment, some of the waves may merge (e.g. waves expanding from sources
H and G).

Let us first consider a continuous space (Fig. 1) where we want to calculate distances from a given
point A to all other points of the bounded area. The gradual expansion of a circular wave from the
start source point A (blue wave) allows to assign distances to all points directly visible from A. Then
at every point where the wave meets an obstacle (corner points B, C, D, and E), a new source point
can be placed. Simultaneous expansion of circular waves from new sources (green waves expanding
from points B, C, D, and E) allows to further assign distances to points in the bounded area. At a
certain moment, some of the waves may merge (e.g. waves expanding from sources H and G). This
procedure, in the same way as the Lee algorithm, allows to find paths from a given source point to
all other reachable points on a 2D map. The circular shape of the wave front, however, in our case
ensures that the paths are the shortest. Note that there are two key geometric primitives making this
whole construction possible: circular arcs which limit the wave on the front and straight lines which
limit the wave on the sides.

This approach in continuous space with polygonal obstacles was first proposed in refs. [22]
and [23] as the ‘Continuous Dijkstra” paradigm. Mitchell calls each circular wave a “wavelet” and
describes three possible events that can occur during a wave front propagation: (1) a wavelet collision
with an obstacle, (2) a wavelet disappearance (due to the “closure”), and (3) a wavelet collision with
another wavelet.

CWave can be considered an adaptation of the “Continuous Dijkstra” paradigm for a discrete
uniform grid. CWave iterates through grid vertices while gradually increasing the distance from a
given source vertex. The uniform grid geometry, as a special case of a map with polygonal obstacles,
enables specific methods of wave propagation, detection of wavelet collision with obstacles and other
wavelets.

We introduce them in the following sections, effectively decomposing the problem. In Section 2,
we consider wave propagation on an obstacle-free grid. In Section 3, we introduce simply connected
obstacles (wavelet collision with obstacles), and finally Section 4 discusses CWave on a generic map
(wavelet overlaps). Performance tests are presented in Section 5. An analysis of the algorithm and
future work are discussed in Sections 6 and 7.

When describing the algorithm, we put a certain emphasis on an integer arithmetic implementation
CWaveInt. While such implementation may not provide any advantage on modern CPUs, especially
given that it is subject to a small accumulative distance error (Section 3.6), it enables any-angle
path planning on low-cost embedded microcontrollers without floating-point units (FPUs). We then
demonstrate how, with minor modifications, the integer-only solution is converted into near-optimal
and optimal implementations CWaveFpuSrc and CWaveFpuMerge (Sections 3.6 and 4.4) that require
floating-point operations.

2. CWave on a Grid Without Obstacles
In general, 2D grid is a set of uniformly arranged square cells, where each cell can be either occupied
or free, and grid vertices coincide with the vertices of the square cells (Fig. 2). In this section, we
will discuss the most basic case of CWave propagation on a grid without occupied cells. It should be
noted that, similar to Theta*, CWave calculates paths between grid vertices not between cell centers.

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

210 CWave: theory and practice

Table I. List of variables used in this paper.

Variable Description Type

δ Distance error defined as δ = d− r Real
ρ Exact distance of the shortest path from the start source to a given vertex ρ = s+ d Real
ρ Integer distance value assigned by CWave to a given vertex, approximately Integer

equal to 2ρ

ε Error function used to replace δ to avoid real number calculations Integer
d Exact distance from a given vertex (x, y) to its nearest source vertex d=√

x2 + y2 Real
d Integer distance value assigned by CWave that is approximately equal to 2d Integer
r Radius of a circle iterated by the midpoint algorithm Integer
s Exact distance from the start source to a given source Real
s Rounded 2s Integer

Fig. 2. Iterating through vertices of a circular arc of radius r= 9 using MPC algorithm. Zoomed area shows the
distance errors.

This is not a completely free “design choice”, but it has a strong theoretical motivation. From the
calculus of variations,24 it is known that the shortest path between any two points in a constrained 2D
space consists of straight line segments and parts of obstacle boundaries, but the grid model implies
that any obstacle is a set of occupied square cells, and thus obstacle boundaries are also straight
line segments. Therefore, the shortest path is a polygonal curve with turning points at corners of the
occupied cells (at vertices). Placing start and end points of the paths at vertices allows to keep those
points in the same set with turning points.

Our goal is to assign each vertex a distance value in such order that it would emulate a propaga-
tion of a circular wave. The midpoint circle (MPC) algorithm,25 also known as Bresenham’s circle
algorithm, can be utilized for this purpose. It was developed to paint out pixels (cells) on a digital dis-
play in a shape of circular arcs. It is highly efficient, because it requires only integer arithmetics and
multiplication by 2 for calculations. In this work, we will employ it to iterate through grid vertices,
rather than cells.

2.1. Overview of MPC algorithm
Without loss of generality, we will discuss only octant 1 on XY-plane with the origin at the start
vertex. Octant 1 is defined as x > 0, y � 0, and x � y. In other octants, the algorithm is similar.

The main idea of MPC algorithm is that in octant 1 when drawing a circular arc of an integer
radius r, y-coordinate of each new vertex is always incremented by 1, whereas the x-coordinate is
either decremented by 1 (vertices B→C in Fig. 2) or stays the same (vertices A→ B in Fig. 2). If
we define the distance error (see Table I for the key variables used in the paper) at any vertex D(x, y)
as a difference between the real distance d to D and the circle of integer radius r:

δD = δr
D = δ(x, y, r)= d− r=

√
x2 + y2 − r (1)

then between two potential candidates (E and F in Fig. 2), vertex E can be chosen over F if

|δE|< |δF| (2)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 211

Fig. 3. A simple example that illustrates how MPC algorithm works on a circle of radius 3.

To simplify the calculations, Bresenham introduced another error function:

εD = εr
D = ε(xD, yD, r)= (x2

D + y2
D)− r2 = (x2 + y2)− r2 (3)

By definition, ε is always an integer, does not require a square root for calculation, and, in the domain
of interest, is monotonously related to δ. Thus, condition (2) can be replaced with

|εE|< |εF| (4)

If we take D= (x, y), then

εD = ε(x, y, r)= x2 + y2 − r2 (5)

εF = ε(x, y+ 1, r)= x2 + (y+ 1)2 − r2

= ε(x, y, r)+ 2y+ 1= εD + 2y+ 1 (6)

εE = ε(x− 1, y+ 1, r)= (x− 1)2 + (y+ 1)2 − r2

= ε(x, y+ 1, r)− 2x+ 1= εF − 2x+ 1 (7)

To eliminate the absolute value function, we can write (4) as

ε2
E − ε2

F < 0 (8)

And then, in view of (6) and (7):

(εF − 2x+ 1)2 − ε2
F < 0

(εF − 2x+ 1− εF)(εF − 2x+ 1+ εF) < 0

(−2x+ 1)(εF − x+ 0.5) < 0 (9)

For a positive integer x > 0, (−2x+ 1) < 0, thus the inequality is further simplified:

εF > x− 0.5

Finally, given that x= xD = xF and εF are integers, (9) becomes

εF � xF (10)

Condition (10) defines whether x-coordinate needs to be decreased by 1 or not, whereas Eqs. (6) and
(7) are used to incrementally calculate ε. Note that only integer addition, subtraction, and bit shifting
(multiplication by 2) are used. For circles, the initial value of ε is ε0 = ε(r, 0, r)= 0, and for arcs,
it has to be determined by another method (see Section 3). Figure 3 illustrates how MPC algorithm
works on a circle of radius 3.

2.2. Distance error of Bresenham circles
From (1), we can express (x2 + y2) in terms of δ and r, then by substituting (x2 + y2) into (3), we can
express error function ε as a function of distance error δ:

ε(δ)= δ2 + 2rδ (11)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

212 CWave: theory and practice

Fig. 4. Error function ε as a function of distance error δ.

Figure 4 depicts the continuous mapping defined by (11), where point M is the minimum of ε(δ), and
L, R, and N correspond to δ values of −0.5, 0.5, and 1, respectively. It should be noted that in reality
ε can take only integer values, hence δ (the domain of the function) is restricted to the corresponding
isolated individual points.

In order to analyze the distance accuracy of the method, it will be necessary to find bounds for the
distance error.

Lemma 1. In all vertices iterated by MPC algorithm,

|δ|< 0.5 (12)

Proof. Given that the initial value of distance error δ0 = δ(r, 0, r)= 0, to prove by induction, we
need to show that if (12) is true for the distance error at kth step δk, then it’s also true for δk+1. From
(11), assuming that |δk|< 0.5 and taking into account that ε is an integer, we will have

−r+ 1 � εk � r (13)

Case 1: Condition (10) is false. Based on the update rule (6),

εk+1 = εk + 2yk + 1 < xk (14)

This, in combination with (13), implies

−r+ 2yk + 2 � εk+1 < xk (15)

Now, given that in octant 1, xk � r and yk � 0, (15) implies

−r+ 0.25 < εk+1 < r+ 0.25 (16)

which, based on Fig. 4, entails |δk+1|< 0.5.

Case 2: Condition (10) is true. Based on the update rules (6) and (7),

εk+1 = εk + 2(yk − xk + 1)

= εk + 2(yk+1 − xk+1 − 1)� xk (17)

This, in combination with (13), implies

xk � εk+1 < r+ 2(yk+1 − xk+1 − 1) (18)

Now, given that in octant 1, 0 � yk+1 � xk+1, and thus (yk+1 − xk+1 − 1)�−1, then

0 � εk+1 < r− 2 (19)

Based on Fig. 4, the last system of inequalities implies that 0 � δk+1 < 0.5.
We just showed that if |δk|< 0.5, then |δk+1|< 0.5.

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 213

Fig. 5. Circles of integer radii drawn with Bresenham’s midpoint algorithm in octant 1. N designates NBPs.

(a) (b) (c)

Fig. 6. Formation of NBPs. NBPs are marked with red. (a) Next vertex of (r+ 1)-circle after E is always F;
(b) if next vertex after C is I, then no new NBPs; and (c) if next vertex after C is H, then I is a new NBP, and
next vertex after F is always J.

2.3. Non-Bresenham points and their properties
It is noted that not all vertices on the grid are accessible by MPC algorithm. Indeed, in Fig. 5, we can
see Bresenham circles of integer radii r � 7. Numbers at the vertices designate the radius—vertices
that have not been visited are marked with N. In this paper, these vertices are referred to as non-
Bresenham points (NBPs). For path planning, it is important to iterate through all vertices to check
their reachability; thus for further analysis, we need to investigate how NBPs are formed.

Let us consider a configuration shown in Fig. 6(a). Here vertices A and B corresponding to circles
of radii r and (r+1), respectively, are adjacent, but then on the next iteration r-circle moves diag-
onally to vertex C, whereas (r+1)-circle goes up to vertex E. This leaves vertex D(x, y) unvisited,
thus making it an NBP. We will now show that in this configuration, the next vertex for (r+1)-circle
is always F.

According to condition (10) of MPC algorithm, we just need to prove that εr+1
G � x:

εr+1
G = ε(x+1, y+1, r+1)= εr

D + 2(x+ y− r)+ 1 (20)

Based on condition (10),

εr
D � x > 0 (21)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

214 CWave: theory and practice

which means that δr
D > 0 and r <

√
x2 + y2. At the same time, from the triangle inequality,√

x2 + y2 � (x+ y), and thus

(x+ y− r) > 0 (22)

After substituting (22) and (21) into (20), we will have

εr+1
G > x+ 1 > x (23)

Now we can explore the genesis of NBPs a bit more. If εr
I < xI (Fig. 6(b)), then r-circle will

proceed to vertex I, and no new NBP will be formed. If, however, εr
I � xI (Fig. 6(c)), r-circle will

proceed to vertex H, and I will become an NBP. In this case, we can apply the same proof that was
used for points D and F, to show that the next vertex of (r+ 1)-circle will always be J.

2.4. Necessary and sufficient condition for an NBP
Proposition 1. When condition (10) is checked for some vertex F while iterating through an

r-circle, F will be an NBP of the r-circle iff (10) is true and

εr
F � 2r− xF (24)

Proof. Based on condition (10), in scenario shown in Fig. 6(a), where initial points A and B of
r- and (r+1)-circles are adjacent, the necessary and sufficient condition for vertex D(x, y) to be an
NBP is {

εr
D � xD

εr+1
E < xE

(25)

Given that εr+1
E = ε(x+ 1, y, r+ 1)= εr

D + 2(x− r), the second condition in (25) can be written as
εr

D − 2r+ xD < 1, and since all variables are integers,

εr
D − 2r+ xD � 0 (26)

And while for the second scenario shown in Fig. 6(c) (vertex I), where initial vertices C and D of
r- and (r+ 1)-circles are separated by an NBP vertex D, the first condition is sufficient, we can show
that (26) still holds true. Indeed,

εr
I = ε(xD − 1, yD + 1, r)= εr

D + 2(yD − xD + 1) (27)

(εr
I − 2r+ xI)= εr

D − 2r+ xI + 2(yD − xD + 1) (28)

= (εr
D − 2r+ xD)+ 2(yD − xD)+ 1 (29)

� 2(yD − xD)+ 1 (30)

In octant 1 (yI − xI)� 1, and then (yD − xD)�−1 and 2(yD − xD)+ 1 < 0. We thus showed that
εr

I − 2r+ xI < 0.

2.5. Distance error in NBPs
Based on conditions (10) and (24), we can determine bounds for distance error at NBPs. Indeed,
given that in octant 1, r �

√
2x, conditions (10) and (24) imply that

(1/
√

2)r � εNBP � (2− 1/
√

2)r (31)

or, roughly,

0.7r < εNBP < 1.3r (32)

Based on (11) (Fig. 4), this guarantees that

0 < δNBP < 1 (33)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 215

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Possible configurations of two sequential vertices/pairs while iterating through a Bresenham circle.

Fig. 8. An impossible configuration of two diagonal NBPs.

We can determine tighter bounds for distance error in NBPs. It’s easy to verify that if r � 3, then
(1/
√

2)r > 0.332 + (2r)(0.33). Thus

0.332 + (2r)(0.33) < εNBP < 0.652 + (2r)(0.65) (34)

Based on the relation (11), we then conclude that

0.33 < δNBP < 0.65 (35)

The only NBP with r < 3 is (1, 1), where δNBP ≈ 0.414; thus, bounds (35) are correct for all NBPs.

2.6. Possible vertex configurations
In order to visit all vertices of the grid, it is necessary to develop a method of visiting NBPs while
iterating through regular Bresenham vertices. The properties of the NBP formation process described
above determine that NBPs cannot be horizontally or vertically adjacent to each other, and thus, every
NBP can be paired with a regular vertex to the left from it (in octant 1) as shown in Fig. 5. And thus
to visit all vertices of the grid, whenever there is a diagonal move (such as D→ E in Fig. 2), an
additional condition (24) has to be checked. If it’s true, then vertex F is an NBP that also belongs to
the Bresenham r-circle and has to be visited and assigned the distance.

We can also observe that among all imaginable configurations of two sequential vertices/pairs
(Fig. 7), only the following five are valid: (a), (b), (e), (g), and (h). Indeed, (c) and (d) are impossible
because NBPs can only be formed when there’s a diagonal move while iterating a Bresenham circle
(e.g. A→C in Fig. 6(a)). Configuration (f) is impossible because the diagonal move would result in
an NBP to the right from the top vertex (Fig. 6(c)).

It can be shown that another configuration of diagonal NBP vertices is also impossible. Even
though the current implementation of CWave does not rely on the following proposition, we present
it and its proof here for the sake of completeness.

Proposition 2. The diagonal configuration of NBPs in octant 1 shown in Fig. 8 is impossible.

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

216 CWave: theory and practice

Fig. 9. Curve d2(d1)=
√

(d1 + a)2 + (10− a2) and its asymptotes.

Proof. We will employ a proof by contradiction. Based on the law of cosines for �SAB (refer to
Fig. 8),

d2 =
√

d2
1 + |AB|2 − 2d1|AB| cos α (36)

=
√

d2
1 + 10+ 2

√
10d1 cos

(
β − arctan

1

3

)
(37)

=
√

d2
1 + 2d1a+ 10=

√
(d1 + a)2 + (10− a2) (38)

where

a=√10 cos

(
β − arctan

1

3

)
(39)

Figure 9 depicts the plot of d2(d1) curve. Given the asymptotic properties of the curve, for all d1:

d2 − d1 > a (40)
r+ 2+ δ2 − (r+ δ1) > a (41)

δ2 − δ1 > a− 2 (42)

We can see from (39) that for β � 2 arctan 1
3 ,

a � 3 (43)

and thus from (42)

δ2 − δ1 > 1 (44)

which contradicts the distance error boundaries in (12); thus, we only need to prove the statement for

β > 2 arctan
1

3
(45)

First, let us show that the previous vertex for B must have been D1, not B1 (see Fig. 10(a)). Indeed,
if the previous vertex is B1 (refer to Fig. 10(b)), then D1 is an NBP as well, and then the previous
vertex for E is E1, and then C1 is an NBP. We can see that now we have a new pair of diagonal
NBPs C1 and D1, which is located below C and D. We can continue this procedure further until we
reach AN for which β � 2 arctan 1

3 , but we showed that for such values of β the given configuration
is impossible. Thus, based on condition (10) for vertex B, we can write

εB < xB = x+ 3 (46)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 217

(a)

(b)

Fig. 10. Proving an impossible diagonal configuration of NBPs. (a) The previous vertex for B is D1, not B1;
(b) if the previous vertex for B is B1, then the diagonal NBP configuration has to repeat itself at vertices C1 and
D1, and it can be continued indefinitely.

On the other hand, given (45),

x < r cos β = 1− tan2
(

arctan 1
3

)
1+ tan2

(
arctan 1

3

)r= 1− 1
9

1+ 1
9

r= 0.8r (47)

and thus

εB < 0.8r+ 3 (48)

We can bring inequality (48) into a form suitable for estimating distance error δ1 at vertex A (see
(11)). Indeed, for r � 142, 0.8r+ 3 < 0.412 + (2r)(0.41), and thus for such values of r,

εB < 0.8r+ 3 < 0.412 + (2r)(0.41) (49)

The last inequality gives us an upper boundary for δ2:

δ2 < 0.41 (50)

Now similarly we can find a lower boundary for δ1. From condition (10) for vertex C:

εC � xC = x+ 1 (51)

and thus

εA = εC − 2xC + 1= εC − 2x− 1 �−x >−0.8r (52)

Again, for r � 9, −0.8r > (−0.41)2 + (2r)(−0.41), and thus

δ1 >−0.41 (53)

On the other hand, even though the upper boundary for β in octant 1 can be slightly bigger than
45◦ (if NBPs are located on 45◦ diagonal), still for r > 150, |SC|> 150⇒ tan β < 150

149⇒

a >
√

10 cos

(
arctan

150

149
− arctan

1

3

)
> 2.82 (54)

and, thus, from (42),

δ2 − δ1 > 0.82 (55)

Inequalities (55), (53), and (50) contradict each other; therefore, the proposition is proven for r > 150.
For r � 150, the proposition can be verified by a computer program or manually.

2.7. Assigning distance values to vertices
Now that we are able to iterate through all vertices, we need to assign each vertex P a distance value
dP. Clearly, the exact floating-point distance value is

dP =
√

x2
P + y2

P (56)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

218 CWave: theory and practice

Since ε is already maintained for each vertex and r2 can be calculated only once for each circle, the
following expression is slightly faster to evaluate:

dP =
√

ε+ r2 (57)

For integer-arithmetic-only implementation, we can trade off the square root for a small bounded
error in each assignment. One approach is to define dP = r. In this case, however, given the distance
error bounds (12) and (33), the true distance dP will stay in a rather wide interval

dP − 0.5 < dP < dP + 1 (58)

which, however, does not increase with the growth of dP.
We also developed another integer distance assignment method that allows to shrink the length

of the interval to 0.5. It achieves three goals: it (1) allows fractional numbers in the integer variable
dP by using 2r instead of r, (2) adds an additional 0.5-offset if dP > r, and (3) adds an additional
0.5-offset to NBP vertices:

dP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
2r+ 1 εP > 0
2r εP � 0

if P is a regular vertex{
2r+ 2 εP > r
2r+ 1 εP � r

if P is an NBP

(59)

Overall, this assignment guarantees that

dP

2
− 0.5 < dP � dP

2
(60)

Indeed, from (11) (Fig. 4), given that εP and r are integers, the following relations follow:

εP > 0⇒ δP > 0 εP � 0⇒ δP � 0 (61)
εP > r⇒ δP > 0.5 εP � r⇒ δP < 0.5 (62)

When these inequalities are combined with (12) and (33), the inequality (60) becomes evident.

3. CWave on a Grid with Simply Connected Obstacles
By this point, we have established how CWave assigns distances in the special case of a free map.
In this section, we will consider maps with simply connected obstacles, that is, maps where any
two occupied cells can be connected by a path that never passes through a free cell. This topology
guarantees that during CWave expansion, no vertex is visited more than once. We can, thus, defer the
problem of wave merging to Section 4. First, however, we need to introduce some definitions.

3.1. Coordinate frames and definitions
Similarly to the Theta∗ approach, we add a single-occupied-cell wall around the perimeter of every
map, as shown in Fig. 11, to eliminate the need for out-of-boundary checks. The bottom left cell has
absolute coordinates [0, 0]. Vertex located at the left bottom corner of cell [x, y] has same coordinates
[x, y]. Square brackets [.] are used for absolute coordinates, and parentheses (.) are used for relative
coordinates (w.r.t. the source vertex). For example, vertex A in Fig. 11 has absolute coordinates [9, 5]
and relative coordinates (with reference to source S) (7, 3).

We introduce the following definition of visibility of vertex Y from vertex X (Fig. 11).

Definition 1. Vertex Y is NOT visible from vertex X if there is at least one point of the open line
segment XY that (1) is also an inner point of any occupied cell OR (2) belongs to a line segment
connecting centers of any two adjacent occupied cells. Otherwise, it is visible.

Figure 11 demonstrates several examples. Here vertex A is not visible from S, because the line
segment AS crosses an occupied cell [8, 4], and thus, there are inner points of AS that are also inner
points of that cell. Vertex C is not visible, because vertex [8, 5] (an inner point of SC) belongs to the
line segment connecting centers of two adjacent occupied cells: [7, 5] and [8, 4]. Similarly, vertex E
is not visible, because vertex D is the inner point pf SE and belongs to the line segment connecting

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 219

Fig. 11. Visibility of various vertices from vertex S. Visible vertices: B and D. Not-visible vertices: A (SA passes
through inner points of cell [8, 4]), C, E, and F (crossing line segment connecting two adjacent occupied cells).

Fig. 12. Classification of grid cells/pairs occupancy patterns (O represents a free cell, X represents an occupied
cell).

centers of two adjacent occupied cells: [7, 2] and [8, 1]. Note, however, that D itself is visible because
D is not an inner point of line segment SD. Vertex F is not visible, because SF crosses line segment
connecting adjacent occupied cells [1, 4] and [2, 4]. Finally vertex B is visible because inner points
of SB do not overlap with any occupied cell or any line segment connecting two adjacent occupied
cells.

We will say that cell A corresponds to vertex B if B is the furthermost corner of cell A (as
measured from the source). In octant 1, thus, vertex A (y > 0) will not be visible if its corresponding
cell is occupied. Overall, six occupancy patterns are possible. In Fig. 12, they are classified into free,
non-free, semi-free, and occupied.

If all corresponding cells are free, we call the pattern free, otherwise the pattern is non-free.
The non-free patterns are further divided into occupied (all corresponding cells are occupied), and
semi-free (some corresponding cells are free, some are occupied). Note the pattern names comprised
symbols O (designating a free cell) and X (designating an occupied cell).

3.2. Visibility cone
Consider a configuration shown in Fig. 13. Here a circular wave is expanding from source S, as
occupied cells, represented by the shaded squares, block visibility of certain vertices on the map.
The vertices that belong to the 2D cone formed between rays α and β are still visible from S, and
MPC algorithm is still applicable, but it has to be bounded between α and β. We will call the 2D cone
formed between α and β a visibility cone. The solid blue squares mark the outermost vertices of the
cone whose visibility has to be checked. We will call this set of vertices discrete closed boundaries,
where closed implies that vertices are permitted on the cone boundary rays.

Note that the shortest paths to other vertices on the map have to pass through either A or B, we can,
thus, place new sources at those vertices. It is important to observe, however, that the upper discrete

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

220 CWave: theory and practice

Fig. 13. An example visibility cone S, where S is the start source vertex; A and B are secondary sources; α
and β are continuous boundaries of the cone S; solid blue squares are discrete closed boundaries of the cone
S; circular green outlines are discrete open boundaries of cones A and B; cells marked with question marks
can block parts of the visibility cone S, even though their corresponding vertices (blue square outlines) are not
visible from S.

Fig. 14. All 40 possible combinations of two sequential configurations in octant 1. There is only one special
case (labeled by a dashed rectangle) when two sources are added.

boundary of the new cone B (solid green circles in Fig. 13) is open (vertices that lie on β belong to
cone S, not cone B). Same is true for the lower boundary of the new cone A.

3.3. Identifying corner vertices
In Section 2.6, we showed that there are only five valid configurations of vertices on two sequential
iterations (Fig. 7). Given the six possible occupancy patterns in Fig. 12, we can identify 40 possible
combinations (Fig. 14).

For all combinations, except for a special case of OX→ XO, a corner vertex appears only when
a non-free pattern follows a free pattern or vice versa. In the first case, the new source will have a
boundary of type A, whereas in the second case the new source will have a boundary of type B.

Combination OX→ XO is classified as a special case (Fig. 15). Even though a non-free pattern
XO follows another non-free pattern OX, a narrow visibility cone can still pass between the occupied
cells. And in this case, two new sources are placed at A and B.

3.4. Iterating through boundary vertices
To iterate through boundary vertices (solid blue squares in Fig. 13), we developed a modified ver-
sion of the Bresenham’s line algorithm.26 It needs only integer addition to operate. First, we will
consider boundary of type A. At every step, the x-coordinate is incremented, but the y-coordinate is
incremented only if

y+ 1 � yA

xA
(x+ 1) (63)

It can be noted that this expression has multiplication and division in it. If, however, we introduce
the function

G(x, y)= (x+1)yA − (y+1)xA (64)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 221

Fig. 15. Combination OX→ XO allows a narrow visibility cone to pass between the occupied cells.

then the condition can be transformed into

G(x, y)� 0 (65)

It is easy to observe that G(x, y) can be calculated iteratively using only integer addition. Indeed, the
initial value for G:

G(xA, yA)= yA−xA (66)

and the update rules (depending on whether y is incremented or not) are

G(x+1, y)=G(x, y)+ yA (67)

G(x+1, y+1)=G(x, y)+ yA−xA (68)

For type-B boundaries, y-coordinate is incremented if

y <
yB

xB
(x+ 1) (69)

or, if we introduce

G(x, y)= (x+1)yB − yxB − 1 (70)

then the condition can be transformed into

G(x, y)� 0 (71)

The initial value for G:

G(xA, yA)= yB−1 (72)

and the update rules are

G(x+1, y)=G(x, y)+ yB (73)

G(x+1, y+1)=G(x, y)+ yB−xB (74)

The boundaries, thus, can be iterated using only integer addition operation. Types A and B differ
only in the initial value for G. Note that the value of the error function ε is propagated along the
boundary vertices, again using only integer addition and bit-shifting:

ε(x+1, y, r+1)= ε(x, y, r)+ 2(x− r) (75)

ε(x+1, y+1, r+1)= ε(x, y, r)+ 2(x+ y− r)+ 1 (76)

These equations determine the initial value of ε for the MPC algorithm.

3.5. Determining arc endpoints from the boundary vertices
CWave iterates through MPC arcs and increments the radius at every step. In some cases, however,
when moving from one boundary vertex to the next one, the radius increases by 2, not by 1. For

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

222 CWave: theory and practice

Fig. 16. Next vertex after A (r= 7) should be C (r= 8), not B (r= 9).

example, in Fig. 16, when moving from vertex A to vertex B, the radius changes from 7 to 9. In fact
the correct starting vertex after A (r= 7) is C (r= 8), not B (r= 9). Such configurations are easy to
detect, because for vertex B condition (10) will hold true. The arc endpoint vertex may also have an
NBP vertex paired with it. That has to be checked with condition (24).

Another caveat is that even though the vertices marked with blue square outlines (not solid
squares) in Fig. 13 are located outside of the visibility cone S, their corresponding cells (marked
with question marks) can actually block visibility of some of the vertices inside the cone; thus, the
occupancy of those cells has to be checked as well when calculating the arc endpoints.

3.6. Distance accuracy on a simply connected map
When any new source is added (see Section 3.3), its initial distance value s is taken from the integer
distance previously assigned to the vertex by CWave. Given the distance error boundaries (60), each
new source may, thus, introduce an accumulative distance error |δ|< 0.5. That is the price of the
purely integer arithmetic (addition and bit-shifting operations only) solution for the path planning
problem. We will refer to such integer implementation of CWave as CWaveInt.

To eliminate the accumulative error, we developed the following modification of CWave
(CWaveFpuSrc, where Fpu stands for Floating-Point Unit, Src stands for source). In addition to
the integer source distance s, for every source, we maintain a floating-point source distance s. It is
initialized as

s=
√

x2
S + y2

S + sparent (77)

but then is immediately rounded as

s= round(2s) (78)

The floating-point value s is used only when the source creates new sources at corner vertices (see
Section 3.3). For basic distance assignment, only integer value s is employed. This approach allows
every source to maintain the exact length of the shortest path to the start vertex (to the extent permitted
by the machine epsilon), and, thus, eliminates the accumulative distance error.

We can calculate the total error of integer distances assigned by CWave in this case. First,
from (78),

s

2
− 0.25 � s <

s

2
+ 0.25 (79)

Now, combining this with (60), we will have

s+ d

2
− 0.75 < s+ d <

s+ d

2
+ 0.25 (80)

ρ

2
− 0.75 < ρ <

ρ

2
+ 0.25 (81)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 223

Fig. 17. A merge of Wave-A and Wave-B. Red and blue numbers designate CWave distance from the source S
to the given vertex for paths passing through A and B, respectively. For pink and light blue vertices, the integer
criterion (85) is sufficient to determine which path from S is shorter: through A (pink) or through B (light blue).
For yellow vertices, the criterion is not sufficient, they form an overlapping area.

where ρ = s+ d is the exact length of the shortest path from the start source to a given vertex, and
ρ = s+ d is the corresponding CWave integer distance value.

Given the minimal computational overhead of this modification ((77) is calculated only when a
new source is created), it is used in the further analysis.

3.7. Path extraction on simply connected maps
Path extraction is the process of determining the shortest path (not just the length of the path)
from the initial source vertex to any other vertex on the map. When there is a need for path
extraction, two additional data structures are maintained: a 1D ordered sources_array that accu-
mulates coordinates of all source vertices and a 2D track_map that, for every vertex on the map,
stores the index of the source that assigned the vertex its distance value. Once the distance map
is calculated, a path from any given vertex P(xP, yP) can be recursively extracted: read P’s near-
est source id S1id = track_map[P.x, P.y], read S1’s coordinates: S1= sources_array[S1id], read S1’s
nearest source id S2id = track_map[S1.x, S1.y], and so on until the start source vertex is reached. The
modification of CWave that maintains sources_array and track_map is referred to as CWaveTrack.

In future, gradient methods can be explored for path extraction directly from the distance map.
Such approach would render sources_array and track_map unnecessary, but, given the integer nature
of CWave distance map, it may encounter certain challenges.

4. CWave on a Generic Map
On a generic map, obstacles are not necessarily simply connected, and thus waves from two or more
sources may eventually “meet” each other. This section discusses the case of merging waves for a
realistic 2D map in which we release the assumption of simply connected obstacles.

4.1. Boundary between merging waves in continuous space
Figure 17 illustrates the scenario in which two waves are merging. Here S is a parent source for
secondary sources A and B which generate wave-A (red vertices) and wave-B (blue vertices), respec-
tively. These two waves merge along a certain boundary α. In a continuous 2D space, we can define
α as a set of points P for which the lengths of the polygonal paths SBP and SAP are equal.

Proposition 3. α is a hyperbola.

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

224 CWave: theory and practice

Proof. By definition of α,

|SB| + |BP| = |SA| + |AP| (82)

|AP| − |BP| = |SB| − |SA| (83)

|AP| − |BP| = const (84)

The last equation is one of the standard definitions of a hyperbola.
For vertices located on one side of the hyperbola, the shortest path to S passes through A, and for

vertices on the other side, the shortest path passes through B.

4.2. Integer criterion
Let us imagine, what will happen if we run the current implementation of CWave on a map with
non-simply connected obstacles as shown in Fig. 17. Wave-A and Wave-B will eventually overlap;
that is, some of the vertices on the map will be visited by both of the waves. Moreover each wave
will independently place a new source at the top right corner of the obstacle (vertex [3, 5]) and then
at the next corner, and so on. The waves will “wrap” around the obstacle infinitely.

Visiting the same vertex multiple times, while somewhat degrading the performance, will not
affect the accuracy, if the new distance value assigned to the vertex is smaller than the previous
value, but it’s critical to prevent infinite loops.

The following proposition serves as an integer criterion to determine when Wave-B should stop
penetrating Wave-A:

Proposition 4. If for a given point P

ρ A � ρ B − 2 (85)

then

ρA < ρB (86)

where ρ A and ρ B are integer distance values assigned to P by sources A and B, respectively, and ρA

and ρB are exact lengths of the paths SAP and SBP.

Proof. From (81),

ρA − 0.75 <
ρ A

2
; ρ

2

B

< ρB + 0.25 (87)

Substitution of (87) into (85) proves the proposition.
The practical interpretation of this proposition is that if source B tries to assign value ρ B to a

certain vertex P, whereas for the current value ρ A of P, inequality (85) holds true, then we can be
certain that SAP is shorter than SBP. That means that we can treat vertex P as if we reached an
occupied cell and limit the visibility cone angular range of the source A to P. That also implies that
A should not place a new source at vertex P.

For yellow vertices (Fig. 17), however, condition (85) is false, which means that the integer values
ρ A and ρ B are not sufficient to determine which path is shorter for a given vertex P: SAP or SBP. The
two waves, thus, overlap at the yellow vertices. If there is an occupied cell in that area, both waves
may place a new source at the same corner.

4.3. Distance accuracy on a generic map
Proposition 5. Let ρ A be the integer distance value assigned by CWave to vertex P by source A,

and ρ B be the integer distance value that is later attempted to be assigned by CWave to vertex P by
source B. If we choose to update the distance value at P with ρ B only when

ρ B < ρ A (88)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 225

then ∣∣∣∣ρ − ρ

2

∣∣∣∣ < 0.75 (89)

where ρ is the length of the true shortest path to P, and ρ is the integer distance value assigned by
CWave.

Proof. Given the previous definitions of ρ A and ρ B, the following cases are possible:

(1) ρ B � ρ A − 2 (based on condition (88), path via B is chosen).
Proposition 4 implies that, in this case, ρB < ρA, and thus path through vertex B is chosen cor-
rectly. This means that the error boundaries for ρ = ρ B can be calculated using (81). The interval
defined by (81) is contained in the interval defined by (89).

(2) ρ B = ρ A − 1 (based on condition (88), path via B is chosen).
In this case, two sub-cases are possible:
(a) ρB � ρA: path via B is chosen correctly, thus, again, error boundaries (81) are true;
(b) ρB > ρA: path via B is chosen incorrectly, the length of the shortest path to P is ρ = ρA, but,

for ρA, error boundaries (81) are still true:

ρ A

2
− 0.75 < ρA <

ρA

2
+ 0.25 (90)

And, thus, after substituting ρ B = ρ A − 1, we will have

ρ B

2
− 0.25 < ρA <

ρ B

2
+ 0.75 (91)

ρ

2
− 0.25 < ρ <

ρ

2
+ 0.75 (92)

This interval is also contained in 89.
(1) ρ B = ρ A: (based on condition (88), path via A is chosen):

Since ρ B = ρ A, error boundaries (81) will be correct no matter which real distance ρA or ρB is
shorter.

(2) ρ B = ρ A + 1 (based on condition (88), path via A is chosen):
This case is symmetric to case (2)—that is, it can be rewritten as ρ A = ρ B − 1.

(3) ρ B � ρ A + 2 (based on condition (88), path via A is chosen):
This case is symmetric to case (1)—that is, it can be rewritten as ρ A � ρ B − 2.

Proposition 5 provides distance error boundaries for a generic map.

4.4. Wave merge with floating-point criterion
If path tracking (see Section 3.7) is enabled and floating-point operations on a given platform are
cheap, then another modification of CWave (CWaveFpuMerge) can be more preferable on certain
types of maps. Indeed, when a wave-merge is detected at point P, but Proposition 4 does not hold,
we can utilize path tracking to calculate exact floating-point distances ρA and ρB:

ρA = sA +
√

(xP − xA)2 + (yP − yA)2 (93)

ρB = sB +
√

(xP − xB)2 + (yP − yB)2 (94)

Now, if ρB � ρA, then wave B penetrated wave A too much, and vertex P value should not be
reassigned.

Even though this criterion requires additional floating-point calculations (including two square
roots), it eliminates the overlapping area, and thus, on certain types of maps where overlapping
creates a significant overhead, it might be faster than CWaveFpuSrc or even CWaveInt. Additionally,

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

226 CWave: theory and practice

Fig. 18. Triangle inequality used for the shake test: |ρSA − ρTA|� 1.

by making an exact distance comparison (permitted by the machine epsilon) at all merge vertices,
CWaveFpuMerge is able to find optimal paths. The exact length of the optimal path can be calculated
as discussed is Section 6.2.

5. Performance Tests
The key performance characteristics of a path planning algorithm are accuracy and speed. They are
discussed in the Sections 5.1 and 5.2, respectively.

5.1. Verification and accuracy
The implementation of the CWave algorithm is not a trivial task, due to numerous special cases that
are easy to overlook (vertices on 45◦-diagonals, cones that are narrower than a single cell, NBPs at
non-marked vertices, vertices with y= 0). To achieve a desired level of reliability, several verification
methods were developed. Let us first introduce a definition.

Definition 2. If a vertex is surrounded by four occupied cells, it is called a blocked vertex.
Otherwise, it is a non-blocked vertex.

In the order of decreasing speed and increasing accuracy, the developed tests are the following:

(1) Fill test, for a set of simply connected maps, runs CWave from every non-blocked vertex on the
map and verifies on the fly that, during each run, none of the vertices is visited more than once.
At the end of each run, it checks that all non-blocked vertices on the map are assigned a distance
value. This test is fast, but does not check for distance errors.

(2) Shake test, for a set of generic maps, indirectly verifies the distance accuracy by checking the
triangle inequality. Indeed, for the lengths ρSA and ρTA (Fig. 18) of the two shortest paths calcu-
lated from adjacent vertices S and T to any vertex A, inequality |ρSA − ρTA|� 1 should hold true.
Given the error bounds (89), this inequality implies

|ρSA − ρTA|< 5 (95)

Shake test verifies that (95) is true for all non-blocked starting vertices S on the map and all
non-blocked A. This self-test is several times slower than Fill test, but it catches accumulative
distance errors.

(3) Accuracy test checks that error bounds (89) are correct by comparing the CWaves distances to
the those calculated by ANYA,27, 28 an optimal any-angle path planning algorithm. Given that
ANYA is designed for point-to-point path planning, a complete all-to-all distance check is very
slow (for map in Fig. 19(h) it takes about 10 h).

5.2. Speed comparison to other algorithms
In ref. [17], a comprehensive comparative analysis is presented for most popular any-angle path
planning algorithms: A* (8-connected, not any-angle), Theta*, Lazy Theta*, Block A*, Field A*,
ANYA, and Any-Angle Subgoal Graphs. In particular, their speed and accuracy when solving point-
to-point path planning problems are compared. We expanded on their test framework: integrated
CWave into the test and adapted Theta*, Lazy Theta*, Field A*, ANYA, Block A*, and A* for
single-source path planning by stopping the search only when all vertices are visited and setting
heuristics to 0. Additionally, in case of ANYA, the path length to each vertex P in every interval was
calculated according to

ρ(P)= g(R)+ d(R, P) (96)

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 227

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 19. Test maps except (g) and (h) are adopted from ref. [29]. The blue curves are equidistant from the
given source vertex as calculated by CWave. They visualize a solution of one path planning problem for each
map. (a) arena2: 281× 209, 1000 problems, (b) spots: 128× 128, 430 problems, (c) nyc: 256× 256, 400 prob-
lems, (d) baldurs: 256× 256, 270 problems, (e) conquest: 512× 512, 200 problems, (f) maze: 512× 512, 150
problems, (g) aklabs: 500× 370, 800 problems, and (h) cwave: 150× 100, 900 problems.

where g(R) is the length of the optimal path from the start source vertex to the current root,27 and
d(R, P) is the straight line distance from the root to the given vertex P that belongs to the current
interval. Some of the vertices were updated multiple times, but only the minimum value was kept.

The framework measures the time required by each algorithm to solve a set of path planning
problems on a given map. The tested maps are shown in Fig. 19, where the blue “curves” designate
equidistant lines as calculated by CWave algorithm (distance between the curves is equal to 5 cell
widths).

The tests were executed on Intel(R) Core(TM) i7-3610QM CPU @ 2.30 GHz (10 runs for each
map). The results (Fig. 20) demonstrate that on all maps except spots and cwave, CWave performed
faster than all other algorithms. The highest performance advantage is achieved on conquest.map: 16
times faster than Theta*, 8 times faster than Lazy Theta, and 2.5 times faster than the nearest com-
petitor Block A*. Slightly worse, but similar results, are demonstrated on an inflated map of a real
building aklabs. On the other hand, on maps with a higher number of isolated obstacles (cwave.map
and even more so on spots.map), CWave in its basic implementation does not perform as competi-
tively: while still being faster than all other tested algorithms, on cwave.map it yeilds to Block A*
by 42%. On spots.map, Block A* beats CWave in speed fourfold (this is significantly improved in
the following subsections). We believe that the primary reason of a comparatively poor performance

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

228 CWave: theory and practice

Fig. 20. Performance comparison of single-source path planning algorithms: measured in seconds (top),
normalized by the average duration of CWave (bottom).

on such maps is that the main CWave performance advantage comes from representing the wave
front as a set of discrete arcs and lines (rather than individual vertices); thus, if the number of cones
grows too high, the efficiency of such representation drops. Maps with many isolated obstacles result
in major wave overlappings and a high number of secondary waves which leads to the performance
degradation. This hypothesis is further supported by the experimental results with multithreaded
and modified implementations of CWave, discussed in the following. We believe that single-source
ANYA suffers from a similar problem of unnecessary wave overlapping; however since it does not
implement any wave merging mechanism, its speed is affected much worse: in the worst case of
spots.map, it’s almost 90 times slower than Block A*.

5.3. Parallelization
Most modern computers have several cores (CPUs) and some are even equipped with GPUs. A paral-
lelized algorithm can distribute the computational load between multiple cores effectively decreasing
the computational time.

One way to parallelize CWave is to distribute the wave sources available for expansion at every
step between multiple threads running simultaneously. The effectiveness of such parallelization is
highly dependent on the map. Indeed, a map without obstacles will never have more than one source,
and, thus, only one thread will be doing useful work.

An important aspect of this parallelization scheme is the distance equivalence between the
threads. In our current implementation, we chose to synchronize threads at every distance step
(d, d+ 2, . . . , d+ 2k). This allows to keep frontier at the same distance and expand the wave at
constant velocity. The practical implementation of such parallelization revealed a high degree of
contention between the threads, rendering the usage of traditional thread synchronization means
(semaphores, mutexes, and even spinlocks) ineffective: performance tests showed that all multi-
threaded implementations using these synchronization tools were slower than a single-threaded
implementation. That can be explained by the fact that it is not only the set of sources that is shared
between the threads, but also map vertices as well. A significant performance improvement, how-
ever, has been achieved by resorting to C++11 atomic variables and atomic CAS (compare and swap)
operation on map vertices.30

The results of the performance tests comparing N-threaded implementation CWaveN with the
single-threaded implementation CWave are presented in Fig. 21. CWaveFpuSrc was utilized as the
basis for the test.

Among the expected results, we can observe that CWave1 (a multithreaded implementation
running a single thread) is slightly slower than CWave (the single-threaded implementation), due
to the overhead of atomic variables. When the number of threads reaches the number of simul-
taneous threads supported by the given CPU (CWave8), the performance noticeably decreases.
We can also observe that more intricate maps (resulting in more source vertices) show a bet-
ter improvement from parallelization: in the best case on spots.map 8-threaded implementation,

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 229

Table II. Summary of CWave modifications.

Modification Description FPU operations Distance accuracy

CWaveInt Pure integer implementation
using only addition and bit
shifting operations

None Accumulative error
|�dk|� 0.5 at every turn

CWaveFpuSrc Calculates floating-point
distance value at corner vertices
(Section 3.6)

At corner vertices Non-accumulative error
|�d|< 0.75

CWaveTrack Same as CWaveFpuSrc, but
maintains additional data for
path extraction (Section 3.7)

At corner vertices Non-accumulative error
|�d|< 0.75

CWaveFpuMerge Same as CWaveTrack, but uses a
floating-point criterion at wave
merge vertices (Section 4.4)

At corner and merge
vertices

No distance error (optimal)

Fig. 21. Performance of 1- to 8-threaded implementations (CWave1 to CWave8) compared to the single threaded
implementation (CWave): measured in seconds (top), normalized by the average duration of the single-threaded
implementation of CWave (bottom).

CWave8 is almost 3 times faster than the single-threaded implementation CWave, whereas the best
multithreaded implementation CWave5 on a topologically simpler map aklabs.map is just 50% faster
than the single-threaded implementation. This supports the hypothesis that excessive branching that
occurs on maps with a high number of isolated obstacles results in performance degradation which
can be significantly compensated by multithreading. Indeed, CWave8 on spots.map despite major
wave overlapping approaches the performance of Block A*. This is further improved in the next
subsection.

As we can see, this approach to parallelization, while noticeably improving the performance,
does not make it N-times faster (where N is the number of threads) than the single-threaded
implementation. When the wave frontier is not required to stay at the same distance, a paral-
lelized implementation with less frequent synchronization between the threads might yield a better
performance increase.

From a practical point of view, for the tasks where distance maps need to be calculated from mul-
tiple sources, it might be more effective (time-wise) to run simultaneously N independent algorithms,
one for each start source, rather than parallelize each run. This will almost completely eliminate the
contention between the threads, but, of course, would require N-times more RAM.

5.4. Speed of CWave modifications
In this section, we compare the speed of the four modifications of CWave discussed so far: CWaveInt,
CWaveFpuSrc, CWaveTrack, and CWaveFpuMerge. The properties of these modifications are sum-
marized in Table II. Their speed has been measured using the same test setup as discussed in
Section 5.2. The results (Figure 22) expectedly show that CWaveFpuSrc is just a little bit slower than
CWaveInt, because the additional usage of floating point operations in CWaveFpuSrc is minimal.

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

230 CWave: theory and practice

Fig. 22. Performance comparison of various modifications of CWave: measured in seconds (top), normalized
by the average duration of CWaveInt (bottom).

Predictably, maintaining data for path extraction increases the runtime of CWaveTrack (as compared
to CWaveFpuSrc) by 5–11%. What is interesting to observe is that on maps with higher num-
ber of isolated obstacles, such as cwave.map and spots.map, where more wave merging occurs,
CWaveFpuMerge is noticeably faster than CWaveFpuSrc. Indeed, on spots.map, we gain an addi-
tional 30% of runtime reduction. Thus, even on this most challenging map for CWave, in combination
with multithreading, CWaveFpuMerge may perform as fast as its closest “competitor” Block A*.

This supports our hypothesis that, on some maps, eliminating wave overlapping can increase the
speed of the algorithm, despite the need to maintain additional tracking data and execute floating-
point calculations at merge vertices.

6. Discussion and Future Work
In this section, we will discuss certain advantages and drawbacks of CWave, as well as the potential
directions for future work.

6.1. Implementation
The main drawback of CWave is its implementation complexity which resulted in about 1500 lines
of C++ code. It required very rigorous and time-consuming test process to debug. It is very likely
that certain aspects of the algorithm/implementation can be generalized and simplified.

However, CWave has the main advantage of having superior performance over its predecessors.
Given that CWave, in its most basic form CWaveInt, requires only integer addition and bit shift-
ing (multiplication by two), it can be ported to low-cost embedded platforms that lack support for
floating-point operations, for example, those used in swarm robotics.

The high-level pseudo-code of CWave is presented in Algorithm 1, where GetNextVx(src, cur_vx)
iterates through vertices of a Bresenham arc as discussed in Section 2.1, ExtendBdry(boundary) iter-
ates through vertices along boundary lines as discussed in Section 3.4; CheckOccupancyPattern(vx)
checks for the occupancy of the cells corresponding to vertex vx and its NBP if it is present,
assigns distance values to the vertices in dist_map (Section 2.7), and returns one of the patterns
from Fig. 12; ProcessConfiguration(prev_ ptrrn, new_ pttrn) identifies one of the 40 configurations
shown in Fig. 14, and, if corners are detected, updates boundary lines (may create new cones) and
places new sources at the corners (adds them to new_sources array); and ProcessStartVertex(.) and
ProcessEndVertex(.) can result in the same actions as ProcessConfiguration(.).

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 231

Algorithm 1 High-level CWave pseudo-code
Input: map (2D grid modeling the map), init_vx (initial source vertex)
Output: dist_map (2D array with distance value for every vertex)
Initialization
create source object from init_vx, place it into array sources
front_dist← 2
while sources is not empty do

for src in sources do
src.dist← src.dist+ 2
src.radius← src.radius+ 1
// Source maintains a set of cones
for cone in src.cones do

start_vx← ExtendBdry(cone.start_boundary)
end_vx← ExtendBdry(cone.end_boundary)
prev_ pttrn← ProcessStartVertex(start_vx)
// Iterate Bresenham arc vertices between start & end

boundaries:
cur_vx← start_vx
while cur_vx != end_vx do

cur_vx← GetNextVx(src, cur_vx)
pttrn← CheckOccupancyPattern(cur_vx)
ProcessConfiguration(prev_ pttrn, pttrn)
prev_ pttrn← pttrn

end
ProcessEndVertex(end_vx)

end
end
merge new_sources into sources
from sources delete sources without cones
front_dist← front_dist+ 2

end

6.2. Vertex exact floating-point distance calculation
Note that after the CWave integer distance values are calculated, the true floating-point distance
can be extracted for any vertex P if needed. First, P’s parent source needs to be identified (see
Section 3.7). The source exact floating-point distance to the start source is already known to be s.
Then using relative coordinates of P the exact floating-point distance d from P to parent source is
calculated. Finally, s+ d gives the exact length of the shortest path from the start source vertex to P.

6.3. Reduction of thread contention in the multithreaded implementation
As discussed, the performance improvement of the current multithreaded implementation of CWave
is pretty far from increasing proportionally to the number of threads. Certain changes to the design,
however, are likely to make the multithreaded implementation more efficient.

For example, instead of distributing sources between the threads, individual cones can be dis-
tributed. Synchronizing threads less frequently would reduce thread contention, the key factor of
performance degradation. Currently the threads are synchronized such as to keep the wave front at
approximately the same distance, which is good to minimize the wave overlaps. If we allow threads
to synchronize less frequently, some redundant occasional wave overlaps will be more likely, but
at the same time there is a good chance that the reduced thread contention will result in an overall
significant performance increase. These are still open directions for research.

6.4. Improving wave merges
In Section 4, we showed that the current implementation of CWave can generate multiple waves that
overlap (i.e. they visit the same vertices multiple times). Even duplicate source vertices with slightly
different distances can be created. This drawback can potentially be mitigated by not allowing source

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

232 CWave: theory and practice

duplicates. Indeed, if among all sources there are two or more sources with the same coordinates, one
of them will have its floating-point distance s not greater than that of all others. Only that source can
thus be kept, and others can be deleted.

An alternative solution to the problem of overlapping is to add a hyperbolic boundary to the
overlapping waves, but that might not be as easy to construct using simple arithmetics. However,
there is a certain chance that in many cases that boundary can be very well approximated by a
straight line.

6.5. Performance tests on various classes of maps
An important direction for further research is a comprehensive comparison of CWave performance
on different types of maps. Several classes of maps can be defined based on their resolution, obstacle
density, obstacle size, and connectivity. Comparing CWave performance on these types of maps
versus the performance of other single-source any-angle path planning algorithms can reveal other
stronger and weaker sides of CWave.

6.6. Applications
As a fast single-source path planning algorithm on a grid, CWave may find its use in various robotic
applications. In fact, it’s not simply an algorithm, but is rather an efficient method of equidistant wave
propagation on a grid. In this subsection, we will outline how CWave was utilized to enable robot
navigation via an LTI and discuss other possible applications of the method.

As it was mentioned in Section 1, the development of CWave was motivated by a practical prob-
lem of robot navigation via LTIs, such as a brain–computer interface, facial expression control.1 In
ref. [2], we present the development of such system, as well as the results of simulation and real robot
experiments.

To summarize, CWave was integrated with Robot Operating System (ROS)31 and used internally
in several critical components of the navigation system: (1) By limiting the maximum distance in
CWave, we were able to efficiently calculate the robot reachability area online. On a grid map, the
reachability area is a set of vertices that can be reached by a robot within the next T seconds from its
current position. While the reachability area of a holonomic robot on an empty map is simply a disk,
when obstacles are present, it has to be calculated using a singles-source path planning algorithm.
(2) CWave was also employed to find intermediate destination points. The single-source distances
calculated with CWave were weighted by the inferred probabilities of the destinations. The result was
a probabilistic time-to-destination function. One of the navigation policies was to find a vertex in the
reachability area that would minimize this function and use these points iteratively as a waypoint
destinations until the intended destination is inferred with sufficient confidence. This method signif-
icantly reduced the total navigation time. (3) CWave played a critical role in the inference process as
well. LTIs are typically limited to a small number of possible commands, whereas the total number
of grid vertices is tens of thousands. As part of the iterative inference process, we had to repeatedly
divide the grid map into four areas and let the operator select the desired one. CWave was the basis
for two map segmentation policies: in one of them, the boundaries between the regions were aligned
with equidistant curves (as measured from a given source vertex), and in the other one, they were
aligned with extremals (shortest paths). The details of these implementations are out of the scope of
this paper and can be found in refs. [2] and [32].

Navigation via LTI is not the only robotic application where the destination point is unknown.
In fact, any intelligent robot is expected to understand high-level tasks and, thus, should be able to
rationalize about its goal position rather than take it directly from the operator. In this sense, fast
single-source path planning can efficiently provide information about all possible navigation scenar-
ios, and may serve as the basis for an intelligent robot navigation strategy. For example, in robot
exploration tasks, various areas of the map can be prioritized based on some external data. By com-
bining this knowledge with the distance information calculated by CWave, the robot may develop an
effective exploration method. Another interesting application is in multi-robot navigation. For exam-
ple, in a real-time escape-and-pursue multi-robot game, several “predator” robots try to “catch” a
“prey” robot. All players in this game will greatly benefit from using CWave to pre-calculate possi-
ble navigation scenarios for all other robots and find an optimal navigation strategy either to pursue
or to escape.

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000560

CWave: theory and practice 233

CWave, as a fast method for equidistant wave propagation on a grid, can potentially be adapted
for single-pair (point-to-point) path planning, and can be used to efficiently solve other geometric
problems on a grid, such as painting out circle sectors, segmenting the grid along equidistant, or
geodesic lines (extremals) with respect to a given source.

7. Conclusion
In this work, we presented a high-performance algorithm for single-source any-angle path planning
on 2D grids. The key idea of the algorithm is to abandon the graph model and operate directly
on the grid geometry using discrete geometric primitives (based on Bresenham’s circle and line
algorithms), instead of individual vertices, to represent the wave front. A detailed analysis of the
discrete geometric primitives is presented.

In its most basic form, CWave requires only integer addition and bit shifting to operate. This,
however, results in an accumulative error of 0.5 at every turning point. And while such distance error
can be ignored in many practical applications, we presented a modified version that uses a minimal
number of floating-point operations (only to calculate exact distances between related corner points)
that are able to find optimal paths (without accumulative errors). The absence of accumulative errors
is demonstrated mathematically and verified by two experimental methods.

The speed of CWave is experimentally compared to the speed of other any-angle path planning
algorithms, such as Theta*, Lazy Theta*, Field A*, ANYA, Block A*, and A* modified for single-
source path planning. On all three test maps, CWave performed faster than other algorithms (several
times faster on the target robot navigation map). A multithreaded implementation of CWave has been
described and tested. It demonstrated a noticeable performance improvement (almost three times on
some maps), but with N threads it was far from being N-times faster. Some drawbacks of CWave
have been identified including the high complexity of the implementation. Multiple directions for
possible improvements and for further research have been outlined.

Acknowledgments
This paper is a significantly extended version of ref. [33]. As compared to the conference paper,
here we provide all mathematical proofs, pseudo-code for the algorithm, present a multithreaded
implementation of CWave, demonstrate additional performance gains achieved with parallelization,
and discuss many nuances of the development and usage of the algorithm that were left out in ref.
[33] due to page limitations. This material is based upon work supported by the National Science
Foundation under Grant No. 1135854. We would like to thank Tansel Uras, who kindly helped us to
adapt their test framework17 for single-source planning.

References
1. D. A. Sinyukov, R. Li, N. W. Otero, R. Gao and T. Padir, “Augmenting a voice and facial expression control

of a robotic wheelchair with assistive navigation,” 2014 IEEE International Conference on Systems, Man
and Cybernetics (SMC), San Diego, CA, USA (2014) pp. 1088–1094.

2. D. A. Sinyukov, “Semi-autonomous robotic wheelchair controlled with low throughput human-machine
interfaces,” Ph.D. Dissertation. https://web.wpi.edu/Pubs/ETD/Available/etd-050117-140934/unrestricted/
sinyukov-phd-dissertation.pdf.

3. W. van Toll, A. F. Cook and R. Geraerts, “Navigation meshes for realistic multi-layered environments,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (2011) pp. 3526–3532.

4. A. Nash, “Any-Angle Path Planning,” Ph.D. Dissertation (University of Southern California, 2012).
Available: http://gradworks.umi.com/35/42/3542296.html

5. G. K. Kraetzschmar, G. P. Gassull, K. Uhl, G. Pags and G. K. Uhl, “Probabilistic quadtrees for variable-
resolution mapping of large environments,” In: Proceedings of the 5th IFAC/EURON symposium on
intelligent autonomous vehicles, vol. 37 (2004) pp. 675–680.

6. G. Grisetti, C. Stachniss and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized
particle filters,” IEEE Trans. Rob. 23(1), 34–46 (2007).

7. E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey and K. Konolige, “The office marathon: Robust navi-
gation in an indoor office environment,” 2010 IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, USA (2010) pp. 300–307.

8. S. Rabin, “A* speed optimizations,” In: Game Programming Gems, vol. 1 (Charles River Media, Boston,
MA, USA, 2000) pp. 272–287.

9. A. Nash and S. Koenig, “Any-angle path planning,” AI Mag. 34(4), 85–107 (2013).
10. J. Carsten, A. Rankin, D. Ferguson and A. Stentz, “Global planning on the mars exploration rovers:

Software integration and surface testing,” J. Field Rob. 26(4), 337–357 (2009).

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://web.wpi.edu/Pubs/ETD/Available/etd-050117-140934/unrestricted/sinyukov-phd-dissertation.pdf
https://web.wpi.edu/Pubs/ETD/Available/etd-050117-140934/unrestricted/sinyukov-phd-dissertation.pdf
http://gradworks.umi.com/35/42/3542296.html
https://doi.org/10.1017/S0263574719000560

234 CWave: theory and practice

11. C. Thorpe and L. Matthies, “Path relaxation: Path planning for a mobile robot” OCEANS (1984) pp. 576–
581.

12. A. Nash, K. Daniel, S. Koenig and A. Felner, “Theta*: Any-angle path planning on grids,” In: Proceedings
of the 22nd National Conference on Artificial Intelligence, vol. 2 (AAAI Press, Vancouver, Canada, 2007)
pp. 1177–1183.

13. A. Nash, S. Koenig and C. Tovey, “Lazy Theta*: Any-angle path planning and path length analysis in 3D,”
In: Proceedings of the 5th IFAC/EURON symposium on intelligent autonomous vehicles, Atlanta, GA, USA
(2010).

14. S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown terrain,” IEEE Trans. Rob. 21(3),
354–363 (2005).

15. T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free paths among polyhedral
obstacles,” Commun. ACM 22(10), 560–570 (1979).

16. K. Daniel, A. Nash, S. Koenig and A. Felner, “Theta*: Any-angle path planning on grids,” J. Artif. Intell.
Res. 39, 533–579 (2010).

17. T. Uras and S. Koenig, “An empirical comparison of any-angle path-planning algorithms,” Eighth Annual
Symposium on Combinatorial Search, IL, USA (2015).

18. T. Uras, S. Koenig and C. Hernández, “Subgoal graphs for optimal pathfinding in eight-neighbor grids,”
ICAPS, Rome, Italy (2013).

19. T. Uras, ICAPS 2015: Speeding-up any-angle path-planning on grids (2010). https://youtu.be/
DduMITmi5Ek.

20. J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proc. Natl. Acad.
Sci. 93(4), 1591–1595 (1996). pMID: 11607632.

21. C. Lee, “An algorithm for path connections and its applications,” IRE Trans. Electron. Comput. EC-10(3),
346–365 (1961).

22. J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The discrete geodesic problem,” SIAM Journal on
Computing 16(4), 647–668 (1987).

23. J. S. B. Mitchell, “Shortest paths among obstacles in the plane,” In: Proceedings of the Ninth Annual
Symposium on Computational Geometry, Ser. SCG’93 (ACM, 1993) pp. 308–317. http://doi.acm.org/
10.1145/160985.161156.

24. L. D. Elsgolc, Calculus of Variations (Dover Publications, Mineola, NY, USA, 2007).
25. J. Bresenham, “A linear algorithm for incremental digital display of circular arcs,” Commun. ACM 20(2),

100–106 (1977).
26. J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Syst. J. 4(1), 25–30 (1965).
27. D. Harabor and A. Grastien, “An optimal any-angle pathfinding algorithm,” In: Proceedings of

the Twenty-Third International Conference on International Conference on Automated Planning and
Scheduling, Ser. ICAPS’13, Rome, Italy (AAAI Press, 2013) pp. 308–311. http://dl.acm.org/citation.cfm?
id=3038718.3038758.

28. D. Harabor, A. Grastien, D. Öz and V. Aksakalli, “Optimal any-angle pathfinding in practice,” J. Artif. Int.
Res. 56(1), 89–118 (2016).

29. N. Sturtevant, “Benchmarks for grid-based pathfinding,” IEEE Trans. Comput. Intell. AI Games 4(2),
144–148 (2012). http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf.

30. A. Williams, C++ concurrency in action: Practical multithreading. (Manning, NY, USA, 2012) oCLC:
ocn320189325.

31. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler and A. Ng, “ROS: An
open-source robot operating system,” ICRA Workshop on Open Source Software, vol. 3 (2009).

32. D. Sinyukov and T. Padir, “A novel shared position control method for robot navigation via low throughput
human-machine interfaces,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2018), Madrid, Spain (2018).

33. D. A. Sinyukov and T. Padir, “CWave: High-performance single-source any-angle path planning on a grid,”
2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore (2017).

https://doi.org/10.1017/S0263574719000560 Published online by Cambridge University Press

https://youtu.be/DduMITmi5Ek
https://youtu.be/DduMITmi5Ek
http://doi.acm.org/10.1145/160985.161156
http://doi.acm.org/10.1145/160985.161156
http://dl.acm.org/citation.cfm?id=3038718.3038758
http://dl.acm.org/citation.cfm?id=3038718.3038758
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
https://doi.org/10.1017/S0263574719000560

	CWave: Theory and Practice of a Fast Single-source Any-angle Path Planning Algorithm
	Introduction
	CWave on a Grid Without Obstacles
	Overview of MPC algorithm
	Distance error of Bresenham circles
	Non-Bresenham points and their properties
	Necessary and sufficient condition for an NBP
	Distance error in NBPs
	Possible vertex configurations
	Assigning distance values to vertices

	CWave on a Grid with Simply Connected Obstacles
	Coordinate frames and definitions
	Visibility cone
	Identifying corner vertices
	Iterating through boundary vertices
	Determining arc endpoints from the boundary vertices
	Distance accuracy on a simply connected map
	Path extraction on simply connected maps

	CWave on a Generic Map
	Boundary between merging waves in continuous space
	Integer criterion
	Distance accuracy on a generic map
	Wave merge with floating-point criterion

	Performance Tests
	Verification and accuracy
	Speed comparison to other algorithms
	Parallelization
	Speed of CWave modifications

	Discussion and Future Work
	Implementation
	Vertex exact floating-point distance calculation
	Reduction of thread contention in the multithreaded implementation
	Improving wave merges
	Performance tests on various classes of maps
	Applications

	Conclusion

