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Abstract

Logic programming provides a high-level view of programming, giving implementers a vast

latitude into what techniques to explore to achieve the best performance for logic programs.

Towards obtaining maximum performance, one of the holy grails of logic programming has

been to design computational models that could be executed efficiently and that would allow

both for a reduction of the search space and for exploiting all the available parallelism in the

application. These goals have motivated the design of the Extended Andorra Model (EAM),

a model where goals that do not constrain nondeterministic goals can execute first. In this

work, we present and evaluate the Basic design for EAM, a system that builds upon David

H. D. Warren’s original EAM with Implicit Control. We provide a complete description and

implementation of the Basic design for EAM System as a set of rewrite and control rules.

We present the major data structures and execution algorithms that are required for efficient

execution, and evaluate system performance. A detailed performance study of our system is

included. Our results show that the system achieves acceptable base performance and that a

number of applications benefit from the advanced search inherent to the EAM.

KEYWORDS: logic Programming, implementation, extended Andorra model

1 Introduction

Logic programming (Lloyd 1987) (LP) relies on the idea that computation is

controlled inference. LP provides a high-level view of programming where programs

are fundamentally seen as a collection of statements that define a model of the

intended problem. Queries may be asked against this model, and answers will be

given through a proof procedure, such as refutation. Prolog (Colmerauer 1993) is

the most popular LP language. Prolog relies on SLD resolution (Hill 1974) and

uses a straightforward left-to-right selection function and depth-first search rule.

This computation rule is simple to understand and efficient to implement but,

1 In memory of Ricardo Lopes, the main author of the YAP Basic Design for Extended Andorra Model
implementation.
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unfortunately, it is not the ideal rule for every logic program. It is well known that

for many programs the left-to-right selection function is not effective at constraining

the search space and in the worst cases can lead to looping. Often, these limitations

lead Prolog programmers to convoluted and nondeclarative programs.

Ideally, one would like novel computational models for LP to achieve the following

two goals, in order of priority (Warren 1990):

• Minimum number of inferences: by trying never to repeat the same execution

step (inference) in different locations of the execution tree.

• Maximum parallelism: by allowing goals to execute as independently as possi-

ble, and combining all solutions as late as feasible.

Both goals can be achieved through a variety of techniques. Coroutining and

tabling are nowadays widely used to reduce the number of inferences performed by

logic programs (Aggoun et al. 1995; Carlsson et al. 2004; Sagonas et al. 1997; Santos

Costa et al. 2000). Coroutining allows goal execution when all required arguments

are bound. Tabling avoids repeated computations of the same goal and can be

used to prevent infinite loops. Several forms of parallelism, such as and-parallelism

between goals and or-parallelism between alternatives, have been exploited in LP,

with excellent results (Gupta et al. 2001).

One should observe that the two goals of minimal inferences and maximal

parallelism are not independent. Indeed, work on concurrent LP languages showed

the strong interplay between coroutining and and-parallelism (Ueda and Morita

1990; Ueda 2002). In the Basic Andorra Model (Warren 1988), coroutining between

determinate goals (goals with at most one valid alternative) constrains the search

space and generates and-parallelism, whereas the alternatives of nondeterministic

goals generate or-parallelism. The Andorra-I prototype (Santos Costa et al. 1991a)

demonstrated the approach to be practical and effective. On the other hand, Andorra-

I does depend on finding determinacy. If determinacy cannot be found efficiently,

there is no benefit in using this model.

The Extended Andorra Model (EAM) (Warren 1989) lifts the main restrictions in

the Basic Andorra Model. The key ideas for this model can be described as:

• Goals can execute immediately (in parallel) as long as they are deterministic

or they do not need to bind external variables;

• If a goal must bind external variables nondeterministically, the computation

of this goal will split.

The EAM provides a generic model for the exploitation of coroutining and

parallelism in LP, and motivated two main lines of research.

One approach was followed by Haridi, Janson and researchers at SICS who

concentrated on the Agents Kernel Language (AKL) (Janson and Haridi 1991)

based on the principle that the advantages of the EAM justified a new programming

paradigm that could subsume both traditional Prolog and the concurrent logic

languages. AKL programs are formed of guarded clauses, where the guard is

separated from the body through the sequential conjunction operator, cut, or commit.

AKL systems obtained acceptable performance, both in sequential and parallel
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implementations, such as Penny (Montelius and Ali 1995; Montelius and Magnusson

1997), but the language was not actively supported. Instead, the AKL researchers

shifted their interest to Oz (Smolka 1995). This language provides some of the

advantages of LP, such as the logical variables, and of AKL, such as encapsulation,

but makes thread programming and search control fully explicit.

In contrast, David H. D. Warren and researchers at Bristol concentrated on

the EAM with Implicit Control (Warren 1990), where the goal was to apply the

EAM as a technique to achieve efficient execution of logic programs, with mini-

mal programmer effort. Gupta’s proof-of-concept interpreter (Gupta and Warren

1991) showed the need for further research on the EAM and presented new

concepts such as lazy copying and eager producers that give finer control over

search and improve parallelism. Gupta and Pontelli later experimented with an

extension of dependent and-parallelism that provide some of the functionality of the

EAM through parallelism, extended dynamic-dependent and-parallelism (Gupta and

Pontelli 1997). Extended dynamic dependent and-parallelism shows how the EAM

ideas are important in parallel LP systems.

In this work, we present the Basic Design for Extended Andorra Model (BEAM),

an implementation of the EAM for Logic Programs. Our research was motivated

by the original question of whether the EAM can be an effective mechanism for the

execution of logic programs, and this work extends the original EAM work by:

• Providing a complete description of an EAM kernel as a set of rewrite and

control rules, and evaluating these rules through a prototype implementa-

tion (Lopes et al. 2003b). We call this kernel design the BEAM (Lopes et al.

2001). Sections 2 and 3 present this contribution.

• Studying how to take the best advantage of the EAM with the least pro-

grammer intervention (Lopes et al. 2004). In the spirit of Kowalski’s original

definition, and building upon Warren and Gupta’s original work (Gupta and

Warren 1991), we experimented with different approaches to exploiting control

and contrast them to the guard-style approach used in AKL. Section 4 presents

this contribution.

• Exploring novel implementation techniques for the EAM, including efficient

support for deterministic computations (Lopes et al. 2003a) and efficient

memory management (Lopes and Santos Costa 2005). Sections 5 and 6 present

this contribution.

Our results show that the system achieves acceptable base performance and

that a number of applications benefit from the advanced search inherent to the

EAM. Moreover, we show that implicit control can be in fact quite effective for

a sizeable number of applications and that simple annotations can contribute to

further improvements with little programmer effort.

This paper is organised as follows. Section 2 presents the main BEAM concepts

that fully specify an EAM with implicit control. Next, in Section 3, we propose a

number of rules that simplify and optimise the BEAM computational state. Section 5

shows the BEAM implementation. Section 6 discusses memory management issues,

and Section 7 focuses on Emulator design. We evaluate the performance of our
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system in Section 8, and finish with Conclusions and a Discussion of Related Work.

The reader is expected to have understanding of the key issues in LP implementation,

and in particular of the design of the Warren Abstract Machine (WAM) (Warren

1983).

2 BEAM concepts

A BEAM computation is a sequence of rewriting operations performed on And-Or

Trees. And-Or Trees are trees of and-boxes and or-boxes:

• An and-box Δ represents a conjunction:

[∃X1, . . . , Xm : σ & A1 & . . . & An ] (n � 0).

Each Ai in the conjunction may be a literal Gi or an or-box. Initially, an

and-box represents the body of a Horn clause and all Ai are literals of the

form Gi.

A variable is said to be local to an and-box Δ when it is scoped at Δ. The

variables X1 to Xm represent the set of variables local to the box Δ. Initially,

these variables are the variables occurring in and only in the body of the

clause G1 & . . .& Gn.

The set σ is a set of constraints. In this work, we shall focus only on Herbrand

constraints, and we may refer to them as bindings.

The environment of an and-box consists of all variables local to the and-box

and to every ancestor and-box. Variables local to an ancestor box are called

external to the current and-box.

• An or-box Ω represents the matching clauses for a goal; each or-box contains

a sequence of and-boxes Δ1 to Δn.

{Δ1 ∨ · · · ∨ Δn} (n � 0).

Each child and-box Δi initially represents an alternative clause for a goal.

A configuration is an And-Or Tree describing a state of the computation. Given

a literal Q, the query, a computation is a sequence of configurations starting at the

initial configuration and obtained by successive applications of the rewrite rules

defined next. The initial configuration is a single and-box such that

• X1, . . . , Xn = vars(Q),

• σ = ∅,

• the literal Q.

The constraints over the uppermost and-box(es) on the final configuration are

called the answer(s).

A goal, or literal, is said to be deterministic when the corresponding or-box has

at most one and-box. Otherwise, it is said to be nondeterministic.

An and-box Δ is said to be suspended if only the splitting rule, defined in

Section 2.1, applies to Δ and if there is at least one variable X such that binding X

will allow applying a different rule to Δ.
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A

...

G B

σ1 σnY1 nY

A B

C1 Cn

XX σσ

Fig. 1. BEAM reduction rule. Each Ci represents the body of a clause Gi1 & . . .& Gik .

2.1 Rewrite rules

Execution in the EAM proceeds as a sequence of rewrite operations on configu-

rations. The BEAM’s rewrite rules are based on David H. D. Warren’s proposal

(Warren 1990). They have been designed to allow for efficient implementation. In

the following, we use square brackets to represent an and-box Δ, curly brackets

to represent an or-box Ω, the symbol G to refer an unfolded literal (subgoal) and

the symbols A and B to refer a sequence with literals and or-boxes. We present

the rewrite rules both graphically and textually. Graphically, the leftmost box is

the original configuration and the rightmost box the transformed configuration.

Textually, the configuration above the line is transformed into the configuration

below the line.

The BEAM rewrite rules are as follows:

Reduction: This rule resolves a goal G in an and-box against the heads of all clauses

defining the procedure for G. The rule always creates a new or-box and one and-box

for each clause that unifies with the goal. Each and-box i is initialised with the

most general unifier between the clause’s head and the goal, σi, and with the set of

existential variables in the clause, Yi. A and B denote conjunctions of goals.

[∃X : σ &A &G &B]

(Reduction) −→

[∃X : σ&A&

⎧⎨
⎩

[∃Y1 : σ1 & G11 & . . .& G1k]

∨ . . .∨
[∃Yn : σn & Gn1 & . . .& Gnk]

⎫⎬
⎭ &B].

Figure 1 shows how resolution expands the tree. Note that the new variables created

by the rewrite rule are guaranteed to be standardised apart. Also, the reduction rule

just unfolds goal G, no constraint propagation is performed from below to above,

even if the or-box has a single child.

Promotion: This rule promotes the variables and constraints from an and-box Δ to

the closest ancestor and-box Δ′:

[∃X : σ & A & {[∃Y : θ & W ]} & B]}
(Promotion) −→

[∃X,Y : σθ & A & {[W ]} & B].
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Fig. 2. BEAM promotion rule.
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Fig. 3. BEAM propagation rule.

The BEAM allows promotion only if Δ is the single alternative to the parent

or-box, as illustrated in Figure 2. The box Δ is represented by the round box that

contains goal W, and Δ′ is represented by the round box that contains A and B. σθ

is the composition of constraints σ and θ.

Promotion follows Warren’s EAM rule in that it propagates results from a

local computation to the level above. However, promotion in the BEAM does

not simplify the structure of the tree, in contrast with the original EAM and with

AGENTS (Janson and Montelius 1992).

Propagation: This rule allows us to propagate a constraint σi from an and-box to

another and-box in the subtree below. This rule is thus symmetrical to the promotion

rule.

[∃X,Z : σ& A& {. . . ∨ [∃Y : θ &W ] ∨ . . .} &B] ∧ σi ∈ σ

(Propagation) −→
[∃X,Z : σ &A & {. . . ∨ [∃Y : θσi &W ] ∨ . . .} &B].

Figure 3 shows how the propagation rule makes the constraint σ available to the

underlying and-boxes. Together, the promotion and propagation rules allow us to

propagate bindings through the and-or tree.

Splitting: This rule is also known as nondeterminate promotion. As illustrated in

Fig. 4, the rule distributes a cut-free conjunction across a disjunction, in a way

similar to the original EAM’s forking rule (Warren 1989).

[∃X : σ & A &{Δ1 ∨ · · · ∨ Δi ∨ · · · ∨ Δn} & B]

(Splitting) −→
{[∃X : σ & A & {Δi} & B] ∨

[∃X : σ & A & {Δ1 ∨ · · · ∨ Δi−1 ∨ Δi+1 ∨ · · · ∨ Δn} & B]}.
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.........

X σ

A B

Δ1 Δ i Δn

X σ

A B

Δ i

X σ

A B

Δ1 Δn

Fig. 4. BEAM splitting rule.

As stated above, the parent and-box may not include a pruning operator as its direct

element.

In contrast to the previous rules, splitting duplicates goals in the tree. It is therefore

the most expensive rule in the BEAM, and as discussed next, the control strategy in

the BEAM tries to delay application of splitting as much as possible.

3 Simplification rules

We have presented the main rules that allow us to create and expand the tree and to

propagate bindings. An actual implementation must be able to simplify the And-Or

Tree in order to propagate success and failure and in order to recover space by

discarding boxes. The BEAM therefore includes additional simplification rules that

generate compact configurations and allow us to optimise the computation process.

These are as follows:

Success-Propagation: The original EAM does not explicitly provide a notion of

successful computation, meaning a computation that has completed execution and

that may now be discarded. The following rules identify success situations in the

BEAM and allow the propagation of success towards the upper boxes. To implement

these rules, we use the notion of a true-box : an and-box is called a true-box when

all the local computations have been completed and the and-box does not impose

constraints on external variables:

[∃X : ∅] ≡ true.

Note that the and-box might initially have had constraints on external variables,

but those constraints have left the and-box after application of the promotion rule.

We say that a success occurs when we find a true-box.

(Success-Propagation) [∃X : σ & A & {true} & B] −→ [∃X : σ & A & B].

If an or-box contains a unique alternative that succeeds, the or-box has succeeded

and can be discarded (see Figure 5). True-boxes may also be used to achieve implicit

pruning, as discussed below in Section 3.1.

The ultimate goal of a BEAM computation is to reduce all and-boxes to true-boxes

so that the initial and-box can itself be simplified.
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True

σX

A B

σX

A B

Fig. 5. BEAM Success-Propagation rule.

Δ i+1... ...Δ i-1

X σ

False B Δ i+1... ...Δ i-1

Fig. 6. BEAM Leftmost-Failure propagation rule.

Leftmost-Failure Propagation: The operation symmetric to the propagation of suc-

cess is the propagation of failure. It is quite important to identify failed computations

in order to allow the propagation of failure towards the upper boxes and in order

to recover space. Again, the basic EAM design does not contain explicit rules for

failure propagation. First, we define a fail-box as an empty or-box:

{} ≡ false.

Failure can then be propagated by discarding the parent and-box:

{. . . ∨ Δi−1 ∨ [∃X : σ & false & B] ∨ Δi+1 ∨ . . .}
(Leftmost-Failure) −→

{. . . ∨ Δi−1 ∨ Δi+1 ∨ . . .}.

Note that the rule states that if the first or leftmost goal of an and-box fails,

then the and-box has failed (see Fig. 6). A nonleftmost version of this rule for

simplification of and-boxes is presented in the context of our discussion on pruning

in Section 3.1.

Failure propagation rules such as this one have priority over all the other rules to

allow propagation of failure as soon as possible.

And-Compression: The last rule addresses propagation of deterministic computations

by discarding or-boxes that have a single leaf:

[∃X : σ & A & {[∃Y : θ &W ]} & B]

(And-Compression) −→
[∃X,Y : σ &θ & A & W & B].

This rule removes a nesting of two and-boxes by promoting the inner and-box to

the outer and-box (see Fig. 7). It thus complements the promotion rule by allowing

the BEAM to discard structure. The BEAM does not apply this rule if there is a

pruning operator, such as cut, in the inner box (see Section 3.2 for more details on

pruning).
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X σ

A B

W

A W B

XY σθ

Y θ

Fig. 7. BEAM and-compression rule.

Δ i+1... ...Δ i-1

X σ

A false B Δ i+1... ...Δ i-1

Fig. 8. BEAM False-in-And simplification rule.

Doing and-compression has several benefits. First, the BEAM can recover memory

immediately. Second, the compressed tree becomes smaller and easier to manage.

Last, there is less information to duplicate when performing splitting.

3.1 Implicit pruning

The BEAM implements two major simplifications that improve the search space by

pruning logically redundant branches, even when they are not leftmost. The two rules

are symmetrical: one is concerned with failed boxes, the other is concerned with

successful boxes.

False-in-And: This simplification rule removes an and-box that is parent to a false

box.

{· · · ∨ Δi−1 ∨ [∃X : σ & A & false & B] ∨ Δi+1 ∨ · · ·}
(False-in-And) −→

{· · · ∨ Δi−1 ∨ Δi+1 ∨ · · ·}.

If a failure occurs at any point of the and-box, the and-box is removed and

failure is propagated to the upper boxes (see Fig. 8). This rule can be considered a

generalisation of the failure propagation strategies used in Independent And-Parallel

systems (Hermenegildo and Nasr 1986).

True-in-Or: This simplification rule removes an or-box that is parent to a true-box.

[∃X : σ & A &{· · · ∨ true ∨ · · ·} & B]

(True-in-Or) −→
[∃X : σ & A & B].

This form provides implicit pruning of redundant branches in the search tree

(see Fig. 9), and it generalises XSB’s work on early completion of tabled computa-

tions (Sagonas 1996; Sagonas and Swift 1998).
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X σ

A B

True

A B

X σ

... ...

Fig. 9. BEAM True-in-Or simplification rule.

Implicit Pruning: These two rules can provide substantial pruning. In the absence

of side effects, the presence of a true-box in a branch of an or-box should allow

immediate pruning of all the other branches in the or-box. In an environment

with side-effects, the user may still want the other branches to execute anyway. To

guarantee Prolog compatibility, the BEAM by default only allows the True-in-Or

simplification and the False-in-And simplification for the leftmost goal. Alternatively,

one could do compile-time analysis to disable the True-in-Or and False-in-And

optimisation for the boxes where some branches include built-ins calls with side

effects(Hermenegildo and Greene 1991; Santos Costa et al. 1991b).

3.2 Explicit pruning

The implicit pruning mechanisms we provide are not always sufficient for controlling

the search space. The BEAM therefore supports two explicit pruning operators: cut

(!) and commit (|) prune alternatives clauses for the current goal, plus alternatives

for all goals created for the current clause. Cut only prunes branches that appear

to the right of the current branch, commit can prune both to the left and to the

right. Both operators disallow goals to their right from exporting constraints to the

goals to the left, prior to execution. After the execution of a cut or commit, all

and-boxes to the right of the and-box containing the cut operator are discarded and

their constraints on external variables are promoted to the current and-box.

Figure 10 gives an example of explicit pruning for the program (we label the

clauses of g/1 and h/1 to clarify the figure):

a(X) :- f(X), b(X). f(X) :- g(X), !, h(X).

a(X) :- b(X). f(X) :- i(X).

G1: g(1). H1: h(3).

G2: g(2). H2: h(2).

In this example, the and-boxes for the sibling clause I and for the rightmost

alternative G2 will be discarded. Next, the constraints for G1 can be promoted to the

and-box for G, !, H.

The cut rule can be written as follows:

{[∃X : θ1 &{[∃Y : θ2] ∨ . . .}& ! & A] ∨ . . .}
(Cut) −→

{[∃X,Y : θ1θ2 &A]},
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G ! H IG ! HH I

G1 G2 H1 H2

F B

! H

H1 H2

G1

gninurpretfAgninurp erofeB

F B

Fig. 10. Cut scope.

and the commit rule as follows:

{· · · ∨ [∃X : θ1 &{· · · ∨ [∃Y : θ2] ∨ · · ·} & | & A] ∨ · · ·}
(Commit) −→

{[∃X,Y : θ1θ2 &A]}.

The conjunction of goals in the clause to the left of the cut or commit is called its

guard. Our rule states that cut only applies when the goals in the guard have been

unfolded into a configuration of the form:

{[∃X : θ2] ∨ . . .},

that is when the leftmost branch of the guard has been completely resolved.

We next discuss in more detail the issues in the design of explicit pruning for the

BEAM. In the following discussion we refer mainly to cut, but similar arguments

apply to the commit operator.

4 Control for the BEAM

The previous rewrite and simplification rules provide the basic engine for the correct

execution of logic programs. To this engine, we must add control strategies that

decide which step to take and when. Describing when each rule is allowed to execute

does not completely define the BEAM control strategy. It is also necessary to define

the priority for each rule so that if a number of rewrite-rules match, one can decide

which one to choose. Arguably, one could choose the same rule as Prolog, and

clone Prolog execution. The real power of the EAM is that we have the flexibility

to use different strategies. In particular, we will try to find one that minimises the

search space. The key ideas are as follows:

(1) Failure propagation rules have priority over all the other rules so that failure

propagates as fast as possible.
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parent(john, richard). partition([X|L],Y,[X|L1],L2) :- X =< Y,

parent(john, mary). partition(L,Y,L1,L2).

parent(patrick, paul). partition([X|L],Y,L1,[X|L2]) :- X > Y,

parent(patrick, susan). partition(L,Y,L1,L2).

partition([],_,[],[]).

Fig. 11. Prolog’s parent/2 and partition/4 predicates.

(2) Success propagation and and-compression rules should always be done next

because they simplify the tree.

(3) Promotion and propagation rules should follow because their combination may

force some boxes to fail.

The BEAM favours two types of reductions. First, deterministic reductions, do

not create or-boxes, and thus will never lead to splitting. Second, reductions that

do not constrain external variables can go ahead early.

(4) Last, the splitting rule is the most expensive operation and should be deferred

as much as possible.

This default scheme of the execution control in BEAM thus favours deterministic

rules: the simplification rules, the promotion rule and the propagation rule. Their

implementation is therefore crucial to the system performance as we expect that

most execution time in the EAM will be spent performing deterministic reductions,

or reductions that do not constrain the external environment.

4.1 Improving deterministic work

Warren’s EAM proposal states that an and-box should immediately suspend when

trying to nondeterministically constrain an external variable whose scope is above

the closest or-box. Unfortunately, the original EAM rule may lead to difficulties. We

next discuss two examples, a small database, parent/2, and a Prolog procedure,

partition/4, given in Figure 11.

Consider the query ?- parent(X,mary). The query is deterministic, as it only

matches the second clause. Unfortunately, a naive implementation of Warren’s rule

would not recognise the goal as deterministic. Instead, all four clauses would be

tried, as parent/2 would try to bind a value to X, and all and-boxes would suspend.

The same problem may happen with the query: ?- partition([4,3,5],2,A,B).

Although the calls are deterministic, the BEAM would suspend when unifying

[X|L1] to A. The suspension would eventually lead to splitting and to poor

performance.

AGENTS (Janson 1994) addresses this issue by relying on the guard operators

to explicitly control when goals can execute. Arguably, this should allow for the

best execution. On the other hand, AGENTS performance may be vulnerable to

user errors, and Prolog programs need to be preprocessed in order to perform

well (Bueno and Hermenegildo 1992). Andorra-I addresses a similar problem

through its compiler. Unfortunately, coding all possible cases of determinacy grows

exponentially (Palmer and Naish 1991). In the end, Andorra-I manages code size

explosion by imposing a limit on the combinations of arguments that it tries (Santos
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Fig. 12. BEAM Deterministic-reduce-and-promote rule.

Costa et al. 1991b). This solution becomes a source of inefficiency as Andorra-I often

has to execute the same unifications twice: initially, when checking for determinacy,

and later, after committing to a clause.

To address this problem, we propose a different control rule to define when a

reduction should suspend. Reduction of an and-box cannot proceed and should

therefore suspend if and only if

(i) unification of the head arguments constrains external variables, and

(ii) at least two clauses unify with the current goal.

The BEAM performs full unification first and then checks whether these conditions

hold. These provides a more aggressive determinacy scheme than the one in Warren’s

EAM that leads to suspension immediately when binding an external variable. One

advantage is that our scheme is simpler to implement since the suspension may

only occur at a fixed point of the code thus reducing the number of tests one needs

to make in order to determine whether the current and-box should or should not

suspend.

Condition (ii) assumes that we are able to detect that clauses may match. In

practice, this is the province of the indexing algorithm. It is known that detecting

determinacy is in general NP-complete (Palmer and Naish 1991). Therefore, for

efficiency reasons, the indexing algorithm will be a conservative approximation.

Deterministic-reduce-and-promote: Performance of many logic programs heavily de-

pends on optimisations, such as Last Call Optimisation. In the best case, such

optimisations allow tail-recursive programs to execute with the same costs that

iterative programs would.

Both EAM and AGENTS create an and-box when performing reduction on deter-

ministic predicates. The newly created and-box is promoted immediately afterwards

because it is deterministic. The creation of boxes that are immediately promoted is

expensive, both in memory usage and in time.

The BEAM addresses this problem through the Deterministic-reduce-and-promote

rule. This rule allows for a reduction to expand directly in the home and-box. More

precisely, whenever a deterministic goal B is to be reduced to a single alternative

with goals G1, . . . , Gn, the reduction can take place in the parent’s and-box. Figure 12
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Fig. 13. Incorrect use of fork/splitting and cut.

shows an example of this rule.

(Deterministic − reduce [∃X : σ & A & B & C]

− and − promote) −→
[∃X,Y : σθ & A & G1 & . . . & Gn & C].

As explained before, the BEAM cannot apply the reduce-promote rule if there is a

pruning operator, such as cut, in the inner and-box.

4.2 Control for cut

Consider the example presented in Figure 13(a), where the lower leftmost and-box

contains a cut (D,!,E). The and-box W is the only box within the cut scope.

Suppose that all boxes are suspended and that the only available rule is splitting.

Unfortunately, splitting incorrectly allows the and-box W to leave the scope of the

cut (see Fig. 13c). An alternative would be to resort to Warren’s original forking

rule, but forking incorrectly allows the and-box C to be deleted by the cut (see

Fig. 13b).

Please recall that the BEAM explicitly disallows the splitting of an and-box

containing a cut. A clause with a cut can continue execution even if head unification

constrains external variables (note that these bindings may not be made visible to

the parent boxes). In this regard, the BEAM is close to AGENTS (Janson 1994).

https://doi.org/10.1017/S1471068411000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000068


A design and implementation of the Extended Andorra Model 333

D

D1

A      B

E1 E2

W

C

D2

A      B

E1 E2

D

D1

A      B

E1 E2

W

C

D2

A      B

E1 E2

W

C

D1 E1 E2

Splitting

E ED! ! D E!

D2

Fig. 14. Correct use of splitting and cut.

g(X):- a(X), b(X).

a(1).    b(X):- X=3,!, c(x)
a(2).    b(2).

(a) (b)

A B

X=1 X=2 X=2!    C

A B

X=1 X=2

g(X):- a(X), b(X).

a(1).    b(X):- X=3,!, c(x)
a(2).    b(2).

(a) (b)

A B

X=1 X=2 X=2!    CC

A B

X=1 X=2 X=2X=3   !  C

g(X):- a(X), b(X).

a(1).    b(X):- !, c(x)
a(2).    b(2).

Fig. 15. Cut example.

The BEAM differs from AGENTS in that goals to the right of the cut may also

execute before pruning: the cut does not provide sequencing.

Splitting can be applied freely whenever the goals within the guard of the cut

do not constrain external variables, but it may not export constraints for variables

external to the guard nor change the scope of the cut (see example in Fig. 14).

The following two rules are used to control cut execution:

• Early pruning: A cut can always execute immediately if it is the leftmost

subgoal in the and-box and if the and-box does not have constraints.

(Early pruning) {[∃Y : ! & . . .] ∨ W } −→ {[∃Y : . . .]}.

Consider the example illustrated in Figure 15(a). Both alternatives to the goal

a suspended trying to bind the external variable. The first alternative to the

goal b contains a quiet cut2 that will be allowed to execute since it respects

2 A cut is quiet if its guard does not impose constraints on the caller’s environment.
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Fig. 16. Cut in the leftmost box in the tree.

the conditions described previously: the alternative does not impose external

constraints, and the cut is the leftmost call in the and-box. Note that the

resulting execution here is close to the standard Prolog execution.

Figure 15(b) illustrates a different situation. In this case, the cut would not

be allowed to execute since the alternative restricts the external variable X to

the value 3. Thus, the computation in this example would only be allowed

to continue after splitting on a. After splitting, the values 1 and 2 would be

promoted to X and thus make the first alternative to b fail.

• Leftmost-pruning: If an and-box containing a cut becomes leftmost in the tree,

the cut can execute immediately when all the calls before it succeed (even if

there are external constraints).

[∃X1 : θ1&{. . . ∨ {[∃Xn : θn&! &D] ∨ W } ∨ . . .} &E]

(Leftmost-pruning) −→
[∃X1 : θ1&{. . . ∨ {[∃Xn : θn&D]} ∨ . . .} &E].

For example, in Figure 16 the cut is allowed to execute immediately when X

succeeds even if there are external constraints.

Allowing early execution of cuts will in most cases prune alternatives early and

thus reduce the search space.

Degenerate Parent Or-boxes: One interesting problem occurs when the parent or-box

for the and-box containing the cut degenerates to a single alternative. In this case,

promotion and and-compression would allow us to merge the two resulting and-

boxes. As a result, cut could prune goals in the original parent and-box. Figure 17

shows an example where promotion of an and-box containing a cut leads to an

incorrect state as the and-box C is in danger of being removed by cut.

The BEAM disallows and-compression when the inner and-box has a cut.

Promotion of bindings is still allowed. Thus, deterministic constraints are still allowed

to be exported.
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Fig. 17. Incorrect use of promotion and cut.

4.3 Nondeterministic work

Most programs have to perform splitting at some point. Deciding where to apply the

splitting rule is a fundamental issue for EAM implementations. We have considered

three major extensions to the default rule:

• Declare predicates as producers and allow them to perform Eager Forking,

that is to do splitting as soon as they are called. The idea was first proposed

by Gupta and Warren (Gupta and Warren 1991). Intuitively, we declare goals

to be producers if we expect them to produce, but not consume, bindings from

other goals.

Eager forking goes against the core idea of the EAM: doing determinate work

first. On the other hand, it is simple to understand, it can increase parallelism,

and in the cases where most alternatives in the producer fail quickly it can

actually improve the search space. We have implemented eager forking on the

BEAM and we discuss some results in Section 8.

• Allow the user to specify a boundary up to which we should check for

splitting. The idea has appeared in many guises: mini-scopes in Gupta and

Warren’s simulator (Gupta and Warren 1991), independent computations in

Bueno and Hermenegildo (Bueno and Hermenegildo 1992). Scoping is also

quite important for a parallel implementation.

AKL (Janson 1994) introduces stability to allow early splitting. If only splitting

applies to an and-box Δ, the and-box Δ is said to be stable if neither Δ nor

any descendant and-box is suspended on variables external to Δ. All stable

and-boxes can be split in parallel. Unfortunately, detecting stability is quite

expensive.

• The right-hand side of sequential conjunctions can be evaluated only after

the left-hand side has succeeded. We do not allow sequential conjunction

below the default (parallel) conjunction. This is sufficient to guarantee correct

ordering for side-effects built-ins, such as read/1 or write/1 (Santos Costa

et al. 1991b), and allows a simpler implementation.
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Fig. 18. Execution model.

In the next section, we present the architecture used to implement BEAM, namely

the And-Or Tree Manager and the Abstract Machine.

5 BEAM implementation

Figure 18 illustrates the architecture organisation for the BEAM execution model.

The BEAM was implemented as an extension of the YAP Prolog system

(Santos Costa 1999). It reuses most of the YAP compiler and its built-in library.

The shadowed boxes show where the EAM stores data. The Code Space stores the

database with the predicate/clause information, plus the bytecode to be interpreted

by BEAM’s Abstract Machine Emulator (which we refer simply as Emulator). The

Global Memory stores the And-Or Tree and is further subdivided into the Heap and

the Box Memory. The Box Memory stores dynamic data structures including boxes

and variables. The Heap holds Prolog terms, such as lists and structures. The Heap

uses term copying to store compound terms and is thus very similar to the WAM’s

Heap.

There are a number of differences between the BEAM and the WAM. A major

difference is that the BEAM does not perform backtracking. A Garbage Collector

is thus necessary to recover space in the Heap. We leave the details on memory

management to Section 6.

The BEAM relies on two main components, shown as ovals in Figure 18, as

following:

Emulator: It runs WAM-like code to perform unification and to setup boxes.

Unification code is similar to the WAM. Control instructions follow a compilation

scheme similar to the WAM but execute in a rather different way.

And-Or Tree Manager: It applies the BEAM rewriting rules to the existing and-

boxes and or-boxes until WAM-like execution for the selected goal can start.

The And-Or Tree Manager handles most of the complexity in the EAM. It uses

the Code Space area to determine how many alternatives a goal has and how many
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...

*previous *next

*previous *next

*previous *next

... ...

Fig. 19. Or-box representation.

goals a clause calls. With this information, the And-Or Tree Manager constructs

the tree and uses the EAM rewriting rules to manipulate it. The Manager requests

memory for the boxes from the Global Memory Areas. The Emulator is called by the

And-Or Tree Manager in order to execute and unify the arguments of the goals and

clauses. As an example, consider the clause: p(X,Y):- g(X), f(Y). When running

this clause, the And-Or Tree Manager transforms p(X,Y) into an and-box and calls

the Emulator to create the subgoals and or-boxes for g(X) and f(Y). Control then

moves to these subgoals and will return to the And-Or Tree Manager only if the

and-boxes generated for these subgoals need to suspend.

The details on how BEAM stores the And-Or Tree, the design of the Emulator

and the And-Or Tree Manager is described in more detail in the following sections.

5.1 Or-boxes

Or-boxes represent open alternatives to a goal. Figure 19 presents the structure of

an or-box. Each or-box refers to its parent and-box through the parent pointer

and to the subgoal that created the or-box through the id call field. The field

nr all alternatives counts the number of current alternatives. Last, the box

points to a list of alternatives, where each element in the list includes the

following:

• a pointer to a corresponding and-box, alternative, initially null; it is

initialised only when the alternative is explored;

• a pointer to the goal arguments, args; The first alternative creates the

arguments vector. The last alternative to execute, after performing head

unification, recovers the args vector as free memory. Each alternative needs a

pointer to the args vector because the and-compression and the splitting rules

can join alternatives to different goals;

• a pointer to the code for the alternative, code; and,

• the state of the alternative. Initially, alternatives are in the ready state. They

next move to the running state, from where they may reach the success
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Fig. 20. And-box representation.

or fail states, or they may enter the suspend state. Suspended alternatives

will eventually move to the wake state. From wake state alternatives move

to the running state again. As an optimisation, if no more subgoals need to

be executed, but the alternative is suspended, the alternative enters a special

suspended on end state.

Note that if nr all alternatives is one, then there is no need to keep the

or-box: the determinate promotion rule can be applied to a single alternative. If

nr all alternatives equals zero, the box has failed and we can perform fail

propagation.

5.2 And-boxes

And-boxes represent active clauses. And-boxes require a more complex structure

than or-boxes, as they store information on which goals are active as well as on

external and internal variables associated with the clause. Figure 20 shows an

and-box.

Access to the parent node is performed through the parent pointer and through

the id alternative field. The former points back to the parent or-box. The later

indicates to which alternative the and-box belongs. Subgoal management requires

knowing the number of subgoals in the clause, nr calls. Each and-box maintains

a depth level counter that is used to classify variables. The locals field maintains

a list of variables local to this and-box. Variable control is discussed in more detail

in Section 5.3. A list of bindings to external variables is accessed through the

externals field. The and-box may have suspended trying to bind some variables, if

so this is registered in the suspended field. If predicates with side effects are present
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Fig. 21. Local variables representation used in the BEAM: note that suspensions are

explained in detail in Figure 23.

in the goals of this and-box, they are registered in the side effects field. Last,

each subgoal or call requires separate information:

• a pointer to a corresponding or-box, call, initially empty; it is initialised when

the call is open;

• a pointer to the locals variables vector. Each goal needs an entry to the

locals variables because the promotion and compression rules may add other

goals and other variables to the and-box. Still, each goal needs to be able to

identify its own local variables;

• a pointer to the code for the subgoal;

• State information says whether the goal is ready to enter execution, is

running or has entered the success or fail states. Goals may also be

suspended or waiting on some variable from which they will enter the wake

state.

Initially, each and-box has a fixed number of local variables. However, the number

of local variables in an and-box may increase since the promotion rule allows one

to promote local variables to a different and-box. We discuss local variables next.

5.3 Local variables

Every variable is a local variable at some an-box; therefore, it is represented through

the structure illustrated in Figure 21. A local variable either belongs to a single

subgoal in an and-box, or it is shared among subgoals. The value field stores the

current working value for a variable. Unbound variables are represented as self-

referencing pointers. Variables also maintain a list of and-boxes suspended on them,

and point back to their home and-box.

The home field of a variable structure points directly to its original home and-box.

However, this field is not sufficient to completely determine if a variable is local or

not to an and-box.

The BEAM detects whether a variable is local to an and-box or not by having

each and-box associated with a depth counter, that is then used to classify variables.

We can now recognise local variables as follows:

• A variable occurring in an and-box Δ is said to be local if the depth counter

of the and-box Δ equals the depth counter of the variable’s home.

• Otherwise, the variable is said to be external to the and-box Δ.
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Fig. 22. External variables representation.
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Fig. 23. Suspension list representation.

5.4 External variables

Each and-box maintains a list of External Variables, that is of bindings for variables

older than the current and-box (see Figure 22). Each such binding is represented

as a data structure that includes a pointer to the variable definition, local var,

and to its new value, value. Whenever a goal binds an external variable, the

assignment is recorded both in the current and-box as an external reference and

at the local variable itself. This way, whenever a descendant and-box wants to

use the value of the external reference, it can simply access the local variable.

The external reference data structure generalises Prolog’s trail by allowing both

the unwinding and the rewinding of bindings performed in the current and-box.

Our scheme for the external variables representation is very similar to the forward

trail (Warren 1984) used in the SLG-WAM (Swift 1994; Sagonas and Swift 1998).

5.5 Suspension list

The suspension list is a doubly linked list that keeps information on all suspended

and-boxes (see Fig. 23). Each entry in the list maintains a pointer to the suspended

and-box, and box, and information on why the and-box suspended, reason. Goals

may be suspended because they tried to bind external variables. They can also be

waiting for an event to occur. For example, an I/O built-in may be waiting to be

leftmost and an arithmetic built-in may be waiting for a variable to become bound.

The AGENTS implementation uses one stack for suspended boxes and another

for woken boxes. In contrast, the BEAM uses the same list to maintain information

on suspended and woken and-boxes. The SU pointer marks the beginning of the

suspension list (that can be empty). Whenever an and-box suspends, an entry is

added to the end of the suspension list. If a suspended and-box receives a wake

signal, the and-box entry is moved to the beginning of the list. Thus, if there are
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woken boxes, they are immediately accessed by the SU pointer. Also note that we

always want to work with woken boxes before working with the suspended ones.

By default, the BEAM chooses the leftmost and-box in the And-Or Tree as the box

to split first. The box is found by depth-first search.

6 Memory management

The EAM implements a flexible control strategy. Memory usage can become a major

concern in this case and the BEAM must carefully detect the points at which to

recover space. As we show next, we have two techniques to recover space: we can

reuse space for pruned boxes and we can garbage collect inaccessible data.

6.1 Reusing space in the and-or tree

The Box Memory must satisfy intensive requests for the creation of and-boxes, or-

boxes, local variables, external references and suspension lists. Objects are small and

most, but not all, will have short lifetimes. Objects are created very frequently and

minimising allocation and deallocation overheads is crucial.

Unfortunately, the BEAM cannot recover space through backtracking. Instead,

it explicitly maintains liveness of data structures and relies on a bucket allocation

algorithm to allocate space.

The BEAM is therefore able to recover all memory from boxes whenever they fail

or succeed. Memory from failed boxes can obviously be recovered since they do not

add any knowledge to the computation. Memory from successful boxes can also be

recovered because the variable unification rules guarantee that and-box variables do

not reference variables within the subtree rooted at this box, that is younger box

variables can reference variables in upper boxes, but not the other way around, as

described further in Section 6.5.

We have chosen this scheme because it has a low overhead and most requests

tend to vary among a relative small number of sizes(Lopes and Santos Costa 2005).

6.2 Recovering heap space

The algorithm used to reuse memory space in the Box Memory will not work for

the Prolog terms stored in the Heap because the BEAM releases memory eagerly,

and the terms in the Heap tend to be very small, causing fragmentation and leaving

only small blocks available. We could coalesce blocks to increase available block

size (Detlefs et al. 1994), but the price would be an increase in overheads. Instead,

we have chosen to rely on a garbage collector to compact the Heap Memory.

We implemented a copying garbage collector (Jones and Lins 1996; Bevemyr and

Lindgren 1994) for the BEAM: live data structures are copied to a new memory

area and the old memory area is released. The Heap memory is divided into two

equal halves, growing in the same direction. The two halves could not grow in

the opposite direction because the BEAM uses YAP built-ins, and they expect the

Heap to always grow upwards. Therefore, we have a predefined limit zone that,
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when reached, will activate the garbage collection mechanism by setting the garbage

collector flag.

The garbage collection flag is periodically checked by the And-Or Tree Manager

to activate garbage collection. Thus, the garbage collector starts by replicating the

living data in the root of the And-Or Tree and then follows a top-down-leftmost

approach.

6.3 Variable allocation

Variables are a major source of memory demand. In the initial implementation of

the BEAM, all variables were processed the same way. Every and-box maintained a

list of its local variables, and every variable would be in some and-box. Let us refer

to these variables as permanent variables.

Processing all variables in the same way has major drawbacks. Namely, during

the execution of a program, there is a large portion of memory that can be released

only when the and-boxes fail or succeed.

The complexity of this variable implementation can also harm system perfor-

mance. Consider one of the main rules of the EAM, Promotion, used to promote

the variables and constraints from an and-box Δ to the nearest and-box Δ′ above.

Δ must be a single alternative to the parent or-box, as shown in Figure 2.

As in the original EAM promotion rule, promotion propagates results from a

local computation to the level above. However, promotion in the BEAM does not

merge the two and-boxes because the structure of the computation may be required

to perform pruning as detailed in Section 3.2 (Lopes et al. 2004).

During the promotion of permanent variables, the home field of the variable

structure needs to be updated so that it points to the new and-box Δ′. There is

an overhead in this operation since one must go through the list of all permanent

variables of Δ. Moreover, if Δ′ is promoted later, the system will have to go through

Δ′ variables including all that it has inherited during promotions. With deterministic

computations, the list of permanent variables can grow very fast when promoting

boxes, slowing down the BEAM.

6.4 Classification of variables at compile and run-time

Unfortunately, in general, we do not know beforehand if we will need to suspend

on a variable. We propose a WAM-inspired scheme, the BEAM-Lazy. Following

the WAM, variables that appear only in the body of the clause or in queries are

classified at compile time as permanent variables, meaning that all data structures

required for suspension are created for them. Otherwise, variables are classified at

compile time as temporary.

As an example, consider the following clause of the nreverse procedure:

nreverse([X|L0],L) :- nreverse(L0,L1), concatenate(L1,[X],L).

In this clause, L1 is the only variable that is classified as permanent at compilation

time. The other variables are classified as temporary. Thus, an and-box for this clause
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Fig. 24. Binding two permanent variables.

will have one permanent variable and three temporary variables. Still, it may need

to create two more permanent variables, X and L0, when the clause is called with

the first argument as variable (unify var when writing terms).

Temporary variables require less memory and improve performance since we

avoid managing the more complex structure of the permanent variables. A second

advantage from using temporary variables is that they can be immediately released

after executing the clause body, unlike permanent variables that can only be released

when the and-box succeeds or fails. The BEAM implements tail-recursion in the

presence of deterministic computation so that temporary variables will be released

before calling the last subgoal.

6.5 Variable unification rules

The main consideration in implementing a unification algorithm that supports both

types of variables is that an and-box suspends only when trying to bind permanent

variables external to the and-box.

There are three possible cases of variable-to-variable binding:

(1) temporary variable to permanent variable: in this case, the unification should

make the temporary variable refer to the permanent variable. An immediate

advantage is that the computation will not suspend. Unifying in the opposite

direction would lead to an incorrect state.

(2) temporary variable to temporary variable: the compiler ensures that a temporary

variable is always bound to a permanent variable or a bound term, so this case

will never occur.

(3) permanent variable to permanent variable: the permanent variable that has its

home box at a lower level of the tree should always reference the permanent

variable that has its home box closer to the root of the tree.

Assume as an example, the tree illustrated in Figure 24 with three and-boxes: A,

B and C. Each box contains a single permanent variable: X, Y and Z, respectively.

Assume that the computation is processing the and-box B and that it becomes

necessary to unify the variables X and Y. If the variable Y is made to reference

the variable X, no suspension is necessary since the variable Y is local to the

and-box B. Moreover, if the and-box B fails or if the computation continues to

the and-box C no reset would be necessary in the variable X.

https://doi.org/10.1017/S1471068411000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000068


344 R. Lopes et al.

By following these unification rules, one can often delay the suspension of an

and-box and thus delay application of the expensive splitting rule.

7 The Emulator

The Emulator is responsible for running WAM-like code in order to perform

unification and set up goals. The Emulator executes abstract machine instructions.

The BEAM Emulator inherits most of the WAM instructions and WAM registers.

However, new instructions and new registers are needed to cope with this rather

different execution model.

7.1 Registers

In a fashion similar to the WAM, the BEAM internal state is saved in several

registers:

• PC: Program Counter;

• H: Top of Heap;

• S: Structure pointer (points into the Heap);

• Mode: controls whether unification is in read or write mode;

• X1,X2,...: registers for temporary variables, also used as arguments registers;

• OBX: pointer to the working or-box.

• ABX: pointer to the working and-box.

• SU: pointer to the list of suspended and-boxes.

Note that, except for the last three, the registers are inherited from the WAM. On

the other hand, several of the WAM registers, such as B, ENV and HB, are not needed

in the BEAM Emulator as the BEAM does not implement backtracking. Instead

information is stored directly in the And-Or Tree.

7.2 Abstract machine instructions

Code for the BEAM abstract machine very closely follows the WAM. The BEAM

abstract machine instructions include the WAM get, put and unify instructions,

plus some novel control instructions, that rely on the And-Or Tree Manager,

described in Section 7.3. The main control instructions are as follows:

explore alternative i: It explores the ith alternative for the current or-box. If

there are more alternatives, create a new and-box. Otherwise, the parent and-

box is reused for the alternative being executed (deterministic reduce and promote

optimization). In either case, it starts by unifying the arguments with the head of

the clause.

prepare calls n: It prepares the and-box to manage n subgoals. Each subgoal

record points to the start code for the call and is initialised as READY, meaning

that they are ready to be explored. If the and-box does not have external vari-

ables, execution is then passed to the And-Or Tree Manager through next call.
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Otherwise, the and-box is marked as suspended, and execution enters the And-Or

Tree Manager through the suspend code.

call pred n: It creates one or-box with n branches, where n is the number of

alternatives to pred. Each branch record points to the starting code of the

corresponding alternative, and all branches are also initialised as READY, meaning

that they are ready to be explored. Execution is then passed to the And-Or Tree

Manager through the next alternative code.

proceed: It returns control from a clause to the Manager. If the and-box does not

have external variables, it has succeeded and enters the And-Or Tree Manager

through the success module. Otherwise, the and-box is marked as suspended,

and execution enters the And-Or Tree Manager through the suspend module.

The major difference between the BEAM’s get, put and unify and the cor-

responding WAM instructions is that whenever one of these instructions tries to

bind an external variable, an entry is added to the externals field on the current

and-box. Note that in the WAM, during the unification of variables a check is also

done to determine if trailing is necessary. Thus, the BEAM externals field can be

viewed as similar to the WAM trailing mechanism.

7.2.1 Compilation

Compiling Prolog clauses to the BEAM abstract machine instructions is very similar

to WAM compilation. Figure 25 illustrates an example of code generation.

Note that, unlike in the WAM, code for rules in the BEAM does not end with

an execute instruction. The BEAM abstract machine is goal-based. As such, the

explore alternative i instruction initialises the ith or-branch by creating a new

and-box in it. It is followed by a sequence of get instructions that perform the head

unification. Next, if the clause is a fact, clause code terminates with the proceed

instruction that decides whether the computation succeeds or whether it should

suspend (i.e., there are constraints on external variables), entering the Manager

through the success or the suspend modules, respectively. If the clause is a rule,

execution continues with the prepare calls instruction. This instruction creates in

the and-box as many subgoals as calls. Each subgoal is initialised to point to the

start code of each call (marked as L1 and L2 in Fig. 25). Then, the prepare calls

jumps to the suspend module if there are constraints on external variables, or to

the next call port otherwise. Thus, it is up to the Manager to decide how and

when to execute the calls. The caller code is composed of a series of put and

possibly write instructions followed by the call pred instruction. The call pred

instruction creates and initialises an or-box with as many branches as the number

of valid alternatives (determined by the indexing on the first argument). Execution

is then passed to the Manager through the next alternative port that will decide

which alternative to execute. By default, the leftmost alternative is chosen.
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ancestor(X,Y):- parent(X,Y).

ancestor(X,Z):- parent(X,Y), ancestor(Y,Z).

parent(a,fa).

parent(a,ma).

-------------------------------------------------------------

ancestor/2

explore_alternative 1 | explore_alternative 2

get_var A1,Y1 | get_var A1,Y3

get_var A2,Y2 | get_var A2,Y1

prepare_calls 1 L1 | prepare_calls 2 L1 L2

:1L|:1L

put_val A1,Y1 | put_val A1,Y3

put_val A2,Y2 | put_val A2,Y2

call_pred parent/2 | call_pred parent/2

| L2:

| put_val A1,Y2

| put_val A2,Y1

| call_pred ancestor/2

-------------------------------------------------------------

parent/2

explore_alternative 1 | explore_alternative 2

get_atom A1, a | get_atom A1, a

get_atom A2,fa | get_atom A2,ma

deeccorp|deeccorp

|

-------------------------------------------------------------

Fig. 25. BEAM abstract machine code for ancestor.

7.3 The And-Or Tree Manager

The And-Or Tree Manager is the heart of our system. Its task is to decide

which rewrite rule should be applied to the current tree and then execute it. The

computational tree contains and-boxes and or-boxes that can be in different states.

The possible states for a box are as follows:

• ready: when a box is ready to start execution;

• running: the box is already active and running;

• fail: the box has failed;

• success: the box has succeeded;

• suspended: the box is suspended at some point;

• suspended-on-end: the box is suspended and there are no more goals left to

execute. This is a special case of suspended. The general case needs to continue

the box execution. In this case, we know that the execution is completed, so

when the suspension is activated, the box can jump immediately to the success

state.

• awoken: the box was suspended but has received a signal to be activated and

can be restarted anytime.
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The And-Or Tree Manager manages the states of and-boxes and decides when to

move boxes from one state to another.

The And-Or Tree Manager is accessed through eight different entry points:

suspend: this routine adds the current and-box to the suspension list. Next, the

routine clears all assignments saved in the list of the external variables. Each

external variable is also added to the suspension list included in the respective local

variable. After that the And-Or Tree Manager continues on next alternative.

success: this operation marks the current or-box as successful in its parent. The

memory of the or-box is released. Next, the parent and-box is checked. If all calls

have reached success, space for the and-box is reclaimed and the operation is

re-entered for the upper or-box (Success Propagation). Otherwise, execution enters

the next call operation.

fail: this routine marks the current and-box as failed in its parent. All the

assignments made by the and-box are removed, and space for the and-box is

reclaimed. If all the alternatives for the parent or-box have failed, the operation

is recursively called for the parent and-box (Failure Propagation). Otherwise, if

there is exactly one more alternative, execution moves to unique alternative.

If there are several alternatives, execution continues at next alternative.

next call: this operation searches for the next nonsuspended call in the current

and-box. If there is a ready call in the current and-box, Reduction is applied by

setting the PC to the start of the call’s code, and then, execution jumps to the

Emulator. Otherwise, if the and-box is not the root of the And-Or Tree, execution

moves to next alternative. If there is no ready call in the current and-box

and if the current box is the root of the And-Or Tree, execution moves to the

select work operation.

next alternative: this routine searches for the next nonsuspended alternative in

the current or-box to continue with the Reduction of alternatives. If there is no

such alternative, execution jumps to next call. Otherwise, if the alternative is in

the wake state, execution moves to the wake operation, else execution sets the PC

to the code for the alternative code, and enters the Emulator.

unique alternative: this operation applies a promotion to the current and-box

since its parent or-box has a single alternative.

First, all external variables are checked because after promotion some external

variables may have become local. As a result, a wake signal is sent to all boxes

suspended on this variable (propagation) that have their bindings promoted. If

during the promotion of external variables unification fails, execution moves to

the fail operation.

Second, if external variables still exist after the promotion, the and-box remains

suspended, and execution moves to next call. Otherwise, if the and-box is

suspended and no more goals remain to execute, execution moves to success.

Last, if goals are still left to execute, the And-Or Tree Manager marks the and-box

as running and continues its execution by entering the next call operation.

wake: this operation chooses a suspended and-box that has received a wake up

signal (propagation).
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First, all external variables are checked for changes: environment synchronisation.

The environment synchronisation tests the compatibility of all the constraints

imposed to external variables that are already bound. If unification fails, execution

for the box jumps to fail. If unification succeeds for a variable, the and-box

suspended on that variable can be deleted.

Last, If bindings to externals variables still exist, execution continues to

select work. If no more constraints on external variables are left, then the

and-box enters suspended on end, and we can move immediately to success.

Otherwise, execution marks the and-box as running and continues its execution

by entering the next call operation.

select work: this operation looks for work in the suspension list. If no extra work

is available in the suspension list, execution will terminate. Otherwise, the ABX

register is set to point to a box, that is a candidate for splitting. By default, the

BEAM splits the leftmost suspended box. After splitting, one of the resulting

and-boxes is awakened, and its execution is restarted in wake.

7.3.1 The interaction between the And-Or Tree Manager and the Emulator

The And-Or Tree Manager interacts with the Emulator as illustrated in Figure 26. In

order to execute a query, the next alternative first creates an or-box to store all

possible alternative clauses. An alternative is then chosen and the execution passes

to the Emulator through the explore alternative instruction. Following this,

execution will run through a sequence of get and possibly some unify instructions

that implement the unification of the head arguments. If this alternative is a fact then

the Emulator executes proceed. If there are assignments to external variables, this

instruction will move execution to the And-Or Tree Manager suspend operation.

Otherwise, execution moves to the success operation.

If the alternative is a rule, then instead of proceed we have prepare calls

followed by a sequence of put and call pred instructions. The prepare calls

instruction creates an and-box to store the calls and jumps to suspend if there are

assignments to external variables in the and-box, or to next call otherwise.

The next call operation chooses a call to execute, by default the leftmost,

and jumps to the Emulator where it executes the put instructions followed by a

call pred. The call pred instruction will then jump to the next alternative

operation in order to repeat the entire process.

We have so far considered the straightforward execution case. Indeed, when

running a normal program, the and-boxes will suspend when constraining external

variables. Thus, a computational state with all and-boxes suspended is usual, and

one must use the splitting rule (select work) to create more deterministic work.

The select work operation selects a candidate to split (by default the leftmost

suspended and-box). After splitting, the computation can restart by waking one

of the resulting and-boxes. The wake operation will then perform an environment

check to determine if the constraints being promoted are compatible with (possible)

constraints imposed by other and-boxes.
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explore_alternative
...

get’s
unify’s

prepare_calls

...
call

...

proceed

next_alternative (or)
unique_alternative

next_call

suspend

fail

success

call

...

Emulator And-Or-tree Manager

put’s

put’s

Fig. 26. Connecting the And-Or Tree Manager with the Emulator.

8 Performance analysis

In this section, we present the performance results of the prototype BEAM system.

For the analysis of the BEAM performance, we compare it with the following

systems:

• SICStus Prolog 3.12.0 (Intelligent Systems Laboratory 2004): It is a state-

of-the-art, ISO standard compliant, Prolog system developed at the Swedish

Institute of Computer Science (SICS). It is a commercial widely known system.

All benchmarks were executed using compiled emulated code.

• YAP 5.0 (Santos Costa 1999): It is another state-of-the-art emulated Prolog

system that was developed at the University of Porto. This system is often

regarded as the fastest Prolog system available for the PC Platform.

• YAP 4.2: It is an older version of the YAP Prolog. BEAM was implemented

on top of it.

• Andorra-I v1.14 (Santos Costa 1993): It is an implementation of the Basic

Andorra Model that exploits or-parallelism and determinate-dependent and-

parallelism while fully supporting Prolog. We have used the sequential version

for the comparison. All benchmarks were precompiled by the Andorra-I

preprocessor before execution.

• AKL AGENTS v1.0 (Janson and Montelius 1992): It is a sequential Andorra

Kernel Language implementation. The language was designed by Sverker

Janson and Seif Haridi. AGENTS was developed by Johan Bevemyr and

others, at the SICS, Sweden. This system follows an execution scheme that

is similar to BEAM’s but has the control intrinsic in the language. All

benchmarks were rewritten to the AKL language before compiling and

executing them on the Agents system.
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Table 1. The benchmarks

Deterministic

cal last 10,000 FoolsDays arithmetic benchmark.

deriv symbolically differentiates four functions of a single variable.

qsort quick-sort of a 50-element list using difference lists.

serialise calculate serial numbers of a list.

reverse smart reverse of a 1,000-element list.

nreverse naive reverse of a 1,000-element list.

kkqueens smart finder of the solutions for the n-queens problem.

tak heavily recursive with lots of simple integer arithmetic.

Nondeterministic

ancestor query a static database.

houses logical puzzle based on constraints.

query finds countries with approximately equal population density.

zebra logical puzzle based on constraints.

puzzle4x4 finds a solution for a quadratic puzzle.

send the SEND+MORE=MONEY puzzle.

scanner a program to reveal the content of a box.

queens finds safe placements of n-queens on n ∗ n chessboard.

check list list checker that verifies if duplicate elements exist.

ppuzzle naive generation and test valid paths in a quadratic puzzle.

We have used a representative group of well-known benchmarks. For each

benchmark, we present the best execution time from a series of 10 runs. The

run-time is presented for all systems in milliseconds. Smaller benchmarks were run

repeatedly. The timings were measured running the benchmarks on an Intel Pentium

Mobile 1800 Mhz (533 Mhz FSB) with 2 MB on chip cache, equipped with 1 GB at

333 Mhz DDR SDRAM and running Fedora Core 3. The BEAM was configured

with 64 MB of Heap plus 32 MB of Box Memory. Benchmark code is available at

http://www.dcc.fc.up.pt/~fds/rslopes.

8.1 The benchmark programs

Table 1 gives a small description of the benchmarks used in this section. The selected

group of benchmarks is composed by well-known test programs used within the

Prolog community.

The benchmarks are divided into two classes: deterministic and nondetermin-

istic. The nondeterministic benchmarks are further subdivided into two groups:

benchmarks that do not benefit from the Andorra rule and benchmarks where the

Andorra rule allows the search space to be reduced.

8.2 Performance on deterministic applications

Table 2 shows how the BEAM performs versus Andorra-I, AGENTS, and the Prolog

systems for deterministic applications. We use SICStus Prolog as the reference system,
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Table 2. Deterministic benchmarks. SICStus Prolog is used as the reference system, with time

given in milliseconds

YAP
SICStus

Benchs. 3.12 BEAM (%) AGENTS (%) Andorra-I (%) 4.2 (%) 5.0 (%)

cal 0.001 29 20 20 48 143

deriv 0.010 31 8 33 72 128

qsort 0.045 23 14 24 88 102

serialise 0.030 27 15 15 103 107

reverse 1000 0.050 27 12 15 42 116

nreverse 1000 23 23 11 23 115 153

kkqueens 30 27 20 20 58 158

tak 16 31 33 23 160 133

average 27 17 22 86 130

so we give actual execution times for SICStus and the relative time for the other

systems. Neither the BEAM nor AGENTS performs splitting, and Andorra-I always

executes deterministically. Prolog systems may create choice points.

The YAP and SICStus Prolog systems are recognised as some of the fastest

Prolog systems on the x86 architectures. The difference between Yap4.2 (on which

the BEAM is based) and Yap5 shows that there is scope for improvement even

for Prolog systems. These improvements should also benefit the BEAM. Comparing

with the BEAM, Yap5 is about five times faster than the BEAM. SICStus Prolog

and Yap4.2 are a bit less fast. This is quite a good result for the BEAM, considering

the extra complexity of the EAM.

The BEAM tends to perform better than the AGENTS especially on tail-recursive

computations. We believe this because the BEAM has special rules for performing

tail-recursive computation that avoid creating intermediate or-boxes and and-boxes.

The results are especially good for the BEAM considering that the BEAM does

not need any explicit control on these benchmarks. On the other hand, AGENTS

benefits from extra control to run the benchmarks deterministically.

Performance of the BEAM is very close to the performance of Andorra-I. Andorra-

I beats BEAM on two benchmarks: deriv and qsort. This seems to depend

on determinacy detection performed by the Andorra-I preprocessor. Consider the

following code from the qsort benchmark:

partition([X|L],Y,[X|L1],L2) :- X =< Y, partition(L,Y,L1,L2).

partition([X|L],Y,L1,[X|L2]) :- X > Y, partition(L,Y,L1,L2).

Andorra-I classifies this code as deterministic and never creates a choice point.

Unlike Andorra-I, BEAM does not have a precompilation with determinacy analysis

to classify this predicate as deterministic. Thus, the sophisticated determinacy code

in Andorra-I can limit the overheads that the BEAM has to go through by

creating unnecessary and-boxes. For better understanding, these overheads that

BEAM suffers from, consider the two possible cases when running the partition

predicate:
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Table 3. Nondeterministic benchmarks. SICStus Prolog is used as the reference system with

time given in milliseconds

SICStus BEAM YAP

Benchs. 3.12 Default (%) ES (%) AGENTS (%) AND.-I (%) 4.2 (%) 5.0 (%)

ancestor 0.014 N/A 38 6 16 139 152

houses 0.37 79 82 86 46 132 206

query 0.30 3 12 2 29 85 236

zebra 7.50 33 79 40 32 97 124

puzzle4x4 200 32 N/A 23 22 101 121

average 37 53 32 29 111 168

• X � Y: the BEAM creates an or-box with two alternatives. It performs the

head unification for the first alternative and it succeeds executing the test

comparing X with Y. Execution then immediately suspends because head

unification generates bindings to variables external to the box. Execution then

continues with the second alternative that will fail when comparing X to Y.

This failure makes the first alternative the unique alternative in the or-box,

and a promotion will occur allowing the suspended computation to resume.

• X > Y: the BEAM creates an or-box with two alternatives. The first alternative

will fail when comparing X and Y. This failure makes the second alterna-

tive unique in its or-box. Promotion thus will occur, allowing the second

alternative to run deterministically without suspending.

Concluding, the BEAM deterministic performance seems to be somewhat better

than AGENTS and equivalent to Andorra-I although in some code the BEAM still

has greater overheads than Andorra-I.

8.3 Performance on nondeterministic applications

Comparing different systems for nondeterministic benchmarks is hard since the

search spaces may be quite different for Prolog, BEAM, AGENTS and Andorra-I.

We will consider two classes of nondeterministic applications. First, we consider

applications where the Andorra Model does not provide improve the search space.

Note that in general one would not be particularly interested in the BEAM for

these applications: first, splitting is very expensive and second, or-parallelism can

also be quite effectively exploited in Prolog. Next, we will consider examples where

the Andorra rule reduces, very significantly, the search space.

Table 3 shows a set of five nondeterministic benchmarks. Again, we use SICStus

Prolog as the reference system. The number of splits for the BEAM and AGENTS

and the number of nondeterministic steps for Andorra-I for this set of benchmarks

are presented in Table 4. We consider two versions of the BEAM. The default version

delays splitting until no other rules are applied. The ES version uses eager splitting.

In this version, splitting on producer goals is performed immediately. Producer goals

are identified through the use of an annotation inserted in the Prolog program. Eager

https://doi.org/10.1017/S1471068411000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000068


A design and implementation of the Extended Andorra Model 353

Table 4. Number of splits for BEAM/AGENTS and nondeterministic steps for Andorra-I

BEAM

Benchs. Default ES AGENTS ANDORRA-I

ancestor N/A 30 73 75

houses 49 68 236 237

query 624 624 624 626

zebra 695 294 493 3,631

puzzle4x4 53,350 N/A 53,350 53,351

splitting makes the BEAM computation rule closer to that of Prolog. Note that to

attain good results with eager splitting, BEAM depends on the user to identify the

producer goals. Ideally, we would prefer to use compile time analysis instead.

This set of benchmarks covers several major cases that can occur when using

eager splitting on BEAM.

• The ancestor benchmark (Gupta and Warren 1991) is one example where

having producers avoid a situation where the EAM may loop.

• The houses benchmark is an interesting case where, although eager splitting

increases the number of splits, performance still has a slight improvement.

This example shows that splitting earlier with less data to copy may have

advantages in some cases. Moreover, the BEAM has a lower number of splits

than AGENTS because the BEAM can delay splitting until success or failure

propagation, whereas AGENTS depends on guards.

• Using eager splitting on the query benchmark does not change the number

of splits performed but has a huge improvement on system performance.

• The zebra benchmark is another demonstration of the impact of eager splitting

in the EAM. In this example, just defining the producer dramatically cuts

the search space and achieves much better performance than AGENTS and

Andorra-I. Moreover, the good execution time when compared with Prolog

indicates that the system actually reduces the search space.

• Finally, in the puzzle benchmark the main goal suspends during the head

unification and is forced to perform splitting immediately. Thus, there is no

early execution and no difference in using eager splitting.

To better understand the effects of the splitting rule, and what implications eager

splitting can have on the computation tree, consider the example illustrated in

Figure 27.

We assume two goals, the producer A and the consumer B. The BEAM allows

two methods to determine when to split on the goal A:

• default rule: the split on A will only be performed when all the computation on

B suspends. If A is a producer, then there is a risk of having the EAM create

speculative work on B (in the worst case even leading to nontermination).

Moreover, when splitting on A, the entire And-Or Tree created on B will
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Fig. 27. Splitting effects.

be copied. This copying can be expensive and bring a large penalty to the

execution time.

• with eager splitting on A: the split on A will be performed before starting

execution of B. The split will be simpler since there will be no data associated

with the goal B to replicate. The disadvantage is that this goal after the

splitting is totally unexplored in two and-boxes of the tree, and thus, there is

duplication of work.

In general, eager splitting is appropriate when we expect that early execution of the

other goals will not constrain the producers. In other words, early splitting should

be pursued if we expect splitting to be needed anyway. In that case, early splitting

makes splitting much less expensive.

8.3.1 Improving the search space

The main benefit of the BEAM is in applications where we can significantly

improve the search space. Such applications may be pure logic programs or may be

applications that take advantage of the concurrency inherent to the Andorra Model.

We consider five examples. The send more money and the scanner benchmarks

are well-known examples of declarative programs that perform badly in Prolog.

A set of Prolog benchmarks would not be complete without experimenting with

a naive solution to find the first solution for the queens problem. And finally,

we consider two benchmarks that process lists, the check list and the ppuzzle.

Each list element is a pair with the form p(X,Y ) representing a position in an

n ∗ n matrix. The check list benchmark succeeds if an input list does not hold

duplicate elements. The ppuzzle generates all lists with all possible combinations

of the different elements in an n ∗ n matrix and validates those that obey certain

predefined conditions.

Results are shown in Tables 5 and 6. The send-more-money, the scanner and the

queens benchmarks are quite interesting because the BEAM without extra controls

does not perform more splits than AGENTS and it has slightly better performance.

Performance is three orders of magnitude faster than Prolog’s. These benchmarks are

also interesting in that they show a situation where the more Prolog-like Andorra-I

actually obtains the best results. Although performing the same (or a few more)

https://doi.org/10.1017/S1471068411000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000068


A design and implementation of the Extended Andorra Model 355

Table 5. Reduced search benchmarks (time in milliseconds)

Benchs. BEAM AGENTS ANDORRA-I YAP 5.0

send money 7 8 0.8 7,767

scanner 20 39 3 >12 hours

queens-9 2 8 0.9 16

queens-10 11 27 2.2 124

queens-11 7 19 1.3 893

queens-12 45 109 6.4 9,042

queens-13 23 58 3.4 93,343

queens-14 523 1,122 60 1,175,535

queens-15 456 1,042 50 15,287,308

queens-16 3,958 8,363 396 >12 hours

queens-17 2,547 5,847 230 >12 hours

queens-18 21,891 47,113 1,890 >12 hours

queens-19 1,572 3,796 120 >12 hours

queens-20 138,799 302,048 10,680 >12 hours

check list-8 0.05 0.06 1,150 183

check list-9 0.07 0.07 5,810 963

check list-10 0.09 0.09 209,140 34,910

check list-11 0.10 0.11 6,165,824 987,243

check list-15 0.17 0.18 >12 hours >12 hours

ppuzzle-A 8 5 134,417 >12 hours

ppuzzle-B 18 10 >12 hours >12 hours

ppuzzle-C 1st 1.9 1.3 2,059,329 >12 hours

nondeterministic steps as BEAM and AGENTS, Andorra-I is faster as choice-point

manipulation is more efficient than splitting.

The check list and the ppuzzle benchmarks are examples where the EAM

benefits from allowing nondeterministic goals to execute as long as they do not bind

external variables, as these goals actually fail early. On the other hand, Andorra-I

is limited on this benchmark by the nondeterminism of the main predicates. On

check list Andorra-I has a search space similar to Prolog’s, while in the ppuzzle

Andorra-I is better than Prolog, but still has a larger search space than BEAM and

AGENTS. The difference seems to be that both the BEAM and AGENTS benefit

from early execution of the body of rules.

9 Conclusions and related work

We have presented the design and the implementation of the BEAM, a system for

the efficient execution of logic programs based on David H. D. Warren’s work on

the EAM with implicit control. Our work was motivated by our interest in studying

how the EAM with implicit control can be effectively implemented and how it can

perform versus other execution strategies. We believe the BEAM is a step towards

extending LP for applications where Prolog currently does not perform well. We

believe that our results are quite encouraging in this direction.
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Table 6. Number of splits for BEAM/AGENTS and nondeterministic steps for Andorra-I

Benchs. BEAM AGENTS ANDORRA-I

send money 277 277 325

scanner 310 440 75

queens-9 129 129 130

queens-10 364 364 364

queens-11 212 212 212

queens-12 1,109 1,109 1,110

queens-13 522 522 523

queens-14 9,046 9,046 9,046

queens-15 7,054 7,054 7,055

queens-16 52,617 52,617 52,617

queens-17 31,210 31,210 31,210

queens-18 236,172 236,172 236,173

queens-19 16,178 16,178 16,178

queens-20 1,229,355 1,229,355 1,229,355

check list-8 1 19 525,447

check list-9 1 22 2,658,697

check list-10 1 26 95,365,524

check list-11 1 32 —

check list-15 1 64 —

ppuzzle-A 86 86 64,994,853

ppuzzle-B 215 215 —

ppuzzle-C 1st 29 29 751,567,244

Our approach contrasts with previous work in concurrent languages, such as

AKL. These are powerful concurrent languages that open up new programming

paradigms, but that also require users to invest in sophisticated new programming

frameworks. In contrast, our first goal is to support a very flexible engine for the

execution of logic programs. The engine can then be controlled through several

control primitives.

The main contribution of this work is thus the design and implementation of the

BEAM. Further, our work in clarifying the EAM and in designing the BEAM has

shown a crisp separation between the rewrite rules and control. We have tried to

make this separation clear in this presentation.

In the future, we would like to explore different control strategies over the basic

rewrite rules. Indeed control may be made configurable, say, by using a specialised

control language that can generate specialised And-Or Tree Managers. We believe

that a major contribution of the EAM is the exciting prospect of achieving specialised

control strategies for different types of logic programs.

The current BEAM prototype is available as part of the YAP Prolog system

distribution since release 5.1 (Santos Costa 2008). Although the BEAM is still

a prototype, results are promising. The BEAM appears as an alternative to run

programs where standard Prolog systems behave badly. Unlike AGENTS, the BEAM

supports Prolog and unlike Andorra-I it does not need precompilation analysis.
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Thus, the BEAM is an excellent alternative for applications where precompilation

to Prolog may be expensive and difficult and where queries with large search spaces

are generated in rapid succession.

The BEAM prototype is currently being ported to the latest version of YAP,

with the new indexing algorithm (Santos Costa et al. 2007), which should further

improve BEAM performance. Currently, the BEAM only supports Herbrand domain

constraints. We plan to use YAP attributed variable support to exloit non-Herbrand

constraints. Ultimately, we aim at making the BEAM an extension of Prolog

systems that the user can exploit towards maximum performance in declarative

applications.

We believe that the BEAM provides an excellent framework for novel LP appli-

cations. We are particularly interested in performance evaluation for automatically

generated queries, say, the ones that are found in Inductive LP (Santos Costa et al.

2003). In these applications, queries with large search spaces are generated in rapid

succession. Reducing the search space is fundamental, but precompilation to Prolog

may be expensive and difficult. We believe that the advanced search features of the

EAM can be most useful for these applications.
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