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Abstract
We revisit the stochastic model of Alai et al. (2009) for the Bornhuetter-Ferguson claims

reserving method, Bornhuetter & Ferguson (1972). We derive an estimator of its conditional

mean square error of prediction (MSEP) using an approach that is based on generalized linear

models and maximum likelihood estimators for the model parameters. This approach leads to

simple formulas, which can easily be implemented in a spreadsheet.
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1. Introduction

The prediction uncertainty in the Bornhuetter-Ferguson (BF) claims reserving method, Bornhuetter

& Ferguson (1972), has recently been studied by several authors; see e.g. Mack (2008), Verrall

(2004) and Alai et al. (2009). We revisit the model studied in Alai et al. (2009). In the present paper

we provide a different method of approximating the mean square error of prediction (MSEP), which

substantially simplifies the formulas while preserving the accuracy established in the previous paper.

Alai et al. (2009) maintain that in practice the chain ladder (CL) development pattern is used for

calculating the BF reserves, and hence incorporate this into their model assumptions. This is done by

assuming the data to be overdispersed Poisson distributed. This allows one to recreate the CL

estimate of the development pattern; a result dating back to Hachemeister & Stanard (1975)

and Mack (1991). This is different from the approach taken in Mack (2008), but closer to the

implementation of practitioners. We furthermore maintain the necessary assumption that the initial

estimates of the expected ultimate claims are independent of the data, an assumption that is the

basis of the BF methodology. This independence assumption is certainly challenged in practice, both

Mack (2008) and Schmidt & Zocher (2008) suggest that estimates of the expected ultimate claims

come from pricing, and it remains unclear how independent such information is from the data.

We do not dwell on this issue at present and leave it for future consideration.

In this paper our main objective is to provide a far simpler method of implementing the results derived

in Alai et al. (2009). We direct the reader to the previous paper, as well as the works of Mack (2008),
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Neuhaus (1992) and Schmidt & Zocher (2008) for elaboration on the motivation of studying the

BF method and when it should be applied in practice. Furthermore, we do not consider the claims

inflation problem at present, a topic with recent developments made by Kuang et al. (2008a,b).

Organization of the paper. In Section 2 we provide the notation and data structure as well as

the model considerations. In Section 3 we give a short review of the BF method. In Section 4 we

give a simplified estimation procedure for the conditional MSEP in the BF method. Finally, in

Section 5 we revisit the case study presented in Alai et al. (2009) and compare our results with

Mack (2008) and Verrall (2004).

2. Data and Model

2.1. Setup

Let Xi,j denote the incremental claims of accident year iA{0, 1,y , I} and development year

jA{0, 1,y , J}. We assume the data is given by a claims development triangle, i.e. I 5 J, and that after

J development periods all claims are settled. At time I, we have observations DI ¼ fXi;j; iþ j� Ig.

We are interested in predicting the corresponding lower triangle {Xi,j, i 1 j . I, i� I}. Furthermore,

define Ci,j to be the cumulative claims of accident year i up to development year j. Hence,

Ci;j ¼
Xj

k¼0

Xi;k:

2.2. Model Considerations

We adopt the overdispersed Poisson model presented in Alai et al. (2009). Please refer to Section 4.1

of that paper for the density function, from which it is shown that the overdispersed Poisson

belongs to the exponential dispersion family. The reader is also advised to see Kuang et al. (2009)

for further elaboration on the connection between the overdispersed Poisson model and the CL

method using maximum likelihood estimators (MLEs), as well as Section 2.3 below.

Model Assumptions 2.1 (Overdispersed Poisson Model)

> The incremental claims Xi,j are independent overdispersed Poisson distributed and there exist

positive parameters g0,y ,gI, m0,y , mI and f . 0 with

E ½Xi;j� ¼ mi;j ¼ migj;

Var ðXi;jÞ ¼ fmi;j;

and
PI

j¼0 gj ¼ 1.

> bnk are random variables that are unbiased estimators of the expected ultimate claim mk 5 E[Ck,I]

for all kA{0,y , I}.

> Xi,j and bnk are independent for all i, j, k.

Remarks 2.2:

> The exogenous estimator bnk is a prior estimate of the expected ultimate claims E[Ck,I], which

is used for the BF method; see also Section 2 in Mack (2008). In the work of Alai et al. (2009)

these estimators were assumed to be independent, we now adopt a more general assumption in

which their dependence structure can be modelled.

D. H. Alai et al.
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> For MSEP considerations, an estimate of the uncertainty of the bnk is required. Below, we assume

that a prior variance estimate dVarðbnkÞ is given exogenously.

> For additional model interpretations we refer to Alai et al. (2009).

2.3. Maximum Likelihood Estimators

Under Model Assumptions 2.1 the log-likelihood function for DI is given by

lDI
ðmi; gj;fÞ ¼

X
iþj�I
joI

1

f
ðXi;j logðmigjÞ� migjÞ þ log cðXi;j;fÞ

� �

þ
1

f
X0;I log m0 1�

XI�1

n¼0

gn

 !" #
�m0 1�

XI�1

n¼0

gn

 !
þ log cðX0;I;fÞ

 ! !
;

where c( � , f) is the suitable normalizing function. Notice that the substitution, gI ¼ ð1�
PI�1

n¼0 gnÞ

has been made in accordance with the constraint provided in Model Assumptions 2.1. The MLEsbmi;bgj are found by taking the derivates with respect to mi, gj and setting the resulting equations equal

to zero. They are given by,

bm0 ¼
XI

j¼0

X0;j;

bmi

XI�i

j¼0

bgj ¼
XI�i

j¼0

Xi;j; i 2 f1; . . . ; Ig; ð1Þ

bgj

XI�j

i¼1

bmi þX0;I
1

1�
PI�1

n¼0bgn

 !
¼
XI�j

i¼0

Xi;j; j 2 f0; . . . ; I�1g:

Furthermore, we define bgI ¼ 1�
PI�1

n¼0bgn. The bmi;bgj can also be calculated with help from the well-

known CL factors,

bfj ¼

PI�j�1
i¼0 Ci;jþ1PI�j�1

i¼0 Ci;j

;

see e.g. Corollary 2.18 and Remarks 2.19 in Wüthrich & Merz (2008), i.e.

bgj ¼
YI�1

k¼j

1bfk

1�
1bfj�1

 !
; bmi ¼ Ci;I�i

bfI�i � � �
bfI�1: ð2Þ

Although, as is clear in (1), f has no influence on the parameter estimation of mi, gj, an estimate of f

is required to estimate the prediction uncertainty. As done in Alai et al. (2009), we use Pearson

residuals to estimate f:

bf ¼ 1

d

X
iþj�I

ðXi;j�bmi;jÞ
2bmi;j
; ð3Þ

where d ¼ ðIþ1ÞðIþ2Þ
2 �2I�1 is the degrees of freedom of the model and bmi;j ¼ bmibgj.

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method
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2.4. Asymptotic Properties of the MLE

As previously stated, the overdispersed Poisson model is a member of the exponential

dispersion family. We use the proposition directly below which yields the asymptotic behaviour

of the MLEs to quantify the parameter estimation uncertainty bgj� gj; see e.g. Lehmann (1983),

Theorem 6.2.3.

Proposition 2.3 Assume X1,y , Xn are i.i.d. with density fz( � ) from the exponential dispersion

family with parameters z5(z1,y , zm)T. Furthermore, bf ¼ ðbz1; . . . ;bzmÞ
T is the MLE of z, then,

ffiffiffi
n
p
ðbf� fÞ�!

ðdÞ
N ð0;HðfÞ�1

Þ; as n!1;

where we define the Fisher information matrix by H(z) 5 (hr,s)r,s 5 1,y,m with

hr;s ¼ HðfÞr;s ¼ �Ef
@2

@zr@zs
log ffðXÞ

� �
:

Remark 2.4 One must be careful when considering asymptotic behaviour with respect to

studying claims reserving triangles. We inherently limit ourselves to a finite dataset and hence

introduce some error when using results from asymptotic theory. This issue was studied numerically,

using the bootstrap method, in Section 7.3 of Wüthrich & Merz (2008). There it was observed,

using the same dataset we study in Section 5, that the bias and the estimation error can be estimated

accurately under the asymptotic normal approximation.

We use the notation f 5 (z1,y , z2I11) 5 (m0,y , mI, g0,y ,gI21) and bf for the corresponding MLE.

Under Model Assumptions 2.1, we obtain for the components of the Fisher information matrix:

hiþ1; iþ1 ¼
m�1

i

f

XI�i

j¼0

gj; i 2 f0; . . . ; Ig;

hIþ2þj; Iþ2þj ¼
g�1

j

f

XI�j

i¼0

mi þ
m0

f 1�
PI�1

n¼0 gn

� � ; j 2 f0; . . . ; I � 1g;

hIþ2þj; Iþ2þl ¼
m0

f 1�
PI�1

n¼0 gn

� � ; j; l 2 f0; . . . ; I�1g; j 6¼ l;

hiþ1; Iþ2þj ¼
1

f
; i 2 f1; . . . ; Ig; j 2 f0; . . . ; I�ig;

hIþ2þj; iþ1 ¼
1

f
; j 2 f0; . . . ; I�1g; i 2 f1; . . . ; I�jg:

The remaining entries of the (2I11) 3 (2I11) matrix H(z) are zero. By replacing the parameters

z and f by their estimates given in (1) and (3), respectively, we obtain the estimated Fisher

information matrix Hðbf; bfÞ. The inverse of the estimated Fisher information matrix, Hðbf; bfÞ�1,

contains, for our purposes, unnecessary information regarding the parameters mi. Therefore, we

define the (I 1 1) 3 (I 3 1) matrix

G ¼ ðgj;lÞj;l¼0;...;I;

D. H. Alai et al.
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with

gj;l ¼
dCov ðbgj;bglÞ ¼ Hðbf; bfÞ�1

Iþ2þj;Iþ2þl; j; l 2 f0; . . . ; I�1g;

gj;I ¼ gI;j ¼ dCov ðbgj;bgIÞ ¼ �
XI�1

m¼0

Hðbf; bfÞ�1
Iþ2þj;Iþ2þm; j 2 f0; . . . ; I�1g; ð4Þ

gI;I ¼dVar ðbgIÞ ¼
X

0�m�I�1
0�n�I�1

Hðbf; bfÞ�1
Iþ2þm;Iþ2þn:

The first equation of (4) gives an estimator for the covariances between the MLEs bgj and bgl, whereas

the last two equations of (4) incorporate the MLE bgI ¼ 1�
PI�1

n¼0bgn.

3. The Bornhuetter-Ferguson Method

In practice, the BF predictor, which dates back to Bornhuetter & Ferguson (1972), relies on the data

for the development pattern gj and on external data or expert opinion for the expected ultimate

claims E[Ci,I]. The ultimate claim Ci,I of accident year i under Model Assumptions 2.1 using the BF

method, given DI, is predicted by

bCBF
i;I ¼ Ci;I�i þbni

X
j4I�i

bgj; ð5Þ

where bgj are the MLEs produced in Section 2.3 and bni is an exogenous prior estimator for the

expected ultimate claim E[Ci,I] introduced in Model Assumptions 2.1.

Note that we define the BF predictor with the CL development pattern bgj, which is the approach

used in practice; see equation (2). A different approach for the estimation of the development

pattern gj is given in Mack (2008), we further discuss this in the case study in Section 5.

4. The MSEP of the Bornhuetter-Ferguson Method

We begin by considering the (conditional) MSEP of the BF predictor bCBF
i;I for single accident years

iA{1,y , I}. From (5.5) in Alai et al. (2009) we have

msepCi;I jDI
ðbCBF

i;I Þ ¼ E ½ðbCBF
i;I �Ci;IÞ

2
jDI�

¼
X

j4I�i

Var ðXi;jÞ þ
X
j4I�i

bgj

 !2

Var ðbniÞ þ m2
i

X
j4I�i

bgj�
X

j4I�i

gj

 !2

: ð6Þ

The first term on the right-hand side of equation (6) is the (conditional) process variance, it represents

the stochastic movement of the Xi,j, the inherent uncertainty from our model assumptions.

The latter two terms form the (conditional) estimation error; these terms constitute the uncertainty

in the prediction of the prior estimate bni and the MLEs bgj. The first two terms on the right-hand side

of equation (6) can be estimated by replacing unknowns with their estimates; see e.g. Sections 5.1.1

and 5.1.2 in Alai et al. (2009). The last term, however, if tackled this way would equal zero.

The standard approach, see England & Verrall (2002), is to estimate

X
j4I�i

ðbgj�gjÞ

 !2

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method
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by the unconditional expectation

E
X

j4I�i

ðbgj�gjÞ

 !2
24 35 ¼ X

j4I�i
l4I�i

E ½ðbgj� gjÞðbgl � glÞ�:

Neglecting that MLEs have a possible bias term, see Remark 2.4, we make the following

approximation: X
j4I�i
l4I�i

E ½ðbgj� gjÞðbgl�glÞ� �
X

j4I� i
l4I� i

Cov ðbgj�bglÞ:

We now deviate from Alai et al. (2009) and directly use G, given by equations (4) to estimate the

covariance terms. Hence, an estimate of the MSEP in the BF method for single accident year i is

given by:

Estimator 4.1 (MSEP for the BF method, single accident year) Under Model Assumptions 2.1

an estimator for the (conditional) MSEP for a single accident year iA{1,y, I } is given by

dmsepCi;I jDI
ðbCBF

i;I Þ ¼
X

j4I� i

bfbnibgj þ
X

j4I� i

bgj

 !2dVar ðbniÞ þbn2
i

X
j4I� i
l4I� i

gj;l:

Remark 4.2 If we compare the above estimator to equation (5.30) in Alai et al. (2009)

we observe that the first two terms on the right-hand side are identical. However, the last

term, i.e. the uncertainty in bgj, has substantially simplified and can be easily calculated in a

spreadsheet environment.

For multiple accident years the (conditional) MSEP is defined as follows:

msepPI

i¼1
Ci;I jDI

XI

i¼1

bCBF
i;I

 !
¼ E

XI

i¼1

bCBF
i;I �

XI

i¼1

Ci;I

 !2
						DI

24 35
¼
XI

i¼1

msepCi;I jDI
ðbCBF

i;I Þ þ 2
X
iok

mimk

X
j4I�i
l4I�k

ðbgj� gjÞðbgl� glÞ

þ2
X
iok

X
j4I� i

bgj

 ! X
l4I� k

bgl

 !
Cov ðbni;bnkÞ:

Remark 4.3 Here we obtain an additional term compared to Alai et al. (2009) since we allow

the exogenous estimators bni to depend on one another, which is a natural assumption if one

estimates bni from the time series bnl; l � i. One can now make use of a variety of methods to

estimate the covariances, methods that imply decaying positive correlation are recommended;

see e.g. Mack (2008).

D. H. Alai et al.
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Estimator 4.4 (MSEP for the BF method, aggregated accident years) Under Model Assumptions

2.1 an estimator for the (conditional) MSEP for aggregated accident years is given by

dmsepPI

i¼1
Ci;I jDI

XI

i¼1

bCBF
i;I

 !
¼
XI

i¼1

dmsepCi;I jDI
ðbCBF

i;I Þ þ 2
X
iok

bnibnk

X
j4I� i
l4I�k

gj;l

þ2
X
iok

X
j4I� i

bgj

 ! X
l4I� k

bgl

 !dCovðbni;bnkÞ:

Remark 4.5 The above estimator should be compared with equation (5.35) in Alai et al. (2009).

Again, the additional term present due to our more general assumptions on the exogenous

estimators of the expected ultimate claims. On the other hand, the second term on the right-hand

side of Estimator 4.4 has a much simpler form compared with Alai et al. (2009).

5. Case Study

We utilize the dataset {Xi,j : i 1 j� I} provided in Alai et al. (2009), which is shown in Table 1. We

assume given external estimates bni of the ultimate claims, presented in Table 2. Furthermore, we

assume the uncertainty of these estimates to be given by a coefficient of variation of 5% and assume

Table 1. Observed incremental claims Xi,j.

i \ j 0 1 2 3 4 5 6 7 8 9

0 5,946,975 3,721,237 895,717 207,760 206,704 62,124 65,813 14,850 11,130 15,813

1 6,346,756 3,246,406 723,222 151,797 67,824 36,603 52,752 11,186 11,646

2 6,269,090 2,976,233 847,053 262,768 152,703 65,444 53,545 8,924

3 5,863,015 2,683,224 722,532 190,653 132,976 88,340 43,329

4 5,778,885 2,745,229 653,894 273,395 230,288 105,224

5 6,184,793 2,828,338 572,765 244,899 104,957

6 5,600,184 2,893,207 563,114 225,517

7 5,288,066 2,440,103 528,043

8 5,290,793 2,357,936

9 5,675,568

Table 2. Prior estimates for the expected ultimate claims.

i bni

1 11,364,606

2 10,962,965

3 10,616,762

4 11,044,881

5 11,480,700

6 11,413,572

7 11,126,527

8 10,986,548

9 11,618,437

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method
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they are uncorrelated. Hence,

dVar ðbniÞ ¼ bn2
i ð0:05Þ2:

Using equation (3), we obtain for the dispersion parameter f, the estimate bf ¼ 14;714.

We demonstrate the numerical results in Table 3. Note that they are the same as the results

presented in Alai et al. (2009), but the implementation is much simpler now. We compare the results

in Table 3 to those from Mack (2008). We start by calculating the development pattern using

equation (3) in Mack (2008). We normalize these results such that the pattern sums to one.

Note that the normalization is necessary due to the fact that the prior estimates bni are rather

conservative (as mentioned in Wüthrich & Merz (2008), Example 2.11).

In Table 4 we compare the cumulative development pattern (referred to as bz n
j in Mack (2008))

with the cumulative development pattern obtained using the method of Alai et al. (2009)

Table 3. Reserve and uncertainty results for single and aggregated accident years using the method in

Alai et al. (2009).

accident

year i

BF

reserves

Process

std. dev.

Prior

std. dev.

Parameter

std. dev.

Prior and

parameter

std. dev.

msep1/2 Vco

1 16,120 15,401 806 15,539 15,560 21,893 135.8%
2 26,998 19,931 1,350 17,573 17,624 26,606 98.5%

3 37,575 23,514 1,879 18,545 18,639 30,005 79.9%

4 95,434 37,473 4,772 24,168 24,635 44,845 47.0%

5 178,023 51,181 8,901 29,600 30,910 59,790 33.6%

6 341,305 70,866 17,065 35,750 39,614 81,187 23.8%

7 574,089 91,909 28,704 41,221 50,231 104,739 18.2%

8 1,318,645 139,294 65,932 53,175 84,703 163,025 12.4%

9 4,768,385 264,882 238,419 75,853 250,195 364,362 7.6%

covariance 195,409 195,409 195,409

total 7,356,575 329,007 249,828 228,249 338,396 471,971 6.4%

Table 4. Cumulative development pattern, a comparison.

j Alai et al. (2009) Mack (2008) Simulation

bbj s.e. (bbj) bz n

j s.e. ðbznj Þ bbj s.e. ðbbjÞ

0 58.96% 0.653% 58.60% 1.717% 58.96% 0.654%

1 88.00% 0.484% 87.66% 0.616% 88.00% 0.486%

2 94.84% 0.370% 94.60% 0.326% 94.84% 0.373%

3 97.01% 0.313% 96.84% 0.271% 97.01% 0.317%

4 98.45% 0.258% 98.35% 0.131% 98.45% 0.260%

5 99.14% 0.219% 99.07% 0.054% 99.14% 0.220%

6 99.65% 0.175% 99.62% 0.025% 99.65% 0.177%

7 99.75% 0.160% 99.73% 0.018% 99.75% 0.162%

8 99.86% 0.137% 99.85% 0.012% 99.86% 0.138%

9 100.00% 100.00% 100.00%

D. H. Alai et al.
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(referred to as bbj). Also shown in Table 4 are the standard errors calculated for the cumulative

development patterns using the respective methods. In Alai et al. (2009) the approximated standard

errors of the development pattern were compared with empirical standard errors obtained from

simulation. The simulation study consisted of 10,000 simulated run-off triangles under the assumption

of overdispersed Poisson data. The results from this simulation study shows the accuracy of the

approximation, which is maintained here. Therefore, although a different, much simpler, method

of approximation is utilized in this paper, it preserves the accuracy established in the previous paper.

Remark 5.1 The distinction is made between estimates of the development pattern bgj and of the

cumulative development pattern bbj; the latter being defined as follows:

bbj ¼
Xj

k¼0

bgk; for j 2 f0; . . . ; Ig:

Table 4 indicates a slower decrease of the uncertainty in our approach.

In Table 5 we provide the bs2
j calculated using equation (4) in Mack (2008). The role of the bs2

j are

comparable to that of bf. The difference originates from the fact that the bs2
j depend on the

development year j, whereas bf does not.

Finally, we apply the same coefficient of variation to determine the standard error of the ultimates

using the method in Mack (2008), namely 5%. Table 6 provides the MSEP results under the

method described in Mack (2008). It should be compared to Table 3, which provides the results

under the method described in Alai et al. (2009) and in this paper.

Table 5. bs2
j calculated from equation (3) in Mack (2008).

j 0 1 2 3 4 5 6 7 8 9

bs2
j

69,990 25,848 2,450 260 376 79 11 .918 .407 .180

Table 6. Reserve and uncertainty results for single and aggregated accident years using the method in

Mack (2008).

accident

year i

BF

reserves

process

std. dev.

prior

std. dev.

parameter

std. dev.

prior and

parameter

std. dev.

msep1/2 Vco

1 17,420 1,431 871 1,415 1,661 2,193 12.6%

2 29,059 2,536 1,453 1,998 2,470 3,540 12.2%

3 40,480 3,996 2,024 2,607 3,300 5,183 12.8%

4 102,383 11,541 5,119 6,025 7,906 13,989 13.7%

5 189,802 32,332 9,490 15,060 17,801 36,908 19.4%

6 360,691 73,010 18,035 30,914 35,790 81,310 22.5%

7 600,764 89,940 30,038 36,319 47,131 101,541 16.9%

8 1,355,361 186,841 67,768 67,773 95,842 209,988 15.5%

9 4,809,547 580,712 240,477 199,723 312,600 659,504 13.7%

covariance 173,602 173,602 173,602

total 7,505,506 621,899 252,532 277,796 375,424 726,431 9.7%

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method
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As becomes clear from comparing Tables 3 and 6, one main difference between the two methods lies

in the estimated process variance. It is evident that this difference originates in the model

assumptions with respect to the structure of the variance of the incremental claims. Alai et al. (2009)

assume

Var ðXi;jÞ ¼ fmi;j;

whereas Mack (2008) assumes

Var ðXi;jÞ ¼ s2
j mi;j:

Table 5 shows the volatility of the sj
2, which heavily impacts the process variance. A similar picture

is obtained for the parameter standard deviation, in contrast to the prior standard deviation, which

almost perfectly coincide.

Finally, in Table 7, we present the MSEP results for the distribution-free CL method, see Mack

(1993), as well as the MSEP results from Verrall (2004). To obtain the (conditional) MSEP in the

distribution-free CL method, we use the approach described in Buchwalder et al. (2006).

The calculations for the Bayesian negative binomial approach presented in Verrall (2004) were

performed using WinBugs, we ran 20,000 iterations, discarding the first 10,000. Although

in no way conclusive, the overall approach of Alai et al. (2009) is more in line with the CL

MSEP figures.
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Wüthrich, M. V. & Merz, M. (2008). Stochastic Claims Reserving Methods in Insurance. Wiley &

Sons, West Sussex.

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method

17

https://doi.org/10.1017/S1748499510000023 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499510000023

