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NOTE ON ERGODIC CHAOS
IN THE RSS MODEL
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We show the possibility of ergodic chaos in the RSS model, due to Robinson, Solow, and
Srinivasan. Moreover, under a relevant parametric regime, we analytically characterize the
unique invariant probability measure that describes the statistical properties of a typical
trajectory of capital stocks.
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1. INTRODUCTION

It is a well established fact that complicated dynamics can arise in optimal growth
models. However, the possibility of chaos in one of these models, the so-called RSS
model due to Robinson, Solow, and Srinivasan, remained unsuspected for a very
long time. In effect, Stiglitz (1968) studies this particular model in continuous time
and concludes that, under linearity of the felicity function and unrestricted discount
factor, the optimal program monotonically converges to a modified golden-rule
stock. Khan and Mitra (2005a) revisit this model in discrete time and, under certain
parametric restrictions, prove that his results are not universally valid, because
there are certain parametric regimes under which the optimal program does not
satisfy the monotonicity property, and could cycle even in the undiscounted case.
Khan and Mitra (2005b) reinvigorate their previous results and show that the
discrete-time version of the RSS model can even exhibit topological chaos if the
discount factor is sufficiently small. This result is somewhat surprising, given
the disarming aura of simplicity that surrounds the model. Later, Metcalf (2008)
derives a similar result in an undiscounted setting. The sharp and rich discrepancy
of results between the discrete-time and the continuous-time versions of the RSS
model imposes upon us the task of deepening the study of this model as an
important priority.

Mathematicians have long warned us that the existence of topological chaos
does not necessarily predict the observability of complicated dynamics. Day and
Shafer (1987) raise this criticism with crystal clarity:
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the mere existence of “mathematical chaos” does not tell how important irregular
fluctuations are likely to be—even if the equations in question were accurate analogs
of some real world processes. This is because in nonlinear dynamics long run
behavior depends on initial conditions: although chaotic trajectories may exist for
an unaccountable number of initial conditions this “scrambled” set may have zero
measure. If this were true then “most” randomly chosen initial conditions would
lead to periodic cycles.

The purpose of this paper is to give an answer to this criticism by focusing on the
discounted version of the RSS model that is considered in Khan and Mitra (2005b).
We show that, in addition to topological chaos, ergodic chaos is also possible.
Furthermore, in relevant parametric ranges, we derive and characterize analytically
the density of the unique invariant probability measure that describes the statistical
behavior of almost all trajectories (emanating from different initial conditions).
As we will see, for most initial capital stocks, the respective trajectories spend
equal time below and above the modified golden rule.

2. THE TWO-SECTOR VERSION OF THE RSS MODEL

Time is measured in discrete periods t ∈ N, where N is the set of non-negative
integers. There is a single consumption good, which is produced by infinitely
divisible labor and machines, using a Leontief technology. The production of a
unit of the consumption good requires a unit of labor and a unit of machinery.
In the investment-goods sector, the only input is labor, with a > 0 units of labor
producing a single machine. Machines depreciate at the rate 0 < d < 1. The
amount of available labor is constant over time and normalized to unity. The
transition possibility set characterizes the admissible production plans (x, x ′),
where x ′ represents the amount of machines in the next period (tomorrow) from
the amount x available in the current period (today), and is formalized by

� = {(x, x ′) ∈ R2
+ : x ′ − (1 − d)x ≥ 0 and a(x ′ − (1 − d)x) ≤ 1}.

The number of machines that are produced is given by z ≡ (x ′ − (1 − d)x), and
z ≥ 0 and az ≤ 1 respectively define constraints on reversibility of investment
and the use of labor. For any (x, x ′) ∈ �, one can define the amount y of the
machines available for production in the consumption-goods sector through a
correspondence � : � → R+, with

�(x, x ′) = {y ∈ R+ : 0 ≤ y ≤ 1 and y ≤ 1 − a(x ′ − (1 − d)x)}.
Only the consumption good can promote welfare, in the model assumed to be
linear and normalized, in the sense that y units of the consumption good yield a
welfare level y. A reduced-form utility function, u : � → R+ with u(x, x ′) =
max {y ∈ �(x, x ′)}, measures the maximum welfare level that can be obtained
today, if one starts with x machines today, and ends up with x ′ machines tomorrow.
Intertemporal preferences are represented by the present value of the stream of
welfare levels discounted at a factor ρ ∈ (0, 1).
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An economy is represented by the triple (a, d, ρ). A program from x0 is a
sequence {x(t), y(t)} such that x(0) = x0, and, for all t ∈ N, (x(t), x(t + 1)) ∈ �

and y(t) = max �(x(t), x(t + 1)). A program {x(t), y(t)} is simply a program
from x(0). For any program, there is an underlying gross investment sequence
{z(t + 1)}, defined by z(t + 1) = (x(t + 1) − (1 − d)x(t)) for all t ∈ N.
It is straightforward to check that every program {x(t), y(t)} is bounded by
max {x(0), 1/ad} ≡ M(x(0)), which implies that

∑∞
t=0 ρtu(x(t), x(t +1)) < ∞.

A program {x(t), y(t)} from x0 is optimal when
∑∞

t=0 ρtu(x(t), x(t + 1)) ≤∑∞
t=0 ρtu(x(t), x(t + 1)) for every program {x(t), y(t)} from x0.

3. PRELIMINARIES

Consider a probability space (X,�,μ), where X is a set, � is a σ -algebra of
subsets of X, and μ is a probability measure, and furthermore consider a �-
measurable map h : X → X. The probability measure μ is invariant under h

if μ(E) = μ(h−1(E)) for all E ∈ �. We say that the probability measure μ

is ergodic if “E ∈ �, h−1(E) = E” implies “μ(E) = 0 or μ(E) = 1.” The
map h is nonsingular if μ(h−1(E)) = 0 for all E ∈ � such that μ(E) = 0.
The dynamical system (X, h) exhibits ergodic chaos, if there exists an absolutely
continuous (with respect to Lebesgue measure) probability measure μ on X, which
is invariant and ergodic under h.

At the heart of our proof is the Frobenius–Perron operator. In what follows, we
will define this operator and state needed theorems for later reference.

DEFINITION 1. Let (X,�, ν) be a measure space. If h : X → X is nonsin-
gular, the unique operator P : L1 → L1 defined by the equation∫

E

Pf (x)ν(dx) =
∫

h−1(E)

f (x)ν (dx), for all E ∈ �,

is called the Frobenius–Perron operator corresponding to h.

As discussed in Lasota and Mackey (1985, p. 38), if X = [α, β] is an interval
on the real line R, and E = [α, x], then an explicit form for Pf can be obtained
from

Pf (x) = d

dx

(∫
h−1(E)

f (s) ds

)
.

In the same reference (pp. 46 and 55), Lasota and Mackey report two very useful
results:

THEOREM 2. Let (X,�, ν) be a measure space, h : X → X a nonsingu-
lar map, and P the Frobenius–Perron operator associated with h. Consider a
nonnegative f ∈ L1. Then a measure νf given by

νf (E) =
∫

E

f ν (dx)

is invariant if and only if f is a fixed point of P .
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THEOREM 3. Let (X,�, ν) be a measure space, h : X → X a nonsingular
map, and P the Frobenius–Perron operator associated with h. If h is ergodic, then
there is at most one stationary density f∗ of P .

4. OPTIMAL ERGODIC CHAOS

Khan and Mitra (2009) show that the so-called check map, which is defined by

h(x) =
{

1
a

− ξx, if x ∈ [0, 1]

(1 − d)x, if x ∈ [1,+∞),

ξ ≡ 1/a − (1 − d), is the optimal policy function for the two-sector RSS model,
provided that the discount factor is sufficiently small. Thus, to prove the existence
of ergodic chaos in the RSS model, we only need to prove that the check map can
exhibit ergodic chaos.

THEOREM 4. Under the parametric restriction ξ(1−d) = 1+(1/ξ)(1−d) >

1, there exists an invariant probability measure under the check map, μ, whose
density is

f (x) =⎧⎪⎨
⎪⎩

aξ (1 + ad)

1 + 2a2 (−1 + d) dξ + a (−1 + d − ξ + 2dξ)
, if (1 − d) ≤ x ≤ x̂

a (1 + ad)

1 + 2a2 (−1 + d) dξ + a (−1 + d − ξ + 2dξ)
, if x̂ < x ≤ 1

a
− ξ(1 − d),

where x̂ = 1/ (1 + ad) is the modified golden-rule stock.

Proof. We begin the proof by defining a conjectured probability
density,

f (x) =
{
k1, if (1 − d) ≤ x ≤ x̂

k2, if x̂ < x ≤ 1
a

− ξ (1 − d) ,

with k1 and k2 positive.
Considering this density, the Frobenius–Perron operator when x ≤ x̂

is

Pf (x) = d

dx

(∫ x
1−d

1−ax
ξa

k2dt

)
= d

dx

(
k2

(
x

1 − d
− 1 − ax

aξ

))

= k2

(
1

1 − d
+ 1

ξ

)
.

By Theorem 2, μ is invariant under h if

Pf (x) = f (x) ⇐⇒ k1 =
(

1

1 − d
+ 1

ξ

)
k2. (1)
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When x > x̂, the Frobenius–Perron operator is

Pf (x) = d

dx

(∫ x̂

1−ax
ξa

k1dt +
∫ 1

a
−ξ(1−d)

x̂

k2dt

)

= d

dx

(
k1

(
1

1 + ad
− 1

aξ
+ x

ξ

)
+ k2

(
1

a
− 1

1 + ad
− (1 − d) ξ

))
= k1

ξ
.

Again, by Theorem 2, the invariance of μ under h requires

Pf (x) = f (x) ⇐⇒ k1

ξ
= k2 ⇐⇒ k1 = ξk2. (2)

Equations (1) and (2) must be satisfied simultaneously. To escape from the
trivial solution k1 = k2 = 0, the following equality must hold:

ξ = 1

1 − d
+ 1

ξ
⇐⇒

(
ξ − 1

ξ

)
(1 − d) = 1.

This equality is verified given the parametric restriction assumed in the statement
of the theorem.

We still have to guarantee that k1 and k2 for the nontrivial solution are both
positive. To be a valid probability density, k2 has to verify

∫ x̂

1−d

ξk2 dt +
∫ 1

a
−ξ(1−d)

x̂

k2 dt = 1.

This implies that

k2 = a (1 + ad)

1 + 2a2 (−1 + d) dξ + a (−1 + d − ξ + 2dξ)
.

Obviously, the numerator is positive. Let us show that the denominator

γ = 1 + 2a2 (−1 + d) dξ + a (−1 + d − ξ + 2dξ)

is also positive. In effect,

γ = 1 + 2a2(−1 + d)dξ + a (−1 + d − ξ + 2dξ)

= 1 + 2a2(−1 + d)dξ + a

(
−1

a
+ 2dξ

)

= 2adξ − 2a2(1 − d)dξ = 2adξ (1 − a (1 − d))

= 2a2dξ 2.

Consequently, k2 > 0. Because k1 = ξk2, k1 is also positive, as the restriction
ξ(1 − d) > 1 implies that ξ > 0. The proof is complete.

Based on this theorem, it is easy to prove the main result of this article.
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THEOREM 5. Under the parametric restriction ξ(1−d) = 1+(1/ξ)(1−d) >

1, the check map exhibits ergodic chaos.

Proof. By using the definition of ergodic measure, it is easy to establish that
the invariant probability measure determined in Theorem 4 is ergodic under the
check map. Consequently, under the given parametric restriction, the check map
exhibits ergodic chaos.

By combining Theorem 4 and Theorem 5, and subsequently invoking
Theorem 3, we can establish the following corollary.

COROLLARY 6. The invariant probability measure indicated in Theorem 4 is
unique.

The results of this section can be obtained using a completely different approach
[see Khan and Mitra (2012, Section 5)].

5. CONCLUDING REMARKS

In this paper, we demonstrate the existence of ergodic chaos in the RSS model
under a specific parametric regime. This result sharpens the contrast between the
discrete-time and the continuous-time versions of the model, and we hope that
this now-discovered contrast will stimulate the scientific interest of the audience
of this paper in this model.

Constituting only a first step forward into the study of ergodic chaos in the
context of the RSS model, our study leaves open the two following important
problems: first, the complete delineation of the parametric restrictions compatible
with ergodic chaos; second, the full characterization of the underlying invariant
probability measure whenever ergodic chaos exists.
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