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Abstract
Ganea proved that the loop space of CPn is homotopy commutative if and only if n = 3. We generalize this result
to that the loop spaces of all irreducible Hermitian symmetric spaces but CP3 are not homotopy commutative.
The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag
manifolds G/T for a maximal torus T of a compact, connected Lie group G.

1. Introduction

A fundamental problem on H-spaces is to find whether or not a given H-space is homotopy commutative.
This was intensely studied for finite H-spaces, and a complete answer was given by Hubbuck [15] such
that if a connected finite H-space is homotopy commutative, then it is homotopy equivalent to a torus.
As for infinite H-spaces, the problem should be studied by fixing a class of infinite H-spaces because
there are too many classes of infinite H-spaces, each of which has its own special features.

In [8], Ganea studied the homotopy nilpotency of the loop spaces of complex projective spaces, and in
particular, he proved that the loop space of the complex projective space CPn is homotopy commutative
if and only if n = 3. Then, we continue this work to study the homotopy commutativity of the loop spaces
of homogeneous spaces. Recently, Golasiński [9] showed that the loop spaces of some homogeneous
spaces such as complex Grassmannians are homotopy nilpotent. However, their homotopy nilpotency
class is not computed: it is not even proved that they are homotopy commutative or not. In this paper, we
study the homotopy commutativity of the loop spaces of Hermitian symmetric spaces, which generalizes
Ganea’s result and makes Golasiński’s result more concrete. Hermitian symmetric spaces were first
studied by Cartan [5], who classified them by means of his classification [4] of Riemannian symmetric
spaces. The work of Borel and de Siebethal on subgroups of maximal rank in compact Lie groups [2]
gives a simpler proof of Cartan’s classification result. It states that every Hermitian symmetric space is
a product of irreducible ones in the following table.

AIII U(m + n)/U(m) × U(n) (m, n ≥ 1)
BDI SO(n + 2)/SO(2) × SO(n) (n ≥ 3)
CI Sp(n)/U(n) (n ≥ 4)
DIII SO(2n)/U(n) (n ≥ 4)
EIII E6/Spin(10) · T1 (Spin(10) ∩ T1 ∼=Z/4)
EVII E7/E6 · T1 (E6 ∩ T1 ∼=Z/3)

Then, we only need to consider the loop spaces of irreducible Hermitian symmetric spaces. Now, we
state the main theorem.

Theorem 1.1 The loop spaces of all irreducible Hermitian symmetric spaces but CP3 are not homotopy
commutative.
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Theorem 1.1 will be proved by a case-by-case analysis of irreducible Hermitian symmetric spaces.
Our main tools for the analysis are rational homotopy theory (Section 2) and Steenrod operations
(Section 3). The rational homotopy technique also applies to flag manifolds, so that we can prove the
following, where the definition of the homotopy nilpotency will be given in Section 2.

Theorem 1.2 Let G be a compact connected non-trivial Lie group with maximal torus T. Then, the loop
space of the flag manifold G/T is homotopy nilpotent of class 2.

2. Rational homotopy

In this section, we apply rational homotopy theory to prove that the loop spaces of irreducible Hermitian
symmetric spaces of type CI, DIII, and EVII are not homotopy commutative. We also consider the
homotopy nilpotency of the loop spaces of flag manifolds. By [7, Proposition 13.16] and the adjointness
of Whitehead products and Samelson products, we have the following criterion for a loop space not
being homotopy commutative.

Lemma 2.1. Let (�V , d) be the minimal Sullivan model of a simply connected CW complex of finite
type X. If there is x ∈ V such that

dx �≡ 0 mod �3V ,

then �X is not homotopy commutative.

In order to apply Lemma 2.1, we will use the following lemma.

Lemma 2.2. Let X,Y be simply connected spaces such that

H∗(X;Q) =Q[x1, . . . , xm] and H∗(Y;Q) =Q[y1, . . . , yn].

If a map f : X → Y is injective in rational cohomology, then there is a Sullivan model of the homotopy
fiber of f such that

(�(x1, . . . , xm, z1, . . . , zn), d), dxi = 0, dzi = f ∗(yi).

Proof. By the Borel transgression theorem, H∗(�Y;Q) = E(z1, . . . , zn) such that τ (zi) = yi, where
E(z1, . . . , zn) denotes the exterior algebra generated by z1, . . . , zn and τ denotes the transgression. Let F
denote the homotopy fiber of the map f. Then, the sequence

(�(x1, . . . , xm), 0)
incl−→ (�(x1, . . . , xm, z1, . . . , zn), d)

proj−→ (�(z1, . . . , zn), 0)

is a model of the principal fibration �Y → F → X, where dxi = 0 and dzi = f ∗(yi). Thus, the statement
is proved.

Proposition 2.3. The loop spaces of Sp(n)/U(n) and SO(2n)/U(n) are not homotopy commutative.

Proof. First, we consider Sp(n)/U(n). Recall that the cohomology of BU(n) and BSp(n) are
given by

H∗(BU(n);Z) =Z[c1, . . . , cn] and H∗(BSp(n);Z) =Z[q1, . . . , qn],

where ci and qi are the Chern classes and the symplectic Pontrjagin classes. Then as in [22, Chapter III,
Theorem 5.8], the natural map q : BU(n) → BSp(n) satisfies

q∗(qi) =
∑

k+l=2i

( − 1)i+kckcl,
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where c0 = 1 and ci = 0 for i > n. Then by Lemma 2.2, there is a Sullivan model of Sp(n)/U(n) such
that

(�(c1, . . . , cn, r1, . . . rn), d), dci = 0, dri =
∑

k+l=2i

( − 1)i+kckcl,

where c0 = 1 and ci = 0 for i > n. Hence, the minimal model of Sp(n)/U(n) is given by

(�(c1, c3, . . . , c2n−2[n/2]−1, r[n/2]+1, . . . rn), d)

dci = 0, dri ≡
∑

k+l=i−1

( − 1)i+1c2k+1c2l+1 mod (c1, c3, . . . , c2n−2[n/2]−1)4,

where c0 = 1, ci = 0 for i > n. Thus, modulo (c1, c3, . . . , c2n−2[n/2]−1)4,

drn−1 ≡ c2
n−1 (n is even), drn ≡ c2

n (n is odd).

Therefore, by Lemma 2.1, �(Sp(n)/U(n)) is not homotopy commutative.
Next, we consider SO(2n)/U(n). The rational cohomology of BSO(2n) is given by

H∗(BSO(2n);Q) =Q[p1, . . . , pn−1, e],

where pi is the i-the Pontrjagin classes and e is the Euler class. By [22, Chapter III, Lemma 5.15 and
Theorem 5.17]. Then, the natural map r : BU(n) → BSO(2n) satisfies

r∗(pi) =
∑

k+l=2i

( − 1)kckcl and r∗(e) = cn,

where c0 = 1 and ci = 0 for i > n. Thus arguing as above, we can see that the minimal model of
SO(2n)/U(n) coincides with that of Sp(n − 1)/U(n − 1), implying that �(SO(2n)/U(n)) is not homotopy
commutative.

Proposition 2.4. The loop space of E7/E6 · T1 is not homotopy commutative.

Proof. As in the proof of [27, Lemma 2.1], we have

H∗(BE7;Q) =Q[x4, x12, x16, x20, x24, x28, x36]

H∗(B(E6 · T1);Q) =Q[u, v, w, x4, x12, x16, x24],

where |xi| = i, |u| = 2, |v| = 10 and |w| = 18. Moreover, the natural map j : B(E6 · T1) → BE7 satisfies
j∗(xi) = xi for i = 4, 12, 16, 24 and j∗(xi) ≡ zi mod (x4, x12, x16, x24) for i = 20, 28, 36, where

z20 = v2 − 2uv z28 = −2vw + 18u5w − 6u6v + u14

z36 = w2 + 20u4vw − 18u9w + 2u13v.

Then by Lemma 2.2, there is a Sullivan model of E7/E6 · T1 such that

(�(u, v, w, x4, x12, x16, x24, y3, y11, y15, y19, y23, y27, y36), d),

where du = dv = dw = 0 and dyi = xi+1 for i = 3, 11, 15, 23 and dyi ≡ zi+1 mod (x4, x12, x16, x24). Thus,
we can easily see that the minimal model of E7/E6 · T1 is given by (�(u, v, w, y19, y27, y36), d) such
that du = dv = dw = 0 and dyi = zi+1 for i = 19, 27, 36. Therefore by Lemma 2.1, �(E7/E6 · T1) is not
homotopy commutative as stated.

We consider the homotopy nilpotency of flag manifolds. Let X be an H-group. Let γ : X ∧ X → X
denote the reduced commutator map, and let γn = γ ◦ (γn−1 ∧ 1X) for n ≥ 2 and γ1 = 1X . Recall from
[28, Definition 2.6.2] that X is called homotopy nilpotent of class < n if γn 
 ∗. Let honil (X) denote the
homotopy nilpotency class of X. Then, X is homotopy commutative if and only if honil (X) ≤ 1.

Proposition 2.5. Let G be a Lie group, and let K be a subgroup of G. Then

honil (�(G/K)) ≤ honil (K) + 1.
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Proof. There is a homotopy fibration G/K → BK → BG, and so the result follows from [1, Theorem
3.3].

Hopkins [14, Corollary 2.2] proved that a connected finite H-space is homotopy nilpotent whenever
it is torsion free in homology. Then for a compact connected Lie group G and its closed subgroup K ,
it follows from Corollary 2.5 that �(G/K) is homotopy nilpotent whenever K is torsion free in homol-
ogy (cf. [9, Proposition 2.2]). In particular, we obtain that the loop space of the flag manifold G/T is
homotopy nilpotent, where T is a maximal torus of G. Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Clearly, we may assume G is simply connected. Since T is homotopy com-
mutative and non-contractible, we have honil (T) = 1. Then by Corollary 2.5, honil (�(G/T)) ≤ 2, and
so it remains to show that �(G/T) is not homotopy commutative. It is well known that the natural map
H∗(BG;Q) → H∗(BT;Q)W is an isomorphism and

H∗(BT;Q)W =Q[x1, . . . , xn],

where W is the Weyl group of G. Since G is simply connected, H∗(BG;Q) = 0 for ∗ ≤ 3 and
H4(BG;Q) �= 0. Then, we may assume |x1| = 4. By Lemma 2.2, there is a Sullivan model of G/T such
that

(�(t1, . . . , tn, y1, . . . , yn), d), dti = 0, dyi = xi,

where t1, . . . , tn are generators of H∗(BT;Q) which are of degree 2. Since all xi are decomposable by
degree reasons, this is the minimal model of G/T . Moreover, x1 is a quadratic polynomial in t1, . . . , tn.
Then by Lemma 2.1, G/T has non-trivial Whitehead product, implying that �(G/T) is not homotopy
commutative.

3. Steenrod operation

In this section, we prove that the loop spaces of the irreducible Hermitian symmetric spaces of type AIII,
BDI, EIII are not homotopy commutative by applying the following lemma. The lemma was proved by
Kono and Ōshima [21] when A and B are spheres and p is odd, and its variants are used in [10, 11, 12, 13,
17, 18, 19, 20, 26]. For an augmented graded algebra A, let QAn denote the module of indecomposables
of dimension n.

Lemma 3.1. Let X be a path-connected space X, let α : �A → X, β : �B → X be maps, and let p be a
prime. Suppose the following conditions hold:

(1) there are a, b ∈ H∗(X;Z/p) such that α∗(a) �= 0, β∗(b) �= 0, and

(a) α∗(b) = 0 or β∗(a) = 0 for p = 2,
(b) A = B, α = β and a = b for |a| = |b| and p odd;

(2) there are x ∈ H∗(X;Z/p) and a Steenrod operation θ such that θ (x) is decomposable and
includes the term ab �= 0;

(3) dim QH∗(X;Z/p) = 1 for ∗ = |a|, |b|;
(4) θ acts trivially on H∗(�A × �B;Z/p).

Then, the Whitehead product [α, β] in X is non-trivial.

Proof. Suppose [α, β] = 0. Then, there is a homotopy commutative diagram
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By the conditions (1), (2), and (3), the H|a|(�A;Z/p) ⊗ H|b|(�B;Z/p)-part of μ∗(θ (x)) is

μ∗(ab) = (α∗(a) × 1 + 1 × β∗(a))(α∗(b) × 1 + 1 × β∗(b))

=
{

2α∗(a) × β∗(b) |a| = |b| and p odd

α∗(a) × β∗(b) otherwise,

implying μ∗(θ (x)) �= 0. By the condition (4), we have μ∗(θ (x)) = θ (μ∗(x)) = 0. Then, we obtain a
contradiction, implying [α, β] �= 0, as stated.

Let Gm,n = U(m + n)/U(m) × U(n). Since Gm,n
∼= Gn,m, we may assume m ≤ n. Let j : Gm,n → BU(m)

denote the natural map. Then since m ≤ n, the map j is a (2m + 1)-equivalence. Let gi : S2i → BU(m)
denote a generator of π2i(BU(m)) ∼=Z for i = 1, . . . , m. Then, since j is a (2m + 1)-equivalence, there is
a map ḡi : S2i → Gm,n such that j ◦ ḡi = gi for each i ≤ m. Thus

j ◦ [ḡk, ḡl] = [j ◦ ḡk, j ◦ ḡl] = [gk, gl].

So if [gk, gl] �= 0, then [ḡk, ḡl] �= 0, implying that �Gm,n is not homotopy commutative. We can find a
non-trivial Whitehead product [gk, gl] by using the result of Bott [3], but here we use Lemma 3.1 instead.

Recall from [22, Chapter III, Theorem 6.9] that the cohomology of Gm,n is given by

H∗(Gm,n;Z) =Z[c1, . . . , cm, c̄1, . . . , c̄n]/

(∑
i+j=k

cic̄j | k ≥ 1

)

such that j∗(ci) = ci for each i, where c0 = c̄0 = 1, ci = 0 for i > m, c̄j = 0 for j > n and the cohomology
of BU(m) is as in the proof of Proposition 2.3. We say that a cohomology class x ∈ Hk(X;Z/p) is mod p
spherical if there is a map α : Sk → X such that α∗(x) �= 0. We denote the mod p reduction of an integral
cohomology class by the same symbol x.

Lemma 3.2. If p is a prime, then ci is mod p spherical for i ≤ p.

Proof. By [22, Chapter IV, Lemma 5.8], g∗
i (ci) = ±(i − 1)!u2i, where u2i is a generator of H2i(S2i;Z) ∼=

Z. Then the proof is done.

Proposition 3.3. The loop space of Gm,n for m, n ≥ 2 is not homotopy commutative.

Proof. As observed above, it suffices to show [gk, gl] �= 0 for some k,l. First, we consider the m = 2
case. By Lemma 3.2, c1, c2 ∈ H∗(G2,n;Z/2) are mod 2 spherical. By the Wu formula, Sq2c2 = c1c2 �= 0
in H∗(BU(2);Z/2). Then by Lemmas 3.1 and 3.2, [g1, g2] �= 0.

Next, we consider the m > 2 case. Take any odd prime p with m/2 < p ≤ m, where such an odd
prime exists by Bertrand’s postulate. Let k = m/2 for m even and k = (m + 1)/2 for m odd. By Lemma
3.2, ck and cm−k+1 are mod p spherical. By the mod p Wu formula proved by Shay [24], P1cm−p+2 is
decomposable and includes the term

−(m + 1)ckcm−k+1

in H∗(BU(m);Z/p). So if m + 1 �≡ 0 mod p, then [gk, gm−k+1] �= 0. Now we suppose m + 1 ≡ 0 mod p.
Then, we must have m = 2p − 1. So if there is another prime q in (m/2, m], then m + 1 �≡ 0 mod q. So
the above argument for the m + 1 �≡ 0 mod p case works, and thus, [gk, gm−k+1] �= 0. Hence, we aim to
show that there are two primes in (m/2, m]. Recall from [25] that the Ramanujan prime Rn is the least
integer k such that for each x ≥ k, there are at least n primes in the interval (x/2, x]. It is proved in [25] that
Rn exists for each n and R2 = 11. Then, it remains the cases m = 2 · 3 − 1 = 5 and m = 2 · 5 − 1 = 9, and
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we have 5/2 < 3, 5 ≤ 5 and 9/2 < 5, 7 ≤ 9. Thus, there are at least two primes in (m/2, m], completing
the proof.

Let Qn = SO(n + 2)/SO(2) × SO(n).

Proposition 3.4. The loop space of Qn for n ≥ 2 is not homotopy commutative.

Proof. There is a homotopy fibration

S1 = SO(2) → SO(n + 2)/SO(n)
q−→ Qn. (3.1)

Then the projection q : SO(n + 2)/SO(n) → Qn is injective in π∗ for ∗ ≥ 2, and so by the natural-
ity of Whitehead products, it is sufficient to show that there is a non-trivial Whitehead products in
π∗(SO(n + 2)/SO(n)) for some ∗ ≥ 2. Let ι : Sn = SO(n + 1)/SO(n) → SO(n + 2)/SO(n) denote the
inclusion. Then, Ōshima [23] proved that the Whitehead product [ι, ι] ∈ π2n−1(SO(n + 2)/SO(n)) is non-
trivial whenever n + 1 is not the power of 2. Thus, we obtain that �Qn is not homotopy commutative if
n + 1 is not the power of 2.

Suppose n = 2m − 1. Then as in [16], the cohomology of Qn is given by

H∗(Qn;Z) =Z[t, e]/(tm − 2e, e2), Sq2e = te,

where |t| = 2 and |e| = 2m. Since Qn is simply connected, the Hurewicz theorem implies that t is mod
2 spherical. Let B = Sn−1 ∪2 en. Then, SO(n + 2)/SO(n) = �B ∪ e2n+1, so that

H∗(SO(n + 2)/SO(n);Z/2) = E(xn, xn+1), |xi| = i.

Let j : �B → Qn denote the composition of the inclusion �B → SO(n + 2)/SO(n) and the projection
q : SO(n + 2)/SO(n) → Qn. Then by the Gysin sequence for the fibration (3.1), we get j∗(e) = xn+1. Thus
by Lemma 3.1, we obtain that Qn has non-trivial Whitehead product, implying �Qn is not homotopy
commutative.

Proposition 3.5. The loop space of E6/Spin(10) · T1 is not homotopy commutative.

Proof. As in [16], the mod 2 cohomology of E6/Spin(10) · T1 is given by

H∗(E6/Spin(10) · T1;Z/2) =Z/2[t, w′]/(tw′2, t12 + w′3), Sq2w′ = tw′,

where |t| = 2 and |w′| = 8. Since E6/Spin(10) · T1 is simply connected, the Hurewicz theorem implies
that t is mod 2 spherical. We can deduce from Conlon’s result [6] that π∗(E6/Spin(10), F4/Spin(9)) = 0
for ∗ ≤ 31. In particular,

H∗(E6/Spin(10);Z/2) ∼= H∗(F4/Spin(9);Z/2) (∗ ≤ 30).

Note that F4/Spin(9) is the Cayley plane OP2. Then since OP2 = S8 ∪ e16, a generator u ∈
H8(F4/Spin(9);Z/2) ∼=Z/2 is mod 2 spherical, and so a generator v ∈ H8(E6/Spin(10)) ∼=Z/2 is mod 2
spherical too. By the Gysin sequence associated with the fibration S1 → E6/Spin(10)

q−→ E6/Spin(10) ·
T1, we can see that q∗(w′) = v, implying w′ is mod 2 spherical. Thus by Lemma 3.1, we obtain that
E6/Spin(10) · T1 has a non-trivial Whitehead product, and so �(E6/Spin(10) · T1) is not homotopy
commutative.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Combine Propositions 2.3, 2.4, 3.3, 3.4, 3.5 and the result of Ganea [8] on the
homotopy commutativity of the loop space of CPn mentioned in Section 1.
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