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Abstract

Let A be a finite set of integers and FA(x) = ∑
a∈A exp(2π iax) be its exponential sum.

McGehee, Pigno and Smith and Konyagin have independently proved that ‖FA‖1 � c log |A|
for some absolute constant c. The lower bound has the correct order of magnitude and was
first conjectured by Littlewood. In this paper we present lower bounds on the L1-norm of
exponential sums of sets in the d-dimensional grid Z

d . We show that ‖FA‖1 is considerably
larger than log |A| when A ⊂ Z

d has multidimensional structure. We furthermore prove
similar lower bounds for sets in Z, which in a technical sense are multidimensional and
discuss their connection to an inverse result on the theorem of McGehee, Pigno and Smith
and Konyagin.

1. Introduction

We begin with a notational remark. Throughout the paper expressions of the form Q � C
are taken to mean that the quantity Q is less than an appropriately chosen absolute constant
C > 1. We will therefore write counter-intuitive statements like 2C � C . When the constant
is less than 1 a lower case c is used.

For finite A ⊂ Z
d the exponential sum of A is

FA(x) =
∑
a∈A

e(a · x),

where · is the usual dot product in R
d , e(t) = exp(2π i t) and x lies in the d-dimensional
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torus T
d . The L1-norm of FA is given by

‖FA‖1 =
∫

x∈Td

|FA(x)| dx .

We will also write

〈 f, g〉 =
∫

x∈Td

f (x)g(x) dx

for the inner product of two functions f, g : T
d �→ C.

J.E. Littlewood conjectured in 1948 [6] that for all finite sets A ⊂ Z:

‖FA‖1 � c log |A| .

The conjecture was proved in 1980 independently by O.C. McGehee, L. Pigno and B. Smith
[9] and S.V. Konyagin [7].

THEOREM 1·1 (McGehee–Pigno–Smith, Konyagin). Let A be a finite sets of integers.
Then

‖FA‖1 � c log |A| .

Taking A to be a symmetric arithmetic progression about zero, and hence FA the Dirichlet
kernel, shows that the lower bound is of the correct order of magnitude [8].

The first proof works equally well when A ⊂ Z
d . The order of magnitude of the lower

bound is attained when A is an arithmetic progression in Z
d . On the other hand, if A is the d-

dimensional cube {(x1, . . . , xd) : 1 � xi � N for all i} ⊂ Z
d , then ‖FA‖1 = ‖F{1,...,N }‖d

1 �
(C log N )d . It is therefore natural to ask whether a similar lower bound on ‖FA‖1 holds when
A has a genuinely multidimensional structure.

We answer this question to the affirmative, not only for sets in Z
d , but also for sets in

Z. Our results present partial progress towards answering a question of W.T. Gowers on the
L1-norm of exponential sums in Z

2, which will be stated below. They also help characterise
sets of integers A for which ‖FA‖1 is nearly minimal.

The first step is to quantify what we mean by ‘genuinely multidimensional structure’. The
most typical example that comes to mind is that of the d-dimensional cube, where as we
have seen ‖FA‖1 is roughly speaking logd |A|. The identity ‖FA‖1 = ‖F{1,...,N }‖d

1 no longer
holds when A is tweaked and taken to be {(a1 + x1, . . . , ad + xd) : 1 � xi � N for all i} for
fixed integers a1, . . . , ad . We study ‖FA‖1 for sets that have a similar structure and show that
in this case ‖FA‖1 � logcd |A|. To keep the notation simple, here and most importantly in the
proofs that follow, we will from now on set d = 2 or 3. Our methods can be generalised in
a straightforward manner for d > 3. Considering the general case would make what already
is a notation-heavy argument even more technical without adding anything to the method.

Let us now introduce some terminology, which will be helpful in pinning down an exact
meaning for ‘multidimensional structure’.

Definition. Let j ∈ {1, 2, 3}, ai ∈ Z for i ∈ {1, 2, 3} \ { j} and A ⊆ Z
3. The intersection

of A with the line {(x1, x2, x3) : xi = ai for i ∈ {1, 2, 3} \ { j}} is a row of A.

Definition. Let i ∈ {1, 2, 3}, ai ∈ Z and A ⊆ Z
3. The intersection of A with the plane

{(x1, x2, x3) : xi = ai } is a planar slice of A.
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We call A ⊆ Z
2 a genuinely 2-dimensional set, if its rows are either empty or large. We call

A ⊆ Z
3 a a genuinely 3-dimensional set, if its planar slices are either empty or a genuinely

2-dimensional set.
The first of our results asserts that, if A is genuinely 2-dimensional, then ‖FA‖1 is consid-

erably larger than log |A|.
THEOREM 1·2. Let A ⊂ Z

2 be finite. Suppose that A consists of at least r rows of size at
least s. Then

‖FA‖1 � c log s

(
log r

log log r

)1/2

.

The stated lower bound is probably not best possible. Gowers has asked whether ‖FA‖1 �
c log r log s holds. Theorem 1·2 only gives ‖FA‖1 � log s log1/2−ε r for all ε > 0 and suffi-
ciently large A.

The method of proof of Theorem 1·2 can also be applied to subsets of Z. To define ‘mul-
tidimensional structure’ in the integers we turn to a notion often used in additive problems.

Definition. Let A and B be sets in two additive groups. A map

θ : A �−→ B

is a Freiman isomorphism of degree k if it is a bijection and a1 +· · ·+ ak = ak+1 +· · ·+ a2k

holds if and only if θ(a1) + · · · + θ(ak) = θ(ak+1) + · · · + θ(a2k) holds for any choice of
a1, . . . , a2k ∈ A. We say A is Freiman isomorphic of degree k to B.

Our second main result asserts that if A ⊂ Z is Freiman isomorphic to a 3-dimensional set
in Z

3, then ‖FA‖1 is considerably larger than log |A|.
THEOREM 1·3. Let A ⊂ Z

3 be finite. Suppose that A consists of at least p planar slices
each in turn consisting of at least r rows of size at least s. If B ⊂ Z is Freiman isomorphic
of degree k to A, then

‖FB‖1 � c

(
log s log r log p

log log s log log r log log p

)1/2

,

provided that k = 62 log r log s log p.

A helpful, if imprecise, way to rephrase the above is that ‖FB‖1 � log3/2−ε |B| for all ε > 0
whenever B ⊂ Z is isomorphic to a genuinely 3-dimensional set in Z

3 and is sufficiently
large. As a consequence we see that any sufficiently large set A where ‖FA‖1 � C log |A|
cannot have this particular 3-dimensional structure.

The lower bound in Theorem 1·3 is probably not best possible. Moreover, one suspects
that the conclusion holds for smaller values of k. It is furthermore likely that if A is Freiman
isomorphic to a 2-dimensional set in Z

2, then ‖FA‖1 � log1+η |A| for some absolute 0 <

η � 1. The method we present is not strong enough to prove this.
The remaining sections are organised as follows. In Section 2 we prove a lemma that is

central to the proof of both theorems. The lemma is a generalisation of a method developed
by P.J. Cohen [2] to tackle Littlewood’s conjecture and was later refined by H. Davenport
[3] and S.K. Pichorides [10]. In Section 3 we prove Theorem 1·2 . In Section 4 we prove
Theorem 1·3. Finally, in Section 5 we discuss how an inverse result for Theorem 1·1 may
look and compare the suggested structure with that which comes out of Theorem 1·3.
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2. A method of Cohen, Davenport and Pichorides

To prove Theorems 1·2 and 1·3 we will rely on a combination of techniques de-
veloped to tackle Littlewood’s conjecture by Cohen [2], Davenport [3], Pichorides [10] and
McGehee, Pigno and Smith [9]. The four aforementioned papers on the Littlewood conjec-
ture concentrate on constructing a test function g that satisfies two properties: ‖g‖∞ � 1
and 〈g, FA〉 � logα |A| for some absolute constant α. This immediately gives logα |A| �
〈g, FA〉 � ‖g‖∞‖FA‖1 � ‖FA‖1.

Our strategy to prove Theorem 1·2 is as follows. For simplicity let us assume that A
consists of r rows A1, . . . , Ar of size at least s, where Ai ⊂ {(x, ni) : x ∈ Z} for some
integers n1, . . . , nr . Let �ni be the McGehee–Pigno–Smith test function for the exponential
sum FAi . That is the function constructed by McGehee, Pigno and Smith that satisfies the two
properties listed above for α = 1. We will combine these to produce a better test function
for A. This will be done by mirroring the method of Cohen, Davenport and Pichorides.

Cohen combined the exponentials {e(nx) : n ∈ A} and obtained a test function which
yields the value α = 1/8 − ε for all ε > 0. Davenport improved this to α = 1/4 − ε and
Pichorides to α = 1/2 − ε. The three arguments are rather similar. A closer look at the
underlying method reveals that one can get the same result even when relaxing the most
commonly used properties of exponentials to:

(i) |e(nx)| � 1 for all n and x ;
(ii) 〈e(nx) e(mx), e(kx)〉 = 0 unless k = n + m;

(iii) 〈e(nx), e(nx)〉 � c for all n.

Our strategy is to replace the exponentials in the existing proofs by the �ni , which satisfy
the first condition. The support of the Fourier transform �̂ni lies in the line that contains Ai

and therefore the �ni also satisfy the following new versions of the later two conditions:

(i) let k and l be positive integers. 〈FA, �ni1
�ni2

· · ·�nik
�nik+1

�nik+2
· · ·�nik+l

〉 = 0 un-
less ni1 + · · · + nik − nik+1 − · · · − nik+l = nν for some 1 � ν � R;

(ii) 〈�ni , FA〉 = 〈�ni , FAi 〉 � c log s.

As we will shortly see every step can still be carried out and we thus obtain Theorem 1·2. One
way to describe this process is to say we will employ the McGehee–Pigno–Smith method in
one dimension and the Cohen–Davenport–Pichorides in the other.

The Cohen–Davenport–Pichorides method is applicable when one considers Freiman iso-
morphisms. We will thus employ it in all three dimensions to prove Theorem 1·3. The details
can be found in the two upcoming sections.

We begin with a technical result that is the main building block of the two proofs.

LEMMA 2·1. Let R and d be positive integers, K a positive real number and F : T
d �→ C

be an integrable function. Suppose there are positive integers n1, . . . , nR and a collection of
integrable functions �n1, . . . , �nR such that:
(A) ‖�ni ‖∞ � 1 for 1 � i � R;
(B) 〈�ni , F〉 � K for 1 � i � R;
(C) let l be a positive integer. 〈F , �ni0

�ni1
· · · �nil

�nil+1
· · ·�ni2l

〉 = 0 for 1 � i j � R
unless ni0 + ni1 + · · · + nil − nil+1 − · · · − ni2l = nν for some 1 � ν � R.

Then there is a test function g such that:
(i) ‖g‖∞ � 1;
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(ii) g is a linear combination of functions of the form �ni0
· · ·�nik

�nik
· · · �ni2k

for some
k � 2 log R;

(iii) 〈g, F〉 � c K
log1/2 R

log log1/2 R
.

In particular (i) and (iii) imply

‖F‖1 � c K
log1/2 R

log log1/2 R
.

The reader can think of the �n as exponentials in order to gain some intuition. We will need
two lemmata. The first is [10, lemma 1].

LEMMA 2·2 (Pichorides). Let t � 100. Suppose the quantities P and Q satisfy t + 2P �
0 and P2 + Q2 � t4/4. Then∣∣∣∣1 − 1

t
− P + i Q

t2
+ (P + i Q)2

t4

∣∣∣∣ + 1

4t3/2
(t + 2P)1/2 � 1.

The second is also a result Pichorides ([10, lemma 2]) whose proof is essentially due to
Davenport (cf. [3, lemma 3]).

LEMMA 2·3 (Davenport–Pichorides). Let E and S be sets of positive integers. For p ∈ S
let N (p) to be the number of elements of E that are greater than p.

Let t be a positive integer and suppose that

t4
∑
p∈S

N (p) � |E |.

Then there exist t integers {m1, . . . , mt} in E such that

p + (mα − mβ) + (mγ − mδ) � E

for all p ∈ S and 1 � α � β � t, 1 � γ < δ � t .
Furthermore mα = nq(α), where q(α) � α4

∑
p∈S N (p) .

We now turn to proving Lemma 2·1.

Proof of Lemma 2·1. The proof is based on iteration. We will construct functions
g1, g2, . . . that satisfy (i) and modified versions of (ii) and (iii):

(ii′) gi is a linear combination of functions of the form �ni0
· · ·�nik

�nik+1
· · ·�ni2k

for
some k � 2i .

(iii′) 〈gi , F〉 � K (4t1/2)−1
∑i−1

n=0(1 − 1/t)n for some t � 100 to be chosen later.
We set g1 = �n1 , which satisfies (i), (ii′) and (iii′) as the sum is empty. We now inductively
define

gi+1(x) = gi (x)

(
1 − 1

t

)

−gi (x)

⎛⎝ 1

t2

∑
1�i< j�t

�mi (x)�m j (x) − 1

t4

⎛⎝ ∑
1�i< j�t

�mi (x)�m j (x)

⎞⎠2⎞⎠
+ 1

4t3/2

∑
1�i�t

�mi (x)
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for some m1, . . . , mt carefully chosen from {n1, . . . , nR} in such a way that the inner product
of the middle part with F is zero. For the time being we assume this can be done. We need
to check that gi+1 satisfies (i), (ii′) and (iii′).

For (i) we apply Lemma 2·2. For any v set

P + i Q =
∑

1�i< j�t

�mi (v)�m j (v).

We observe that

P2 + Q2 = |P + i Q|2 �

⎛⎝ ∑
1�i< j�t

|�mi (v)||�m j (v)|
⎞⎠2

� (t (t − 1)/2)2 < t4/4

and that

0 �
∣∣∣∣∣

t∑
i=1

�mi (v)

∣∣∣∣∣
2

=
t∑

i=1

|�mi (v)|2 + 2P � t + 2P.

The conditions of Lemma 2·2 are satisfied and so

|gi+1(v)| � |gi (v)|
∣∣∣∣1 − 1

t
− P + i Q

t2
+ (P + i Q)2

t4

∣∣∣∣ + 1

4t3/2
(t + 2P)1/2

�
∣∣∣∣1 − 1

t
− P + i Q

t2
+ (P + i Q)2

t4

∣∣∣∣ + 1

4t3/2
(t + 2P)1/2

� 1.

The last inequality coming from Lemma 2·2. Thus gi+1 satisfies (i). gi+1 by definition satis-
fies (ii′) and so we are left with (iii′).

It follows from our assumption on the middle part of gi+1 that

〈gi+1, F〉 =
(

1 − 1

t

)
〈gi , F〉 + 1

4t3/2

t∑
i=1

〈�mi , F〉 � K

4t1/2

i∑
n=0

(
1 − 1

t

)n

.

Once n becomes considerably bigger than t the terms (1 − 1/t)n � exp(−n/t) become
exponentially small and so add very little to the sum. We therefore iterate the process only t
times and set g = gt . It follows that the k appearing in (ii) can be taken to be 2t .

〈g, F〉 � K

4t1/2

t∑
n=1

(
1 − 1

t

)n

� cK t1/2 (2·1)

subject only to being able to repeat the iteration t times.
Our final task then becomes to prove that the mi can indeed be chosen t times and get the

largest possible value for t . This will be done by applying Lemma 2·3.
We start by labelling m(i)

1 , . . . , m(i)
t the elements of {n1, . . . , nR} chosen in the i th iteration

and recursively define the following sets:

S1 = {n1}, Si+1 = Si � Ti � Ui

where
Ti = {m(i)

1 , . . . , m(i)
t } and

Ui = {p + (m(i)
α − m(i)

β ) + (m(i)
γ − m(i)

δ ) : p ∈ Si , 1 � α � β � t, 1 � γ < δ � t}.
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Let E = {n1, . . . , nR}. It follows from condition (C) that the middle part of 〈gi , F〉 is zero
provided that p + (m(i)

α − m(i)
β ) + (m(i)

γ − m(i)
δ ) � E for all p ∈ Si−1, 1 � α � β � t and

1 � γ < δ � t .
Applying Lemma 2·3 with S = Si−1 we see that the m(i)

j can be chosen provided that

t4
∑

p∈Si−1

N (p) � R.

The sum on the left-hand side is estimated using the final conclusion of Lemma 2·3:∑
p∈Si

N (p) =
∑

p∈Si−1

N (p) +
∑

p∈Ti−1

N (p) +
∑

p∈Ui−1

N (p)

=
∑

p∈Si−1

N (p) +
t∑

α=1

N (m(i)
α ) +

∑
p,α,β,γ,δ

N (p + (m(i)
α − m(i)

β ) + (m(i)
γ − m(i)

δ ))

�
∑

p∈Si−1

N (p) +
t∑

α=1

α4

⎛⎝ ∑
p∈Si−1

N (p)

⎞⎠ + t4
∑

p∈Si−1

N (p)

� t5
∑

p∈Si−1

N (p) .

We used the fact that m(i)
α −m(i)

β +m(i)
γ −m(i)

δ > 0 so that N (p +m(i)
α −m(i)

β +m(i)
γ −m(i)

δ ) �
N (p).

Observe that
∑

p∈S1
N (p) = 1. It follows by induction that∑

p∈Si

N (p) � t5i .

The iteration is thus possible for t steps when t5t � R. So we take

t =
⌊

log R

10 log log R

⌋
.

Substituting this value of t in (2·1) gives conclusion (iii). Conclusion (ii) has been shown to
hold for k = 2t � 2 log R and so has conclusion (i).

3. Towards a 2-dimensional Littlewood conjecture

We now prove Theorem 1·2. Loosely speaking the first dimension will be used to construct
the �n and the second to combine them and produce a better test function.

Proof of Theorem 1·2. We apply Lemma 2·1 to F = FA. We take e1, e2 to be the standard
basis of Z

2 and translate A if necessary so that the coordinates of all its points are positive
integers. We let A1, . . . , AR be the rows of A and ni = Ai · e2 for 1 � i � R.

We set �ni to be the McGehee–Pigno–Smith test function for FAi . By this we mean a
function whose Fourier transform is supported on {u ∈ Z

2 : u · e2 = ni } and which satisfies
‖�ni ‖∞ � 1 and 〈FAi , �ni 〉 � c log |Ai | � c log s.

Hence the �ni satisfy conditions (A) and (B) for K � c log s. Condition (C) is also
satisfied as we see by examining the support of the Fourier transform of

�ni0
�ni1

· · · �nil
�nil+1

· · · �ni2l
:
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it lies on the line {u ∈ Z
2 : u · e2 = ni0 + · · · + nil − nil+1 − · · · − ni2l }. In particular

〈FA , �ni0
�ni1

· · ·�nil
�nil+1

· · ·�ni2l
〉 = 0

unless ni0 + · · · + nil − nil+1 − · · · − ni2l = nν for some 1 � ν � R. The theorem follows
from he final conclusion of Lemma 2·1 by observing that R � r .

We can of course take �ni to be the test function that satisfies 〈�ni , FA〉 = ‖FAi ‖1. Its
Fourier transform is still supported on {u ∈ Z

2 : u · e2 = ni } and hence everything we did
above can be repeated to yield the following.

THEOREM 3·1. Let A ⊂ Z
2 be finite. Suppose that A consists of at least r rows of size at

least s. Then

‖FA‖1 � c μ(s)

(
log r

log log r

)1/2

with

μ(s) = min ‖FAi ‖1,

where A1, A2, . . . are the rows of A.

4. Multidimensional sets in Z

We repeat the same process to prove Theorem 1·3. We can no longer use the McGehee–
Pigno–Smith test functions as their support is both very large and very difficult to analyse. It
is furthermore unlikely that condition (C) in Lemma 2·1 holds. Instead we use the Cohen–
Davenport–Pichorides test functions, which are Freiman isomorphism friendly because of
conclusion (ii) in Lemma 2·1. In what follows for a set of integers S and a positive integer
α we write

αS = {s1 + · · · + sα : si ∈ S}.

Proof of Theorem 1·3. Translate A if necessary so that all three coordinates of its ele-
ments are positive. Let θ be the Freiman isomorphism between A and B and e1, e2, e3 the
standard basis of Z

3. Suppose that A1, A2, . . . are the planar slices of A. For any i let ai

be the integer such that Ai ⊂ {u ∈ Z
3 : u · e3 = ai }. Each Ai consists of at least r rows

Ai1, Ai2, . . . of size at least s. Let ai j be the integer such that Ai j ⊂ {u ∈ Z
3 : u · e3 =

ai , u · e2 = bi
j }.

We construct a test function for FB = Fθ(A) by three successive applications of Lemma 2·1.
We begin by applying Lemma 2·1 to get a test function for Fθ(Ai j ) for all pairs of indices

{i, j} for which Ai j is non-empty. Let b(1)

i j , b(2)

i j , . . . be the elements of θ(Ai j ). We set nl =
b(l)

i j and �nl = e(b(l)
i j ) in Lemma 2·1. The �nl satisfy conditions (A), (B) with K = 1 and

(C). Applying Lemma 2·1 we get a test function fi j which satisfies

〈Fθ(Ai j ), fi j 〉 � c

(
log s

log log s

)1/2

and ‖ fi j‖∞ � 1. Next we observe that the support of f̂i j lies in (α + 1)θ(Ai j ) − α θ(Ai j )

for some α � 2 log s. In particular it does not intersect θ(A \ Ai j ), for if θ(u) = θ(u0) +
· · · + θ(uα) − θ(uα+1) − · · · − θ(u2α) for some u ∈ A \ Ai j and u0, . . . , u2α ∈ Ai j , then
u = u0+· · ·+uα−uα+1−· · ·−u2α as θ is a Freiman isomorphism of degree k and α � k. This
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is impossible as the right hand side is supported on the line {u ∈ Z
3 : u ·e3 = ai , u ·e2 = bi

j },
while the left hand is not. Hence

〈Fθ(Ai ), fi j , 〉 = 〈Fθ(Ai j ), fi j 〉 � c

(
log s

log log s

)1/2

.

Next we combine the fi j to get a test function for Fθ(Ai ). We set n j = bi
j and

�n j = fi j in Lemma 2·1. The fi j satisfy condition (A) and, as we saw above, (B) with
K � c(log s/ log log s)1/2. To check condition (C) note that the Fourier transform of

fi j0 fi j1 fi j2 · · · fi jl fi jl+1 fi jl+2 · · · fi j2l

is supported on

(α + 1)θ(Ai j0) − αθ(Ai j0) + (α + 1)θ(Ai j1) − αθ(Ai j1) + · · · + (α + 1)θ(Ai jl )

−αθ(Ai jl ) − (α + 1)θ(Ai jl+1) + αθ(Ai jl+1) − · · · − (α + 1)θ(Ai j2l ) + αθ(Ai j2l )

for α � 2 log s. Thus the inner product with Fθ(Ai ) is zero unless θ(Ai ) intersects the above
sum-difference set. Note that l � 2 log r and that θ is a Freiman isomorphism of sufficiently
large degree for this to happen only when the sum bi

j0 + bi
j1 + · · · + bi

jl − bi
jl+1

− · · · − bi
j2l

equals bi
j for some j .

By Lemma 2·1 we get a test function fi that satisfies ‖ fi‖∞ � 1 and

〈Fθ(Ai ), fi 〉 � c

(
log s log r

log log s log log r

)1/2

.

The support of f̂i lies in (γ + 1)θ(Ai) − γ θ(Ai ) for some γ � 12 log r log s: the support
of f̂i j lies in (α + 1)θ(Ai ) − αθ(Ai ) for α � 2 log s and we have to consider expressions
of the form fi j0 fi j1 fi j2 · · · fi jβ fi jβ+1 fi jβ+2 · · · fi j2β

for β � 2 log r and so γ can be taken to be
(α + 1) β + α (β + 1) = 2αβ + α + β � 12 log r log s. Thus the support of f̂i does not
intersect θ(A \ Ai ), for if θ(u) = θ(u0) + · · · + θ(uγ ) − θ(uγ+1) − · · · − θ(u2γ ) for some
u ∈ A \ Ai , ul ∈ Ai and γ � 12 log s log r , then, as θ is a Freiman isomorphism of degree
k � γ , u would have to equal u0 + · · · + uγ − uγ+1 − · · · − u2γ . This is impossible as the
right-hand side lies on the plane {u ∈ Z

3 : u · e3 = ai }, while the left-hand does not. Hence

〈Fθ(A), fi , 〉 = 〈Fθ(Ai ), fi 〉 � c

(
log s log r

log log s log log r

)1/2

.

Finally we combine the fi to get a test function for Fθ(A). We let ni = ai and �ni = fi .
The fi satisfy conditions (A) and (B) with K � c(log s log r/(log log s log log r))1/2 in
the statement of Lemma 2·1. To check condition (C) note that the Fourier transform of
fi0 fi1 fi2 · · · fil fil+1 fil+2 · · · fi2l is supported on (γ + 1)θ(Ai0) − γ θ(Ai0) + (γ + 1)θ(Ai1) −
γ θ(Ai1) + · · · + (γ + 1)θ(Ail ) − γ θ(Ail ) − (γ + 1)θ(Ail+1) + γ θ(Ail+1) − · · · − (γ +
1)θ(Ai2l ) + γ θ(Ai2l ) for γ � 12 log s log r . The inner product with Fθ(A) is zero unless
θ(A) intersects the above sum-difference set, which is a subset of (δ + 1)θ(A) − δθ(A) for
δ = 2lγ + l + γ � 62 log p log r log s. θ is a Freiman isomorphism of degree k � δ, so this
happens only if ai0 + ai1 + · · · + ail − ail+1 − · · · − ai2l equals ai for some i . By Lemma 2·1
we get

‖Fθ(A)‖1 � c

(
log s log r log p

log log s log log r log log p

)1/2

.

Remark. One can extend this result to higher dimensions.
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5. Additive structure when ‖FA‖1 is small

In this final section we discuss the following question. Suppose ‖FA‖ � C log |A| for
A ⊂ Z. Is there a particular structure A must have? We suggest a plausible structure and
compare it with that implied by Theorem 1·3.

Determining the precise value of ‖FA‖1 for a given A is hard. The Cauchy-Schwarz
inequality shows that the L1-norm is certainly bounded above by the L2-norm, ‖FA‖2 =
|A|1/2. This order of magnitude is attained when A is the lacunary sequence {2i : 1 � i �
N }. By an averaging argument one gets much denser random subsets of {1, 2, . . . , N } with
‖FA‖1 � cN 1/2. In general sets with random like properties are expected to give rise to
exponential sums with large L1-norm. For example, if A is the set of the first N primes, then
‖FA‖1 � N 1/2−ε for all ε > 0 [12] and if A is the intersection of the support of the Möbius
function with {1, 2, . . . , N }, then ‖FA‖1 � N 1/8−ε [1].

At the other end of the spectrum we have structured sets. If A is the union of k arithmetic
progressions, then by the triangle inequality ‖FA‖1 � C k log |A|. Furthermore, if A is a
proper d-dimensional arithmetic progression

{c + x1q1 + · · · + xdqd : 0 � xi � N for 1 � i � d} for c, qi ∈ Z for 1 � i � d,

then ‖FA‖1 � (C log |A|)d (Theorem 3.3 in [11]). The above progression is called proper, if
it has size (N + 1)d .

Note however that not the whole of A needs to be structured. We can for example remove
a subset X with C log2 N elements from {1, 2, . . . , N } and still have

‖FA‖1 � ‖F{1,...,N }‖1 + ‖FB‖1 � C log N + ‖FB‖2 = C log N + C log N � C log |A|.
One can instead add a much larger set X . For example X can be a 2-dimensional arith-
metic progression disjoint from {1, . . . , N }. If X is Freiman 2-isomorphic to {1, . . . , L} ×
{1, . . . , L}, where L = exp(log1/2 N ), then ‖FX‖1 � C log N . Thus ‖F{1,...,N }�X‖1 �
C log |A|.

Establishing a concrete relation between ‖FA‖1 and the additive structure of A has not
been possible so far. Even the simplest inverse theorem for sets A where ‖FA‖1 is close to
being minimal has been elusive. The following question arose in conversations with B.J.
Green and is in accordance with a theorem of Green and T. Sanders on idempotent measures
[5]. See also [4].

Question 5·1. Does there exists an absolute constant 1/2 � η < 1 and a function g :
R

+ �→ R
+ with the following property. Let A ⊂ Z be a finite set and K a positive constant.

Suppose ‖FA‖1 � K log |A|. Then there exists a set X ⊂ Z of size at most exp{‖FA‖η

1},
g(K ) arithmetic progressions P1, . . . , Pg(K ) and ε1, . . . , εg(K ) ∈ {+1, −1} such that

FA = FX +
g(K )∑
i=1

εi FPi .

The range of η comes from the example discussed above and Theorem 1·1. Taking A to be
a 2-dimensional arithmetic progression Freiman 2-isomorphic to {1, . . . , N } × {1, . . . , N }
suggests that g(K ) has to be exponential in K .

The results in this paper point to a slightly different direction. We have established
that no sufficiently large set of integers A whose exponential sum has L1-norm at most
C log |A| can be Freiman isomorphic to a genuinely three dimensional set in Z

3. This
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puts a constraint on sets where ‖FA‖1 is close to being minimal. Unfortunately it is not
the case that such sets mainly consist of few long arithmetic progressions and a small
set. The notion of dimensionality we have relied on is too restrictive to lead to such a
conclusion.

Take for example the lacunary sequence A = {xi = 2i : 1 � i � N }. Its elements satisfy
the recurrence relation xi+1 = xi + 2(xi − xi−1). It follows that its image under a Freiman
isomorphism θ of degree 3 also satisfies this relation. The y-coordinate of the elements of
θ(A) is either constant (when θ(x1) · e2 = θ(x2) · e2) or distinct for all i . In other words
either θ(A) is contained in a single row or it consists of |A| singleton rows. In either case
θ(A) is not a genuinely 3-dimensional set. Yet any subset Y ⊂ A cannot be decomposed in
fewer than |Y |/2 arithmetic progressions as A contains at most two consecutive elements of
any arithmetic progression.

Lacunary sequences are very sparse, but the situation doesn’t change when we consider
dense sets as the following example demonstrates.

Let L be a large integer and P the first prime such that∑
p∈P

p−1 � 1/2

where P is the set of primes between L and P . Now let

N =
∏
p∈P

p

and

A =
⋃
p∈P

Ap,

where Ap consists of all numbers in {1, . . . , N } that are congruent to 1 mod p.
A has large density in {1, . . . , N }. To check this observe that

|A| =
∣∣∣∣∣∣
⋃
p∈P

(
Ap/

⋃
q�p

Aq

)∣∣∣∣∣∣ =
∑
p∈P

∣∣∣∣∣Ap/
⋃
q�p

Aq

∣∣∣∣∣ .
We know that |Ap| = N/p and |Ap � Aq | = N/pq. Hence∣∣∣∣∣Ap/

⋃
q�p

Aq

∣∣∣∣∣ � N

p

⎛⎝1 −
∑

q∈P\{p}
q−1

⎞⎠ � N

2p
.

Which in turn implies that

|A| � N

2

∑
p∈P

p−1 � N/4.

Next we consider the image of A under a Freiman isomorphism of degree two. Freiman
isomorphisms map arithmetic progressions in Z into lines in Z

3 and hence θ(A) must be
supported on a collection of lines {θ(Ap) : p ∈ P}. For every pair of indices p � q,
θ(Ap) � θ(Aq) = N/pq > 2 and so the two lines must in fact be identical. Thus the image
of A under any Freiman isomorphism lies in a single line in Z

3. As a consequence θ(A)

either lies in a single row or in |A| different rows.
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