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We consider the problem of gas–liquid flow with phase transition in a porous medium,
governed by the buoyancy force. Free gas releases due to continuous pressure decrease.
We take into account the gas expansion and the dissolution of chemical components
in both phases controlled by the local phase equilibrium. We have developed an
asymptotic model of flow for low pressure gradients in the form of a nonlinear
hyperbolic system of first order with respect to the liquid saturation and the total flow
velocity, which is the extended non-homogeneous Buckley–Leverett model. In two
asymptotic cases determined by two different ratios between the characteristic times,
this model is completely decoupled from pressure, i.e. the pressure enters in this
model as a parameter determined through an independent formula. The segregation
problem with phase transition in a bounded domain is solved for two cases of
boundary conditions. The saturation behaviour is described in terms of nonlinear
kinematic waves, whose evolution follows a complex segregation scenario, which
includes the wave reflection and formation of shocks. The macroscopic gas–liquid
interfaces are described in terms of shock waves. The comparison with numerical
simulations shows satisfactory results.

Key words: gas/liquid flow, porous media, shock waves

1. Introduction
The flow of two-phase fluids with phase transition necessarily requires taking into

account the internal composition of each phases. Indeed, the free gas appearance
by liquid degassing means the transition of light components from a liquid to gas
state, similar to liquid formation by gas condensation, which means the transition
of heavy components from a gas to liquid state. We deal, thus, with a two-phase
multicomponent fluid. The mathematical model of such flow represents a system of
partial differential equations (PDE) with respect to pressure P , liquid saturation S
(the volume fraction of liquid in porous space) and the concentrations of chemical
species in liquid and gas Ck

i (i means liquid or gas, while k is the identifier of
chemical component).

† Email address for correspondence: michel.panfilov@dalembert.upmc.fr
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660 S. Zaleski and M. Panfilov

The main difficulty in analysing such a model originates from the fact that it
contains different types of PDE with respect to various variables. It is expected
that the saturation and concentrations are transported along the characteristic lines,
whilst the pressure rather diffuses in all directions. The transport of saturation and
concentrations is expected to create sharp forward fronts, while the pressure, being a
continuous physical field, behaves rather smoothly without sharp variations. In other
words, the behaviour of the saturation and the species concentrations is governed
rather by hyperbolic differential equations, while the pressure is determined by a
parabolic operator. At the same time, the pressure determines the phase composition,
the phase transitions and the phase compression–expansion, so that the saturation,
the concentrations and the phase densities are strongly coupled with P . Taking into
account the qualitatively different methods of solving the diffusion and the convection
equations, the idea of separating pressure and obtaining a closed model of convective
transport for saturation and concentrations seems then to be fundamental.

The simplest way to do it has been suggested in the analytical theory of fluid
displacement in porous media (oil displacement by water) (Bedrikovetsky 1993; Entov
& Zazovsky 1997; Entov 2000; Orr 2002). The dependence of the phase densities
on pressure was removed by assuming the ideal mixing (the mixture volume is the
sum of volumes of the pure components). The dependence of species concentrations
on pressure was removed simply by assuming the pressure to be constant, since the
injection of water in an oil reservoir leads to the maintenance of pressure. As the
result, the species composition and phase saturation become independent of pressure.
This leads to a system of hyperbolic equations for S and Ck

i , which may be analysed
by the methods developed in air dynamics.

In a more advanced case, the pressure may be considered as a given linear function
of coordinates (Bedrikovetsky 1993), while keeping the assumption about the ideal
mixing. In this case, the pressure may be separated too.

Unfortunately, in the case of phase transitions (the gas release from liquid, or the
gas condensation), these assumptions are impossible to apply, as the variation of
pressure in time is the main mechanism of phase transition. The ideal mixing is also
inadmissible for cases of phase transitions, because the volume of a species changes
significantly when it transits between liquid and gas. We have then to develop a totally
different approach. It is based on the high contrast between two characteristic times
of the system (Panfilov 1986). The first time is that of propagation of a perturbation,
tp, while the other time is that of complete fluid extraction, t∗. In real situations, time
tp is of order several days or months, while the time of complete extraction is of
order ten or a hundred years. Then the system is characterized by a small parameter
ε = tp/t∗. Now all depends on the behaviour of the third time, which is the time of
gas rising, th. If th ∼ tp, i.e. the fluid extraction is much slower than the gas rising,
then within the scale of time th, the pressure is weakly perturbed, so it is variable
in space and in time at a low level. If, in contrast, th ∼ t∗, then within the scale of
time th the pressure is quasi-stationary. In both cases we obtain asymptotic problems
for the pressure, which is independent of saturation and total velocity. Therefore, the
pressure is completely separated.

The wave equations for saturation and total velocity are obtained by simple
algebraic transformations of the conservations equations. They contain the pressure
as a parameter, which is determined by independent formulae. The equation for the
saturation represents a non-homogeneous Buckley–Leverett model (it is a classical
model of two-phase immiscible flow (Buckley et al. 1942)), which contains the
source terms responsible for liquid degassing and gas expansion. The difference with
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Kinematic waves in porous media 661

the classical model is not only in the appearance of source terms, but in the total
velocity which is non-constant in our case.

Note that the first attempt to obtain the analogue of the Buckley–Leverett model for
two-phase flow with oil degassing was performed in Chraïbi (2008). The possibility to
use the Buckley–Leverett model for systems with phase transition was also shown in
Young (1993) where gas was released from water in a thermal reservoir. The Buckley–
Leverett equation was obtained by applying the hypothesis of small pressure gradients.
However, the pressure was not decoupled.

Note that a non-homogeneous extension of the Buckley–Leverett model has been
put forward in Kalisch, Mitrovic & Nordbotten (1997).

The wave model obtained in the present paper was used to analyse the gas release
from liquid and air segregation in natural geological porous reservoirs. Beyond
the well-known case of natural gas in oil reservoirs, this also corresponds to air
liberation from water in a thermal aquifer, or to hydrogen release from water in
a natural hydrogen reservoir (Panfilov, Zaleski & Josserand 2016), which are less
traditional objects but represent high interest within the framework of the energy
transition. At the initial state the fluid is liquid (oil or water) and contains methane
or nitrogen or hydrogen (the light component) in dissolved form. Oil or water are
extracted by the system of wells, which causes the decrease of pressure and the
release of free gas from the liquid. Driven by the buoyancy force, the gas rises and
creates a gas cap. The rate of segregation and the gas cap creation, as well as its
geometrical structure and chemical composition, are of great interest.

The structure of the paper is as follows:

(i) first of all the problem of two-phase two-component flow is formulated;
(ii) the variable replacement: two-phase velocities are replaced by the total velocity

and the fractional flow;
(iii) the general wave model is formulated, as well as two independent methods of

calculating the pressure;
(iv) the derivation of the model, in the first step: one obtains the formal wave

equations for the saturation and the total velocity, as well as the general
parabolic equation for the pressure; the pressure is not decoupled, for the
moment;

(v) the second step: the pressure is decoupled for two ratios between the
characteristic times;

(vi) the first problem of segregation is solved: the fluid is extracted through the
overall thickness of the reservoir, which leads to a zero total velocity;

(vii) the analytical results are compared with numerical simulations;
(viii) the second problem of segregation is solved: the fluid is extracted on the

reservoir top only, which leads to a non-zero and non-constant total velocity;
the independent problem for pressure is solved by the method of integral
relationships of Kármán–Pohlhausen.

2. Problem of gas–liquid segregation in terms of kinematic waves
2.1. Flow equations

To analyse the flow of liquid with gas release we have to assume that the initial liquid
contains two chemical components (at least): light (1) and heavy (2). When pressure
decreases due to liquid extraction, the light component releases and creates the free
gas. The gas will be assumed to consist only of the light component, i.e. the heavy
component does not dissolve in gas.
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For the sake of simplicity, thermal effects, capillary pressure, diffusion and
deformations of the porous medium are neglected. We also accept the local phase
equilibrium described by Henry’s law. Gas is ideal, while the liquid is incompressible
(the liquid compressibility is neglected with respect to that of gas).

The mass and momentum balance equations of each chemical component are, for
i = l, g, in the one-dimensional domain D = {0 < x < L}, where L is the reservoir
thickness:

φ ∂t(ρlCS + ρg(1− S))+∇ · (ρlCVl + ρgVg)=−φρgqg − φρlCql, (2.1a)
φ∂t (ρl(1− C)S)+∇ · (ρl(1− C)Vl)=−φρl(1− C)ql (2.1b)

Vi =−λi(S)(∇P − ρig), λi(S)≡
Kki

µi
(2.1c)

C = hP, (2.1d)
ρg = γP (γ =mRT = const.); ρl = const., (2.1e)

where ρl, ρg are the densities of liquid and gas (kg m−3); S is the liquid saturation;
C is the mass fraction of the light component in liquid; P is the pressure; Vl and Vg

are Darcy’s velocities of the liquid and gas; h is Henry’s constant (Pa−1); m is the
molecular mass of the light component (kg mol−1); g is the gravitational acceleration,
K is the absolute permeability, ki is the relative permeability of phase i, µi is the
dynamic viscosity of phase i (assumed to be constant); R is the universal gas constant;
ql and qg are the volumetric rates of extraction of liquid and gas reported to 1 m3 of
the medium [1/s]; the vertical axis x is directed upwards. Functions ki(S)∈ [0, 1] are
monotonic continuous and have the following properties:

kl = 0, 0 6 S 6 S∗; kg = 0, S∗ 6 S 6 1; kl(1)= kg(0)= 1,
0< k′l(S∗) < 1, −1< k′g(S∗) < 0,

}
(2.2)

where S∗ and S∗ are the percolation thresholds for liquid and gas respectively.
The system of 6 equations (2.1) determines 6 variables: P, S , ρg, C, Vg and Vl.
To formulate the boundary conditions we should take into account the following.

The diffusive fluxes of gas through the bottom coming from the Earth depth and
through the reservoir top (gas leakage) may be neglected during the period of reservoir
exploitation. Therefore, the reservoir bottom is impermeable for both phases. This is
not the case of the reservoir top, as both liquid and gas may be produced just from
the reservoir top (and not through the overall reservoir thickness). In this case, the
fluid extraction is better expressed through the boundary condition than through a
distributed sources ql and qg.

At the initial state the fluid is assumed to be single-phase liquid and immobile, i.e.
the initial pressure is hydrostatic.

Consequently, we obtain the following general boundary and initial conditions:

S|t=0 = 1; P|t=0 =P∗ − ρ0
l gx; Vg, Vl|x=0 = 0, Vl|x=L = Vl∗, Vg|x=L = Vg∗,

(2.3a−e)
where P∗ is the initial pressure at the reservoir bottom; Vl∗ and Vg∗ are the velocity
of liquid and gas extraction from the reservoir top.
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2.2. Introduction of the fractional flow
The phase velocities Vl and Vg are usually replaced by the total velocity V through
the following relationships:

Vl =FV + λgF1ρ g, Vg = (1−F)V − λgF1ρ g, (2.4a,b)

where

V ≡Vl +Vg, F(S)≡
Vl

V
=

λl

λl + λg
=

kl(S)
kl(S)+ kg(S)µl/µg

. (2.5a,b)

Indeed, if we take the sum of Vl and Vg and use Darcy’s law (2.1c), then: V =
−λ∇P + (λlρl + λgρg)g. Then:

−λ∇P =V − (λlρl + λgρg)g, λ≡ λl + λg. (2.6)

Then from Darcy’s law:

Vl =
λl

λ
(V − (λlρl + λgρg)g)+ λlρlg=FV + g

λgλl

λ
(ρl − ρg), (2.7)

which leads to (2.4).
Function F is the fractional flow of liquid in the case without gravity. It has the

following properties: F(S)∈ [0, 1], it is a monotonic nonlinear function of saturation
and F(0)≡ 0 when 0 6 S 6 S∗; F(1)≡ 1 when S∗ 6 S 6 1.

The physical meaning of F(S) is the ratio between the liquid flow rate (Ql) and
the total flow rate (Ql + Qg) at zero gravity force. Indeed, let F = (Ql/Ql +Qg) =

(Vl/Vl + Vg), then using Darcy’s law (in the case of zero gravity), we obtain (2.5).
The initial and boundary conditions (2.3) become:

S|t=0 = 1; P|t=0 =P∗ − ρlgx; (2.8a,b)

V|x=0 = 0, λgF1ρ g|x=0 = 0 (2.8c,d)

V|x=L = V∗, λgF1ρ g|x=L = Vg∗F − Vl∗(1−F), (2.8e,f )

where V∗ = Vl∗ + Vg∗.

2.3. Characteristic times and scales
The process is characterized by three times:

(i) the time of propagation of a pressure perturbation: tp ≡ (µlL2φ/KP∗);
(ii) the time of gas rise due to the buoyancy force: th≡ (µgLφ/K1ρ0 g), 1ρ0

≡ ρl−

ρ0
g ;

(iii) the time of complete fluid withdrawal: t∗≡ (1/(ql + qg)) in the case of distributed
sources, or t∗ ≡ (L/(Vl∗ + Vg∗)) in the case of point sources at the reservoir top.

where P∗ enters in (2.3).
The main three hypotheses of this paper, related to the introduced scales, consist of

the following:
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664 S. Zaleski and M. Panfilov

H1 the ratio between the characteristic times: tp� t∗. Then

0 6 ε≡
tp

t∗
� 1. (2.9)

H2 the initial pressure distribution along x is almost constant:

ρ0
l gL
P∗
∼ ε. (2.10)

This assumption is valid for thin and deep reservoirs, in which the hydrostatic
pressure difference over the reservoir height ρ0

l gL is negligible with respect to
the initial pressure P∗.

H3 small pressure gradients: the square of the pressure gradient, (∇P)2 and (Vi ·∇P)
is neglected. This hypothesis is compatible with the preceding one.

The third time th is the true characteristic time of the analysed process. It may
take any value. The separation of pressure from the saturation is possible in two
cases:

(i) slow gas ascension: th ∼ t∗;
(ii) fast gas ascension: th ∼ tp.

2.4. Reduction to the asymptotic model of kinematic waves
Using the hypotheses of the previous section, it is possible to transform system
(2.1) into the following system of first-order differential equations for saturation and
velocity:

∂tS +
V
φ
∇F︸ ︷︷ ︸
I

−
1
φ
∇ · (λgF1ρ g)︸ ︷︷ ︸

II

=−
CS(1−F + rF)

(1− C)T︸ ︷︷ ︸
III

−
F(1− S)

T︸ ︷︷ ︸
IV

+ qgF − ql(1−F)︸ ︷︷ ︸
V

,

∇ ·V =
φCS(r− 1)
(1− C)T

+
φ(1− S)

T
− φq,


(2.11)

where 1ρ = ρl − ρg(P), r= (ρl/ρg(P)), T(P)=−((1/P)∂tP)−1, q= ql + qg.
The initial and boundary conditions result from (2.8):

S|t=0 = 1; λgF1ρ g|x=0 = 0, λgF1ρ g|x=L = Vg∗F − Vl∗(1−F),
V|x=0 = 0, V|x=L = V∗.

}
(2.12)

In this system the pressure P is a parameter, which is determined as the solution
of the independent boundary value problem, which is different for the two different
cases of th mentioned in the previous section.

For the case of fast gas ascension: th ∼ tp� t∗:
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we obtain for the function p≡P −P∗ + ρlgx:

λl01p=ω∂tp+ φq, 0< x< L
p|t=0 = 0,
∂xp|x=0 = 0,

∂xp|x=L =−
V∗
λl0
,

 (2.13)

where ω= (φh(r∗ − 1)/(1− C∗)), λl0 = λl(S)|S=1 =K/µl, r∗ = (ρl/ρg(P∗)), C∗ = hP∗.
For the case of fast depletion (th ∼ t∗), the pressure is calculated as the solution to

the following Cauchy problem for an ordinary differential equation:

dP
dt

(
hS (ρl − γP)
γP (1− hP)

+
1− S
P

)
=−

(
V∗
φL
+ q
)
, P|t=0 =P∗, (2.14a,b)

where S ≡ (1/L)
∫ x=L

x=0 S(x, t) dx. The value S should be considered as known and
may be accepted in an approximate way. In particular, if we assume that S = const.,
ρl� ρg and C� 1, then equation (2.14) has an analytical solution:

P =P∗e−αt, α ≡

V∗
φL
+ q(

hSρl

γ
+ 1− S

) . (2.15)

The derivation of all these relationships is given in the next section.
The physical meaning of various terms of equation (2.11) is as follows: term I is the

saturation transport forced by the non-zero total velocity; term II is the transport by
the buoyancy force, while III, IV and V are the saturation ‘production’ due to phase
transition, gas expansion and non-proportionate liquid/gas extraction. The extraction
is called proportionate if the production rates of the phases are proportional to their
fractional flow. It is seen that for a proportionate extraction, term V disappears.

Note that the transport terms in the left-hand side are not affected by the phase
transitions, which have an impact only on the source terms. Therefore, in the case
without phase transitions, the model transforms into the classical Buckley–Leverett
with the same convective part.

Equation (2.11) is a non-homogeneous extension of the Buckley–Leverett model
known in the theory of oil recovery. The extension consists of two elements:

(i) first of all, the source terms appear in the right-hand side;
(ii) secondly, the total velocity is non-constant (it is constant in the classical Buckley–

Leverett model), and is determined, in turn, from a differential equation.

2.5. Derivation of the model. Step I: reduction to a non-separated wave form
The derivation of the model (2.11)–(2.14) is done by two steps. At the first step we
obtain the first-order equations (2.11) for S and V and the following problem for
pressure

−∇ · (λ∇P)+∇ · (λlρlg+ λgρgg)=−
(
SC(r− 1)

1− C
+ 1− S

)
φ

P
∂tP − φq (2.16a)
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(−λ∇P + λlρlg+ λgρgg) · n|x=0 = 0, (2.16b)
(−λ∇P + λlρlg+ λgρgg) · n|x=L = V∗, (2.16c)

P|t=0 =P∗ − ρlgx. (2.16d)

(1) It results from Henry’s law and H3:

dlC ≡ ∂tC +Ul∇C = h∂tP + hUl∇P = h∂tP + · · · . (2.17)

(2) The sum of equations (2.1a) and (2.1b) yields

φ ∂t(ρlS + ρg(1− S))+∇ · (ρlVl + ρgVg)=−φρgqg − φρlql. (∗)

Differentiating by parts (2.1b) and (∗) we obtain

(1− C)(φρl ∂tS + ρl∇ ·Vl + φρlql)− φρlS dlC = 0, (2.18)

(−φρg∂tS + φ(1− S)∂tρg + ρg∇ ·Vg + φρgqg)

+ (φρl∂tS + ρl∇ ·Vl + φρlql)+ · · · = 0. (2.19)

This leads to

φ∂tS +∇ ·Vl + φql =
φS

(1− C)
dlC = {(2.17)} =

φSh
(1− C)

∂tP ≡−M (2.20a)

−φ∂tS +
φ(1− S)

P
∂tP +∇ ·Vg + φqg =−

φrS
(1− C)

dlC = rM. (2.20b)

(3) Summing (2.20a) and (2.20b) we obtain the second equation in (2.11).
(4) Replacing Vl in (2.20a) by V through (2.4), we obtain

φ∂tS +∇ · (F V − λgF1ρ g)=
φSh
(1− C)

∂tP − φql. (∗∗)

(5) Multiplying the second equation (2.11) by F and subtracting it from (∗∗), we
obtain the first equation (2.11).

(6) Using the second equation in (2.11) and the relationship (2.6) between the
velocity and pressure, we can remove the velocity and obtain the differential
equation (2.16a) for the pressure. Conditions (2.16b), (2.16c) and (2.16d) result
from (2.8).

2.6. Derivation of the model. Step II: separation of pressure
At the second step we separate completely the pressure by applying hypotheses H1
and H2 and the asymptotic technique.

For the case of slow depletion: th ∼ tp� t∗
Let us consider equations (2.11) and (2.16) with conditions (2.8) on the scale

of time t ∼ th. Then the terms with ql and qg will be of order ε, as well as the
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terms ρlg and ρgg in (2.16). Then, for saturation, pressure and total velocity we have
the following asymptotic expansion:

S = 1+ εS1 + · · · , P =P∗ + εP1(x, t)+ · · · , V = εV1 + · · · , (2.21a−c)

where P1 results from (2.16):

λl0∇ · (−∇P1 + ρlg/ε)=−
φh(r∗ − 1)
(1− C∗)

∂tP1 − φq/ε

λl0(−∇P1 + ρlg/ε) · n|x=0 = 0, λl0(−∇P1 + ρlg/ε) · n|x=L = V∗/ε,
P1|t=0 =−ρlgx/ε,

 (2.22)

where λl0 = λl(S)|S=1, r∗ = r(P∗), C∗ = C(P∗).
Returning to pressure P through P1= (P −P∗)/ε and introducing the new variable

p=P −P∗ + ρlgx, we obtain the problem (2.13).
Note that equations (2.11) may also be expand, but this is not necessary since the

objective of pressure separation has been already reached.

For the case of fast depletion: tp� th ∼ t∗
Let us consider (2.11), (2.16) and (2.8) on the scale of time t∼ th∼ t∗. Then all the

terms in (2.16a) except the first one will be of order ε. Then, we obtain immediately
that the zero term of pressure is independent of x: P0 = P(t). Then we have the
following asymptotic expansion:

S =S0(x, t)+ εS1(x, t)+ · · · , P =P0(t)+ εP1(x, t)+ · · · , V= εV1(x, t)+ ε2
· · · .

(2.23a−c)

To obtain P0, it is better to use the integral relationship resulting from (2.16a) by
integrating it over x:

− (λ∂xP + λlρlg+ λgρgg)
∣∣∣x=L

x=0
=−

∫ x=L

x=0

((
SC(r− 1)

1− C
+ 1− S

)
φ

P
∂tP + φq

)
dx.

(2.24)
Substituting the asymptotic expansion and boundary value conditions, we obtain:

− V∗ − φqL=

(
SC(P0)(r(P0)− 1)

1− C(P0)
+ 1− S

)
φL
P0

dtP0, (2.25)

where S ≡ (1/L)
∫ x=L

x=0 S(x, t) dx.
Taking into account the closure relationships for the concentration and density, we

obtain:
dP0

dt

(
hS (ρl − γP0)

γP0 (1− hP0)
+

1− S
P0

)
=−

(
V∗
φL
+ q
)
, (2.26)

which is (2.14).
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2.7. Hyperbolicity of the model (2.11)
Equations (2.11) may be presented as

φ∂tS + V ∂xF − ∂x(λgF1ρ g)=H,
∂xV = I,

}
(2.27)

where M ≡ φ C S/(T(1− C)), H ≡ −M(1 − F + rF) − (φF(1− S)/T) + φqgF −
φql(1−F), I ≡ (r− 1)M+ (φ(1− S)/T)− φq.

This system of two equations of first order with respect to S and V can be
represented in the form of Cauchy–Kowalevski, explicit for the derivatives ∂x:

∂xU+ A⊗ ∂tU=B, (2.28)

where

U=
(
S
V

)
, A=

(
αφ 0
0 0

)
, B=

(
αH
I

)
, α ≡

1
VF ′ −1ρ g(λgF)′

, (2.29a−d)

where the symbol ‘prime’ stands for the derivative with respect to S .
If the denominator in α is non-zero for all S , then the eigenvalues of matrix A exist

and are real: ξ1 = 0 and ξ2 = αφ, and there exists an orthonormal basis of the left
eigenvectors of matrix A: l1

= (1, 0) and l2
= (0, 1). Then system (2.28) is hyperbolic

(Rhee, Aris & Amundson 1986).

3. Gas–liquid segregation in a closed reservoir
Using the model (2.11), we will analyse the impact of the phase transitions on the

process of gas–liquid segregation. First of all, we will analyse the impact of the source
terms only. At the second step, the impact of the non-constant total velocity will be
studied (§ 4).

3.1. Problem set-up
Consider a closed reservoir, such that Vg∗=Vl∗= 0. The production of the fluid occurs
throughout the overall thickness and is determined by the rates ql and qg. The main
feature of such a system consists of the fact that the total velocity V is zero, which
will be shown below.

Let the liquid and gas extraction rates be proportionate, i.e. the production rate of
each phase is proportional to its fractional flow: (ql/qg)= ((1−F)/F). Then the term
V in (2.11) disappears. In practice, this means that gas and liquid are extracted by the
same producing well, therefore their rates depend on each other. For pressure, we will
use the asymptotic solution (2.13).

The problem of segregation resulting from (2.11) and (2.13) is reduced to a single
equation for the saturation:

∂tS − ∂xG(S)=−H(S), 0< x< L, 0< t< t∗
S|t=0 = 1, ∀x

G(S)|x=0 = 0, G(S)|x=L = 0, ∀t

 (3.1)

G(S)= λg(S)F(S)1ρ gφ−1,

H(S)=
SC(1−F + rF)

T(1− C)
+

F(1− S)
T

,

 (3.2)
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FIGURE 1. Diagrams F(S) and G(S) for the problem of gas–liquid segregation.

where 1ρ, r and C depend on pressure, which is a parameter of the problem defined
through (2.13), which has, in this case, an explicit analytical solution independent of
x: p= p(t)=−((1− C∗)/h(r∗ − 1))

∫ t
0 q dt′, so that

V ≡ 0, P =P∗ − ρlgx−
(1− C∗)
h(r∗ − 1)

∫ t

0
q dt′. (3.3a,b)

Parameter T is: T=−((1/P)∂tP)−1
= C(r∗ − 1)/(q(1− C∗)).

Function G(S) describes the gas transport due to the buoyancy force, while the right-
hand side (−H) describes the decrease in liquid saturation in the overall domain due
to liquid degassing and gas expansion. Function F(S) is the fractional flow of liquid
without gravity.

Functions F(S) and G(S) are shown in figure 1. Note that their derivatives are zero
at points S = 0 and S = 1, according to the properties of the relative permeabilities.
The derivative dG/dS determines the speed of the wave propagation and its direction.
One distinguishes two families of waves:

(i) propagating upwards (G ′ < 0), which corresponds to high liquid saturation.
Physically, this is caused by gas rise due to the buoyancy force.

(ii) propagating downwards (G ′> 0), which corresponds to high gas saturation. Such
a wave is the result of gas expansion.

3.2. Steady-state solution
Equation (3.1) has steady-state solutions which satisfy the ordinary differential
equation:

∂xG(S)=H(S), 0< x< L, (3.4)

and which are the result of the equilibrium between the wave propagation (term ∂xG)
and the gas generation (term H).

Its solutions are shown in figure 2.
These solutions are non-single valued and have a singularity at point S = Sm of

the maximum of the function G(S), in which the derivative dS/dx becomes infinite.
Only the upper part of these curves above the dashed line has a physical meaning. It
represents the equilibrium between gas rise, which leads to the increase of the local
liquid saturation, and the gas generation, which leads to the decrease of S .
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FIGURE 2. (Colour online) Steady-state solutions of the problem of gas–liquid segregation.

The red curve, which corresponds to the boundary condition S|x=0 = 1, represents
the main interest. We will show that this curve makes part of the non-stationary
solutions.

3.3. General structure of the solution of (3.1)
The boundary condition in (3.1) means that the saturation at point x=L is either S=1
or S= 0. The case S= 1 has no meaning (no gas at the reservoir top), consequently it
is expected that S|x=L= 0, ∀t> 0. In other words, the free gas appears immediately at
the reservoir top, by creating the initial shock of saturation between S = 1 on the left
of it and S = 0 on the right. Therefore, one expects to have discontinuous solutions.

Consequently, the solution of the boundary initial problem for quasi-linear
hyperbolic equation (3.1) is expected to consist of four elements:

(i) A rarefaction/compression wave (‘rc-wave’), which is a non-trivial continuous
function presented by a fragment of the curve G(S) and propagating at the
velocity G ′(S) along the characteristics x = x(t) defined by the system of
equations:

dS
dt
=−H(S),

dx
dt
=−G ′(S), (3.5a,b)

which are different for various S;
(ii) a stationary rc-wave determined by the problem (3.4), which is the equilibrium

between gas rise and gas generation. It does not move but lengthens in time.
(iii) A plateau, which is constant in x but varies in time. It satisfies the problem:

∂tS =−H(S), S|t=0 = 1. (3.6)

For a fixed time moment it is represented by a point in the diagram G(S).
(iv) A shock, which is a strong discontinuity between two rc-waves, between an rc-

wave and a plateau or between two plateaux. It is determined by the following
conditions:
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FIGURE 3. (Colour online) Variation of the liquid saturation at the first stage (a) and the
corresponding diagram G(S) (b). The dashed curve is the stationary wave.

(a) the mass balance equation (the Hugoniot–Rankine condition) relating the
shock velocity Us and the saturation behind it S− and ahead of it S+:

Us =
G+ − G−

S+ − S−
. (3.7)

In the diagram G(S) the shock velocity is determined by the tangent of the
straight line relating the points behind the shock (G−, S−) and ahead of it
(G+, S+).

(b) The entropy conditions of Lax and Oleinik, which require the shock velocity
to be between the velocities of the rc-waves that are connected to it and
to not cross the curve G(S). If the shock is connected to only one mobile
rarefaction wave, the entropy condition implies that the shock velocity must
be equivalent to the rc-wave velocity at the contact point. Graphically this
means that the straight line (3.7) is tangent to the curve G(S) at point of
contact with a mobile rc-wave.

3.4. Solution at the first stage
First of all, we consider the case when the coefficients of (3.1) do not depend on
pressure, i.e. P =P∗, then 1ρ, r and C are constant.

The solution of the problem is obtained analytically by applying the method of
characteristics. Knowing all the structural elements of the solution mentioned in § 3.3,
we can calculate their velocities and saturations at the points of junction by using
analytical or semi-analytical relationships obtained previously: (3.4), (3.6), (3.7). The
ordinary differential equations have been solved by using Mathlab.

The solution of the problem is presented in figure 3.
The average value of the derivative G ′(S) of the convective term in (3.1) tends

to zero (according to figure 1), then the ‘average’ equation (3.1) has the form (3.6),
whose solution is a plateau variable in time. This corresponds to the saturation
decrease in the reservoir due to progressive liquid degassing. Consequently, the main
element of the solution becomes a set of plateaux aa, bb, cc, dd, ee, gg, At the same
time, the buoyancy force, governed by the convective term, maintains a high liquid
saturation at the reservoir bottom (S→ 1, at x→ 0) and low liquid saturation at the
reservoir top (S→ 0, at x→ L).
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FIGURE 4. Example of a non-single-valued solution described by the rc-wave
c–d–e–g–u– · · · –o.

At the reservoir top, gas is accumulated, i.e. S = 0, as mentioned in § 3.3. The
connection between the low saturation and the plateau occurs through a shock, whose
progressive positions in space are bo, cp, dq, er, gu. This shock represents the wave
reflected from the reservoir top and propagating downwards. It appears, since the rc-
waves connecting a high and a low saturation produce non-single-valued solutions.
Indeed, the rc-wave c–d–e–g–u–r–q–p–o–0, which passes from point c of the plateau
cc to point (G,S)= (0, 0), has negative transport velocity for high saturations (points
c, d, e), but positive velocity for low saturations (points u, r, q, p, o), which implies
the following formal solution in terms of S(x) (figure 4). Such a solution is not single
valued, cannot exist and must be replaced by a shock.

Shock bo–cp–dq–er–gu marks the boundary of the gas cap. It has positive velocity,
i.e. is transported downwards, which means the growth of the gas cap. The shock
velocity increases in time. At points of connection with the rc-wave (o, p, q, r, u)
the straight line of this shock is tangent to the curve G(S), according to the entropy
conditions.

The total system of equations that defines these shocks is: equation (3.7), in which
S+ is the solution of (3.6), while S− is the solution of G ′(S−) = Us, which is the
entropy condition. This system of equations is closed and determines the shock in a
unique way.

At the reservoir bottom, gas saturation is low, the process is controlled by the right-
hand part of the diagram G(S), which corresponds to the gas rise. The connection
between the high saturation and the plateau occurs via a stationary rc-wave described
by (3.4) at the boundary condition S|x=0 = 1. It passes through points a, b, c, d, e, g
along the right-hand branch of the curve G(S).

The first stage continues up to the moment when the solution reaches the singular
point g, at which S =Sm, and which corresponds to the final point of the steady-state
rc-wave.

3.5. Solution at the second and the third stages
At the reservoir bottom, after the stationary rc-wave a–b–c–d–e–g reaches the singular
point g (at which S = Sm), the gas expansion becomes more important than the gas
rise, which leads to the appearance of a descending wave. This wave is however
non-single valued, similar to preceding paragraph, and transforms into a new shock
propagating downwards (figure 5). Its consecutive positions are shown as hk, im and
jn. This shock connects the plateau and the stationary wave, which enables us to
determine its parameters in a unique way by (3.7), in which S+ is the solution of
(3.4) with the boundary condition S|x=0 = 1, while S− is determined by (3.6).
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FIGURE 5. (Colour online) Variation of the liquid saturation at the second stage (a) and
the corresponding diagram G(S) (b).

At the reservoir top, the gas cap boundary becomes less sharp but more continuous,
which means the transformation of the shock gu into an rc-wave propagating
downwards. The transport velocity of this wave is determined by the tangents lines
to the left-hand part of the function G(S), which are, obviously, larger than the
velocities of the shock hk–im–jn. Consequently, the upper rarefaction waves should
collide with the down shock.

After the collision, the plateau disappears. The solution has a single shock, which
continue to propagate downward. This is the third stage. Curve 1–j–n–a marks the
beginning of this stage.

3.6. Comparison with numerical solution
The comparison of the analytical solutions presented above has been made with
numerical solutions obtained by two different methods. One of them is based on
finite element discretization of the domain, which is realized in the simulator Comsol
Multiphysics, while the second one is based on the finite volumes implemented
in the open source code DuMux. Both methods use the fully implicit scheme of
discretization in time (the fully implicit means that all coefficients and the right-hand
part are implicit), which is unconditionally stable.

Comsol Multiphysics allows the use on non-structured grids, but the discrete
schemes are non-necessary conservatives, as for any finite element method.

DuMux (Flemisch et al. 2011) is based on the algebraic code DUNE (Distributed
and Unified Numerics Environment) (Bastian et al. 2008) and the module MpNc
(M-phases, N-components) that simulates multicomponent and multiphase flow and
transport in porous media. The spatial discretization is done by the Box-method, which
is a finite volume method (vertex-centred) based on non-structured non-orthogonal
grids. The principle ideas of this method were already presented in Patankar (1980)
in terms of the ‘control volume techniques’. The more modern version may be found
in Bank, Rose, Fichtner (1983) and Kramer, Nicholas & Hitchon (1997). The finite
volume method traditionally uses orthogonal grids, since in this case the expressions
for fluxes through the faces of finite elements are greatly simplified. The use of
non-orthogonal grids (as in the method of finite elements) is a significant advantage
of the Box-method.

For the one-dimensional problem studied herein, both methods lead to close
numerical schemes.
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FIGURE 6. (Colour online) Comparison of the analytical solution (the solid lines) with
numerical simulations by DuMux (the black points) and Comsol Multiphysics (the grey
points), for ε= 0.2.
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FIGURE 7. (Colour online) Comparison of the analytical solution (the solid lines) with
numerical simulations by DuMux (the black points) and Comsol Multiphysics (the grey
points), for ε= 0.4.

For hyperbolic systems having discontinuous solutions, both methods apply the
technique of low diffusion.

Two cases are presented in figures 6 and 7.
The characteristic times have been selected as follows: th = 0.5, t∗ = 2. The

dimensionless parameters that determine the process are: ε = 0.2, ρ0gL/P∗ = 0.2,
ρl/ρ

0
g = 5, C0

l = 0.2, γ /P∗= 0.2, h/P∗= 0.2, φ= 0.2. The perturbation time is tp= 0.4
when ε= 0.2, or tp = 0.8 when ε= 0.4, and so on.
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FIGURE 8. Total velocity, exact numerical results for four moments of time.
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FIGURE 9. (Colour online) Evolution of the gas cap structure in time: stages I, II and III.

Despite the satisfactory results, we should note that the total velocity V is not
exactly constant, as predicted by the asymptotic model. Figure 8 shows the behaviour
of the dimensionless total velocity for four moments of time.

Note that the maximal/minimal values of these fluctuations are very small, between
−0.001 and 0.003.

3.7. Structure of the gas cap
According to the results obtained, the formation of a gas cap passes through three
stages shown in figure 9.
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As seen, the zone at the bottom, highly saturated with liquid, is separated from the
gas cap by a gas cap underlayer, in which the gas saturation is almost invariable in
space. The growth of the gas cap leads to the contraction of this underlayer, while
keeping almost constant the thickness of the liquid zone.

4. Impact of the non-zero total velocity
4.1. Problem formulation

Let the fluid be extracted just from the reservoir top. Then in the problem (2.13):
V|x=L = V∗, and ql = qg = 0. Let, as previously, the liquid and gas extraction rates be
proportionate, i.e. (Vl∗/Vg∗)= ((1−F)/F).

Then the problem of segregation resulting from (2.11) and (2.13) becomes:

∂tS +
V
φ
∂xF − ∂xG(S)=−

CS (1−F + rF)
(1− C)T

−
F(1− S)

T
,

∂xV =
φCS(r− 1)
(1− C)T

+
φ(1− S)

T
,

S|t=0 = 1, G(S)|x=0 = 0, G(S)|x=L = 0, V|x=0 = 0,

 (4.1)

where G(S) = (1/φ)(λgF1ρ g), and parameter T(x, t) is T−1
= −(1/P)∂tP ∼

−(1/P∗)∂tP .
In this system the pressure is determined from the independent problem (2.13)

formulated for function p=P −P∗ + ρlgx:

λl01p=ω∂tp, 0< x< L, t> 0

p|t=0 = 0, ∂xp|x=0 = 0, ∂xp|x=L =−
V∗
λl0
,

 (4.2)

which has an approximate analytical solution obtained by the integral method of
Kármán–Pohlhausen:

p=


V∗

2λl0

[
(x− L)2

l− L
− 2(x− L)+ ϕ(t)− L

]
, l(t)6 x 6 L,

0, 0 6 x< l(t)
(4.3)

l(t)=

L−

√
6λl0

ωV∗

∫ t

0
V∗(t′) dt′, 0 6 t 6 tp

0, t> tp

(4.4)

ϕ(t)=


l(t), 0 6 t 6 tp

L
3
−

V∗(tp)L
3V∗

−
2λl0

ωLV∗

∫ t

tp

V∗(t′) dt′, t> tp,
(4.5)

where tp is determined as the solution to the equation:

1
V∗

∫ tp

0
V∗(t) dt=

L2ω

6λl0
. (4.6)
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x
L

p

0

FIGURE 10. Approximation of the function p(x, t), defined through (2.14), in the method
of Kármán–Pohlhausen.

Calculating the derivative ∂tp from (4.3) we obtain the explicit relationship for T:

T−1
=



V∗
2λl0P∗

[(
x− L
l− L

)2 dl
dt
−

dϕ
dt

]
−

1
2λl0P∗

[
(x− L)2

l− L
− 2x+ ϕ + L

]
dV∗
dt
, l 6 x 6 L

0, 0 6 x< l.

(4.7)

In the case V∗= const., we obtain tp= (L2ω/6λl0), while the functions l(t) and T(x, t)
become

l(t)=

(
L−

√
6λl0t
ω

)
H(tp − t), (4.8)

T−1
=


V∗

4P∗

√
6λl0

ωt

[
1−

(
x− L
l− L

)2
]
H(tp − t)+

V∗
P∗ωL

H(t− tp), l 6 x 6 L

0, 0 6 x< l,

(4.9)

where H(t) is the Heaviside function.

4.2. Derivation of the solution to the problem for pressure
The solution of (4.2) may be obtained by the method of integral relationships of
Kármán–Pohlhausen.

Let us assume that the pressure is perturbed in the finite zone l(t) < x 6 L (the
perturbation comes from point x = L), as shown in figure 10, where l(t) is the
unknown mobile coordinate.

Within this zone, the pressure is a polynomial function which satisfies the boundary
value conditions and the differential equation (2.14) in the average:

p=

−
V∗
λl0
[a(t)(x− L)2 + b(t)(x− L)+ c(t)], l(t)6 x< L,

0, 0 6 x< l(t)
(4.10)

p|x=l = 0, ∂xp|x=l = 0, ∂xp|x=L =−
V∗
λl0
, p|t=0 = 0, (4.11a−d)
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FIGURE 11. Evolution of the liquid saturation in the case of gas fluid production from
the reservoir top, for seven moments of time.

λl0∂xp|x=L
x=l =ω∂t

∫ L

l
p dx. (4.12)

Then we obtain for functions a(t), b(t), c(t) and l(t):

a(l− L)2 + b(l− L)+ c= 0, 2a(l− L)+ b= 0, b= 1, (4.13a,b)

− V∗ =ω∂t

[
V∗
λl0

(
a(l− L)3

3
+
(l− L)2

2
+ c(l− L)

)]
(4.14)

or

a=−
1

2(l− L)
, c=−

(l− L)
2

, −6V∗λl0 =ω∂t(V∗(l− L)2). (4.15a−c)

The last equation can be integrated, which gives: (l− L)2 =−(6λl0/ωV∗)
∫ t

0 V∗(t′) dt′.
This leads to (4.3).

4.3. Results of solution
The solution of the problem is presented in figure 11.

As seen, the upper shock appears, as in the previous example, but remains
immobile during all the period. The gas cap is determined by the lower shock,
which progressively moves down.

4.4. Conclusions
In the present paper we have developed the wave model for liquid saturation and the
total velocity for gas–liquid flow with phase transitions in porous media, which is
an extension of the Buckley–Leverett model. The impact of the phase transitions is
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manifested in the appearance of the source terms and in the non-constant total velocity.
In the general case, the model consists of two equations, which have been shown to
be hyperbolic.

In contrast to the traditional approach where the reduction of the equations of
multicomponent two-phase flow to a wave model is based on the assumption of ideal
mixing within each phase (the phase volume is equal to the sum of the individual
volumes of pure components) and the assumption of invariable or linear pressure,
we obtained the hyperbolic system (2.11) for variable pressure and without the
assumption of ideal mixing. The separation of pressure is done in two asymptotic
cases (fast and slow gas ascension) and the property of a very fast propagation of
pressure perturbation.

This model was used to analyse the impact of phase transitions on gas–liquid
segregation. The fluid was assumed to consists of two chemical components. We
solved two different problems, for the first time to analyse the impact of the source
terms, and the other problem had the objective of analysing the impact of the
non-zero total velocity. In both cases we solved analytically the independent problem
for pressure.

We have shown the complex structure of the solutions of these two problems
consisted of several fragments: rarefaction waves, a steady-state wave, plateaux and
shocks. Due to the obtained model the interfaces between the phases can be treated
in terms of the shock waves governed by Hugoniot–Rankine conditions and entropy
conditions.

The exact numerical simulations have been performed by applying two different
methods: finite elements and finite volumes. The comparison has proved the
satisfactory behaviour of the asymptotic solutions even for sufficiently large values
of ε.

The importance of the obtained reduced model is in the fact that it provides exact
analytical solutions and detects exactly several strong discontinuities in the structure of
the solution, which is impossible to do if we solve numerically the unreduced model.
Consequently, the analytical solutions obtained can be used as a reference to find the
best numerical schemes for solving the non-reduced equations.
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