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We analyse numerically the linear stability of fully developed liquid metal flow in
a square duct with insulating side walls and thin, electrically conducting horizontal
walls. The wall conductance ratio c is in the range of 0.01 to 1 and the duct is
subject to a vertical magnetic field with Hartmann numbers up to Ha = 104. In a
sufficiently strong magnetic field, the flow consists of two jets at the side walls and
a near-stagnant core with relative velocity ∼(cHa)−1. We find that for Ha & 300,
the effect of wall conductivity on the stability of the flow is mainly determined by
the effective Hartmann wall conductance ratio cHa. For c� 1, the increase of the
magnetic field or that of the wall conductivity has a destabilizing effect on the flow.
Maximal destabilization of the flow occurs at Ha ≈ 30/c. In a stronger magnetic
field with cHa & 30, the destabilizing effect vanishes and the asymptotic results of
Priede et al. (J. Fluid Mech., vol. 649, 2010, pp. 115–134) for ideal Hunt’s flow with
perfectly conducting Hartmann walls are recovered.

Key words: high-Hartmann-number flows, instability, MHD and electrohydrodynamics

1. Introduction
Some tokamak-type nuclear fusion reactors, which are expected to provide a

virtually unlimited amount of safe energy in the future, contain blankets made of
rectangular ducts in which liquid metal flows in a high, transverse magnetic field
between 5 T and 10 T (Bühler 2007). These blankets are designed to cool the plasma
chamber, to breed and to remove tritium as well as to protect the superconducting
magnetic field coils from the neutron radiation emitted by the fusion plasma. The
transfer properties of the magnetohydrodynamic (MHD) flows depend strongly on
their stability. On the one hand, MHD instabilities and the associated turbulent mixing
can enhance the transport of heat and mass, which is beneficial for the cooling and
removal of tritium. On the other hand, it can also enhance the transport of momentum,
which has an adverse effect on the hydrodynamic resistance of the duct (Zikanov
et al. 2014).

Linear stability of MHD flows strongly varies with the electrical conductivity of
the duct walls. In a duct with perfectly conducting walls, where the flow has weak
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FIGURE 1. (Colour online) The base flow profile in a square duct with insulating side
walls and thin conducting horizontal walls with the wall conductance ratio c= 0.1 subject
to a vertical magnetic field with Ha= 100.

jets along the walls parallel to the magnetic field (Uflyand 1961; Chang & Lundgren
1961), the critical Reynolds number based on the maximum flow velocity increases
asymptotically as Rec∼642Ha1/2, where the Hartmann number Ha defines the strength
of the applied magnetic field (Priede, Aleksandrova & Molokov 2012). In a duct made
of thin conducting walls, where strong side-wall jets carry a significant fraction of
the volume flux (Walker 1981), the flow becomes unstable at a substantially lower
maximal velocity corresponding to Rec∼ 110Ha1/2 (Priede, Arlt & Bühler 2015). Even
more unstable is the so-called Hunt’s flow (Hunt 1965), which develops when the
walls parallel to the magnetic field are insulating whereas the perpendicular walls,
often referred to as the Hartmann walls, are perfectly conducting. In this case the
side-wall jets carry the dominant part of the volume flux and the asymptotic instability
threshold drops to Rec ∼ 90Ha1/2 (Priede, Aleksandrova & Molokov 2010).

Hunt’s flow is conceptually simple, but like the flow in a perfectly conducting
duct it is rather far from reality, where the walls usually have a finite electrical
conductivity. Therefore it is of practical importance to consider the effect of finite
electrical conductivity of Hartmann walls on the experimentally viable Hunt’s flow.
This is the main focus of the present study, which is concerned with linear stability
analysis of the imperfect Hunt’s flow with thin finite-conductivity Hartmann walls.

The paper is organized as follows. The problem is formulated in § 2. Numerical
results for a square duct are presented in § 3. The paper is concluded with a summary
and discussion of the results in § 4.

2. Formulation of the problem
Consider the flow of an incompressible viscous electrically conducting liquid in a

duct with half-width d and half-height h inside a transverse homogeneous magnetic
field B. The point of origin is at the centre of the duct with axis orientation as shown
in figure 1. The liquid flow is governed by the Navier–Stokes equation

∂tv + (v · ∇)v =−ρ
−1
∇p+ ν∇2v + ρ−1 f , (2.1)

where v is the velocity, ρ the density, ν the kinematic viscosity and f the
electromagnetic body force f = j × B involving the induced electric current j,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.322


882 T. Arlt, J. Priede and L. Bühler

which is governed by Ohm’s law for a moving medium:

j = σ(E+ v× B). (2.2)

The flow is assumed to be sufficiently slow for the induced magnetic field to be
negligible relative to the imposed one. This corresponds to the so-called inductionless
approximation which holds for small magnetic Reynolds numbers Rm=µ0σv0d� 1,
where µ0 is the permeability of free space, σ is the electrical conductivity and v0 is
a characteristic velocity of the flow. In addition, we assume the characteristic time of
velocity variation to be much longer than the magnetic diffusion time τm = µ0σd2.
This is known in MHD as the quasi-stationary approximation (Roberts 1967), which
leads to E=−∇φ, where E is the electric field and φ the electrostatic potential.

Velocity and current satisfy mass and charge conservation ∇ · v = 0, ∇ · j = 0.
Applying the latter to Ohm’s law (2.2) and using the inductionless approximation, we
obtain

∇
2φ = B ·ω, (2.3)

where B is the magnetic field and ω =∇ × v the vorticity. At the duct walls S, the
normal (n) and tangential (τ ) velocity components satisfy the impermeability and no-
slip boundary conditions vn|s= 0 and vτ |s= 0. Charge conservation applied to the thin
wall leads to the following boundary condition:

∂nφ − dc∇2
τφ|s = 0, (2.4)

where c = σwdw/(σd) is the wall conductance ratio (Walker 1981). At the non-
conducting side walls with c= 0 we have ∂nφ|s = 0.

The problem admits a rectilinear base flow along the duct with v̄ = (0, 0, w̄(x, y)),
which is computed numerically and then analysed for linear stability using a vector
streamfunction–vorticity formulation introduced by Priede et al. (2010), which is
briefly outlined in appendix A.

3. Results
Let us first consider the principal characteristics of the base flow, which will be

useful for interpreting its stability later. Although a rectangular duct with insulating
side walls and thin conducting Hartmann walls admits an analytical Fourier series
solution (Hunt 1965), it is more efficient to compute the base flow numerically
(Priede et al. 2010). On the other hand, the important properties of the base flow can
be deduced from the general asymptotic solution derived by Priede et al. (2015) for
arbitrary Hartmann and side-wall conductance ratios cn and cτ . Below we provide the
relevant results which follow from the general solution for the case of Hunt’s flow
with thin Hartmann walls (cn = c> 0) and insulating side walls (cτ = 0). According
to the asymptotic solution, the conductivity of Hartmann walls affects primarily the
flow in the core region of the duct. In a sufficiently strong magnetic field satisfying
cHa� 1, the core velocity scales as

w̄∞ ∼−(1+ c−1)Ha−2P̄. (3.1)

The velocity distribution at the side walls can be written as

w̄0(x̃, y)= w̄∞

[
1+

∞∑
k=0

e−λx̃B[C sin(λx̃)+ cos(λx̃)] cos(κy)

]
, (3.2)
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FIGURE 2. (Colour online) Horizontal base flow velocity profiles at y=0 in the vicinity of
the side wall in stretched coordinates (1− x)Ha1/2 for various Hartmann wall conductance
ratios c and Ha= 103.

where x̃=Ha1/2(A± x) is a stretched side-layer coordinate and A= h/d is the aspect
ratio; κ = π(k + 1/2), λ =

√
κ/2, B = (−1)k+12/κ and C = −Ha−1P̄/(w̄∞κ) are

coefficients which depend on the summation index k. For cHa� 1, the conductivity
of Hartmann walls has virtually no effect on the velocity distribution (3.2), which
reduces to that of the ideal Hunt’s flow with maximal jet velocity

w̄max ∼−0.2434Ha−1P̄, (3.3)

which is located at distance δ∼ 0.94Ha−1/2 from the side wall (see figure 2). As can
be seen, the velocity of jets is much higher than for the core if Ha� 1 + c−1. For
poorly conducting Hartmann walls with c� 1, this condition reduces to cHa� 1.
It is the same condition that underlies (3.1) and means that the Hartmann walls are
well conducting relative to the adjacent Hartmann layers. In this case, the velocity of
the core flow scales as ∼(cHa)−1 relative to that of side-wall jets. It means that the
effect of the core flow and, consequently, that of the conductivity of Hartmann walls
on the stability of Hunt’s flow is expected to vanish when the jet velocity is used to
parametrize the problem.

The volume flux carried by the side-wall jets in a quarter duct cross-section is

q=Ha−1/2
∫
∞

0

∫ 1

0
(w̄0(x̃, y)− w̄∞) dy dx̃∼ αHa−3/2P̄, (3.4)

where α = (16 −
√

2)π−7/2ζ (7/2) ≈ 0.299 and ζ (x) is the Riemann zeta function
(Abramowitz & Stegun 1972). The respective fraction of the volume flux carried by
the side-wall jets is

γ ∼
q

q+ w̄∞A
=
(
1+ Aα−1(1+ c−1)Ha−1/2

)−1
. (3.5)

The expression above is confirmed by the numerical results plotted in figure 3(a),
where the curves for different wall conductance ratios are seen to collapse to this
asymptotic solution when plotted against the modified Hartmann number Ha/(1 +
c−1)2. It implies that a strong magnetic field with Ha� c−2 is required for the side-
wall jets to fully develop, that is, to carry the dominant fraction of the volume flux
γ → 1 in the non-ideal Hunt’s flow with weakly conducting Hartmann walls (c� 1).
This is confirmed also by the total volume flux plotted in figure 3(b) for the base
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FIGURE 3. (Colour online) The volume flux fraction γ carried by the side-wall jets for
different wall conductance ratios c (a) and the rescaled total volume flux QHa1/2 (b)
versus the modified Hartmann number Ha/(1+ c−1)2 for the base flow normalized with the
maximal jet velocity; c=∞ corresponds to the ideal Hunt’s flow with perfectly conducting
Hartmann walls.

flow normalized with the maximal velocity, which we use as the characteristic velocity
in this study. The curves for different conductance ratios are seen to collapse to the
asymptotic solution

Q= (q+ w̄∞A)/w̄max ∼ (1.229+ 4.109(1+ c−1)Ha−1/2)Ha−1/2 (3.6)

when Ha/(1+ c−1)2�1. This shows that a much stronger magnetic field is required to
attain the asymptotic regime in the non-ideal Hunt’s flow when the volume flux rather
than the jet velocity is used to parametrize the problem. It is due to the much larger
area of the core region, which scales as ∼Ha1/2 relative to that of the side-wall jets
and thus makes the fraction of the volume flux carried by the core flow ∼1/(cHa1/2).
Therefore it is advantageous to use the maximal rather than the mean velocity as a
characteristic parameter. In this way, the high-field asymptotics of critical parameters
can be extracted from the numerical solution at significantly lower Hartmann numbers.
One can use the volume flux plotted in figure 3(a) or the asymptotic expression (3.6),
if the magnetic field is sufficiently strong, to convert from our Reynolds number based
on the maximal velocity to that based on the mean velocity.

Now let us turn to the stability of the flow in a square duct (A= 1) and start with
moderately conducting Hartmann walls with c = 1, which is used in the following
unless stated otherwise. The marginal Reynolds numbers, at which the growth rates
of different instability modes turn zero, are plotted against the wavenumber in
figure 4. The minimum on each marginal Reynolds number curve defines a critical
wavenumber and the respective Reynolds number Rec upon exceeding which the flow
becomes unstable with respect to the perturbation of the given symmetry for the
specified Hartmann number. Other critical points for different instability modes and
Hartmann numbers are marked by dots in figure 4 and plotted explicitly against the
Hartmann number in figure 5 with solid lines for c = 1 and dashed lines for other
wall conductivity ratios. For c = 1, figure 5 shows critical parameters for all four
instability modes. For other wall conductance ratios, only the critical parameters for
the most unstable modes, i.e. those with the lowest Rec for the given Ha, are plotted.
Figure 5(a) shows that for c = 1, a magnetic field with Ha & 8 is required for the
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FIGURE 4. (Colour online) Marginal Reynolds numbers for modes II, IV (a) and I, III (b)
depending on wavenumber k for c=1. The dots indicate critical points for other Hartmann
numbers.

flow in a square duct to become linearly unstable. The first instability mode is of
type II, which is typical for the MHD duct flows. The critical Reynolds number for
this mode reaches a minimum of Rec≈ 12 000 at Ha≈ 13 and then starts to increase
with the magnetic field. In a high magnetic field, the increase of critical Reynolds
number is close to Rec ∼Ha.

At Ha & 25, an instability mode of symmetry type IV appears with a critical
Reynolds number significantly higher than that for mode II. The critical Reynolds
number for this mode attains a minimum of Rec ≈ 17 000 at Ha ≈ 50 and then
stays slightly below Rec for mode II at larger Ha. These two instability modes
are efficiently stabilized by a sufficiently strong magnetic field, which leads to
Rec increasing nearly linearly with Ha. This is due to the anti-symmetric vertical
distribution of the y-component of vorticity (see table 2), which makes it essentially
non-uniform along the magnetic field and thus subject to a strong magnetic damping.

Two additional instability modes – one of type I and another of type III – emerge
at Ha≈ 50. These two modes have similar critical Reynolds numbers, which are seen
in figure 5(a) to quickly drop below those for modes II and IV. This makes modes
I and III the most unstable ones in a sufficiently strong magnetic field. The critical
wavenumbers for modes I and III are practically indistinguishable from one another
in figure 5(b). As seen in figure 4(b), at moderate Hartmann numbers Ha≈ 70 modes
I and III may have intricate neutral stability curves which consist of closed contours
and disjoint open parts. For Ha= 70, mode III has not one but three critical Reynolds
numbers. Upon exceeding the lowest Rec the flow becomes unstable and remains such
up to the second Rec, above which it restabilizes. After that the flow remains stable up
to the third Rec, above which it turns ultimately unstable. As seen in figure 5(a), such
a triple stability threshold for modes I and III, shown by dots for mode III at Ha= 70,
exists only in a relatively narrow range of Hartmann numbers around Ha≈ 70.

The lowest critical Reynolds number for modes I and III, Rec ≈ 1300, is attained at
Ha≈ 100. In a high magnetic field, the critical Reynolds numbers and wavenumbers
for both modes increase asymptotically as Rec ∼ kc ∼ Ha1/2, which means that the
relevant length scale of instability is determined by the thickness of the side layers
δ ∼Ha−1/2.

The much weaker magnetic damping of modes I and III in comparison to modes
II and IV is due to the symmetric (even) vertical distribution of the y-component of
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FIGURE 5. (Colour online) Critical Reynolds number (a), wavenumber (b) and relative
phase velocity (c) plotted against the Hartmann number for different wall conductance
ratios c; c=∞ corresponds to the ideal Hunt’s flow considered by Priede et al. (2010).

vorticity, which makes it relatively uniform along the magnetic field. The spanwise
symmetry, which is opposite for modes I and III and determines the relative sense of
rotation of vertical vortices at the opposite side walls, has almost no effect on their
stability in a sufficiently strong magnetic field, where the critical parameters for both
modes become virtually identical.

Now let us consider the stability of the flow at lower wall conductance ratios.
As seen in figure 5(a), the critical Reynolds number increases, which means that
the flow becomes more stable, when the wall conductivity is reduced provided that
the magnetic field is not too strong. In a strong magnetic field, this stabilizing
effect vanishes and the curves for different wall conductance ratios collapse to
the asymptotics of the ideal Hunt’s flow with Rec ∼ 90Ha1/2, kc ∼ 0.525Ha1/2 and
−ωc/(Reckc)≈ 0.475 found by Priede et al. (2010).

As discussed at the beginning of this section, Ha � c−1 is required for these
asymptotics. This estimate is consistent with the Hartmann numbers at which
the lowest critical Reynolds numbers are attained for different wall conductance
ratios (see table 1). A more specific confirmation of this estimate may be seen in
figure 6(a), where the rescaled critical Reynolds numbers Rec/Ha1/2 collapse for
different Ha & 300 to nearly the same curve when plotted against the rescaled wall
conductance ratio cHa. Also, the rescaled critical wavenumber kc/Ha1/2 is seen
in figure 6(b) to collapse in a similar way for cHa & 10. The latter parameter
combination represents an effective wall conductance ratio which defines the wall
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FIGURE 6. (Colour online) Rescaled critical Reynolds number Rec/Ha1/2 (a) and
wavenumber kc/Ha1/2 (b) plotted against the rescaled wall conductance ratio cHa for
different Hartmann numbers Ha.

c Rec Ha

1 1300 100
0.1 2500 350
0.01 6900 2800

TABLE 1. The lowest critical Reynolds numbers Rec and the corresponding Hartmann
numbers for different wall conductance ratios c.

conductance relative to that of the adjacent Hartmann layer. A more detailed physical
interpretation of cHa will be given in the conclusion. Figure 6 shows that in a strong
magnetic field with Ha & 300, the effect of wall conductivity on the stability of flow
is mainly determined by a single parameter, the effective wall conductance ratio cHa.
According to table 1, Hartmann walls with c� 1 have a stabilizing effect on the flow
only up to cHa& 30. At higher effective wall conductance ratios, as seen in figure 6,
the high-field asymptotics of Hunt’s flow are recovered.

4. Summary and conclusions
We have investigated numerically the linear stability of a realistic Hunt’s flow in a

square duct with finite-conductivity Hartmann walls and insulating side walls subject
to a homogeneous vertical magnetic field. It was found that in a sufficiently strong
magnetic field with Ha & 300, the impact of wall conductivity on the stability of
the flow is determined mainly by a single parameter – the effective Hartmann wall
conductance ratio cHa. This parameter characterizes the wall conductance relative to
that of the adjacent Hartmann layer, which is connected electrically in parallel to the
former. Because the thickness and, thus, also the conductance of the Hartmann layer
drops inversely with the applied magnetic field, a finite-conductivity wall becomes
relatively well conducting in a sufficiently strong magnetic field.

There are two reasons why cHa emerges as the relevant stability parameter of
Hunt’s flow with finite-conductivity Hartmann walls. Firstly, it is due to the core
region of the base flow, whose velocity in a sufficiently strong magnetic field scales
according to (3.1) as ∼(cHa)−1 relative to that of the side-wall jets (3.3) when the
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wall conductance ratio is small (c � 1). Secondly, cHa plays the role of effective
wall conductance ratio in the thin-wall boundary condition (2.4) and replaces c when
the side-wall jet thickness δ ∼Ha−1/2 is used as the effective horizontal length scale
of instability in the (x, z) plane.

We found that the conductivity of Hartmann walls has a significant stabilizing effect
on the flow as long as cHa . 30. Since the instability originates in the side-wall
jets with characteristic thickness δ ∼ Ha−1/2, the critical Reynolds number scales as
Rec∼Ha1/2R̃ec(cHa), where R̃ec is a rescaled critical Reynolds number which depends
mainly on cHa and varies very little with Ha. A similar relationship holds also for
the critical wavenumber kc ∼ Ha1/2k̃c(cHa), where the rescaled wavenumber k̃c starts
to depend directly on Ha if cHa . 10. This is likely due to the effect of the core
flow, which has the relative velocity ∼(cHa)−1 and thus may no longer be negligible
with respect to the jet velocity if cHa . 10. In the strong magnetic field satisfying
cHa & 30, the stabilizing effect of wall conductivity vanishes, and the asymptotic
solution R̃ec ≈ 90 and k̃c ≈ 0.525 found by Priede et al. (2010) for the ideal Hunt’s
flow with perfectly conducting Hartmann walls is recovered. Consequently, for the
Hartmann walls to become virtually perfectly conducting with respect to the stability
of flow, a magnetic field with Ha & 30/c is required. Maximal destabilization of the
flow, i.e. the lowest critical Reynolds number for the given wall conductance ratio, is
achieved at Ha≈ 30/c. This result suggests an optimal design of liquid metal blankets
when efficient turbulent removal of heat from side walls is required. Note that a much
stronger magnetic field with Ha � c−2 is required for the volume flux carried by
the side-wall jets to fully develop and become dominant as in the Hunt’s flow with
perfectly conducting Hartmann walls. However, it is the local velocity distribution at
the side walls which determines the stability of this type of flow. Therefore it is the
relative velocity of the core flow rather than its volume flux which is relevant for the
stability of Hunt’s flow.

In conclusion, it is important to note that the instability considered in this study
corresponds to the so-called convective instability (Schmid & Henningson 2012,
§§ 7.2.1–7.2.3). In contrast to absolute instability, the convective type is not in
general self-sustained and thus may not be directly observable in the experiments
without external excitation. However, it should be observable in the direct numerical
simulation using a periodicity condition in the streamwise direction. The absolute
instability threshold, if any, is still unknown for this type of flow. But given the
relatively low local critical Reynolds number R̃ec ∼ 100, it is very likely to be
relevant for such MHD duct flows with side-wall jets.

Also, the physical mechanism behind the instability itself is not entirely clear. The
low R̃ec as well as the presence of inflection points in the velocity profile imply
that the instability could be inviscid, although the latter criterion is strictly applicable
to one-dimensional inviscid flows only. The respective criteria of two-dimensional
inviscid flows are considerably more complicated (Bayly, Orszag & Herbert 1988),
and no such criterion is known for MHD flows. A complicated numerical analysis
may be required to answer this non-trivial question.
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Appendix A. Vector streamfunction–vorticity formulation
In order to satisfy the incompressibility constraint ∇ · v= 0, we introduce a vector

streamfunction ψ which allows us to seek the velocity distribution in the form v =
∇×ψ . Since ψ is determined up to a gradient of an arbitrary function, we can impose
an additional constraint

∇ ·ψ = 0, (A 1)

which is analogous to the Coulomb gauge for the magnetic vector potential A (Jackson
1998). Similar to the incompressibility constraint for v, this gauge leaves only two
independent components of ψ .

The pressure gradient is eliminated by applying the curl operator to (2.1). This
yields two dimensionless equations for ψ and ω:

∂tω=∇
2ω− Reg+Ha2h, (A 2)

0=∇2ψ +ω, (A 3)

where g=∇× (v · ∇)v and h=∇× f are the curls of the dimensionless convective
inertial and electromagnetic forces, respectively.

The boundary conditions for ψ and ω were obtained as follows. The impermeability
condition applied integrally as

∫
s v · ds =

∮
l ψ · dl = 0 to an arbitrary area of wall s

encircled by the contour l yields ψτ |s = 0. This boundary condition substituted into
(A 1) results in ∂nψn|s= 0. In addition, applying the no-slip condition in integral form∮

l v · dl=
∫

s ω · ds, we obtain ωn|s = 0.
The base flow can conveniently be determined using the z-component of the induced

magnetic field b̄ instead of the electrostatic potential φ̄. Then the governing equations
for the base flow take the form

∇
2w̄+Ha∂yb̄= P̄, (A 4)

∇
2b̄+Ha∂yw̄= 0, (A 5)

where Ha = dB
√
σ/(ρν) is the Hartmann number and b̄ is scaled by µ0

√
σρν3/d.

The constant dimensionless axial pressure gradient P̄ that drives the flow is determined
from the normalization condition w̄max= 1. The velocity satisfies the no-slip boundary
condition w̄= 0 at x=±1 and y=±A, where A= h/d is the aspect ratio, which is
set equal to 1 for the square cross-section duct considered in this study. The boundary
condition for the induced magnetic field (Shercliff 1956) at the Hartmann wall is

b̄= c∂nb̄, (A 6)

and is b̄= 0 for the side wall.
Linear stability of the base flow {ψ̄, ω̄, φ̄}(x, y) is analysed with respect to

infinitesimal disturbances in the standard form of harmonic waves travelling along
the axis of the duct,

{ψ,ω, φ}(r, t)= {ψ̄, ω̄, φ̄}(x, y)+ {ψ̂, ω̂, φ̂}(x, y)eλt+ikz, (A 7)

where k is a real wavenumber and λ is, in general, a complex growth rate. This
expression substituted into (A 2) and (A 3) results in

λω̂=∇2
k ω̂− Reĝ+Ha2ĥ, (A 8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.322


890 T. Arlt, J. Priede and L. Bühler

I II III IV

ψ̂x, ω̂x, v̂ : (o, o) (o, e) (e, o) (e, e)
ŵ : (o, e) (o, o) (e, e) (e, o)
ψ̂z, ω̂z : (e, o) (e, e) (o, o) (o, e)
ψ̂y, ω̂y, û, φ : (e, e) (e, o) (o, e) (o, o)

TABLE 2. The (x, y) parities of different variables for symmetries I, II, III and IV;
e = even, o = odd.

0=∇2
k ψ̂ + ω̂, (A 9)

0=∇2
k φ̂ − ω̂q, (A 10)

where ∇k ≡ ∇⊥ + ikez; q and ⊥ respectively denote the components along and
transverse to the magnetic field in the (x, y) plane. Because of the solenoidality of
ω̂, we need only the x- and y-components of (A 8), which contain ĥ⊥=−∂xyφ̂− ∂qŵ,
ĥq =−∂

2
q φ̂ and

ĝx = k2v̂w̄+ ∂yy(v̂w̄)+ ∂xy(ûw̄)+ i2k∂y(ŵw̄), (A 11)

ĝy =−k2ûw̄− ∂xx(ûw̄)− ∂xy(v̂w̄)− i2k∂x(ŵw̄), (A 12)

where

û= ik−1(∂yyψ̂y − k2ψ̂y + ∂xyψ̂x), (A 13)

v̂ =−ik−1(∂xxψ̂x − k2ψ̂x + ∂xyψ̂y), (A 14)

ŵ= ∂xψ̂y − ∂yψ̂x. (A 15)

The boundary conditions are

∂xφ̂ = ψ̂y = ∂xψ̂x = ∂xψ̂y − ∂yψ̂x = ω̂x = 0 at x=±1, (A 16)

∂2
x φ̂ − k2φ̂ ∓ c−1∂yφ̂ = ψ̂x = ∂yψ̂y = ∂xψ̂y − ∂yψ̂x = ω̂y = 0 at y=±A, (A 17)

where the aspect ratio A= h/d= 1 for the square cross-section duct considered in this
study. The problem was solved using the same spectral collocation method as in our
previous study (Priede et al. 2015).

Owing to the double reflection symmetry of the base flow with respect to the
x = 0 and y = 0 planes, small-amplitude perturbations with different parities in x
and y decouple from each other. This results in four mutually independent modes,
which we classify as (o, o), (o, e), (e, o) and (e, e) according to whether the x
and y symmetry of ψ̂x is odd or even, respectively. Our classification of modes
corresponds to the symmetries I, II, III and IV used by Tatsumi & Yoshimura (1990)
and Uhlmann & Nagata (2006) (see table 2). The symmetry allows us to solve
the linear stability problem for each of the four modes separately using only one
quadrant of the duct cross-section. A more detailed description of the spatial structure
of different instability modes can be found in Priede et al. (2015).
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