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SUMMARY

The crayfish plague agent, Aphanomyces astaci, has spread throughout Europe, causing a significant decline in native
European crayfish. The introduction and dissemination of this pathogen is attributed to the spread of invasive North
American crayfish, which can act as carriers for A. astaci. As native European crayfish often succumb to infection with
A. astaci, determining the prevalence of this pathogen in non-native crayfish is vital to prioritize native crayfish popula-
tions for managed translocation. In the current study, 23 populations of invasive signal crayfish (Pacifastacus leniusculus)
from the UKwere tested forA. astaci presence using quantitative PCR. Altogether, 13 out of 23 (56·5%) populations were
found to be infected, and pathogen prevalence within infected sites varied from 3 to 80%. Microsatellite pathogen geno-
typing revealed that at least one UK signal crayfish population was infected with theA. astaci genotype group B, known to
include virulent strains. Based on recent crayfish distribution records and the average rate of signal crayfish population
dispersal, we identified one native white-clawed crayfish (Austropotamobius pallipes) population predicted to come into
contact with infected signal crayfish within 5 years. This population should be considered as a priority for translocation.
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INTRODUCTION

Crayfish plague, caused by the oomycete
Aphanomyces astaci, is arguably one of the most
deadly invasive parasites of freshwater ecosystems
worldwide (Lowe et al. 2004; DAISIE, 2009). The
pathogen is thought to have been first introduced
into Europe (Italy) in 1859, and has subsequently
spread throughout most of the continent (reviewed
by Alderman, 1996; Holdich, 2003). In the second
half of the 20th century the spread of A. astaci
throughout Europe was facilitated by the movement
of non-native North American (henceforth referred
to as American) crayfish (reviewed by Alderman,
1996; Holdich, 2003). Whilst American crayfish are
often asymptomatic carriers of the pathogen, in
native European crayfish infection is usually fatal
(Unestam and Weiss, 1970; Diéguez-Uribeondo
et al. 1997; Bohman et al. 2006; Kozubíková et al.
2008; Oidtmann, 2012). Therefore, preventing the
spread of this pathogen in regions with populations
of highly susceptible hosts is a conservation priority.
One of the main American crayfish species respon-

sible for spreading A. astaci in Europe, the signal

crayfish (Pacifastacus leniusculus), was first intro-
duced into the UK from Sweden during the 1970s
for aquaculture (e.g. Holdich and Reeve, 1991;
Alderman, 1996; Holdich et al. 1999, 2014). This
corresponded with mass declines in Britain’s histor-
ically abundant native white-clawed crayfish
(Austropotamobius pallipes) (see Holdich and Reeve,
1991; Holdich and Sibley, 2009; Holdich et al.
2009, 2014; James et al. 2014), to such an extent
that since 2010 they have been categorized as endan-
gered (IUCN, 2015). Whilst it was widely consid-
ered that reductions in native crayfish were, at least
partially, due to the transmission of A. astaci from
signal crayfish, screening and detection of this
pathogen in the UK did not occur until the early
1980s (Alderman, 1996). One of the first suspected
outbreaks of plague in the UK was recorded from
the River Lee, Thames catchment, England in
1981 (Alderman, 1996). The pathogen has since
been reported in native crayfish from several other
sites in England as well as Wales and Ireland
(Alderman et al. 1984, 1990; Holdich and Reeve,
1991; Alderman, 1996; Lilley et al. 1997; Holdich,
2003). However, these reports have been based on
pathogen morphology and disease symptoms in
native European crayfish. Given that there are no
morphological features that distinguish A. astaci
from non-pathogenic Aphanomyces species (Royo
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et al. 2004; Oidtmann, 2012), molecular confirmation
is essential (Oidtmann et al. 2006; Vrålstad et al.
2009). The only reports in the scientific literature of
A. astaci detection in the UK using molecular
methods are from another introduced crayfish
species, Orconectes cf. virilis (see Tilmans et al.
2014), which is restricted to a single catchment
(James et al. 2016).
Gaining a comprehensive understanding of

A. astaci distribution in the UK is essential for
native crayfish conservation. It is generally consid-
ered that the only way of ensuring the sustainability
of white-clawed crayfish in the UK is through the
establishment of isolated ‘Ark Sites’ free from non-
native crayfish and at low risk of their invasion
(Peay, 2009). Resources for implementing such con-
servation measures are, however, limited and so the
selection of native crayfish populations for transloca-
tion needs to be a well-informed process. Native
crayfish populations in close vicinity to A. astaci-
infected invasive crayfish populations are at higher
risk of extirpation than those neighbouring unin-
fected ones (Söderbäck, 1994; Westman et al. 2002;
Schulz et al. 2006; Dunn et al. 2009; Schrimpf
et al. 2013). Co-existence of native crayfish with
invasive crayfish for several years has been observed
in the absence of A. astaci (see Söderbäck, 1994;
Westman et al. 2002; Schulz et al. 2006; Dunn
et al. 2009; Schrimpf et al. 2013). Therefore, it is
of greater urgency to translocate native crayfish
populations at high risk of A. astaci transmission,
than those in close proximity to uninfected invasive
crayfish.
Here, we used quantitative PCR (qPCR) to assess

the prevalence and intensity of infection with A.
astaci in 23 populations of invasive signal crayfish
in England and Wales. Using these data in combin-
ation with long-term white-clawed crayfish distribu-
tion records (James et al. 2014) we identified native
crayfish populations at high risk of infection with
A. astaci (determined by their proximity to an
A. astaci-infected signal crayfish population).
Given that A. astaci genotypes differ in virulence
(Makkonen et al. 2012; Becking et al. 2015), when
possible, we also genotyped the strain of A. astaci.

METHODS

For this study, invasive signal crayfish (P. leniuscu-
lus) from the UK were screened for the presence of
A. astaci using similar molecular methods in two
separate laboratories: the Centre for Environment,
Fisheries and Aquaculture Science, Weymouth,
UK (Cefas); and Charles University, Prague,
Czech Republic (CUNI). At all sites, signal
crayfish were captured from rivers and ponds using
baited traps. Upon collection, animals were trans-
ported to the laboratory and humanely euthanized
by exposure to chloroform vapour or freezing at

−80 °C, before being stored individually in falcon
tubes containing 95% molecular grade ethanol.
Samples collected between September 2009 and
July 2010 from 17 sites were processed at Cefas
(n = 8–30 animals per site), whereas those harvested
during May–September 2014 were analysed at
CUNI (n = 20–30 animals per site, Table 1).
From each crayfish, a section of tail fan and soft

abdominal cuticle were harvested for A. astaci
screening. For animals processed in CUNI soft
cuticle from two limb joints and any sections of mel-
anized cuticle were also collected and pooled
(Svoboda et al. 2014). At Cefas tissue samples
from the tail fan and soft abdominal cuticle were
analysed separately (mean: 60 and 78 mg of tissue
per host sample for the tail fan and soft abdominal
cuticle, respectively). For these samples, tissue dis-
ruption was conducted in fast prep tubes containing
lysis matrix A (MP Biomedicals, Cambridge, UK)
and DNA subsequently extracted using the Qiamp
DNeasy Biorobot investigator kit (Qiagen, Hilden,
Germany), according to the manufacturer’s guide-
lines. At CUNI, for each animal, all collected
tissue samples were amassed (40–50 mg per host
sample) and ground together in liquid nitrogen.
DNA was then extracted using DNeasy tissue kit
(Qiagen, Hilden, Germany) in accordance with
manufacturer’s instructions.
All samples were tested forA. astaci presence with

the TaqMan MGB qPCR as described in Vrålstad
et al. (2009) with the following slight alterations at
Cefas and CUNI, respectively: an elongation of the
decontamination step from 2 to 5 min (Tuffs and
Oidtmann, 2011), an increase in the annealing tem-
perature from 58 to 60 °C and decreased synthesis
time from 60 to 30 s (Svoboda et al. 2014). At
Cefas and CUNI qPCRs were run on a Step one
Plus real-time cycler (Applied Biosystems) and an
iQ5 BioRad thermal cycler, respectively. Negative
controls were used in every step of the procedure;
these remained negative in all cases. The amount
of A. astaci DNA in each sample was estimated
based on the calibration curve of a set of standards.
At Cefas the quantity of pathogen DNA in these
standards ranged from 1 ng to 10 fg, in a 10-fold
dilution series. At CUNI four standards were
included containing 3 × 410, 3 × 48, 3 × 44 and 3 ×
42 PCR forming units (PFU) of pathogen DNA.
At Cefas each sample was run in triplicate and an
average taken when calculating pathogen DNA con-
centrations. At CUNI each isolate was run twice,
undiluted and a 10-fold diluted replicate to test for
inhibition that may affect the efficacy of pathogen
detection (Vrålstad et al. 2009; Strand et al. 2011).
Based on the strength of the PCR signal, we assigned
the relative level of A. astaci infection to semi-quan-
titative agent levels (A0–A7; according to Vrålstad
et al. 2009; Kozubíková et al. 2011). Samples desig-
nated as A2 or higher were considered positive forA.

412J. James and others

https://doi.org/10.1017/S0031182016002419 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182016002419


Table 1. Prevalence (95% CI) and infection intensity of Aphanomyces astaci in 23 populations of invasive signal crayfish (Pacifastacus leniusculus) from the UK,
where infection intensities are reported as semi-quantitative agent levels (Vrålstad et al. 2009): uninfected (A0–A1) and infected (A2–A5).

Population (location) Catchment Lat/long (approx.)
Prevalence %
(95% CI)

No. animals
tested (n)

Agent level
(range)

Wales
*Sirhowy River (Caerphilly) Usk 51°39′28″N, 003°11′23″W 0 (0–17) 30 A0
*Dderw farm pond (Powys) N/A 52°01′45″N, 003°15′28″W 0 (0–17) 30 A0–A1
*Bachowey River 1 (Powys) Wye 52°06′12″N, 003°12′58″W 50 (27–73) 20 A0–A3
Bachowey River 2 (Powys) Wye 52°06′34″N, 003°13′51″W 23 (10–42) 30 A0–A3
*Gavenny River (Monmouthshire) Usk 51°50′28″N, 003°00′11″W 47 (28–66) 30 A0–A3
*Mochdre Brook (Powys) Severn 52°30′14″N, 003°20′53″W 75 (51–91) 20 A0–A4

England
Broadmead Brook (Wiltshire) Bristol Avon 51°29′24″N, 002°15′28″W 0 (0–17) 30 A0
St Catherine’s Brook (South Gloucestershire) Bristol Avon 51°25′59″N, 002°18′33″W 0 (0–17) 30 A0
Sutton Bingham Reservoir (Somerset) N/A 50°54′01″N, 002°38′03″W 0 (0–17) 30 A0
River Wharfe 1 (North Yorkshire) Yorkshire Ouse 54°06′09″N, 002°02′07″W 0 (0–17) 30 A0
River Riddle (Cumbria) Derwent 54°15′03″N, 002°37′34″W 0 (0–17) 30 A0
Fenny Beck (West Yorkshire) Yorkshire Ouse 53°39′00″N, 001°44′18″W 0 (0–17) 29 A0
Great Ouse (Suffolk) Great Ouse 52°20′10″N, 000°31′50″E 0 (0–17) 30 A0
*River Lugg (Herefordshire) Wye 52°10′01″N, 002°42′01″W 0 (0–17) 30 A0–A1
Tetbury Avon (Wiltshire) Bristol Avon 51°35′30″N, 002°06′45″W 3 (0–17) 30 A0–A3
River Hamps (Staffordshire) Trent 53°04′53″N, 001°54′27″W 20 (3–56) 10 A0–A3
River Wharfe 2 (North Yorkshire) Yorkshire Ouse 54°03′56″N, 002°00′05″W 38 (9–76) 8 A0–A3
River Evenlode (Oxfordshire) Thames 51°48′08″N, 001°21′53″W 28 (12–46) 29 A0–A3
River Thame (Aylesbury) Thames 51°45′14″N, 001°01′14″W 80 (58–90) 30 A0–A3
River Wid (Norfolk) Thames 52°33′42″N, 000°27′23″E 19 (6–38) 27 A0–A3
River Ash (Hertfordshire) Thames 51°48′34″N, 000°00′22″E 7 (1–22) 30 A0–A3
River Lea (Hertfordshire) Thames 51°47′60″N, 000°04′32″W 17 (6–35) 30 A0–A4
Bently Brook (Derbyshire) Trent 53°01′54″N, 001°44′15″W 10 (2–27) 30 A0–A5

*Animals were processed in Charles University (Prague).
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astaci presence. These data were used to determine
the prevalence of A. astaci in the studied popula-
tions, and its 95% confidence intervals. Confidence
intervals were calculated using the function ‘epi.
conf’ included in the library ‘epiR’ (Stevenson
et al. 2013) for the statistical package R version 3·2
(R Core Team, 2013).
Pathogen genotyping was only conducted for A.

astaci-infected crayfish that were tested at CUNI
(samples had been processed at Cefas before micro-
satellite genotyping became available for A. astaci).
As most of these crayfish harboured relatively low
infection intensities (A2–A3), pathogen genotyping
was only possible for crayfish from one population,
the Mochdre Brook (Wales). From this population,
pathogen DNA from one crayfish (harbouring an
A3 agent level infection) was analysed using nine
A. astaci-specific microsatellite markers (Grandjean
et al. 2014). Genotyping was attempted for another
crayfish from this population but, presumably due
to the relatively small amount of pathogen DNA
present, this was un-successful. Prior to genotyping
the sample was concentrated using a Concentrator
Plus 5305 (Eppendorf) to increase pathogen DNA
concentration. The results were compared with the
A. astaci reference strains described in Grandjean
et al. (2014).
We assessed native white-clawed crayfish popula-

tions at potential risk from the 13 signal crayfish
populations where we detected A. astaci using
recent (2009 onwards) native crayfish distribution
records (Craybase database, James et al. 2014). In
this regard, we are aware that it is not possible to
declare those signal crayfish populations where the
pathogen was not detected as uninfected. As such
it should be noted that in the context of native
crayfish risk assessment the purpose of this study is
only to show where A. astaci definitely is present
(or has been recently) and highlight surrounding
native crayfish populations potentially at risk of
disease. For these purposes, sites where A. astaci
was detected were mapped and any native crayfish
populations, not already exposed to signal crayfish,
within a 7·5, 10, 12 or 15 km aerial radius were
recorded. Locations harbouring native crayfish
were searched for within the signal crayfish records
contained in Craybase (7166 in total, James et al.
2014), and only those not already invaded were con-
sidered for risk assessment purposes. Buffer zones
(i.e. 7·5, 10, 12 and 15 km) were selected on the
basis that the average rate of signal crayfish popula-
tion expansion along a river in the UK has been esti-
mated as 1·5 km year−1 (Bubb et al. 2004; although it
should be acknowledged that the rate of signal
crayfish dispersal is faster in other European coun-
tries, e.g. Hudina et al. 2009; Weinländer and
Füreder, 2009). Therefore, we presume that popula-
tions within 7·5 km of each other are predicted to
come into contact within 5 years, providing that

they inhabit connected waterbodies. These analyses
were performed using ArcGIS version 10·3 mapping
software.

RESULTS

Aphanomyces astaci was detected in 56·5% (13 out
of 23) signal crayfish populations from Wales and
England (Table 1, Fig. 1). Among the infected
populations, prevalence ranged from 3 to 80% at
generally low infection intensities (agent levels
A2–A3) with the exception of Mochdre Brook in
Wales, and Bently Brook and River Lee in
England (Table 1, Fig. 1). At two sites, trace
amounts of pathogen DNA (below the limit of
detection for the methods used i.e. agent levels A1)
were detected in tested isolates from single crayfish
specimens (Table 1, Fig. 1). The agent level A1

Fig. 1. Location of the invasive signal crayfish
populations tested for Aphanomyces astaci in the current
study using qPCR. For each population, the percentage of
crayfish tested that were infected with A. astaci (i.e. the
pathogen prevalence) is shown using a pie chart, with the
shaded portion of each chart representing infected
individuals, and the diameter of the circle the sample size
(n= 8–30). Black shading indicates that the highest
infection intensity (reported as semi-quantitative agent
levels, see Vrålstad et al. 2009) detected was A3, blue A4
and red A5. White circles show populations where the
pathogen was not detected at any level (A0). Circles
containing black stars represent those populations where
trace levels of the pathogen (A1) were amplified. As an
infection intensity of A1 is considered below the limit of
detection for the method used (Vrålstad et al. 2009), these
populations are classed as uninfected; although the
possibility of them harbouring A. astaci at a low
prevalence remains.
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should not be considered as a reliable detection ofA.
astaci (Vrålstad et al. 2009) but such observations
should raise concern about its potential presence in
these populations. A multilocus microsatellite geno-
type of A. astaci was only obtained from the
Mochdre Brook signal crayfish population. This
was identical to the reference axenic culture of the
genotype group B strain at eight loci, but was homo-
zygous rather than heterozygous at the Aast9 locus
(Table 2).
As we were only able to test a fraction of the signal

crayfish populations in the UK (see James et al. 2014
for detailed distribution information) for A. astaci,
comprehensively assessing the risk this pathogen
poses to native crayfish in the UK was beyond the
scope of the current study. Nevertheless, we
located ten native crayfish populations (confirmed
extant at some time point between 2009 and 2014)
within 15 km of an A. astaci-infected signal
crayfish population (Table 3). Of these, the popula-
tion in River Cilcenni, South Wales, was closest
(within 7·5 km) to infected signal crayfish
(Table 3). These infected crayfish from the
Bachowey River were also within 15 km of an add-
itional six extant native crayfish populations
(Table 3). Due to the low spatial resolution of the
river network data available it was, however, often
not possible to determine if the waterbodies har-
bouring these native and invasive crayfish popula-
tions were connected.

DISCUSSION

Using molecular diagnostics, we provide the first
comprehensive study ofA. astaci prevalence in inva-
sive signal crayfish populations from England and
Wales. Whilst this affirms the perceived role of
A. astaci causing native crayfish declines (Holdich,
2003), not all signal crayfish populations tested

appeared to be infected. In fact, A. astaci was only
detected in just over half (57%) of the tested UK
signal crayfish populations, and within these popula-
tions the prevalence varied between 3 and 80%.
While we cannot definitively declare those popula-
tions where we did not detectA. astaci as uninfected,
our data show that, among signal crayfish popula-
tions, pathogen prevalence varies widely. Our
findings contradict the traditional assumption that
all American crayfish are carriers of A. astaci (see
Cerenius et al. 2003), but are in agreement with
other DNA-based studies focusing on distribution
and prevalence of this pathogen. Recently, popula-
tions of American crayfish, in which A. astaci had
not been detected, were reported in other
European countries (Kozubíková et al. 2009; Skov
et al. 2011; Filipová et al. 2013; Schrimpf et al.
2013; Tilmans et al. 2014). The situation in the
UK seems to almost mirror that reported from
France, with 53% (24 out of 45) of signal crayfish
populations being infected with A. astaci and the
pathogen prevalence ranging from 8 to 80%
(Filipová et al. 2013).
In the current study, microsatellite genotyping

revealed the presence of an A. astaci-positive DNA
isolate congruent with the reference genotype
group B strain (Grandjean et al. 2014) at eight of
the nine loci tested. Such intra-genotype group vari-
ation has been reported previously (Grandjean et al.
2014; Mrugała et al. 2016), therefore, it is likely that
the DNA isolate from the UK belongs to genotype
group B. This is perhaps unsurprising given that,
within Europe, group B strains of A. astaci were
first isolated from invasive signal crayfish in
Sweden (Huang et al. 1994), which is considered as
the country of origin for most signal crayfish intro-
duced into the UK during the 1970s and 1980s
(Holdich et al. 1999). Isolation of this highly viru-
lent strain of A. astaci (see Makkonen et al. 2012)
may explain the mass mortalities of native white-
clawed crayfish in the UK following the introduc-
tion of signal crayfish (e.g. James et al. 2014).
Although chronic A. astaci infections have been
observed in other white-clawed crayfish and other
native European crayfish (e.g. Jussila et al. 2011;
Pârvulescu et al. 2012; Kokko et al. 2012;
Schrimpf et al. 2012; Kušar et al. 2013; Maguire
et al. 2016), these may be caused by the less virulent
strains from the ‘old’ genotype group, A (Makkonen
et al. 2012). The ability to identify A. astaci strains
and their virulence would help inform risk assess-
ment for native crayfish populations in the future,
although better characterization of all A. astaci gen-
otypes is required before this can be exploited fully.
Given that the long-term conservation of native

crayfish in the UK is generally considered to be
dependent upon the translocation of animals into
‘Ark Sites’ (Peay, 2009), and that resources for
implementing such measures are limited; targeting

Table 2. Comparison of allele sizes of nine micro-
satellite loci from the reference strains of the
Aphanomyces astaci genotype group B (Grandjean
et al. 2014) and an A. astaci-positive signal crayfish
(Pacifastacus leniusculus) from a UK population
(Mochdre Brook).

Locus

Reference
sequence
(VI 03555) UK population

Aast 2 142 142
Aast 4 87 87
Aast 6 148 148
Aast 7 215 215
Aast 9 164/182 164
Aast 10 132 132
Aast 12 226/240 226/240
Aast 13 202 202
Aast 14 248 248
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removal of native crayfish populations at the greatest
risk of extirpation is critical. Native European
crayfish can co-exist with American crayfish for
extended periods of up to 30 years in the absence
of A. astaci (see Westman et al. 2002; Schulz et al.
2006; Dunn et al. 2009; Skov et al. 2011; Schrimpf
et al. 2013), but are often rapidly extirpated if this
pathogen is present (e.g. Holdich and Reeve, 1991;
Vennerström et al. 1998; Bohman et al. 2006;
Kozubíková et al. 2008). Therefore, native white-
clawed crayfish populations in close vicinity to
A. astaci-infected signal crayfish are predicted to
be at greater risk of local extinction than those neigh-
bouring uninfected signal crayfish. Considering that
only a portion of the signal crayfish populations
existing in the UK were screened in the current
study, and of these only around half were infected
with A. astaci, increased testing for this pathogen is
needed to comprehensively assess native crayfish
populations at greatest risk of disease transmission.
Nevertheless, for the 13 signal crayfish populations
where we detected A. astaci we identified one white-
clawed crayfish population recorded since 2009,
locatedwithin 7·5 km.This native crayfish population
inhabits the Cilcenni within the Wye catchment,
South Wales, and was most recently detected in
2009. Given its proximity to infected signal crayfish,
we recommend that translocating a subset of indivi-
duals from this population into an ‘ArkSite’ is consid-
ered as a priority, although we acknowledge that
increased screening of signal crayfish for A. astaci
may reveal other native crayfish populations at
greater risk of extirpation. Determining the exact
order of translocation priority for the ten native
crayfish populations within 15 km of an A. astaci-
infected signal crayfish population is beyond the
scope of the current study. For extant populations,
factors that shouldbe consideredwhenassessing trans-
location priority include: proximity to infected
crayfish, connectivity of water bodies housing native

and infected invasivecrayfish (particularly considering
the ability of the pathogen not only to be transmitted
via spores in the water, but potentially also with fish;
Oidtmann et al. 2002; Svoboda et al. 2017), prevalence
ofA. astaci in the nearest infected crayfish population,
density of crayfish present in the native crayfish and
neighbouring infected signal crayfish population, and
whether any barriers in the environment exist that
may prevent animals from either population disper-
sing. Additionally, as native crayfish populations can
be rapidly extirpated by crayfish plague, surveying to
confirmthepersistence ofpopulationsunder consider-
ation for translocation should always be a pre-
requisite.
Within the UK, this is currently the only compre-

hensive study that uses molecular methods to confirm
the presence, and determine the prevalence of, A.
astaci in invasive signal crayfish populations. The
current study also provides the first record of A.
astaci genotype group B (known to contain virulent
strains) from signal crayfish in the UK. The presence
and prevalence of A. astaci, however, varied between
populations. Although we cannot definitively declare
those signal crayfish populations where we did not
detect A. astaci as uninfected, our findings show
that pathogen prevalence can vary from very low to
very high. Therefore, from a conservation perspec-
tive, the risk posed to native crayfish from different
invasive crayfish populations may be asymmetric.
As such, considering A. astaci prevalence data will
improve risk assessments for native crayfish popula-
tions. Based on our findings we recommend increased
A. astaci screening, using appropriate pathogen-
specific molecular methods, of non-native crayfish
populations in the UK, to fully assess the risks to
native crayfish and target populations for transloca-
tion. As part of this, those populations where we
detected trace levels (i.e. below the limit of detection)
of A. astaci should be re-tested to ascertain whether
they are harbouring a low prevalence infection.

Table 3. Location and year of the most recent record of native white-clawed crayfish (Austropotamobius
pallipes) populations (data from CrayBase: James et al. 2014) in close vicinity to an Aphanomyces astaci-
infected invasive signal crayfish (Pacifastacus leniusculus) population.

White-clawed crayfish Signal crayfish

Population
Location
(country)

Most recent
record Population(s)

Proximity
(km)

Cilcenni Wales 2009 Bachowey River 1 and 2 7·5
Scithwen Wales 2014 Bachowey River 1 and 2 10·5
Clettwr Wales 2014 Bachowey River 1 and 2 10·5
Rhiwiau Brook Wales 2009 Bachowey River 1 and 2 12
Llynfi Dulas Wales 2014 Bachowey River 1 and 2 15
River Ennig Wales 2011 Bachowey River 1 and 2 15
Cwm Sheppard Brook Wales 2010 Bachowey River 1 and 2 15
Nant Onnau Fach Wales 2010 Gavenny River 10·5
Lurscombe England 2009 Tetbury Avon 15
Winterburn beck England 2010 River Wharfe 2 10·5
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