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Remarks on generalized elliptic integrals
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We study the monotonicity for certain combinations of generalized elliptic integrals,
thus generalizing analogous well-known results for classical complete elliptic integrals,
and prove a conjecture put forward by Heikkala, Vamanamurthy and Vuorinen.

1. Introduction

Throughout this paper we adopt the notation and terminology of [10]. For Rex > 0
let

Γ (x) =
∫ ∞

0
tx−1e−t dt, ψ(x) =

Γ ′(x)
Γ (x)

, (1.1)

be the classical Euler gamma function and psi function, respectively. For all z ∈
C \ {0, −1, −2, . . . } and for all n ∈ N ≡ {0, 1, 2, 3, . . . } we have [17, (12.12)]

Γ (z + n) = (z, n)Γ (z), (1.2)

where (z, 0) = 1 for z �= 0, and (z, n) is the shifted factorial function (z, n) =
z(z + 1)(z + 2) · · · (z + n − 1) for z ∈ C and n ∈ N \ {0}. Furthermore, the gamma
function satisfies the reflection formula [17, (12.14)]

Γ (z)Γ (1 − z) =
π

sin(πz)
(1.3)

for all z /∈ Z ≡ {. . . ,−2, −1, 0, 1, 2, . . . }. In particular, Γ ( 1
2 ) =

√
π.

The beta function is defined for Rex > 0 and Re y > 0 by

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt =

Γ (x)Γ (y)
Γ (x + y)

. (1.4)

Given complex numbers a, b and c with c �= 0, −1, −2 . . . , the Gaussian hyper-
geometric function is the analytic continuation to the slit plane C \ [1, ∞) of the
series

F (a, b; c; z) = 2F1(a, b; c; z) ≡
∞∑

n=0

(a, n)(b, n)
(c, n)

zn

n!
, |z| < 1; (1.5)

(a, n) is the shifted factorial function.
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The behaviour of the hypergeometric function near z = 1 in the three cases
Re(a + b − c) < 0, a + b = c and Re(a + b − c) > 0, respectively, is given by

F (a, b; c; 1) =
Γ (c)Γ (c − a − b)
Γ (c − a)Γ (c − b)

,

B(a, b)F (a, b; a + b; z) + log(1 − z) = R(a, b) + O((1 − z) log(1 − z)),

F (a, b; c; z) = (1 − z)c−a−bF (c − a, c − b; c; z),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.6)

where R(a, b) = −2γ − ψ(a) − ψ(b) and

γ = lim
n→∞

( n∑
k=1

1
k

− log n

)
= 0.57721 · · ·

is theEuler–Mascheroni constant. Note that R( 1
2 , 1

2 ) = log 16. The above asymptotic
formula for the zero-balanced case a + b = c is due to Ramanujan [3, 4].

For a, b, c > 0 with a+ b � c, a generalized modular equation of order (or degree)
p > 0 is

F (a, b; c; 1 − s2)
F (a, b; c; s2)

= p
F (a, b; c; 1 − r2)

F (a, b; c; r2)
, 0 < r < 1. (1.7)

This equation uniquely defines s.
Modular equations (1.7) were studied extensively by Ramanujan [5]. Many par-

ticular cases of (1.7) have been studied in the literature on both analytic number
theory and geometric function theory (see, for example, [1, 2, 4, 5, 8, 12]). In partic-
ular, in 1995 Berndt et al . published an important paper [5] in which they studied
the case (a, b, c) = (a, 1 − a, 1) and p an integer. After the publication of [5] many
papers have appeared on modular equations (see, for example, [2, 4, 6, 9, 14,16]).

To rewrite (1.7) in a slightly shorter form, we use the decreasing homeomorphism
µa,b,c : (0, 1) → (0, ∞), defined by

µa,b,c(r) =
B(a, b)

2
F (a, b; c; r′2)
F (a, b; c; r2)

, r ∈ (0, 1), (1.8)

for a, b, c > 0, a+b � c. We call µa,b,c the generalized modulus (cf. [12, (2.2), p. 60]).
We can now write (1.7) as

µa,b,c(s) = pµa,b,c(r), 0 < r < 1. (1.9)

With p = 1/K, K > 0, the solution of (1.7) is then given by

s = ϕa,b,c
K (r) = µ−1

a,b,c

(
µa,b,c(r)

K

)
. (1.10)

We call ϕa,b,c
K the (a, b, c)-modular function with degree p = 1/K (see [2] and [5,

(1.5)]).
In the case when a < c we also use the notation

µa,c = µa,c−a,c, ϕa,c
K = ϕa,c−a,c

K . (1.11)
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For 0 < a < min{c, 1} and 0 < b < c � a + b, define the generalized complete
elliptic integrals of the first and second kinds (cf. [2, (1.9), (1.10), (1.3), (1.5)]) on
[0, 1] by

K = Ka,b,c = Ka,b,c(r) ≡ B(a, b)
2

F (a, b; c; r2), (1.12)

E = Ea,b,c = Ea,b,c(r) ≡ B(a, b)
2

F (a − 1, b; c; r2), (1.13)

K′ = K′
a,b,c = K′

a,b,c(r) ≡ Ka,b,c(r′), E ′ = E ′
a,b,c = E ′

a,b,c(r) ≡ Ea,b,c(r′), (1.14)

for r ∈ (0, 1), r′ =
√

1 − r2. The end values are defined by limits as r tends to 0+

and 1−, respectively. In particular, we define Ka,c = Ka,c−a,c and Ea,c = Ea,c−a,c.
Thus, by (1.6),

Ka,b,c(0) = Ea,b,c(0) =
B(a, b)

2
(1.15)

and

Ka,b,c(1) = ∞, Ea,b,c(1) =
1
2

B(a, b)B(c, c + 1 − a − b)
B(c + 1 − a, c − b)

. (1.16)

In the remainder of the paper, we continue the studies in [2,10], generalize some
results in [2], and give a positive answer to [10, conjecture 4.39(1)]. We now state
our main results.

Theorem 1.1. For 0 < a, b < min{c, 1} and a + b � c, let B = B(a, b), K = Ka,b,c

and E = Ea,b,c. In part (viii) let a + b � max{c, (c + 1 − ab)/2}, in part (ix) let
a + b = c, in part (x) let c � a + b < min{c + 1

2 , c + 1 − b/c}. Then the function

(i) f1(r) ≡ [(c−a)(E −K)+(br2 +ar′2)K]/r′2 has positive Maclaurin coefficients
and maps [0, 1) onto [aB/2, ∞),

(ii) f2(r) ≡ [(c−a)(E −K)+bK]/r′2 has positive Maclaurin coefficients and maps
[0, 1) onto [bB/2, ∞),

(iii) f3(r) ≡ {(c − a)(E − K) + [br2 + (c − 1)r′2]K}/r′2 has positive Maclaurin
coefficients and maps [0, 1) onto [(c − 1)B/2, ∞),

(iv) f4(r) ≡ E has negative Maclaurin coefficients, except for the constant term,
and is log-concave from (0, 1) onto (BB(c, c + 1 − a − b)/(2B(c + 1 − a, c −
b)), B/2),

(v) f5(r) ≡ r−2[(E − r′2K)/r2 − (c− b)B/(2c)] has positive Maclaurin coefficients
and maps (0, 1) onto (ab(c − b)B/(2c(c + 1)), B(cB(c, c + 1 − a − b) − (c −
b)B(c + 1 − a, c − b))/(2cB(c + 1 − a, c − b))),

(vi) f6(r) ≡ r−4[(c − b)(K − E) − b(E − r′2K)] has positive Maclaurin coefficients
and maps (0, 1) onto (ab(c − b)B/(2c(c + 1)), ∞),

(vii) f7(r) ≡ [(c− b)(K −E)− b(E − r′2K)]/(2r2 log 1/r′) is strictly increasing from
(0, 1) onto (ab(c−b)B/(2c(c+1)), D), where D = a/2 if a+b = c and D = ∞
if a + b > c,
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(viii) f8(r) ≡ [(c − b)(K − E) − b(E − r′2K)]/(2 log 1/r′ − r2) is strictly increasing
from (0, 1) onto (ab(c − b)B/(c(c + 1)), D), where D = a/2 if a + b = c and
D = ∞ if a + b > c,

(ix) f9 ≡ r′2(K − E)/(r2E) is strictly decreasing from (0, 1) onto (0, b/c),

(x) f10 ≡ r′2(c+1−a−b)K/E is strictly decreasing from (0, 1) onto (0, 1).

Remark 1.2. If a + b = 1 = c, theorem 1.1(ii) reduces to [2, lemma 5.4(2)]. Parts
(v), (viii), (ix) and (x) of theorem 1.1 generalize (10), (11), (6) and (2) of [2, lemma
5.2], respectively.

Theorem 1.3, below, gives a positive answer to [10, conjecture 4.39(1)], and hence
generalizes [2, theorem 5.5(4)].

Theorem 1.3. Let a > 0, a < c < a + 1/a. Then the function

f(r) ≡ µa,c(r)
log(1/r)

is strictly increasing from (0, 1) onto (1, ∞).

Remark 1.4. As pointed out by the referee, theorem 1.3 is essentially [11, 3.6(4)],
which has an additional restriction c � 1. From the proof, we can see this additional
restriction is not necessary. Actually, what is needed is 2a(c − a) � c, which is the
same as the condition needed in the proof of lemma 2.3(i), below.

2. Proof of the main results

In this section, we shall give some derivative formulae and lemmas, and prove the
main results.

We use the standard notation for contiguous hypergeometric functions (cf. [15])

F = F (a, b; c; z), F (a+) = F (a + 1, b; c; z), F (a−) = F (a − 1, b; c; z),

etc. We also let

v = v(z) = F, u = u(z) = F (a−), v1 = v1(z) = v(1 − z) and u1 = u1(1 − z).

The derivative of F can be written in the following different forms (see [10,15]):

dv

dz
=

dF

dz
=

ab

c
F (a+, b+; c+)

=
a

z
(F (a+) − F ) =

b

z
(F (b+) − F ) =

c − 1
z

(F (c−) − F )

=
(c − a)u + (a − c + bz)v

z(1 − z)
(2.1)

and
dEa,b,c

dr
=

2(a − 1)
r

(Ka,b,c − Ea,b,c). (2.2)

Lemma 2.1, below, is [10, theorem 4.3], while a more general version of this lemma
appears in [7, 13].
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Lemma 2.1 (Biernacki and Krzyz [7]; Ponnusamy and Vuorinen [13]). Let

∞∑
n=0

anxn and
∞∑

n=0

bnxn

be two real power series converging on the interval (−R, R). If the sequence {an/bn}
is increasing (decreasing), and bn > 0 for all n, then the function

f(x) =
∑∞

n=0 anxn∑∞
n=0 bnxn

is also increasing (decreasing) on (0, R).

Lemma 2.2. Let
∞∑

n=0

anxn and
∞∑

n=0

bnxn

be two real power series converging on the interval (−R, R), bn > 0 for all n, and

lim
x→R

∞∑
n=0

anxn = lim
x→R

∞∑
n=0

bnxn = ∞.

(i) If limn→∞ an/bn = 0, then

lim
x→R

∑∞
n=0 anxn∑∞
n=0 bnxn

= 0.

(ii) If limn→∞ an/bn = 1, then

lim
x→R

∑∞
n=0 anxn∑∞
n=0 bnxn

= 1.

Proof.
(i) If limn→∞ an/bn = 0, then, for any ε > 0, there exists a positive integer M > 0,
such that, for all n > M , we have

−bnε < an < bnε.

Thus,

0 � lim
x→R

∑∞
n=0 anxn∑∞
n=0 bnxn

� lim
x→R

∑M
n=0 anxn + ε

∑∞
n=0 bnxn∑∞

n=0 bnxn
= ε;

hence, part (i) follows.

(ii) The proof of this part is similar to that of part (i).

Part (i) of lemma 2.3, below, is essentially [10, 4.23(3)], while part (ii) is essentially
[10, 4.21(6)], except for slight difference in the range of parameters a, b and c. The
proof of part (i) is the same as that of [10, 4.23(3)], while that of part (ii) is more
direct.
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Lemma 2.3.

(i) If 0 < a < c < a+1/a, then the function f1(r) ≡ r′2F (a, c−a; c; r′2)/ log(1/r)
is strictly increasing from (0, 1) onto (2/B(a, c − a), 2).

(ii) If 0 < a < min{c, 1} or 1 � a < c < a2/(a − 1), then f2(r) ≡ r′2F (a, c −
a; c; r2) is strictly decreasing from [0, 1) onto (0, 1]. Moreover, f2(r) has neg-
ative Maclaurin coefficients, except for the constant term.

Proof.
(i) From (1.5), we get

f1(r) = 2
( ∞∑

n=0

(a, n)(c − a, n)
n!(c, n)

r′2n

)( ∞∑
n=0

1
n + 1

r′2n

)−1

. (2.3)

The ratio of the coefficients equals

2(a, n)(c − a, n)(n + 1)
n!(c, n)

≡ Tn.

Then
Tn+1

Tn
=

(a + n)(c − a + n)(n + 2)
(n + 1)2(c + n)

< 1,

since (a+n)(c−a+n)(n+2)− (n+1)2(c+n) = [a(c−a)−1]n+[2a(c−a)− c] < 0
if 0 < a < c < a + 1/a. Thus, the monotonicity of f1(r) is obtained by lemma 2.1.
From (2.3) the limit value f1(1−) is clear. By Stirling’s formula, limn→∞ Tn = 1.
Hence, by lemma 2.2(ii), the limit f1(0+) = 1 follows.

(ii) From (1.5), we get

f2(r) = (1 − r2)F (a, c − a; c; r2) = 1 + g(r),

where g(r) =
∑∞

n=1 Tnr2n, Tn = An − Bn, and

An =
(a, n)(c − a, n)

n!(c, n)
, Bn =

(a, n − 1)(c − a, n − 1)
(n − 1)!(c, n − 1)

.

Then
An

Bn
=

(a + n − 1)(c − a + n − 1)
n(c + n − 1)

< 1,

since (a + n − 1)(c − a + n − 1) − n(c + n − 1) = −(n − 1) + [a(c − a) − c] < 0, if
0 < a < min{c, 1} or 1 � a < c < a2/(a − 1). Thus, f2(r) has negative Maclaurin
coefficients, except for the constant term. So the monotonicity of f2(r) is obtained.
The limit f2(0+) is clear. For the limit value f2(1−), we rewrite f2(r) as

f2(r) =
F (a, c − a; c; r2)

1/(r′2)
=

∑∞
n=0 Anr2n∑∞

n=0 r2n
.

By Stirling’s formula, the ratio of the coefficients An → 0(n → ∞). Hence, by
lemma 2.2(i) we have the limit f2(1−) = 0.
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Proof of theorem 1.1.
(i) From (2.1), we get

dF

dz
=

a

z
(F (a+) − F ) =

(c − a)u + (a − c + bz)v
z(1 − z)

.

Putting z = r2 and multiplying by 1
2B, we get

f1(r) = 1
2aBF (a + 1, b; c; r2),

which proves the assertion. The limit f1(0+) = 1
2aB is clear, while the limit f1(1−)

follows from (1.6).

For parts (ii) and (iii), similarly to part (i), the proof follows from (2.1):

b

z
(F (b+) − F ) =

(c − a)u + (a − c + bz)v
z(1 − z)

=
c − 1

z
(F (c−) − F ).

(iv) The negatives of Maclaurin coefficients, except for the constant term and the
limiting values, are clear. Next, by (2.2),

1
2(a − 1)

d
dr

log E =
K − E
r2K

rK
E ,

which is a product of two positive and increasing functions by [10, lemma 4.21(1)].
Hence, the log-concavity of f4 follows.

(v) From the proof of [10, lemma 4.21(2)], we have

E − r′2K
r2 =

(c − b)B
2c

F (a, b; c + 1; r2).

Thus,

f5(r) =
(c − b)B

2c

∞∑
n=0

(a, n + 1)(b, n + 1)
(n + 1)!(c + 1, n + 1)

r2n,

from which the assertion follows. The limit f5(0+) is clear, while the limit f5(1−)
follows from [10, lemma 4.21(2)].

(vi) From (1.12) and (1.13), we get

f6(r) =
(c − b)B

2c

∞∑
n=0

(a, n + 1)(b, n + 1)
(n)!(c + 1, n + 1)

r2n,

which proves the assertion. The limit f6(0+) is clear, while the limit f6(1−) follows
from [10, lemma 4.21(2)].

(vii) From (1.12) and (1.13), we get

f7(r) =
(c − b)B

2c

( ∞∑
n=1

(a, n)(b, n)
(n − 1)!(c + 1, n)

r2n

)( ∞∑
n=1

1
n

r2n

)−1

.

The ratio of the coefficients equals

(a, n)(b, n)n
(c + 1, n)(n − 1)!

≡ Tn.
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Then
Tn+1

Tn
=

(a + n)(b + n)(n + 1)
(c + 1 + n)n2 > 1,

since (a + n)(b + n)(n + 1) − (c + 1 + n)n2 = (a + b − c)n2 + (a + b + ab)n + ab > 0.
Therefore, the monotonicity follows immediately by lemma 2.1. The limit f7(0+) is
clear, while the limit f7(1−) follows from [10, lemma 4.21(10)].

(viii) From (1.12) and (1.13), we get

f8(r) =
(c − b)B

2c

( ∞∑
n=1

(a, n)(b, n)
(n − 1)!(c + 1, n)

r2n+2
)( ∞∑

n=1

1
n + 1

r2n+2
)−1

.

The ratio of the coefficients equals

(a, n)(b, n)(n + 1)
(c + 1, n)(n − 1)!

≡ Tn.

Then
Tn+1

Tn
=

(a + n)(b + n)(n + 2)
(c + 1 + n)(n + 1)n

> 1,

since

(a+n)(b+n)(n+2)−(c+1+n)(n+1)n = (a+b−c)n2+[ab+2(a+b)−c−1]n+2ab > 0

if a + b � max{c, 1
2 (c + 1 − ab)}. So that the monotonicity follows immediately by

lemma 2.1. The limit f8(0+) is clear, while the limit f8(1−) follows from [10, lemma
4.21(10)].

(ix) From (1.12) and (1.13), we get

f9(r) =
( ∞∑

n=0

(a, n + 1)(c − a, n + 1)
(a + n)(n + 1)!(c, n + 1)

r2n+2
)( ∞∑

n=0

(c − a + 1, n)(a, n)
n!(c, n)

r2n+2
)−1

.

The ratio of the coefficients equals

b

c + n
≡ Tn,

which is decreasing in n. The limiting values are clear.

(x) From (1.12), (1.13) and (1.6), we get

f10(r) =
( ∞∑

n=0

(a, n)(b, n)
n!(c, n)

r2n

)( ∞∑
n=0

(c − a + 1, n)(c − b, n)
n!(c, n)

r2n

)−1

.

The ratio of the coefficients equals

(a, n)(b, n)
(c − a + 1, n)(c − b, n)

≡ Tn.

Then
Tn+1

Tn
=

(a + n)(b + n)
(c − a + 1 + n)(c − b + n)

< 1,
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since

(a+n)(b+n)−(c−a+1+n)(c−b+n) = [2(a+b)−2c−1]n+[ca+(c+1)(b−c)] < 0

if c � a + b < min{c + 1
2 , c + 1 − b/c}. The limit f10(0+) is clear, while the limit

f10(1−) follows from (1.6).

Proof of theorem 1.3. From (1.8), we get

f(r) =
B(a, c − a)

2
f1(r)
f2(r)

,

where f1(r), f2(r) are the functions in lemma 2.3. Thus, we can easily obtain the
result of f(r) from lemma 2.3.

The following theorem is an analogue of [10, 4.5(3)] for ϕa,b,c
1/K (r).

Theorem 2.4. Let a, b, c > 0, a + b > c and K > 1. Then

r < ϕa,b,c
K (r) < K1/(2(a+b−c))r (2.4)

and

(1/K)1/(2(a+b−c))r < ϕa,b,c
1/K (r) < r (2.5)

for all r ∈ (0, 1).

Proof. The inequality (2.4) is proved in [10, 4.5(3)].
For inequality (2.5), putting s = ϕa,b,c

1/K (r) < r, by [10, lemma 4.5(2)] we get

f(r) = (r/r′)2(a+b−c)µa,b,c(r)

= (r/r′)2(a+b−c)µa,b,c(s)/K < f(s)

= (s/s′)2(a+b−c)µa,b,c(s),

so that
(s/s′)2(a+b−c) > (1/K)(r/r′)2(a+b−c),

that is
s/s′ > (1/K)1/(2(a+b−c))r/r′.

Hence,
s > (1/K)1/(2(a+b−c))r(s′/r′) > (1/K)1/(2(a+b−c))r.
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