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Abstract. We summarize the results of several recent papers, together with a few new
results, which rely on a connection between semi-dispersing billiards and non-regular
Riemannian geometry. We use this connection to solve several open problems about
the existence of uniform estimates on the number of collisions, topological entropy and
periodic trajectories of such billiards.

0. Introduction
While the first ideas of hyperbolicity of certain billiard systems go back to Krylov [Kr ],
the mathematical theory of semi-dispersing billiards originated with the works of
Sinai [Si4–6] in connection with the foundations of statistical physics and the study
of the hyperbolicity and ergodicity properties of such billiards. Since then the
theory of semi-dispersing and dispersing (also called scattering or Sinai) billiards
has grown in various directions, including the study of their ergodicity properties
[BuSi1, BLPS, KSS1, KSS2, Reh, Si5, SiCh1, Sim1, Sim2, SimWo], the existence
of stable and unstable manifolds, Markov partitions and other properties related
to hyperbolicity [BuSi2, BSC2, Ch3, Ef, KaSt, Le], entropy and periodic orbits
[Bu1, ChMa, Ch1, Ch2, Ch4, Mo, Si1, SiCh2, St1, St2, Wo], various statistical and
symbolic properties, and limit theorems [Bl, Bu2, BSC1, Ch5, GalOr, Tr, Yo], quantum
and other generalizations [Be, Do, DoLi, DorSm, HaSh, CdV, Ve], and many others
(see also [Si3, Si7, Ta] and [KoTr ] for reviews and more references).
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¶ The second author is partially supported by a Sloan Foundation Dissertation Fellowship.
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It has been known for a long time (see, for example, [ZeKa]) that thedynamicsof
a billiard in a rational polygon may be viewed as thegeometryof its unfolding surface.
Even in this simple situation the unfolding is not quite a Riemannian surface since in all
but a few cases its metric is bound to have singularities (and away from the singularities
the metric is flat). This object, however, is not at all pathological from the point of
view of non-regular Riemannian geometry, the principal ideas and methods of which
were developed by Alexandrov and his collaborators (see [Al, AlB, AlSt, AlZa, Re ])
in the mid 1960’s. Since then it has attracted the attention of many leading geometers,
especially after the spectacular paper of Gromov [Gr1]. The cornerstone of the approach
is the following observation. The well-known comparison theorems of Alexandrov and
Toponogov show that there is a way to estimate the sectional curvature of a Riemannian
manifold from above simply by comparing the geodesic triangles on the manifold and in
a model space (a complete simply connected surface of constant curvature). However,
since the procedure involves measurement of certain distances only, it may be considered
a definition of a space whose curvature is bounded from above. This definition coincides
with the usual one in the category of smooth Riemannian manifolds, but in fact makes
sense for an arbitrary geodesic space (a metric space in which every two points may be
connected by a geodesic).

Therefore, it would be natural to look for an unfolding space of an arbitrary semi-
dispersing billiard inside the category of geodesic spaces. Soon it becomes clear that in
order to reflect the dynamics of the billiard properly, the curvature of the space should
be bounded from above by the initial curvature of the billiard’s configuration space. This
would allow one to view any semi-dispersing billiard as a finite factor of a geodesic flow
on a space of bounded (non-positive in the case of billiards on manifolds of non-positive
curvature) curvature (see [BFK3] for a detailed discussion). However, construction of
such an object in general seems to be very difficult, if not impossible (see§5 for a
detailed discussion). Instead, we construct an unfolding space for a given combinatorial
class of trajectories, i.e. for all trajectories colliding with the same sequence of walls of
the billiard. This space turns out to be a geodesic space of curvature bounded from above
(in most applications, this is a non-positively curved space). Every billiard trajectory of
the chosen combinatorial class uniquely corresponds to a geodesic in the unfolding space
(we will identify them below) and, therefore, many questions concerning the dynamics
of semi-dispersing billiards become purely geometric.

The purpose of this article is to summarize the results obtained in [BFK1–3]. All
three papers address various problems in the theory of semi-dispersing billiards using the
geometric approach outlined above. We will state all the main results from [BFK1–3]
and outline some of the proofs. However, the emphasis of this paper is not on the
rigorous proofs, which an interested reader may find in the articles mentioned above, but
rather on the demonstration of the method, its power, and its limitations.

This paper is organized as follows. In§1 and 2 we summarize the results from
[BFK1] and [BFK3] regarding the existence of uniform (i.e. independent of the choice
of trajectory) estimates on the number of collisions in semi-dispersing billiards. In
particular, we present the basic geometric construction of the unfolding space of a
combinatorial class of trajectories. Next, we formulate and discuss a non-degeneracy
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condition that guarantees the existence of the estimates. As an application, we establish
an explicit upper bound for the number of collisions that can take place in the infinite
time interval(−∞, ∞) for hard-ball systems in an empty space of non-positive sectional
curvature. (This upper bound depends only on the number of balls, and their maximum
and minimum masses, and is independent of their radii, initial positions and velocities.)
Also, in order to give some insight into our methods, we will outline the proofs of
Theorem 2 and Theorem 3, and prove Theorem 4.

In §3 we discuss the results from [BFK2] regarding the finiteness of topological and
metric entropy of an arbitrary non-degenerate semi-dispersing billiard on a manifold of
non-positive curvature. In particular, the topological entropy of the billiard turns out to
be bounded from above by a number which depends only on the number of walls and
the non-degeneracy constant of the billiard. Also, we prove the existence and obtain an
estimate on the limit of the topological entropy of the Lorentz gas while the radius of
the scatterer tends to zero.

In §4 we present a general result which describes the structure of the set of periodic
points of the billiard map (and periodic trajectories of the billiard flow) and gives an
estimate of their number for semi-dispersing billiards on simply connected manifolds of
non-positive curvature.

In §5 we discuss a difficult problem of non-regular Riemannian geometry already
mentioned above—the existence of a ‘universal’ unfolding space for a non-degenerate
semi-dispersing billiard.

Finally, in §6 we formulate a number of open questions related to the results and
methods presented in this paper.

1. Local uniform estimates on the number of collisions
1.1. Preliminaries. Throughout this paper we denote byM an arbitrary C2

Riemannian manifold without a boundary, with bounded sectional curvature and with
the injectivity radiusρ > 0. Consider a collection ofn geodesically convex subsets
(walls) Bi ⊂ M, i = 1, . . . , n of M, such that their boundaries areC1 submanifolds
of codimension one. LetB = M\(⋃n

i=1 Int(Bi)), where Int(Bi) denotes the interior of
the setBi . A semi-dispersing billiard flow (or a semi-dispersing billiard system) acts
on a certain subset of the unit tangent bundle toB (see, for example, [Si3] for more
details). The projections of the orbits of that flow toB are called the billiard trajectories
and correspond to free motions of particles insideB. Namely, the particle moves inside
the setB with unit speed along a geodesic until it reaches one of the setsBi (collision)
where it reflects according to the law ‘the angle of incidence is equal to the angle of
reflection’. If it reaches one of the setsBi

⋂
Bj , i 6= j , the trajectory is not defined after

that moment. Any sequence of wallsK = {Bik }lk=1 is called a combinatorial class of
length l. Any curve0 ⊂ B determines a combinatorial classK0 of walls it has visited.

If a set A is isometrically embedded into two metric spacesN1, N2, we denote via
N1

⋃A
N2 the result of gluing the spaces together alongA. The definition of the unfolding

spaceMK of the billiard corresponding to a combinatorial classK = {Bik }lk=1 is rather
straightforward:MK = M0

⋃Bi1 M1
⋃Bi2 M2 · · ·⋃Bil Ml, where theMi ’s are just distinct

isometric copies of the manifoldM, glued together in the order determined by the class
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K. Since all the walls are convex, the fact that the curvature ofMK is bounded from
above by the maximal sectional curvature ofM follows from Reshetnyak’s theorem
(see [Ba, Re]). In order to simplify the notations, we will writeM0 instead ofMK0

.

The spaceMK is an exact geometric model of the combinatorial classK because every
billiard trajectory of this class uniquely corresponds to a geodesic inMK . Namely, the
geodesic is obtained by projection of the configuration space into the spaceMi ∈ MK,

provided the trajectory already made exactlyi collisions with the walls.

1.2. Local estimates. In the framework of the geometric model, the following
generalization (a variable curvature counterpart) of the results of Galperin [Ga1] and
Vaserstein [Va] becomes almost self-evident.

THEOREM 1. For any trajectory of an arbitrary semi-dispersing billiard the number of
collisions during any finite time interval is finite.

Therefore, every finite piece of a trajectory of a semi-dispersing billiard makes only
finitely many collisions. But, is there a sequence of pieces of trajectories of bounded
length making more and more collisions or is the number of collisions boundeduniformly,
at least for a short period of time? In fact, one can easily find cases of the former, but all
such billiards look somewhat degenerate. This leads us to the following problem:Find
a general non-degeneracy condition that would guarantee the uniform boundedness of
the number of collisions in a neighborhood of a given point of the billiard.This problem
was first posed by Sinai, who also gave a solution [Si2] for billiards in polyhedral angles
(where no condition is necessary). The existence of such estimates is related to various
properties of a billiard system. For example, Sinai–Chernov formulas [Ch2, Si1] for the
metric entropy of billiards are proved under the assumption that such an estimate exists.

The following Theorem 2 proved in [BFK1], together with Definition 1.1 is a complete
solution to this problem.

THEOREM 2. Let a semi-dispersing billiardB with n walls be non-degenerate (see
Definition 1.1) with constantC at a point x. Then there exists a neighborhoodUx of
x such that every billiard trajectory enteringUx leaves it after making no more than

(16(C + 2))2(n−1)

collisions with the walls.

As an immediate application of Theorem 2 we obtain the following global linear
estimate.

COROLLARY 1.1. For any non-degenerate semi-dispersing billiard there exists a constant
P such that, for everyt , every trajectory of the corresponding billiard flow makes no more
thanP(t + 1) collisions with the boundary in the time interval[0, t ].

1.3. Non-degeneracy condition.Some non-degeneracy condition, prohibiting obvious
counter-examples, is necessary for the existence of uniform local estimates. In [BFK1]
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we introduced the non-degeneracy condition used in Theorem 2. This condition is always
satisfied for a system of hard balls in empty space (whereas other natural conditions are
known to fail; for example, the condition that the normals to the walls be in general
position). For a system of balls in a jar with concave walls our non-degeneracy condition
is satisfied except for some special sets of radii, when it is possible to ‘squeeze the balls
tightly between the walls’. Actually, it is known that in those situations the system may
have arbitrarily many collisions locally. The condition is the following.

Definition 1.1.A billiard B is non-degeneratein a subsetU ⊂ M (with constantC > 0),
if for every I ⊂ {1, . . . , n} and for everyy ∈ (U

⋂
B)\(⋂j∈I Bj ),

dist(y,
⋂

j∈I Bj )

maxk∈I dist(y, Bk)
≤ C,

whenever
⋂

j∈I Bj is non-empty.
A billiard B is callednon-degenerate at a pointx ∈ B with constantC if it is non-

degenerate in a neighborhood ofx with the same constant, andlocally non-degenerate
with constantC if it is non-degenerate at every point with constantC.

We will say thatB is non-degenerateif there existδ > 0 andC > 0 such thatB is
non-degenerate, with constantC, in any δ-ball.

Roughly speaking, the condition means that if a point isd-close to all the walls
in I then it is Cd-close to their intersection. Formulated this way it is very easy to
verify in many important cases, including the hard-ball gas models. However, in order
to acquire some geometric insight, we notice that the condition is equivalent to the
following geometric property: there exists a positiver such that, at every point, the unit
tangent cone toB (which is a subset of the unit sphere in the tangent space toM) contains
a ball of radiusr. For flat M this means that every point ofB is a vertex of a round
cone of radiusr which entirely belongs toB in some neighborhood of its vertex. As
far as we know, ‘the cone condition’ was first formulated by Sinai. For compact billiard
tables, these definitions can also be reformulated in the following way: the operations
of taking tangent cone and intersection commute for any collection of the complements
to the wallsBi . For non-compact tables, however, this definition guarantees the non-
degeneracy at all points, but the constantC may deteriorate and have no positive lower
bound.

1.4. Outline of the proof of Theorem 2.Reasoning by contradiction, we show that if
a combinatorial classKT of a billiard trajectoryT were long enough thenT could not
be a length minimizer. On the other hand, by Alexandrov’s theorem [Re], sufficiently
short segments of geodesics in a space of curvature bounded from above are length
minimizers, which produces a contradiction. Without loss of generality, we may assume
that the intersectionQ of all the walls of our billiard is non-empty.

Using induction by the number of wallsn we may assume that every wallBik ∈ KT

has been visited sufficiently many, sayN , times. Letxi , i = 1, . . . , N , be the points of
collisions of T with Bik , ordered with respect toKT . We consider our trajectoryT as
a geodesic inMT and will modify it in a shorter curve with the same endpoints. We
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will work with curves in our billiard table (not inMT ), and notice that a curve which
visits the intersection of all the walls can be unfolded inMT with prescribed lifts of its
endpoints. For every pairxi, xi+1 we can make our curveshorter simply by replacing
the pieceT (xi, xi+1) of the trajectory between the pointsxi and xi+1 with the shortest
curve with the same endpoints. This operation does not preserve the combinatorial
class, but we repair it by forcing the curve to visit the intersection of all walls: pick
y ∈ Q and indexi and replaceT (xi, xi+1) with the two shortest curves connectingxi

andy, andy andxi+1. Generally, the process will make our curvelonger, but the non-
degeneracy condition and some elementary (but essentially local, unless we are dealing
with a Euclidean space, see the discussion in [BFK3]) considerations guarantee that, by a
special choice ofi (provided by the non-degeneracy condition), the ratio of what we gain
due to thelengtheningto what we get rid of inevery shortening is uniformly bounded
from above. Thus, ifN is big enough to apply the shortenings sufficiently many times
(and there is only one lengthening), the resulting curve will be shorter thanT . (The
detailed proof is presented in [BFK1].)

2. Global estimates and hard-ball systems
2.1. Global estimates on the number of collisions.As we have just pointed out, the
argument above is local (unlessM is flat), and so is the estimate on the number of
collisions. Consider now a billiard on a manifoldM of non-positive sectional curvature.
If we could construct its universal unfolding space of non-positive curvature (see§5 for
a rigorous definition) we would immediately obtain aglobal estimate on the number
of collisions in the billiard. (The uniqueness of the geodesic connecting its endpoints
implies that, since each wall is geodesically convex, there are no more collisions than
the number of walls in the unfolding space.)

However, no construction of such a universal unfolding space is known in the general
case. Nevertheless, one can make a similar idea work by the following modification
of spacesMT : for a combinatorial classK = {Bi1, . . . , Bil }, consider the space
M̃K = M0

⋃Bi1 M1
⋃Bi2 · · ·⋃Bil−1 Ml−1

⋃Bil M0, whereMk, k = 0, . . . , l−1, are distinct
isometric copies ofM, i.e. after sufficiently many collisions we ‘close up’MT by gluing
the first and the last copies together.

Now we cannot guaranteea priori that this space is non-positively curved, since
Reshetnyak’s theorem is not applicable any more. Remember, however, that non-
positiveness of curvature is a local property, so, in order to verify it, we only have
to show that an excess of everysmall triangle is non-positive. However, such a
triangle is contained in a small number of copiesMK , which follows from the proof
of local estimates (we can now regard the sides of the triangle as ‘generalized’ billiard
trajectories). Hence, ifK is long enough, we may ‘tear off the cycle of gluings’ and
the procedure will not affect the small triangle under consideration (i.e. the angles of the
triangle will not decrease). Applying Reshetnyak’s theorem to this resulting space, we
see that the excess of the triangle is non-positive and thereforeM̃K is a non-positively
curved space. This is a contradiction since geodesics between fixed endpoints in such
spaces are unique, while the development ofT has returned to the same copy ofM.
This leads to the following.

https://doi.org/10.1017/S014338579811564X Published online by Cambridge University Press

https://doi.org/10.1017/S014338579811564X


A geometric approach to semi-dispersing billiards 309

THEOREM 3. If M is a simply connected manifold of non-positive sectional curvature,⋂n
i=1 Bi is non-empty, andB is locally non-degenerate with constantC, then every billiard

trajectory inB has no more than

(200(C + 2))2n2

collisions in the infinite period of time(−∞, ∞).

2.2. Hard-ball systems. As an application of Theorem 3, we consider a system of hard
balls in an arbitrary simply connected manifold of non-positive sectional curvature. In
spite of the fact that the finiteness of the number of collisions in such a system inR

k

has been known for a long time ([Va, Ga1], and much later [Il ]), uniform estimates on
the number of collisions were obtained only for the system of three identical balls inR

2

[MuCo, ThSa] and for systems of particles on a line [Ga2, SeVa].
Theorem 3 allows us to prove the following.

THEOREM 4. The maximal number of collisions that may occur in a system ofN

hard elastic balls (of arbitrary masses and radii) moving freely in a simply connected
Riemannian spaceM of non-positive sectional curvature never exceeds

(
400N2 mmax

mmin

)2N4

,

wheremmax and mmin are, correspondingly, the maximal and the minimal masses in the
system.

Remark.Theorem 3 was first established forR
k in [BFK1]. The results of [BFK3]

allowed us to extend Theorem 3 to manifolds of non-positive curvature, and to get rid
of the dependence on the radii that was present in [BFK1].

Proof. Consider a system ofN balls of radii ri and massesmi , i = 1, . . . , N , moving
freely in the spaceM and colliding with each other elastically. Without loss of generality
we may assume that mini mi = 1, maxi mi = M. Let ρ be the Riemannian metric on
M.

The dynamics of the system of hard balls is isomorphic to the dynamics of a certain
billiard in the configuration spaceMN (in which every ball is represented by its center)
which is endowed with a Riemannian metricρ̃,

ρ̃((x1, . . . , xn), (y1, . . . , yn)) =
( N∑

i=1

miρ(xi, yi)
2

)1/2

.

Notice that, providing thatρ is a metric of non-positive curvature,ρ̃ is a metric of non-
positive curvature as well. The corresponding billiard is defined in the complementB

of N(N − 1)/2 bodiesBm,l , each of which corresponds to a pair of balls. Namely, for
everym, l = 1, . . . , N, m 6= l,

Bm,l = {(x1, . . . , xN) ∈ MN | ρ(xm, xl) ≤ rm + rl}.
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Every such bodyBm,l is isometric to a product ofMN−2 with a convex set inM2 and,
thus, is convex too.

Now we will check the uniform non-degeneracy condition forB.
Fix a set of wallsI , and let I0 = {m | (m, l) ∈ I }. Consider an arbitrary point

X0 = (c1, . . . , cN) ∈ MN\(⋃(m,l)∈I Bm,l) and letδ = max(m,l)∈I ρ̃(X0, Bm,l). Our goal
is to estimateρ̃(X0,

⋂
(m,l)∈I Bm,l) via δ.

In order to do that, let us apply the following procedure: pick somem1 ∈ I0 and
move all the ballsBm, m ∈ I0\{m1}, simultaneously and with equal velocities along the
geodesics inM, connecting the centers ofBm with the center ofBm1, until every pair
of balls Bm1, Bm such that(m1, m) ∈ I intersect (if the center of one of the ballsBm

reaches the center ofBm1, we stop moving it any further, and continue to move the other
balls). As a result, we obtain a pointX1 ∈ MN . Since we never have to move any ball
in M more than byδ, we haveρ̃(X0, X1) ≤ MNδ. On the other hand, for every two
geodesicsγ1, γ2 in the simply connected spaceM of non-positive curvature the function
ρ(γ1(t), γ2(t)) is convex. Therefore, distances between any pair of the balls will not
increase, so that we still have max(m,l)∈I ρ̃(X1, Bm,l) ≤ δ.

Next, we apply the same procedure to somem2 ∈ I0\{m1}, obtaining a pointX2 ∈ MN

such thatρ̃(X1, X2) ≤ MNδ, etc. By construction, the last pointX|I0| ∈ ⋂
(m,l)∈I Bm,l

and ρ̃(X0, X|I0|) ≤ ∑|I0|−1
i=0 ρ̃(Xi, Xi+1) ≤ MN2δ. Therefore, it is shown thatB is

non-degenerate in the wholeMN , with the constantMN2.
Applying Theorem 3, we see that the number of collisions is not greater than

(200MN2 + 2)2N4
< (400MN2)2N4

. �

2.3. Generalized systems.All our methods and results remain valid even if we drop
the assumption that the boundaries ofBi are hyper-surfaces. Of course, in this case
we have to change the definition of the outcome of a collision appropriately: it would
not be uniquely defined any more, and we would require only the conservation of the
tangential component of the velocity. In particular, Theorems 2 and 3 and Corollary 1.1
hold for singular trajectories as well (i.e. the trajectories that enter the intersections of
several bodies and reflect in arbitrary directions preserving the component parallel to
the tangent space of the intersection of the bodies at the point of collision). This also
allows us to apply our results to particle systems, i.e. billiard systems of several balls of
various masses and radii where some (mixed system) or all (pure system) of the balls
may have zero radii (particles). In such systems multiple simultaneous collisions are
allowed, as well as collisions with the intersections of several boundary components
(for detailed definitions see [SeVa], which also generalizes estimates of [Ga2] for pure
particle systems from the one-dimensional case to higher dimensions). In particular,
Theorem 4 holds for arbitrary particle systems (with exactly the same estimate).

3. Entropy estimates
3.1. Topological entropy. Recall that there is a standard way to introduce a distance
function in the unit tangent bundleT M to M (sometimes this distance function is called
the Sasaki metric). This distance is used to define the topological entropyhtop(f ) of
any transformationf of a subset ofT M (for a definition of the topological entropy for
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transformations of non-compact spaces see, for example, [PePi], or the original paper by
Bowen [Bo]). The topological entropy of the time-one mapT 1 of the billiard flow will
be called the topological entropy of the billiard.

Sinai–Chernov’s formulas ([Ch2, Si1]; see also the excellent review in [Ch4]) imply
the finiteness of the metric entropy of non-degenerate semi-dispersing billiards inR

n or
T

n with respect to the Liouville measure (for various estimates of the metric entropy see
also [ChMa, Wo]). However, little is known about the topological entropy of general
semi-dispersing billiards. Most of the results known to the authors are proven only
for two-dimensional semi-dispersing billiards (the connection between the topological
entropy and the number of periodic points [Ch1] and the results of [KaSt]). The only
results on the topological entropy of billiards of arbitrary dimension that we are aware of,
are the fact that the topological entropy of polyhedral billiards is zero (see [Ka], [GuHa],
also [Ch2] for a similar result about metric entropy), and the finiteness of topological
entropy for billiards in the outside of several strictly convex and disjoined bodies inR

k

[St2].
Denote viaHM(t) the number of different homotopy classes that can be represented

on the Riemannian manifoldM by closed curves of length less thant . In [BFK2] we
established the following estimate.

THEOREM 5. The topological entropy of a compact non-degenerate semi-dispersing
billiard with n walls on a manifoldM of non-positive sectional curvature is less than
or equal to

(P + 1) log(n) + 2 lim
t→∞

log(HM(t))

t
,

whereP is the constant from Corollary 1.1. In particular, the topological entropy is finite.

The result seems to be a purely dynamic one. However, its proof is based on
Theorem 2 (in fact, on Corollary 1.1) as well as on certain geometric properties of
the unfolding space. Let us outline the proof assuming for simplicity that the manifold
M is simply connected.

Informally speaking, in order to estimate the topological entropy of the billiard, from
above, by a constantA, we have to find a way to describe a billiard trajectory0(t),
t ∈ [0, l], of length l with given precision, using an ‘amount of data’ which is no bigger
than constant× eAl. We claim that such data is a triple (combinatorial class of0, 0(0),
0(l)) where, by definition, we may know0(0), 0(l) only approximately. Since the
distance between two geodesics in a simply connected space of non-positive curvature
is a convex function of time (a well-known fact for the usual Riemannian spaces, which
is also true for Alexandrov spaces), any two geodesics with endpoints close in the
configuration space are in fact uniformly close to each other in the phase space. (This
is much harder to prove for singular spaces than for regular manifolds. The convexity
immediately gives us the closeness in the configuration space, but the closeness in the
phase space requires some additional work. See [BFK2] for details.) It means that the
triple indeed determines a billiard trajectory with the necessary precision. Therefore, in
order to estimate the entropy, we have to calculate the exponential speed of growth of
the number of such triples, which is just the exponential speed of growth of the number
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of possible combinatorial classes as a function of the trajectory length. But according to
Corollary 1.1, it is no greater than(P + 1) log(n).

Let us call a pointx ∈ T̃ B Z-regular if T i(x) belongs to the interior ofT B for
all i ∈ Z. For example, almost all points of̃T B are Z-regular with respect to the
Liouville measure. Clearly the restriction of the time-one mapT 1 to the setT BZ of
Z-regular points inB is continuous, and its topological entropy is less than or equal
to the topological entropy ofT 1 on B. Thus, Theorem 5 together with the results of
Pesin and Pitskel [PePi] concerning the variational principle for the continuous maps of
non-compact spaces, yields the following.

COROLLARY 3.1. Metric entropy, of a compact non-degenerate semi-dispersing billiard
on any manifold of non-positive sectional curvature, with respect to anyT 1-invariant
probability measureµ such thatµ(T BZ) = 1, is finite. In particular, metric entropy is
finite for any measure which is invariant with respect to the whole flowT t .

3.2. Lorentz gas. A Lorentz gas model is a billiard onTk = R
k/Z

k with one wall
which is a ball of radius 1/2 > r > 0. For the last twenty years, this model has been
studied extensively (see, for instance, [Bl, BuSi3, Ch1, Ch5, Si8, Yo]). In [Ch1] it was
proven that the first return map to the boundary of the Lorentz gas billiard has infinite
topological entropy, and that the metric entropy of the Lorentz gas billiard with respect
to the Liouville measure converges to zero asr → 0. In contrast to those results, in
[BFK2] we prove the following.

THEOREM 6. Denote byhr(k) the topological entropy of the Lorentz gas billiard described
above. Then:
1. hr(k) is finite;
2. there existlimr→0 hr(k) = h0(k), and0 < h0(k) < ∞;
3. ln(2k − 1) ≤ h0(k) ≤ h0(k + 1).

A computer aided computation shows thath0(2) = 1.526. . . .

4. Periodic points and trajectories
In [BFK2] we obtained a description of the set of periodic points and trajectories of
semi-dispersing billiards. We call a curveν(t) a periodic pseudo-trajectory of class
K = {Bi1, . . . , Bij } if it is a closed curve that consists of pieces of geodesics onM that
connect some pointx1 ∈ Bi1 with some pointx2 ∈ Bi2, the pointx2 ∈ Bi2 with some
point x3 ∈ Bi3, . . . , the pointxj ∈ Bij with the pointx1 ∈ Bi1, and at each pointxk,

k = 1, . . . , j . The tangent vector toν(t) changes according to the billiard rule with
respect toBik . (The difference between this and the usual trajectories is that a geodesic
segment of a pseudo-trajectory betweenxk andxk+1 may intersect some of the bodiesBi,

i = 1, . . . , n.) Notice that if0 is any periodic trajectory then a periodic pseudo-trajectory
close enough to0 is also a periodic trajectory.

Our main result on periodic trajectories is the following.

THEOREM 7. Let B be a semi-dispersing billiard on a simply connected manifoldM of
non-positive sectional curvature. LetK be some combinatorial class of trajectories.
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(Notice that, here, we do not requireB to be compact or non-degenerate, unlike in our
previous results.)

Then, the periodic trajectories of classK all have the same length and form a parallel
family in the following sense. Any two periodic trajectories01 and02 of classC can be
joined by a continuous curve0t , 1 ≤ t ≤ 2, of periodic pseudo-trajectories of typeK, so
that:
1. the surface6k, k = 1, . . . , j , formed by the pieces of trajectories0t , 1 ≤ t ≤ 2,

between thekth and(k +1)st collisions is a piece ofR2 isometrically embedded into
M;

2. the intersectionsIk of the boundary ofBik with the trajectories from the curve0t ,

1 ≤ t ≤ 2, are isometrically embedded intervals of a straight line that connect the
points01

⋂
Bik with the points02

⋂
Bik ;

3. inside of each flat surface6k, k = 1, . . . , j , the pieces of trajectories from0t ,

1 ≤ t ≤ 2, are parallel to each other.

Therefore, periodic trajectories of the same combinatorial class always come in parallel
families. For a typical semi-dispersing billiard such a family cannot contain more than
one periodic trajectory.

COROLLARY 4.1. For M as in Theorem 7:
1. if the curvature ofM is strictly negative, every combinatorial class contains no more

than one periodic trajectory;
2. if for some periodic trajectory0 at least one of the walls it visits is strictly convex

at the point of collision with the trajectory, then0 is the only periodic trajectory in
its combinatorial class.

Let us call two periodic trajectories equivalent if they are parallel (in the sense
explained in Theorem 7) and let us call two periodic points for the first return map to
the boundary equivalent if the corresponding periodic billiard trajectories are equivalent.

Denote byPk, k ∈ N, the number of periodic points, and bỹPk the number of
equivalence classes of periodic points of periodk for the first return map to the boundary
of the billiard B. Denote byP t , t ∈ R

+, the number of periodic trajectories, and byP̃ t

the number of equivalence classes of periodic trajectories, of the billiard flow of length
less than or equal tot . Finally, P(t) denotes the maximum number of collisions in
time t .

Theorem 7 implies the following.

COROLLARY 4.2. Let B be a semi-dispersing billiard on a simply connected manifoldM

of non-positive sectional curvature. Let

θ(m, x) =



0, x < 2
m(m − 1), 2 ≤ x < 3
m(m − 1)x−1(m − 2), x ≥ 3

for everym ∈ N, x ∈ R
+. Then, for everyk ∈ N, t ∈ R

+:
1. if the curvature ofM is strictly negative or all the setsBi , i = 1, . . . , n, are strictly

convex then

P̃k = Pk ≤ θ(n, k) and P̃ t = P t ≤ θ(n, P (t + 1));
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2. otherwise, either

P̃k = Pk ≤ θ(n, k) and P̃ t = P t ≤ θ(n, P (t + 1))

or
P̃k ≤ θ(n, k), P̃ t ≤ θ(n, P (t + 1)) but P t = Pk = ∞.

In the caseM = R
k, for periodic points, andM = R

2, for periodic trajectories, this
assertion was proved in [St1].

Note that the estimate onPk given in Corollary 4.2 cannot be improved since it is
sharp in every billiard satisfying the so called Ikawa condition (H) [Ik ] (all the bodies
are disjoint and the convex hull of any two bodies does not have points in common with
any of the other bodies).

5. Universal unfolding space
In proving all the results mentioned above, we have used two different geometric models
of a semi-dispersing billiard; one presented in§1 and the other presented in§2. However,
in both cases we have to use a separate model for each combinatorial class of billiard
trajectories. Obviously, it would be desirable to construct a ‘universal unfolding space’
of the billiard such that every trajectory would correspond to a geodesic of that space.
To be more precise, a universal unfolding spaceM̃ is a result of gluing together (along
the setsBi, i = 1, . . . , n) a finite number of copies ofM so that:
1. Every copy is glued to exactlyn other copies along each of the bodiesBi,

i = 1, . . . , n. To be more precise, for every copyMj :
(a) there aren distinct copiesMi

j , i = 1, . . . , n, such thatMj

⋂
Mi

j = Bi ;
(b) if for some copyMk, Mj

⋂
Mk = Bi thenMk = Mi

j ;
(c) for anyMk, Mk

⋂
Mj ⊂ Bi , for somei ∈ {1, . . . , n}.

2. The curvature ofM̃ is bounded by the maximal sectional curvature ofM.
It is easy to show that the spacẽM may be constructed only if the billiard is non-

degenerate. The most interesting case is whenM is a manifold of non-positive sectional
curvature, which we assume everywhere in this section. In [BFK3] we showed how
to constructM̃ when the billiard has only two walls and also in the case whenM is a
surface. In both cases, the construction is elementary. For example, in the latter case,
the construction is the following.

Fix a numberK and consider a finite group0 with n generatorsγi , i = 1, . . . , n,
such that if a relation of the formγ k1

i1
. . . γ

kl

il
= e, im 6= im+1, l ∈ N, m = 1, . . . , (l − 1),

holds then necessarily|k1| + · · · + |kl| > K. An explicit example of such a group can
be found in [S].

Consider|0| copies ofM, and denote them asMg, g ∈ 0. Consider another|0| copies
of M, and denote them asMg, g ∈ 0.

Now, let us glue together these 2|0| copies of M by performing the following
operations: ifg1 = γig2, then we glue togetherMg1 andMg2 along the bodyBi. Denote
by M̃ the result of all these gluings. It is proven in [BFK3] that if K is ‘big enough’ then
M̃ is a universal unfolding space for the billiard on the surfaceM outside of bodiesBi

(where we can always assume that the intersections of more than two bodies are empty).
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The problem of constructing a universal unfolding space in dimensions higher than
two appears to be extremely difficult, even for the simplest possible case—the billiard
in a simplex.

In a forthcoming paper [BFKlK ] we plan to present a result that, in particular, will
yield a construction of a universal unfolding space for polyhedral billiards in dimension
three. Contrary to what might be anticipated, the construction is not at all elementary,
in fact, it is essentially based on Thurston’s theory of hyperbolic structures on three-
dimensional manifolds. Here is a sketch of the construction.

Let S be a three-dimensional polyhedron. We start by constructing, for arbitrary
K ∈ N, a boundaryless pseudo-manifoldMK such that every edge (and, thus, every
vertex) belongs to at leastK copies ofS (and, of course,MK is constructed out of
a finite number of isometric copies ofS). If K is large enoughMK has non-positive
curvature everywhere except maybe in the vertices. The rest of the proof consists of an
‘unwrapping’ of the spaceMK into a spaceM with large links of all the vertices (and,
thus, of a non-positive curvature).

We throw out convex polyhedral neighborhoods of all the vertices ofMK to form a
spaceM0

K . The ‘unwrappings’ ofMK correspond to finite covers ofM0
K . In order to

construct the ‘unwrapping’ such that all the links would have no short homotopically
non-trivial geodesics it is enough to find a finite index subgroup inπ1(M

0
K) which does

not contain the elements ofπ1(M
0
K) that correspond to the short closed geodesics in

the links. The main difficulty in the proof is to show that such a subgroup exists. To
overcome this we show that, for large enoughK, π1(M

0
K) is a linear group, and, thus,

is residually finite.
WhenK is large enough,M0

K has non-positive curvature and its boundary components
are totally geodesic and non-positively curved. LetM2

K be the result of ‘doubling’M0
K ,

i.e. gluing two copies ofM0
K along the boundary. We apply the uniformization theorem

for Haken manifolds [Ot, Th, MorBa ], to conclude thatM2
K is hyperbolizable, and,

therefore,π1(M
2
K) is linear [Ma]. This immediately implies thatπ1(M

0
K) is also linear.

The result of the construction described above is a pseudo-manifold, since the
neighborhoods of the vertices are homeomorphic to cones over surfaces of high genus.
In [BFKlK ] we also give the necessary and sufficient conditions describing when it is
possible to construct a boundarylessmanifold (topological, of course) by gluing several
copies of a given three-dimensional polyhedron.

6. Open questions
We conclude our survey with the formulation of several open questions, which are closely
related to the results mentioned above.

Question 1.Are there universal unfolding spaces for arbitrary non-degenerate semi-
dispersing billiards on non-positively curved manifolds of dimension greater than two?

Question 1a.Is it possible to construct a compact CAT(0) boundaryless pseudo-manifold
by gluing together a finite number of copies of a given polyhedronS along the isometric
faces?

It is quite possible that the answer to Question 1a (and, thus, to Question 1 as well)
is negative for sufficiently high dimensions.
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Question 2.What can be said about the topological, or even the metric entropy of
degenerate compact semi-dispersing billiards, or of the billiards on manifolds without
the non-positive curvature restriction? In particular, can it be infinite?

The question is open even for degenerate semi-dispersing billiards in Euclidean space.
We strongly suspect that the introduction of even arbitrarily small amounts of positive
curvature into a billiard on the Euclidean plane may produce a billiard with infinite
topological entropy, which would be a nice demonstration of howpositivecurvature can
force the entropy to become infinite.
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