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Abstract We summarize the results of several recent papers, together with a few new

results, which rely on a connection between semi-dispersing billiards and non-regular

Riemannian geometry. We use this connection to solve several open problems about
the existence of uniform estimates on the number of collisions, topological entropy and

periodic trajectories of such billiards.

0. Introduction

While the first ideas of hyperbolicity of certain billiard systems go back to Kryknj][

the mathematical theory of semi-dispersing billiards originated with the works of
Sinai [Si4—g in connection with the foundations of statistical physics and the study
of the hyperbolicity and ergodicity properties of such billiards. Since then the
theory of semi-dispersing and dispersing (also called scattering or Sinai) billiards
has grown in various directions, including the study of their ergodicity properties
[BuSi1, BLPS, KSS1, KSS2, Reh, Si5, SiChl, Sim1, Sim2, Simdahe existence

of stable and unstable manifolds, Markov partitions and other properties related
to hyperbolicity BuSi2, BSC2, Ch3, Ef, KaSt, L& entropy and periodic orbits
[Bul, ChMa, Chl, Ch2, Ch4, Mo, Sil, SiCh2, St1, St2, Wpvarious statistical and
symbolic properties, and limit theoremBI] Bu2, BSC1, Ch5, GalOr, Tr, Yo], quantum

and other generalization8¢, Do, DoLi, DorSm, HaSh, CdV, V& and many others
(see also $i3, Si7, T4 and [KoTr ] for reviews and more references).
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It has been known for a long time (see, for exampEeHKa]) that thedynamicsof
a billiard in a rational polygon may be viewed as tigometryof its unfolding surface.

Even in this simple situation the unfolding is not quite a Riemannian surface since in all
but a few cases its metric is bound to have singularities (and away from the singularities
the metric is flat). This object, however, is not at all pathological from the point of
view of non-regular Riemannian geometry, the principal ideas and methods of which
were developed by Alexandrov and his collaborators (2deAIB, AISt, AlZa, Re])

in the mid 1960’s. Since then it has attracted the attention of many leading geometers,
especially after the spectacular paper of Grom®x4]]. The cornerstone of the approach

is the following observation. The well-known comparison theorems of Alexandrov and
Toponogov show that there is a way to estimate the sectional curvature of a Riemannian
manifold from above simply by comparing the geodesic triangles on the manifold and in
a model space (a complete simply connected surface of constant curvature). However,
since the procedure involves measurement of certain distances only, it may be considered
a definition of a space whose curvature is bounded from above. This definition coincides
with the usual one in the category of smooth Riemannian manifolds, but in fact makes
sense for an arbitrary geodesic space (a metric space in which every two points may be
connected by a geodesic).

Therefore, it would be natural to look for an unfolding space of an arbitrary semi-
dispersing billiard inside the category of geodesic spaces. Soon it becomes clear that in
order to reflect the dynamics of the billiard properly, the curvature of the space should
be bounded from above by the initial curvature of the billiard’s configuration space. This
would allow one to view any semi-dispersing billiard as a finite factor of a geodesic flow
on a space of bounded (non-positive in the case of billiards on manifolds of non-positive
curvature) curvature (se®FK3] for a detailed discussion). However, construction of
such an object in general seems to be very difficult, if not impossible {Sefor a
detailed discussion). Instead, we construct an unfolding space for a given combinatorial
class of trajectories, i.e. for all trajectories colliding with the same sequence of walls of
the billiard. This space turns out to be a geodesic space of curvature bounded from above
(in most applications, this is a non-positively curved space). Every billiard trajectory of
the chosen combinatorial class uniquely corresponds to a geodesic in the unfolding space
(we will identify them below) and, therefore, many questions concerning the dynamics
of semi-dispersing billiards become purely geometric.

The purpose of this article is to summarize the results obtaine@mK1-3]. All
three papers address various problems in the theory of semi-dispersing billiards using the
geometric approach outlined above. We will state all the main results fBFK1-3]
and outline some of the proofs. However, the emphasis of this paper is not on the
rigorous proofs, which an interested reader may find in the articles mentioned above, but
rather on the demonstration of the method, its power, and its limitations.

This paper is organized as follows. 1 and 2 we summarize the results from
[BFK1] and [BFK3] regarding the existence of uniform (i.e. independent of the choice
of trajectory) estimates on the number of collisions in semi-dispersing billiards. In
particular, we present the basic geometric construction of the unfolding space of a
combinatorial class of trajectories. Next, we formulate and discuss a non-degeneracy
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condition that guarantees the existence of the estimates. As an application, we establish
an explicit upper bound for the number of collisions that can take place in the infinite
time interval(—oo, co) for hard-ball systems in an empty space of non-positive sectional
curvature. (This upper bound depends only on the number of balls, and their maximum
and minimum masses, and is independent of their radii, initial positions and velocities.)
Also, in order to give some insight into our methods, we will outline the proofs of
Theorem 2 and Theorem 3, and prove Theorem 4.

In §3 we discuss the results frorBEK2] regarding the finiteness of topological and
metric entropy of an arbitrary non-degenerate semi-dispersing billiard on a manifold of
non-positive curvature. In particular, the topological entropy of the billiard turns out to
be bounded from above by a number which depends only on the number of walls and
the non-degeneracy constant of the billiard. Also, we prove the existence and obtain an
estimate on the limit of the topological entropy of the Lorentz gas while the radius of
the scatterer tends to zero.

In §4 we present a general result which describes the structure of the set of periodic
points of the billiard map (and periodic trajectories of the billiard flow) and gives an
estimate of their number for semi-dispersing billiards on simply connected manifolds of
non-positive curvature.

In §5 we discuss a difficult problem of non-regular Riemannian geometry already
mentioned above—the existence of a ‘universal’ unfolding space for a non-degenerate
semi-dispersing billiard.

Finally, in §6 we formulate a number of open questions related to the results and
methods presented in this paper.

1. Local uniform estimates on the number of collisions
1.1. Preliminaries. Throughout this paper we denote by/ an arbitrary C?
Riemannian manifold without a boundary, with bounded sectional curvature and with
the injectivity radiusp > 0. Consider a collection of geodesically convex subsets
(walls) B; ¢ M, i =1,...,n of M, such that their boundaries a* submanifolds
of codimension one. LeB = M\(|J!_, Int(B;)), where IntB;) denotes the interior of
the setB;. A semi-dispersing billiard flow (or a semi-dispersing billiard system) acts
on a certain subset of the unit tangent bundleBtdsee, for example,di3] for more
details). The projections of the orbits of that flow Boare called the billiard trajectories
and correspond to free motions of particles inskleNamely, the particle moves inside
the setB with unit speed along a geodesic until it reaches one of theB;efsollision)
where it reflects according to the law ‘the angle of incidence is equal to the angle of
reflection’. If it reaches one of the seBs() B;, i # j, the trajectory is not defined after
that moment. Any sequence of walls = {B,}._, is called a combinatorial class of
lengthl. Any curvel” C B determines a combinatorial clagg of walls it has visited.

If a setA is isometrically embedded into two metric spadés N,, we denote via
Ny UA N, the result of gluing the spaces together al@dngrhe definition of the unfolding
spaceM of the billiard corresponding to a combinatorial class= {Bik}izl is rather
straightforward:Mx = Mo % M1 |J%2 My --- | % M,, where theM;’s are just distinct
isometric copies of the manifolti/, glued together in the order determined by the class
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K. Since all the walls are convex, the fact that the curvaturdfefis bounded from
above by the maximal sectional curvature Mf follows from Reshetnyak’s theorem
(see Ba, Rd). In order to simplify the notations, we will writd/; instead of M.
The spaceM is an exact geometric model of the combinatorial cl&sbecause every
billiard trajectory of this class uniquely corresponds to a geodesiin Namely, the
geodesic is obtained by projection of the configuration space into the 3aceMy,
provided the trajectory already made exadtlgollisions with the walls.

1.2. Local estimates. In the framework of the geometric model, the following
generalization (a variable curvature counterpart) of the results of Galp@sad] [and
Vaserstein Ya] becomes almost self-evident.

THEOREM 1. For any trajectory of an arbitrary semi-dispersing billiard the number of
collisions during any finite time interval is finite.

Therefore, every finite piece of a trajectory of a semi-dispersing billiard makes only
finitely many collisions. But, is there a sequence of pieces of trajectories of bounded
length making more and more collisions or is the number of collisions bouwnaiéat mly,
at least for a short period of time? In fact, one can easily find cases of the former, but all
such billiards look somewhat degenerate. This leads us to the following proBiech:

a general non-degeneracy condition that would guarantee the uniform boundedness of
the number of collisions in a neighborhood of a given point of the billidrdis problem

was first posed by Sinai, who also gave a solutii] for billiards in polyhedral angles
(where no condition is necessary). The existence of such estimates is related to various
properties of a billiard system. For example, Sinai-Chernov form@ag [ Si]] for the

metric entropy of billiards are proved under the assumption that such an estimate exists.

The following Theorem 2 proved iBFK1], together with Definition 1.1 is a complete
solution to this problem.

THEOREM 2. Let a semi-dispersing billiardB with n walls be non-degenerate (see
Definition 1.1) with constan€ at a pointx. Then there exists a neighborhodd of
x such that every billiard trajectory entering, leaves it after making no more than

(16(C +2))*" Y
collisions with the walls.

As an immediate application of Theorem 2 we obtain the following global linear
estimate.

CoRoOLLARY 1.1. For any non-degenerate semi-dispersing billiard there exists a constant
P such that, for every, every trajectory of the corresponding billiard flow makes no more
than P(r + 1) collisions with the boundary in the time interv@l, r].

1.3. Non-degeneracy condition.Some non-degeneracy condition, prohibiting obvious
counter-examples, is necessary for the existence of uniform local estimatd3-Ka |
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we introduced the non-degeneracy condition used in Theorem 2. This condition is always
satisfied for a system of hard balls in empty space (whereas other natural conditions are
known to fail; for example, the condition that the normals to the walls be in general
position). For a system of balls in a jar with concave walls our non-degeneracy condition
is satisfied except for some special sets of radii, when it is possible to ‘squeeze the balls
tightly between the walls’. Actually, it is known that in those situations the system may
have arbitrarily many collisions locally. The condition is the following.

Definition 1.1.A billiard B is non-degeneratin a subset/ ¢ M (with constantC > 0),
if for every I C {1,...,n} and for everyy € (U B)\(N;; B,

dist(y, (;c; B))
max.; dist(y, By) ~

’

whenever);.; B; is non-empty.

A billiard B is callednon-degenerate at a point € B with constantC if it is non-
degenerate in a neighborhood .ofwith the same constant, andcally non-degenerate
with constantC if it is non-degenerate at every point with constaht

We will say thatB is non-degeneratdf there existd > 0 andC > 0 such thatB is
non-degenerate, with constafit in any s-ball.

Roughly speaking, the condition means that if a pointislose to all the walls
in I then it is Cd-close to their intersection. Formulated this way it is very easy to
verify in many important cases, including the hard-ball gas models. However, in order
to acquire some geometric insight, we notice that the condition is equivalent to the
following geometric property: there exists a positiveuch that, at every point, the unit
tangent cone t® (which is a subset of the unit sphere in the tangent spasf) toontains
a ball of radiusr. For flat M this means that every point & is a vertex of a round
cone of radius- which entirely belongs t@ in some neighborhood of its vertex. As
far as we know, ‘the cone condition’ was first formulated by Sinai. For compact billiard
tables, these definitions can also be reformulated in the following way: the operations
of taking tangent cone and intersection commute for any collection of the complements
to the walls B;. For non-compact tables, however, this definition guarantees the non-
degeneracy at all points, but the constanimay deteriorate and have no positive lower
bound.

1.4. Outline of the proof of Theorem 2.Reasoning by contradiction, we show that if
a combinatorial clas&k; of a billiard trajectoryT were long enough thef could not
be a length minimizer. On the other hand, by Alexandrov’s theorRsj, [sufficiently
short segments of geodesics in a space of curvature bounded from above are length
minimizers, which produces a contradiction. Without loss of generality, we may assume
that the intersectior® of all the walls of our billiard is non-empty.

Using induction by the number of walls we may assume that every wal}, € Ky
has been visited sufficiently many, say times. Letx;,i = 1,..., N, be the points of
collisions of T with B;,, ordered with respect t& ;. We consider our trajectory’ as
a geodesic inM7 and will modify it in a shorter curve with the same endpoints. We
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will work with curves in our billiard table (not im/7), and notice that a curve which
visits the intersection of all the walls can be unfoldedM with prescribed lifts of its
endpoints. For every pair;, x;.1 we can make our curvshorter simply by replacing

the pieceT (x;, x; 1) of the trajectory between the points and x;,; with the shortest
curve with the same endpoints. This operation does not preserve the combinatorial
class, but we repair it by forcing the curve to visit the intersection of all walls: pick

y € Q and indexi and replacerl (x;, x;+1) with the two shortest curves connecting

andy, andy andx;.;. Generally, the process will make our cunemger, but the non-
degeneracy condition and some elementary (but essentially local, unless we are dealing
with a Euclidean space, see the discussiomBif3]) considerations guarantee that, by a
special choice of (provided by the non-degeneracy condition), the ratio of what we gain
due to thelengtheningto what we get rid of inevery shortening is uniformly bounded
from above. Thus, ifV is big enough to apply the shortenings sufficiently many times
(and there is only one lengthening), the resulting curve will be shorter ThaifThe
detailed proof is presented iBIFK1].)

2. Global estimates and hard-ball systems

2.1. Global estimates on the number of collisiong\s we have just pointed out, the
argument above is local (unlegd is flat), and so is the estimate on the number of
collisions. Consider now a billiard on a manifol of non-positive sectional curvature.

If we could construct its universal unfolding space of non-positive curvature§&éar

a rigorous definition) we would immediately obtaingéobal estimate on the number

of collisions in the billiard. (The uniqueness of the geodesic connecting its endpoints
implies that, since each wall is geodesically convex, there are no more collisions than
the number of walls in the unfolding space.)

However, no construction of such a universal unfolding space is known in the general
case. Nevertheless, one can make a similar idea work by the following modification
of spacesMy: for a combinatorial classk = {B,..., B;}, consider the space
Mg = MoUP My P2 - - P2 My_1 P Mo, whereM,, k =0, ..., 1—1, are distinct
isometric copies oM, i.e. after sufficiently many collisions we ‘close up/; by gluing
the first and the last copies together.

Now we cannot guaranteg priori that this space is non-positively curved, since
Reshetnyak’s theorem is not applicable any more. Remember, however, that non-
positiveness of curvature is a local property, so, in order to verify it, we only have
to show that an excess of evegmall triangle is non-positive. However, such a
triangle is contained in a small number of copi#s, which follows from the proof
of local estimates (we can now regard the sides of the triangle as ‘generalized’ billiard
trajectories). Hence, iK is long enough, we may ‘tear off the cycle of gluings’ and
the procedure will not affect the small triangle under consideration (i.e. the angles of the
triangle will not decrease). Applying Reshetnyak’s theorem to this resulting space, we
see that the excess of the triangle is non-positive and therafgrés a non-positively
curved space. This is a contradiction since geodesics between fixed endpoints in such
spaces are unique, while the developmentr'ohas returned to the same copy &f.

This leads to the following.
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THEOREM 3. If M is a simply connected manifold of non-positive sectional curvature,
(., B: is non-empty, and is locally non-degenerate with constafitthen every billiard
trajectory in B has no more than

(200(C + 2))%”

collisions in the infinite period of timé—oo, c0).

2.2. Hard-ball systems. As an application of Theorem 3, we consider a system of hard
balls in an arbitrary simply connected manifold of non-positive sectional curvature. In
spite of the fact that the finiteness of the number of collisions in such a systé&h in
has been known for a long timeV@, Gal], and much laterl[]), uniform estimates on
the number of collisions were obtained only for the system of three identical bak$ in
[MuCo, ThSa] and for systems of particles on a lin€42, SeVa.

Theorem 3 allows us to prove the following.

THEOREM 4. The maximal number of collisions that may occur in a systemVof
hard elastic balls (of arbitrary masses and radii) moving freely in a simply connected
Riemannian spaca of non-positive sectional curvature never exceeds

2N4
(400N2m”‘ax)

Mmin

wheremmax and mnin, are, correspondingly, the maximal and the minimal masses in the
system.

Remark.Theorem 3 was first established f& in [BFK1]. The results of BFK3]
allowed us to extend Theorem 3 to manifolds of non-positive curvature, and to get rid
of the dependence on the radii that was presenBFK[1].

Proof. Consider a system aV balls of radiir; and masses:;, i = 1,..., N, moving
freely in the space\1 and colliding with each other elastically. Without loss of generality
we may assume that mim; = 1, maxm; = M. Let p be the Riemannian metric on
M.

The dynamics of the system of hard balls is isomorphic to the dynamics of a certain
billiard in the configuration spacs1” (in which every ball is represented by its center)
which is endowed with a Riemannian metfi¢

N 1/2
ﬁ((-xla~~-axn)7(yla""yn)): <Zmi:0(xi»)’i)2> .

i=1

Notice that, providing thap is a metric of non-positive curvaturg,is a metric of non-
positive curvature as well. The corresponding billiard is defined in the complement
of N(N — 1)/2 bodiesB,,;, each of which corresponds to a pair of balls. Namely, for
everym,l=1,...,N,m #1,

Bm,l = {(x]_, cee ’XN) € MN | IO(-xﬂla xl) <Tm +V[}.
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Every such body,, ; is isometric to a product aM”~2 with a convex set in\? and,
thus, is convex too.

Now we will check the uniform non-degeneracy condition far

Fix a set of walls/, and letly = {m | (m,l) € I}. Consider an arbitrary point
Xo=(c1,...,cy) € MN\(U(m,l)el Bm,[) and lets = MaX,,er ,5(X0, Bm,l)- Our goal
is to estimates (X, ﬂ(m,,)el B,,.;) via g.

In order to do that, let us apply the following procedure: pick somee Iy and
move all the ballsB,,, m € Ip\{m1}, simultaneously and with equal velocities along the
geodesics inM, connecting the centers &, with the center ofB,,,, until every pair
of balls B,,,, B, such that(mi,m) € I intersect (if the center of one of the balb;,
reaches the center &,,,, we stop moving it any further, and continue to move the other
balls). As a result, we obtain a poit; € M”". Since we never have to move any ball
in M more than bys, we havep (X, X1) < MNS. On the other hand, for every two
geodesics, y» in the simply connected spagel of non-positive curvature the function
o), y2(t)) is convex. Therefore, distances between any pair of the balls will not
increase, so that we still have maxe; o(X1, By;) < 8.

Next, we apply the same procedure to somec Ip\{m1}, obtaining a poinf, € MY
such thatp(X1, X2) < MN§, etc. By construction, the last poi,, e m(m,l)el By
and 56(Xo, X)) < Zl’jg_lﬁ(X,-,X,-H) < MN?35. Therefore, it is shown thaB is
non-degenerate in the wholet", with the constani/ N2.

Applying Theorem 3, we see that the number of collisions is not greater than
(200M N2 + 2)2N* < (400M N2)2V*, O

2.3. Generalized systemsAll our methods and results remain valid even if we drop
the assumption that the boundaries B)f are hypersurfaces. Of course, in this case
we have to change the definition of the outcome of a collision appropriately: it would
not be uniquely defined any more, and we would require only the conservation of the
tangential component of the velocity. In particular, Theorems 2 and 3 and Corollary 1.1
hold for singular trajectories as well (i.e. the trajectories that enter the intersections of
several bodies and reflect in arbitrary directions preserving the component parallel to
the tangent space of the intersection of the bodies at the point of collision). This also
allows us to apply our results to particle systems, i.e. billiard systems of several balls of
various masses and radii where some (mixed system) or all (pure system) of the balls
may have zero radii (particles). In such systems multiple simultaneous collisions are
allowed, as well as collisions with the intersections of several boundary components
(for detailed definitions seeSgVd, which also generalizes estimates &d2] for pure
particle systems from the one-dimensional case to higher dimensions). In particular,
Theorem 4 holds for arbitrary particle systems (with exactly the same estimate).

3. Entropy estimates

3.1. Topological entropy. Recall that there is a standard way to introduce a distance
function in the unit tangent bundIEM to M (sometimes this distance function is called
the Sasaki metric). This distance is used to define the topological entigyiy’) of

any transformatiory of a subset off M (for a definition of the topological entropy for
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transformations of non-compact spaces see, for exanipd®i| or the original paper by
Bowen [Bo]). The topological entropy of the time-one mag of the billiard flow will
be called the topological entropy of the billiard.

Sinai—Chernov’s formulas (Jh2, Sil]; see also the excellent review i€li4]) imply
the finiteness of the metric entropy of non-degenerate semi-dispersing billiaR¥sdn
T" with respect to the Liouville measure (for various estimates of the metric entropy see
also [ChMa, Wo]). However, little is known about the topological entropy of general
semi-dispersing billiards. Most of the results known to the authors are proven only
for two-dimensional semi-dispersing billiards (the connection between the topological
entropy and the number of periodic pointS8H1] and the results of{aSt]). The only
results on the topological entropy of billiards of arbitrary dimension that we are aware of,
are the fact that the topological entropy of polyhedral billiards is zero (af [GuHa],
also [Ch2] for a similar result about metric entropy), and the finiteness of topological
entropy for billiards in the outside of several strictly convex and disjoined bodi&4 in
[St2].

Denote viaH, (t) the number of different homotopy classes that can be represented
on the Riemannian manifold/ by closed curves of length less thanin [BFK2] we
established the following estimate.

THEOREM 5. The topological entropy of a compact non-degenerate semi-dispersing
billiard with n walls on a manifoldM of non-positive sectional curvature is less than

or equal to

(P +1)log(n) + 2[Ii7mlog(H+(t)),

whereP is the constant from Corollary 1.1. In particular, the topological entropy is finite.

The result seems to be a purely dynamic one. However, its proof is based on
Theorem 2 (in fact, on Corollary 1.1) as well as on certain geometric properties of
the unfolding space. Let us outline the proof assuming for simplicity that the manifold
M is simply connected.

Informally speaking, in order to estimate the topological entropy of the billiard, from
above, by a constam, we have to find a way to describe a billiard trajectdry),

t € [0,1], of length! with given precision, using an ‘amount of data’ which is no bigger
than constank ¢4/. We claim that such data is a triple (combinatorial clas§ pf(0),

(1)) where, by definition, we may know (0), I'(/) only approximately. Since the
distance between two geodesics in a simply connected space of non-positive curvature
is a convex function of time (a well-known fact for the usual Riemannian spaces, which
is also true for Alexandrov spaces), any two geodesics with endpoints close in the
configuration space are in fact uniformly close to each other in the phase space. (This
is much harder to prove for singular spaces than for regular manifolds. The convexity
immediately gives us the closeness in the configuration space, but the closeness in the
phase space requires some additional work. 8&&P] for details.) It means that the

triple indeed determines a billiard trajectory with the necessary precision. Therefore, in
order to estimate the entropy, we have to calculate the exponential speed of growth of
the number of such triples, which is just the exponential speed of growth of the number
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of possible combinatorial classes as a function of the trajectory length. But according to
Corollary 1.1, it is no greater thagP + 1) log(n).

Let us call a pointx € TB Z-regular if T'(x) belongs to the interior of" B for
all i € Z. For example, almost all points afB are Z-regular with respect to the
Liouville measure. Clearly the restriction of the time-one nfapto the setT By of
Z-regular points inB is continuous, and its topological entropy is less than or equal
to the topological entropy of'* on B. Thus, Theorem 5 together with the results of
Pesin and PitskeHeP] concerning the variational principle for the continuous maps of
non-compact spaces, yields the following.

CoROLLARY 3.1. Metric entropy, of a compact non-degenerate semi-dispersing billiard
on any manifold of non-positive sectional curvature, with respect to Ehjnvariant
probability measurew such thatu (7T Bz) = 1, is finite. In particular, metric entropy is
finite for any measure which is invariant with respect to the whole fiéw

3.2. Lorentz gas. A Lorentz gas model is a billiard off* = R*/Z* with one wall
which is a ball of radius 22 > r > 0. For the last twenty years, this model has been
studied extensively (see, for instancB|,[BuSi3, Ch1, Ch5, Si8, Y3). In [Ch1] it was
proven that the first return map to the boundary of the Lorentz gas billiard has infinite
topological entropy, and that the metric entropy of the Lorentz gas billiard with respect
to the Liouville measure converges to zeroras> 0. In contrast to those results, in
[BFK2] we prove the following.

THEOREM 6. Denote by, (k) the topological entropy of the Lorentz gas billiard described
above. Then:

1. A, (k) is finite;

2. there existim,_gh, (k) = ho(k), and0 < hg(k) < oc;

3. In(2k — 1) < ho(k) < ho(k + 1).

A computer aided computation shows ttat2) = 1.526. ...

4. Periodic points and trajectories
In [BFK2] we obtained a description of the set of periodic points and trajectories of
semi-dispersing billiards. We call a curugt) a periodic pseudo-trajectory of class
K ={Bi, ..., B;} if itis a closed curve that consists of pieces of geodesica/othat
connect some point; € B;, with some pointx, € B;,, the pointx, € B;, with some
point x3 € Bj,, ..., the pointx; € B; with the pointx; € B;;, and at each point;,
k =1,...,j. The tangent vector to(s) changes according to the billiard rule with
respect toB;,. (The difference between this and the usual trajectories is that a geodesic
segment of a pseudo-trajectory betwagrandx;.; may intersect some of the bodiss,
i =1,...,n.) Notice that ifI" is any periodic trajectory then a periodic pseudo-trajectory
close enough td" is also a periodic trajectory.

Our main result on periodic trajectories is the following.

THEOREM 7. Let B be a semi-dispersing billiard on a simply connected manifdlcbf
non-positive sectional curvature. L& be some combinatorial class of trajectories.
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(Notice that, here, we do not requi® to be compact or non-degenerate, unlike in our
previous results.)

Then, the periodic trajectories of clags all have the same length and form a parallel
family in the following sense. Any two periodic trajectorlésand I, of classC can be
joined by a continuous cunig,, 1 < ¢t < 2, of periodic pseudo-trajectories of tyge, so

that:

1. the surface¥;, k = 1,..., j, formed by the pieces of trajectori€s, 1 < ¢t < 2,
between théth and(k + 1)st collisions is a piece dk? isometrically embedded into
M;

2. the intersectiond; of the boundary oB;, with the trajectories from the curvg,,
1 <t < 2, are isometrically embedded intervals of a straight line that connect the
pointsI'y () B;, with the pointsl'z () By, ;

3. inside of each flat surfac&;, k = 1,..., j, the pieces of trajectories frof,,
1<t < 2, are parallel to each other.

Therefore, periodic trajectories of the same combinatorial class always come in parallel
families. For a typical semi-dispersing billiard such a family cannot contain more than
one periodic trajectory.

COROLLARY 4.1. For M as in Theorem 7:

1. ifthe curvature ofM is strictly negative, every combinatorial class contains no more
than one periodic trajectory;

2. if for some periodic trajectory” at least one of the walls it visits is strictly convex
at the point of collision with the trajectory, thdnis the only periodic trajectory in
its combinatorial class.

Let us call two periodic trajectories equivalent if they are parallel (in the sense
explained in Theorem 7) and let us call two periodic points for the first return map to
the boundary equivalent if the corresponding periodic billiard trajectories are equivalent.

Denote by P, k € N, the number of periodic points, and b§, the number of
equivalence classes of periodic points of periddr the first return map to the boundary
of the billiard B. Denote byP?, r € R*, the number of periodic trajectories, and By
the number of equivalence classes of periodic trajectories, of the billiard flow of length
less than or equal to. Finally, P(¢) denotes the maximum number of collisions in
timez.

Theorem 7 implies the following.

COROLLARY 4.2. Let B be a semi-dispersing billiard on a simply connected manifald
of non-positive sectional curvature. Let

0, x <2
O(m, x) = m(m — 1), 2<x<3
mm —1*tm—-2), x>3
for everym € N, x € R*. Then, for everg e N, r € R™:

1. if the curvature ofM is strictly negative or all the setB;, i = 1, ..., n, are strictly
convex then

Po=P. <60 k) and P' =P <0n, P(t+1));
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2. otherwise, either
P.=P. <0, k) and P'=P' <60, P(t+1)

or
P <6, k), P' <60 Pt+1) but P'=P =oc.

In the caseM = R*, for periodic points, and/ = R?, for periodic trajectories, this
assertion was proved irSf1].

Note that the estimate oR, given in Corollary 4.2 cannot be improved since it is
sharp in every billiard satisfying the so called lkawa condition (K)] [(all the bodies
are disjoint and the convex hull of any two bodies does not have points in common with
any of the other bodies).

5. Universal unfolding space

In proving all the results mentioned above, we have used two different geometric models
of a semi-dispersing billiard; one presente¢inand the other presentedjd. However,

in both cases we have to use a separate model for each combinatorial class of billiard
trajectories. Obviously, it would be desirable to construct a ‘universal unfolding space’
of the billiard such that every trajectory would correspond to a geodesic of that space.
To be more precise, a universal unfolding spafes a result of gluing together (along

the setsB;, i = 1, ..., n) a finite number of copies a#/ so that:
1. Every copy is glued to exactly other copies along each of the bodiss,
i =1,...,n. To be more precise, for every copy;:

() there are: distinct copiesM;, i =1,...,n, such thatM; (\ M; = B;;
(b) if for some copyM;, M; ( Mi = B; then M = M;;
(c) for any M, M, (\M; C B;, for somei € {1,...,n}.

2. The curvature off is bounded by the maximal sectional curvatureMf

It is easy to show that the spadé may be constructed only if the billiard is non-
degenerate. The most interesting case is wifeis a manifold of non-positive sectional
curvature, which we assume everywhere in this section. BFKB] we showed how
to constructd when the billiard has only two walls and also in the case wheis a
surface. In both cases, the construction is elementary. For example, in the latter case,
the construction is the following.

Fix a numberK and consider a finite group with n generatorsy;,, i = 1,...,n,
such that if a relation of the forrn[’i1 ... y,ff =€, ipFinr1, LeNm=1,..., (-1,
holds then necessarilki| + - - - + |k;/| > K. An explicit example of such a group can
be found in B].

ConsidernI'| copies ofM, and denote them ad,, ¢ € I'. Consider anothéf"| copies
of M, and denote them ak/$, g € I'.

Now, let us glue together thesgI2 copies of M by performing the following
operations: ifg1 = y; g2, then we glue togethe¥,, and M52 along the bodyB;. Denote
by M the result of all these gluings. It is proven BFK3] that if X is ‘big enough’ then
M is a universal unfolding space for the billiard on the surfateutside of bodiesB;
(where we can always assume that the intersections of more than two bodies are empty).
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The problem of constructing a universal unfolding space in dimensions higher than
two appears to be extremely difficult, even for the simplest possible case—the billiard
in a simplex.

In a forthcoming paperBFKIK ] we plan to present a result that, in particular, will
yield a construction of a universal unfolding space for polyhedral billiards in dimension
three. Contrary to what might be anticipated, the construction is not at all elementary,
in fact, it is essentially based on Thurston’s theory of hyperbolic structures on three-
dimensional manifolds. Here is a sketch of the construction.

Let S be a three-dimensional polyhedron. We start by constructing, for arbitrary
K € N, a boundaryless pseudo-manifaldx such that every edge (and, thus, every
vertex) belongs to at least copies of S (and, of courseMg is constructed out of
a finite number of isometric copies ¢f). If K is large enoughMx has non-positive
curvature everywhere except maybe in the vertices. The rest of the proof consists of an
‘unwrapping’ of the spac@/x into a spaceM with large links of all the vertices (and,
thus, of a non-positive curvature).

We throw out convex polyhedral neighborhoods of all the verticesfgfto form a
spaceM,%. The ‘unwrappings’ ofM correspond to finite covers oﬂ,%. In order to
construct the ‘unwrapping’ such that all the links would have no short homotopically
non-trivial geodesics it is enough to find a finite index subgroupli(M,%) which does
not contain the elements of;(M2) that correspond to the short closed geodesics in
the links. The main difficulty in the proof is to show that such a subgroup exists. To
overcome this we show that, for large enouljh =1(M?2) is a linear group, and, thus,
is residually finite.

WhenK is large enoughM$ has non-positive curvature and its boundary components
are totally geodesic and non-positively curved. ¢ be the result of ‘doublingM?,

i.e. gluing two copies o2 along the boundary. We apply the uniformization theorem
for Haken manifolds @t, Th, MorBa], to conclude that\Z is hyperbolizable, and,
therefore,yrl(MIZ() is linear [Ma]. This immediately implies thaﬂrl(M,%) is also linear.

The result of the construction described above is a pseudo-manifold, since the
neighborhoods of the vertices are homeomorphic to cones over surfaces of high genus.
In [BFKIK ] we also give the necessary and sufficient conditions describing when it is
possible to construct a boundaryleaanifold (topological, of course) by gluing several
copies of a given three-dimensional polyhedron.

6. Open questions
We conclude our survey with the formulation of several open questions, which are closely
related to the results mentioned above.

Question 1.Are there universal unfolding spaces for arbitrary non-degenerate semi-
dispersing billiards on non-positively curved manifolds of dimension greater than two?
Question 1lals it possible to construct a compact CAT(0) boundaryless pseudo-manifold

by gluing together a finite number of copies of a given polyhedf@iong the isometric
faces?

It is quite possible that the answer to Question 1a (and, thus, to Question 1 as well)
is negative for sufficiently high dimensions.
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Question 2.What can be said about the topological, or even the metric entropy of
degenerate compact semi-dispersing billiards, or of the billiards on manifolds without
the non-positive curvature restriction? In particular, can it be infinite?

The question is open even for degenerate semi-dispersing billiards in Euclidean space.
We strongly suspect that the introduction of even arbitrarily small amounts of positive
curvature into a billiard on the Euclidean plane may produce a billiard with infinite
topological entropy, which would be a nice demonstration of Ipositive curvature can
force the entropy to become infinite.
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