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The Hodge conjecture is true for all smooth complex projective 3-folds, by the

Lefschetz (1, 1) theorem and the hard Lefschetz theorem [15, p. 164]. The integral Hodge
conjecture is a stronger statement which fails for some 3-folds, in fact, for some smooth

hypersurfaces in P4, by Kollár [22]. Voisin made a dramatic advance by proving the

integral Hodge conjecture for all uniruled 3-folds (or, equivalently, all 3-folds with Kodaira

dimension −∞) and all 3-folds X with trivial canonical bundle K X and first Betti number

zero [39]. Also, Grabowski proved the integral Hodge conjecture for abelian 3-folds

[13, Corollary 3.1.9].

In this paper, we prove the integral Hodge conjecture for all smooth projective 3-folds

X of Kodaira dimension zero with h0(X, K X ) > 0 (hence equal to 1). This generalizes the

results of Voisin and Grabowski in two directions. First, it includes all smooth projective

3-folds with trivial canonical bundle, not necessarily with first Betti number zero. For

example, the integral Hodge conjecture holds for quotients of an abelian 3-fold by a free

action of a finite group preserving a volume form and for volume-preserving quotients of a

K3 surface times an elliptic curve. Second, our result includes any smooth projective 3-fold

whose minimal model is a possibly singular variety with trivial canonical bundle; this

extends the work of Höring–Voisin on singular 3-folds of this type [19, Proposition 3.18].

In contrast, Benoist and Ottem showed that the integral Hodge conjecture can fail for

3-folds of any Kodaira dimension > 0. In particular, it can fail for an Enriques surface

times an elliptic curve; in that case, X has Kodaira dimension zero, and, in fact, the

canonical bundle is torsion of order 2 [4]. So our positive result is sharp in a strong sense.
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The proof here covers all cases (including abelian 3-folds) in a unified way, building

on the arguments of Voisin and Höring–Voisin. In order to show that a given homology

class is represented by an algebraic 1-cycle on X , we consider a family of surfaces of high

degree in a minimal model of X . The 1-cycle we want cannot be found on most surfaces

in the family, but it will appear on some surface in the family. This uses an analysis of

Noether–Lefschetz loci, which depends on the assumption that h0(X, K X ) > 0.

As an application of what we know about the integral Hodge conjecture, we prove

the integral Tate conjecture for all rationally connected 3-folds and all 3-folds of Kodaira

dimension zero with h0(X, K X ) > 0 in characteristic zero (Theorem 6.1). Finally, we prove

the integral Tate conjecture for abelian 3-folds in any characteristic (Theorem 7.1).

1. Notation

The integral Hodge conjecture for a smooth complex projective variety X asserts that

every element of H2i (X,Z) whose image in H2i (X,C) is of type (i, i) is the class of an

algebraic cycle of codimension i , that is, a Z-linear combination of subvarieties of X . The
Hodge conjecture is the analogous statement for rational cohomology and algebraic cycles

with rational coefficients. The integral Tate conjecture for a smooth projective variety X
over the separable closure F of a finitely generated field says: for k a finitely generated

field of definition of X whose separable closure is F and l a prime number invertible

in k, every element of H2i (X F ,Zl(i)) fixed by some open subgroup of Gal(F/k) is the

class of an algebraic cycle over F with Zl coefficients. Although it does not hold for

all varieties, this version of the integral Tate conjecture holds in more cases than the

analogous statement over the finitely generated field k [37, § 1]. The Tate conjecture is

the analogous statement with Ql coefficients.

On a normal variety Y , we use a natural generalization of the vector bundle of

differential forms on a smooth variety, the sheaf �
[ j]
Y of reflexive differentials:

�
[ j]
Y := (�

j
Y )
∗∗
= i∗�

j
U ,

where i : U → Y is the inclusion of the smooth locus.

For a vector space V , P(V ) denotes the space of hyperplanes in V .

2. Examples

In this section, we discuss some examples of 3-folds satisfying our assumptions and how

our proof works in various cases. One interesting point is the following dichotomy among

3-folds satisfying our assumptions. This dichotomy will not be used in the rest of the

paper, but the proof of Proposition 2.1 develops some basic properties of these 3-folds

that will be used.

Proposition 2.1. Let X be a smooth projective complex 3-fold of Kodaira dimension zero

with h0(X, K X ) > 0 (hence equal to 1). Let Y be a minimal model of X . (Here, Y is a

terminal 3-fold with KY trivial.) Then either H1(X, O) = H1(Y, O) is zero or Y is smooth

(or both).

Note that the integral Hodge conjecture for smooth projective 3-folds is a birationally

invariant property [40, Lemma 15]. Therefore, to prove Theorem 4.1 (the integral Hodge
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conjecture for X as above), we could assume that H1(X, O) = 0 or else that K X is trivial

(although we will not, in fact, divide up the proof of Theorem 4.1 that way). The case with

H1(X, O) = 0 follows from the work of Höring and Voisin [19, Proposition 3.18] together

with a relatively easy analysis of singularities below (Lemma 3.1). (To give examples

of such 3-folds, there are many terminal hypersurface singularities in dimension 3, such

as any isolated singularity of the form xy+ f (z, w) = 0 for some power series f [30,

Definition 3.1, Corollary 3.12] and X could be any resolution of a terminal quintic 3-fold

in P4.)

The case of smooth projective 3-folds X with K X trivial (but H1(X, O) typically not

zero) is harder and requires a thorough reworking of Höring and Voisin’s arguments. We
discuss examples of such varieties after the following proof.

Proof. (Proposition 2.1) By Mori, there is a minimal model Y of X [24, 2.14]. That is, Y
is a terminal projective 3-fold whose canonical divisor KY is nef, with a birational map

from X to Y . Terminal varieties are smooth in codimension 2, and so Y is smooth outside

finitely many points. Since X has Kodaira dimension zero, the Weil divisor class KY is

torsion by the abundance theorem for 3-folds, proved by Kawamata and Miyaoka [21].

Since h0(Y, KY ) = h0(X, K X ) > 0, KY is trivial (and, hence, h0(X, K X ) = h0(Y, KY ) = 1).

Since KY is linearly equivalent to zero, KY is, in particular, a Cartier divisor. Also,

since Y is terminal, it has rational singularities [30, 3.8]; therefore, Y is Cohen–Macaulay.

So the line bundle KY is the dualizing sheaf of Y . Since Y is a terminal 3-fold with KY
Cartier, it has only hypersurface (hence lci) singularities, by Reid [30, Theorem 3.2]. Let

S be a smooth ample Cartier divisor in Y ; then S is contained in the smooth locus of Y .

Write i : S→ X for the inclusion. By Goresky and MacPherson, i∗ : H2(S,Z)→ H2(Y,Z)
is surjective, using that Y has only lci singularities [11, p. 24].

For any scheme Y of finite type over the complex numbers, du Bois constructed a

canonical object �∗Y in the filtered derived category of Y , isomorphic to the constant
sheaf CY in the usual derived category D(Yan) [9]. For Y smooth, this is simply the de

Rham complex. Write �
j
Y in D(Y ) for the jth graded piece of �∗Y with respect to the

given filtration, shifted j steps to the left; for Y smooth, this is the sheaf �
j
Y in degree

zero. For Y proper over C, the resulting spectral sequence

E pq
1 = Hq(Y, �p

Y )⇒ H p+q(Y,C)

degenerates at E1 [9, Theorem 4.5]. The associated filtration on H∗(Y,C) is the Hodge
filtration defined by Deligne.

The objects �
j
Y need not be sheaves, even in our very special situation, where Y has

terminal 3-fold hypersurface singularities. In particular, Steenbrink showed that �1
Y has

nonzero cohomology in degree 1 (not just degree 0) for any isolated rational complete
intersection 3-fold singularity other than a node or a smooth point [33, p. 1374].

In our case, because H2(S,Z)→ H2(Y,Z) is surjective, the pullback H2(Y,Q)→
H2(S,Q) is injective. By strict compatibility of pullback maps with the weight filtration,

it follows that the mixed Hodge structure on H2(Y,Q) is pure of weight 2 [7]. By the

discussion above, the graded pieces of the Hodge filtration on H2(Y,C) are H2(Y, �0
Y ),

H1(Y, �1
Y ), and H0(Y, �2

Y ). Since Y is terminal (log canonical would be enough), it is du

Bois, which means that �0
Y
∼= OY [23].
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Let T Y = (�1
Y )
∗, which is a reflexive sheaf on Y . The Lie algebra of the automorphism

group of Y is H0(Y, T Y ). We have T Y ∼= �[2]Y ⊗ K ∗Y ∼= �
[2]
Y , the sheaf of reflexive 2-forms,

since KY is trivial. So H0(Y, T Y ) ∼= H0(Y, �[2]). Du Bois’s object �2
Y in the derived

category of Y has H0(�2
Y )
∼= �[2] since Y is klt [20, Theorems 5.4 and 7.12]. Since the

cohomology sheaves of �2
Y are concentrated in degrees > 0, it follows that H0(Y, �[2]Y ) ∼=

H0(Y, �2
Y ).

The polarization of H2(St0 ,Q), by the intersection form, gives a canonical direct-sum

decomposition of Hodge structures [38, Lemma 7.36]:

H2(St0 ,Q) = H2(Y,Q)⊕ H2(Y,Q)⊥.

The restriction of this polarization gives a polarization of the Hodge structure H2(Y,Q);
this can be described as the polarization of H2(Y,Q) given by the ample line bundle

H = O(S) on Y .

In particular, the polarization of H2(Y,Q) gives an isomorphism H0(Y, �2
Y )
∼=

H2(Y, �0
Y )
∗ ∼= H2(Y, O)∗. By Serre duality and the triviality of KY , we have H2(Y, O)∗ ∼=

H1(Y, KY ) ∼= H1(Y, O). Putting this all together, we have H0(Y, T Y ) ∼= H1(Y, O).
Thus, if H1(X, O) is not zero, then the identity component Aut0(Y ) of Aut(Y ) has

positive dimension. By the Barsotti–Chevalley theorem, Aut0(Y ) is an extension of an

abelian variety by a connected linear algebraic group [25, Theorem 8.27]. Any connected

linear algebraic group over C is unirational [25, Theorem 17.93]. Since Y has Kodaira
dimension 0, it is not uniruled, and so it has no nontrivial action of a connected

linear algebraic group. We conclude that A := Aut0(Y ) is an abelian variety of positive

dimension.

By Brion, extending the work of Nishi and Matsumura, any faithful action of an abelian

variety on a normal quasi-projective variety has finite stabilizer groups [6, Theorem 2].

In our case, A preserves the singular locus of Y , which has dimension at most 0 because

Y is a terminal 3-fold. Since A has positive dimension, the singular locus of Y must be

empty.

We conclude the section by giving examples of smooth projective 3-folds X with K X
trivial and H1(X, OX ) 6= 0, beyond the obvious examples: a K3 surface times an elliptic

curve or an abelian 3-fold. The Beauville–Bogomolov structure theorem implies that X is

a quotient of a variety Z of one of those special types by a free action of a finite group [3].

Knowing the integral Hodge conjecture for Z does not obviously imply it for X , which
helps to motivate this paper.

Example 2.2. An action of a finite group G on a complex K3 surface S is said to be

symplectic if G acts as the identity on H0(S, KS) ∼= C. Mukai (completing the earlier
work of Nikulin) classified the finite groups that can act faithfully and symplectically on

some K3 surface. In particular, the abelian groups that can occur are: Z/a for 1 6 a 6 8,

(Z/2)2, (Z/2)3, (Z/2)4, (Z/3)2, (Z/4)2, Z/2×Z/4, and Z/2×Z/6 [29, Theorem 4.5(b) and

note added in proof], [27, Theorem 0.6].

Let G be a nontrivial group on this list other than (Z/2)3 or (Z/2)4, and let G act

symplectically on a K3 surface S. Let E be any complex elliptic curve. We can choose an

embedding of G as a subgroup of E . Let X = (S× E)/G, where G acts in the given way
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on S and by translations on E . Then X is a smooth projective 3-fold with K X trivial.

Moreover, H1(X, O) is not zero because X maps onto the elliptic curve E/G. Finally, X
is not the product of a K3 surface with an elliptic curve. So it is a new case for which

Theorem 4.1 proves the integral Hodge conjecture.

Example 2.3. Theorem 4.1 also applies to some quotients of abelian 3-folds. For example,

let S be a complex abelian surface, and let G be a finite abelian group with at most two

generators which acts faithfully and symplectically on S as an abelian surface. Let E be

any elliptic curve. Choose an embedding of G as a subgroup of E . Let X = (S× E)/G,

where G acts in the given way on S and by translations on E . Then X is a smooth
projective 3-fold, K X is trivial, and H1(X, O) is not zero because X maps onto the

elliptic curve E/G. Here, X is not an abelian 3-fold, and so it is a new case for which

this paper proves the integral Hodge conjecture. The simplest case is G = Z/2, acting on

any abelian surface S by ±1.

3. Terminal 3-folds

We here analyze the homology of the exceptional divisor of a resolution of an isolated

rational 3-fold singularity (Lemma 3.1). This will be used in proving the integral Hodge

conjecture for certain 3-folds whose minimal model is singular (Theorem 4.1). Benoist

and Wittenberg used a similar argument in their work on the integral Hodge conjecture

for real varieties while studying a 3-fold fibered over a curve [5, proof of Proposition 8.6].

Lemma 3.1. Let Y be a complex 3-fold with isolated rational singularities. Let π : X → Y
be a projective birational morphism with X smooth such that π is an isomorphism over

the smooth locus of Y and the inverse image of the singular locus of Y is a divisor D
in X with simple normal crossings. Then H2(D,Z) is generated by classes of algebraic

1-cycles on D.

Here a complex projective curve C (possibly singular) has a fundamental class in

H2(C,Z), which pushes forward to a class in H2(D,Z) when C is contained in a complex

scheme D.

Proof. We start with the following result by Steenbrink [32, Lemma 2.14].

Lemma 3.2. Let π : X → Y be a log resolution of an isolated rational singularity with

exceptional divisor D. Then H i (D, O) = 0 for all i > 0.

We continue the proof of Lemma 3.1. Let D1, . . . , Dr be the irreducible components of

D, which are smooth projective surfaces. Write Di0···il for an intersection Di0 ∩ · · · ∩ Dil .

We have an exact sequence of coherent sheaves on D:

0→ OD →
⊕

i

ODi →

⊕
i< j

ODi j →

⊕
i< j<k

ODi jk → 0.

Taking cohomology gives a Mayer–Vietoris spectral sequence

E p,q
1 =

⊕
i0<···<i p

Hq(Di0···i p , O)⇒ H p+q(D, O).
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⊕H2(Di , O) // 0 0 0

⊕H1(Di , O) //

++

⊕H1(Di j , O) // 0 0

⊕H0(Di , O) // ⊕H0(Di j , O) // ⊕H0(Di jk, O) // 0

We have H2(D, O) = 0 by Lemma 3.2. It follows from the spectral sequence that each

irreducible component Di of D has H2(Di , O) = 0.

There is also a Mayer–Vietoris spectral sequence for the integral homology of D:

E1
p,q =

⊕
i0<···<i p

Hq(Di0···i p ,Z)⇒ Hp+q(D,Z).

⊕H2(Di ,Z) ⊕H2(Di j ,Z)oo 0oo 0

⊕H1(Di ,Z) ⊕H1(Di j ,Z)oo 0oo 0

⊕H0(Di ,Z) ⊕H0(Di j ,Z)oo ⊕H0(Di jk,Z)oo

kk

0oo

Finally, we have a Mayer–Vietoris spectral sequence converging to H∗(D,C), which

can be obtained from the integral homology spectral sequence by applying Hom(·,C).

We have a map of spectral sequences from the one converging to H∗(D,C) to the

one converging to H∗(D, O). Since H2(D, O) = 0, we know that the groups E1,1
∞ and

E2,0
∞ are zero in the spectral sequence converging to H∗(D, O). That is, the d1 and d2

differentials together map onto ⊕H1(Di j , O) and ⊕H0(Di jk, O). We will deduce that

the d1 and d2 differentials together map onto ⊕H1(Di j ,C) and ⊕H0(Di jk,C). In the

first case, we are given that d1 : ⊕ H1(Di , O)→⊕H1(Di j , O) is surjective, and we

want to deduce that d1 : ⊕ H1(Di ,C)→⊕H1(Di j ,C) is surjective. That follows from

d1 : ⊕ H1(Di ,C)→⊕H1(Di j ,C) being a morphism of Hodge structures of weight 1

so that H1(Di ,C) = H1(Di , O)⊕ H1(Di , O) and this grading is compatible with the

differential.

A similar argument applies to H0. First, the differential d1 : ⊕ H0(Di j ,C)→

⊕H0(Di jk,C) maps isomorphically to d1 : ⊕ H0(Di j , O)→⊕H0(Di jk, O). Also, by

the comment about Hodge structures of weight 1, E0,1
2 (C) = ker(⊕H1(Di ,C)→

⊕H1(Di j ,C)) is the direct sum of E0,1
2 (O) = ker(⊕H1(Di , O)→⊕H1(Di j , O)) and its

conjugate, and so E0,1
2 (C)→ E0,1

2 (O) is surjective. Since d2 : E0,1
2 (O)→ E2,0

2 (O) is onto

and E0,1
2 (C)→ E0,1

2 (O) is onto, it follows that d2 : E0,1
2 (C)→ E2,0

2 (C) (= E2,0
2 (O)) is

onto. That is, E2,0
∞ (C) as well as E1,1

∞ (C) are zero. Therefore, H2(D,C)→⊕H2(Di ,C)

is injective. (In particular, the mixed Hodge structure on H2(D,Q) is pure of weight

2 [7].) By the universal coefficient theorem, it follows that ⊕H2(Di ,Q)→ H2(D,Q) is

surjective.
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The groups H0(Di jk,Z) and H1(Di j ,Z) are torsion-free since Di jk is a point or empty

and Di j is a smooth projective curve or empty. It follows that the subgroups E∞2,0(Z) and

E∞1,1(Z) of these groups are also torsion-free. Since ⊕H2(Di ,Q)→ H2(D,Q) is surjective,

those two E∞ groups are zero after tensoring with the rationals, and so they are zero.

Therefore, ⊕H2(Di ,Z)→ H2(D,Z) is surjective. Since H2(Di , O) = 0, the Lefschetz

(1, 1) theorem gives that the smooth projective surface Di has H2(Di ,Z) spanned by

algebraic cycles. We deduce that H2(D,Z) is spanned by algebraic cycles.

4. 3-folds of Kodaira dimension zero

In this section, we begin the proof of our main result on the integral Hodge conjecture,

Theorem 4.1. We reduce the problem to a statement on the variation of Hodge structure

associated with a family of surfaces of high degree in a minimal model of the 3-fold, to

be proved in the next section (Proposition 5.3).

Theorem 4.1. Let X be a smooth projective complex 3-fold of Kodaira dimension zero

such that h0(X, K X ) > 0. Then X satisfies the integral Hodge conjecture.

Proof. Let Y be a minimal model of X . Then Y is terminal and hence has singular set

of dimension at most zero. As in the proof of Proposition 2.1, KY is trivial (and hence

h0(X, K X ) = h0(Y, KY ) = 1).

For codimension-1 cycles, the integral Hodge conjecture always holds, by the Lefschetz

(1, 1) theorem. It remains to prove the integral Hodge conjecture for codimension-2 cycles

on X . This is a birationally invariant property for smooth projective varieties X [40,
Lemma 15]. Therefore, we can assume that the birational map X 99K Y is a morphism

and that X is whatever resolution of Y we like. Explicitly, we can assume that X → Y is

an isomorphism over the smooth locus and that the fiber over each of the (finitely many)

singular points of Y is a divisor with simple normal crossings. (We do this in order to

apply Lemma 3.1.)

Let H be a very ample line bundle on Y and S a smooth surface in the linear system |H |.
As shown in the proof of Proposition 2.1, the pushforward homomorphism H2(S,Z)→
H2(Y,Z) is surjective.

We assume that the Hilbert scheme H of smooth surfaces in Y in the homology class

of S is smooth, which holds if H is sufficiently ample. We are free to replace H by a large

multiple in the course of the argument.

The following lemma was suggested by Schoen’s argument on the integral Tate

conjecture [31, Theorem 0.5], combined with Voisin’s paper [39].

Lemma 4.2. Let Y be a terminal projective complex 3-fold. Write St0 for the surface in
Y corresponding to a point t0 in H, with inclusion i : St0 → Y . Write H2(St0 ,Z)van =

ker(i∗ : H2(St0 ,Z)→ H2(Y,Z)). By Poincaré duality, identify H2(St0 ,Z) with H2(St0 ,Z).

Let C be a nonempty open cone in H2(St0 ,R)van. Suppose that there is a contractible open

neighborhood U of t0 in H such that every element of H2(St0 ,Z)van ∩C becomes a Hodge

class on St for some t in U . Then every element of H2(Y,Z) whose image in H2(Y,C) is

in H1,1(Y ) is algebraic.
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Proof. By the proof of Proposition 2.1, the pushforward H2(St0 ,Z)→ H2(Y,Z) is

surjective, and so the pullback H2(Y,Q)→ H2(St0 ,Q) is injective. Therefore, the Hodge

structure on H2(St0 ,Q) is pure of weight 2. Still following the proof of Proposition 2.1,

the polarization of H2(St0 ,Q) by the intersection form gives a canonical direct-sum

decomposition of Hodge structures

H2(St0 ,Q) = H2(Y,Q)⊕ H2(Y,Q)⊥.

In fact, this argument shows that the surjection i∗ : H2(St ,Q)→ H2(Y,Q) is split as

a map of variations of Q-Hodge structures over the space H of smooth surfaces S. In

particular, any element of H2(Y,Q)∩ H1,1(Y ) ⊂ H2(Y,C) is the image of some element in

H2(St0 ,Q) whose translate to every surface St is in H1,1(St ). Therefore, for any element

α of H2(Y,Z) that maps into H1,1(Y ) ⊂ H2(Y,C), there is a positive integer N and an

element β of H2(St0 ,Z) that lies in H1,1(St ) ⊂ H2(St ,C) for every surface St such that

i∗β = Nα.

Also, because i∗ : H2(St0 ,Z)→ H2(X,Z) is surjective, there is an element v ∈ H2(St0 ,Z)

(not necessarily a Hodge class) with i∗v = α.
Let u0 = β − Nv in H2(St0 ,Z). Then i∗u0 = 0; that is, u0 is in H2(St0 ,Z)van. Let T =

u0+ N · H2(St0 ,Z)van ⊂ H2(St0 ,Z)van. Since T is a translate of a subgroup of finite index

in H2(St0 ,Z)van, T has nonempty intersection with the open cone C in H2(St0 ,R)van.

Let u be an element of C ∩ T . Because U is contractible, we can canonically identify

H2(St ,Z) with H2(St0 ,Z) for all t in U . By our assumption on C , u becomes a Hodge

class on H2(St ,Z) for some t in U . By definition of T , we can write u = u0+ Nw for
some w in H2(St0 ,Z)van. We know that β in H2(St0 ,Z) is a Hodge class in H2(St ,Z) for

all nearby surfaces St . Since u becomes a Hodge class in H2(St ,Z), β − u is a Hodge class

in H2(St ,Z), and β − u = β − (u0+ Nw) = β − (β − Nv+ Nw) = N (v−w). So v−w is a

Hodge class in H2(St ,Z). By the Lefschetz (1, 1) theorem, v−w is algebraic on St . And

we have i∗(v−w) = i∗v = α. So α in H2(Y,Z) is algebraic.

We will prove the hypothesis of Lemma 4.2 as Proposition 5.3. Given that, we now

finish the proof of Theorem 4.1.
Let u be an element of H2(X,Z)∩ H1,1(X). Topologically, Y is obtained from Y by

identifying the fibers E1, . . . , Er over singular points of Y to points. So we have an exact

sequence

H3(Y,Z)→
⊕

i

H2(Ei ,Z)→ H2(X,Z)→ H2(Y,Z)→
⊕

i

H1(Ei ,Z).

By Lemma 3.1, H2(Ei ,Z) is spanned by algebraic curves on Ei , for each i . The image

of u in H2(Y,Z) is in H1,1(Y ) and, hence, is in the image of the Chow group C H1(Y ) by
Lemma 4.2 and Proposition 5.3. (We use here that the integral Hodge conjecture holds

on every smooth projective surface, by the Lefschetz (1, 1) theorem.) Since X → Y is an

isomorphism outside a zero-dimensional subset of Y , it is clear that C H1(X)→ C H1(Y )
is surjective. Therefore, there is a 1-cycle α on X whose image in H2(X,Z) has the same

image in H2(Y,Z) as u does. By the exact sequence above, α− u in H2(X,Z) is the image

of some element of ⊕H2(Ei ,Z). But ⊕H2(Ei ,Z) is spanned by algebraic cycles on
⋃

i Ei
by Lemma 3.1. Therefore, u is algebraic.
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5. The variation of Hodge structure associated with a family of surfaces

To complete the proof of Theorem 4.1, we need to show that the variation of

Hodge structures on the family of surfaces in the 3-fold is as nontrivial as possible

(Proposition 5.3). The first step is to rephrase the conclusion we want in terms of a

cup product on a general surface in the family (Corollary 5.1), generalizing Proposition

1 in Voisin [39].

Let Y be a terminal complex projective 3-fold. (We will eventually assume that KY is

trivial, but it seems clearer to formulate the basic arguments in greater generality.) Let

H be a very ample line bundle on Y and S a smooth surface in the linear system |H |.
(It follows that S is contained in the smooth locus of Y .) We are free to replace H by a

large multiple in the course of the argument.

By the proof of Proposition 2.1, the Hodge structure on H2(Y,Q) is pure of weight 2,

and the graded pieces of the Hodge filtration on H2(Y,C) are H2(Y, O), H1(Y, �1
Y ), and

H0(Y, �2
Y ).

Define the vanishing cohomology H2(S,Z)van to be the kernel of the pushforward

homomorphism i∗ : H2(S,Z) ∼= H2(S,Z)→ H2(Y,Z). Likewise, write

H2(S, O)van = ker(H2(S, O)→ H0(Y, �2
Y )
∗)

H1(S, �1
S)van = ker(H1(S, �1)→ H1(Y, �1

Y )
∗)

H0(S, �2
S)van = ker(H0(S, �2)→ H2(Y, �0

Y )
∗).

These maps are Hodge-graded pieces of the surjection H2(S,C)→ H2(Y,C) (dual to

the pullback H2(Y,C)→ H2(S,C)), and so they are also surjective. By Serre duality,

H2(Y, �0
Y )
∗
= H2(Y, O)∗ ∼= H1(Y, KY ). So we can also describe H0(S, �2

S)van as the kernel

of the pushforward H0(S, KS)→ H1(Y, KY ).

The cohomology sheaves of �
j
Y are in degrees > 0, and the zeroth cohomology sheaf is

the sheaf �
[ j]
Y of reflexive differentials because Y is klt [20, Theorems 5.4 and 7.12]. Also,

�
j
Y is concentrated in degrees from 0 to 3− j since Y has dimension 3 [16, Théorème

V.6.2]. It follows that �3
Y is the canonical sheaf KY .

We assume that the Hilbert scheme H of smooth surfaces in Y in the homology class

of S is smooth, which holds if H is sufficiently ample. Then H0(S, NS/Y ) is the tangent

space to H at S. Let δ be the class of the extension 0→ T S→ T Y |S → NS/Y → 0 in

H1(S, N∗S/Y ⊗ T S). Then the product with δ is the Kodaira–Spencer map H0(S, NS/Y )→

H1(S, T S), which describes how the isomorphism class of S changes as S moves in Y .

For u in H1(S, T S), the product with u is a linear map

u· : H1(S, �1)→ H2(S, O).

The dual map

u· : H0(S, KS)→ H1(S, �1)

can also be described as the product with u. For λ in H1(S, �1), define

µλ : H0(S, NS/Y )→ H2(S, O)

by µλ(n) = (δn)λ. This map describes the failure of λ ∈ H2(S,C) to remain a (1, 1) class

when the surface S is deformed in X . For λ in H1(S, �1)van, the map µλ lands in the
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vanishing subspace H2(S, O)van because H2(S,Q) = H2(Y,Q)⊕ H2(S,Q)van as Hodge

structures, where the Hodge structure on H2(Y,Q) is unchanged as S is deformed.

Corollary 5.1. Let Y be a terminal projective complex 3-fold. Let H be a very ample line

bundle on Y and S a smooth surface in the linear system |H |. Suppose that there is an

element λ in H1(S, �1)van such that the linear map

µλ : H0(S, NS/Y )→ H2(S, O)van

is surjective. Then there is a nonempty open cone C in H2(St0 ,R)van and a contractible

open neighborhood U of t0 in H such that every element of H2(St0 ,Z)van ∩C becomes a

Hodge class on St for some t in U .

For Y smooth and H2(Y, O) = 0 (which implies that every element of H2(Y,Z) is a
Hodge class), this was proved by Voisin [39, Proposition 1]. Voisin also formulated a

statement similar to Corollary 5.1 in the case of uniruled 3-folds Y with H2(Y, O) 6= 0
[39, Proposition 4].

Proof. The groups H2(St ,Z) form a weight-2 variation of Hodge structures on the Hilbert

scheme H of smooth surfaces St ⊂ Y . Let U be a contractible open neighborhood of the

given point t0 in H. We can canonically identify H2(St ,C) with H2(St0 ,C) for all t ∈ U .

The surjectivity of µλ implies that the map from
⋃

t∈U H1,1(St ,R)van to H2(St0 ,R)van is

a submersion at λ, I claim.

To prove that this map is a submersion, we follow the argument of [39, Proposition

1], modified so as not to assume that H2(Y, O) is zero. Let π : SU → U be the universal

family of surfaces St , restricted to t ∈ U . Write H2
van for the total space of the vector

bundle (R2π∗C)van over U , with fibers H2(St ,C)van. The Gauss–Manin connection gives

a trivialization of this bundle and, hence, a projection map from the total space to one

fiber, τ : H2
van → H2(St0 ,C)van. Let F1 H2

van be the submanifold of H2 whose fiber over

each point t ∈ U is the Hodge filtration

F1 H2(St ,C)van = H2,0(St )van⊕ H1,1(St )van ⊂ H2(St ,C)van.

Let τ1 : F1 H2
van → H2(St0 ,C)van be the restriction of τ to F1 H2

van. Let λ be an element

of H1(St0 , �
1)van and λ̃ any lift of λ to F1 H2(St0 ,C)van. By the proof of Voisin [39,

Lemma 2] (modified since we are allowing H2(Y, O) to be nonzero), we have the following

equivalence.

Lemma 5.2. The map

µλ : H0(St0 , NSt0/Y )→ H2(St0 , O)van

is surjective if and only if τ1 is a submersion at λ̃.

To relate Lemma 5.2 to cohomology with real coefficients, note that surjectivity of µλ
is a Zariski open condition on λ in H1(St0 , �

1)van. The vector space H1(St0 , �
1)van has a

real structure, given by

H1,1(St0)R,van = H1(St0 , �
1)van ∩ H2(St0 ,R)van ⊂ H2(St0 ,C)van.
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Since we assume in this Corollary that µλ is surjective for one λ in H1(St0 , �
1)van, it is

surjective for some λ in H1,1(St0)R,van.

In Lemma 5.2, take the lifting λ̃ to be λ itself. Then λ̃ is real, and so is τ1(̃λ). By our

assumption on λ, Lemma 5.2 gives that τ1 is a submersion at λ̃, and so the restriction

τ1,R : H1,1
R,van → H2(St0 ,R)van

of τ1 to τ−1
1 (H2(St0 ,R)van) is also a submersion. Here τ−1

1 (H2(St0 ,R)van) is identified with⋃
t∈U

F1 H2(St ,C)van ∩ H2(St ,R)van =
⋃
t∈U

H1,1(St ,R)van =: H1,1
R,van.

Since τ1,R is a submersion at λ̃ on the real manifold H1,1
R,van (a real vector bundle over

U), the image of τ1,R contains a nonempty open subset of H2(St0 ,R)van, as we wanted.

The image of τ1,R is a cone, and so it contains an open cone C in H2(St0 ,R)van.

Therefore, all elements of H2(St0 ,Z)van in the open cone C become Hodge classes on

St for some t in U . Corollary 5.1 is proved.

Proposition 5.3. Let Y be a terminal projective complex 3-fold with trivial canonical

bundle. Write St0 for the surface in Y corresponding to a point t0 in H, with

inclusion i : St0 → Y . Write H2(St0 ,Z)van = ker(i∗ : H2(St0 ,Z)→ H2(Y,Z)). Then there is

a nonempty open cone C in H2(St0 ,R)van and a contractible open neighborhood U of t0
in H such that every element of H2(St0 ,Z)van ∩C becomes a Hodge class on St for some

t in U .

Proof. Let H be a very ample line bundle on Y and let S be a smooth surface in |nH |
for a positive integer n. (We will eventually take n big enough and S general in |nH |.)
Let V = H0(S, KS)van and V ′ = H0(Y, O(S))/H0(Y, O). By the exact sequence of sheaves

on Y
0→ OY → O(S)→ O(S)|S → 0,

we can view V ′ as a subspace of H0(S, O(S)|S) = H0(S, NS/Y ). For n sufficiently large,

the long exact sequence of cohomology gives an exact sequence

0→ V ′→ H0(S, NS/Y )→ H1(Y, O)→ 0.

Likewise, by definition of V , we have an exact sequence

0→ V → H0(S, KS)→ H1(Y, KY )→ 0,

where the pushforward map shown is the boundary map from the exact sequence of

sheaves on Y :

0→ KY → KY (S)→ KS → 0.

We will only need to move S in its linear system (although H1(Y, O) need not be zero).

That is, we will show that for a general λ ∈ H1(S, �1
S)van, the restriction of µλ to V ′ ⊂

H0(S, NS/Y ) maps onto H2(S, O)van = V ∗; by Corollary 5.1, that will finish the proof

of Proposition 5.3. We will see that these two vector spaces have the same dimension,
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using that KY is trivial, and so the argument just barely works. (For KY more positive,

it would not work at all.)

Fix a trivialization of the canonical bundle KY . This gives an isomorphism between the

two short exact sequences of sheaves above, in particular, an isomorphism KS ∼= NS/Y
of line bundles on S. So we have an isomorphism between the two exact sequences of

cohomology, including an isomorphism V ∼= V ′. In terms of this identification, µλ for λ

in H1(S, �1)van is a linear map V ′→ V ∗. For varying λ, this is equivalent to the pairing

µ : V × V ′ → H1(S, �1)van

µ(v, v′) = v(v′δ),

which is symmetric. (Recall that δ is the class of the extension 0→ T S→ T Y |S →
NS/Y → 0 in H1(S, N∗S/Y ⊗ T S).) (Proof: this pairing is the restriction of a symmetric

pairing H0(S, NS/Y )⊗ H0(S, NS/Y )→ H1(S, �1), given by u⊗ v 7→ uvγ δ, where u, v ∈
H0(S, NS/Y ), and γ ∈ H0(S, N∗S/Y ⊗ (T S)∗⊗�1

S) is the natural map NS/Y ⊗ T S ∼= �2
S ⊗

T S→ �1
S of bundles on S.) Serre duality H1(S, �1)∗van

∼= H1(S, �1)van gives a dual map

q = µ∗ : H1(S, �1)van → S2V ∗.

We can think of q as a linear system of quadrics in the projective space P(V ∗) of lines in

V . The condition that µλ from V ′ ⊂ H0(S, NS/Y ) to V ∗ = H2(S, O)van is surjective for

generic λ ∈ H1(S, �1)van is equivalent to the condition that the quadric defined by q(λ)
is smooth for generic λ. Thus, by Corollary 5.1, Proposition 5.3 will follow if we can show

that the quadric q(λ) is smooth for generic λ.

Note that we lose nothing by restricting the pairing µ to the subspaces V ⊂ H0(S, KS)

and V ′ ⊂ H0(S, NS/Y ). Indeed, as discussed in the proof of Proposition 2.1, the Hodge

structure H2(S,Q) is polarized by the intersection form, and the restriction H2(Y,Q)→
H2(S,Q) is injective, with image a sub-Hodge structure. Therefore, H2(S,Q) is the
orthogonal direct sum of H2(Y,Q) and its orthogonal complement. This gives a splitting

of each Hodge-graded piece of H2(S,C). For example, for H0(S, KS), this gives the

decomposition

H0(S, KS) ∼= H0(Y, �2
Y )⊕ H0(S, KS)van.

Therefore, we also have a canonical decomposition of the isomorphic vector space

H0(S, NS/Y ). This is the decomposition

H0(S, NS/Y ) ∼= H0(Y, T Y )⊕ H0(Y, O(S))/H0(Y, O).

Thinking of H0(S, NS/Y ) as the first-order deformation space of S in Y , these two
subspaces correspond to moving S by automorphisms of Y and moving S in its linear

system. The first type of move does not change the Hodge structure of S, and so it is

irrelevant to our purpose (trying to make a given integral cohomology class on S into a

Hodge class).

We use the following consequence of Bertini’s theorem from Voisin [39, Lemma 15],

which we apply to our space V (identified with V ′) and W = H1(S, �1). (Note that we

follow the numbering of statements in the published version of [39], not the preprint.)
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Lemma 5.4. Let µ : V ⊗ V → W be symmetric and let q : W ∗→ S2V ∗ be its dual. For v

in V , write µv : V → W for the corresponding linear map. Think of q as a linear system of

quadrics in P(V ∗). Then the generic quadric in im(q) is smooth if the following condition

holds. There is no closed subvariety Z ⊂ P(V ∗) contained in the base locus of im(q) and

satisfying

rank(µv) 6 dim(Z)

for all v ∈ Z .

We have to show that such a subvariety Z does not exist for a general surface S ∈ |nH |
with n sufficiently divisible. We follow the outline of Höring and Voisin’s argument ([19,

after Lemma 3.35], extending [39, after Lemma 7] in the smooth case). After replacing the

very ample line bundle H by a multiple if necessary, we can assume that H i (Y, O(l H)) = 0
for i > 0 and l > 0. We degenerate the general surface S to a surface with many nodes

as follows. Consider a general symmetric n× n matrix A with entries in H0(Y, O(H)).
Let S0 be the surface in Y defined by the determinant of A in H0(Y, O(nH)). By the

assumption of generality, S0 is contained in the smooth locus of Y . By Barth [1], the

singular set of S0 consists of N nodes, where

N =
(

n+ 1
3

)
H3.

Let S → 1 be a Lefschetz degeneration of surfaces St ∈ |nH | over the unit disc 1 such

that the central fiber S0 has nodes x1, . . . , xN as singularities. The map q above makes

sense for any smooth surface S in a 3-fold. Voisin showed that the limiting space

lim
t→0

im(qt : H1(St , �
1
St
)→ (H0(St , KSt )⊗ H0(St , O(nH)))∗),

which is a linear subspace of (H0(S0, KS0)⊗ H0(S0, O(nH)))∗, contains for each 16 i 6 N
the multiplication-evaluation map which is the composite

H0(S0, KS0)⊗ H0(S0, O(nH))→ H0(S0, KS0(nH))→ KS0(nH)|xi

[39, Lemma 7].

Recall that we have identified V = H0(S, KS)van with V ′ = H0(Y, O(S))/H0(Y, O).
When we degenerate a general surface S to the nodal surface S0, the base locus B ⊂ P(V ∗)
of im(q) specializes to a subspace of the base locus B0 of im(q0) ⊂ P(V ∗0 ), where

V0 = H0(S0, KS0)
∼= V ′0 = H0(S0, OS0(nH)).

Let W be the set of nodes of S0. By Voisin’s lemma just mentioned, B0 is contained in

C0 := {v ∈ P(V ∗0 ) : v
2
|W = 0}.

As a set, C0 is a linear subspace:

C0 = {v ∈ P(V ∗0 ) : v|W = 0}

= P(H0(S0, KS0 ⊗ IW )
∗).

By [19, equation (3.36)], extending [39, Corollary 3] in the smooth case (using only

that H i (Y, O(l H)) = 0 for i > 0 and l > 0), we have h0(Y, KY (nH)⊗ IW ) 6 cn2 for some
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constant c independent of n. Thus, the base locus B0 of im(q0) has dimension at most

cn2, for some constant c independent of n. By specializing, the base locus B of im(q) also

has dimension at most cn2 for general surfaces S in |nH |.
By our assumption on the subvariety Z of B, for v ∈ Z , we have

rank(µv : V → H1(S, �1)) 6 dim(Z)

6 cn2.

By the following lemma, it follows that dim(Z) 6 A for some constant A independent of

n. This is Höring–Voisin’s [19, Lemma 3.37], extending [39, Lemma 12] in the smooth

case. (As before, we follow the numbering from the published version of [39]. In our case,

H2(Y, O) need not be zero, but that is not used in these proofs.)

Lemma 5.5. Let Y be a Gorenstein projective 3-fold with isolated canonical singularities,

H as above. For each positive integer n, let S be a general surface in |nH | and define

V, V ′, µ associated with S as above. Let c be any positive constant. Then there is a

constant A such that the sets

0 = {v ∈ V : rank(µv) 6 cn2
}

and

0′ = {v′ ∈ V ′ : rank(µv′) 6 cn2
}

both have dimension bounded by A, independent of n.

By our assumption on the subvariety Z of B again, for v ∈ Z , we have

rank(µv : V → H1(S, �1)) 6 dim(Z)

6 A.

This implies that Z is empty by Lemma 5.6, to be proved next. But Z is a variety, so

we have a contradiction. This completes the proof that the generic quadric in the linear
system im(q) is smooth. Proposition 5.3 is proved.

To complete the proof of Proposition 5.3 and, hence, Theorem 4.1, it remains to prove

the following lemma.

Lemma 5.6. Let Y be a terminal projective 3-fold with KY trivial, H as above. Let A
be a positive integer. Let S ∈ |nH | be general, with n large enough (depending on A).

Let V = H0(S, KS)van and µv : V ′→ H1(S, �1) be the product with an element v ∈ V , as

defined above. Then the set

W = {v ∈ V : rank(µv) < A}

is equal to 0.

Proof. We have to modify the proof of Voisin’s Lemma 13 [39] to allow Y to be singular

and also to have H2(Y, O) not zero. We use Höring and Voisin’s ideas on how to deal

with Y being singular by working on the smooth surface S as far as possible [19, proof

of Proposition 3.22].
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Let S be a smooth surface in |nH |. Consider the following exact sequences of vector

bundles on S, constructed from the normal bundle sequence of S in Y :

0→ �1
S(nH)→ �2

Y |S(2nH)→ KS(2nH)→ 0

and

0→ OS → �1
Y |S(nH)→ �1

S(nH)→ 0.

Let δ1 and δ2 be the resulting boundary maps:

δ1 : H0(S, KS(2nH))→ H1(S, �1
S(nH))

and

δ2 : H1(S, �1
S(nH))→ H2(S, O).

Let δ = δ2 ◦ δ1 : H0(S, KS(2nH))→ H2(S, O).

Lemma 5.7. The image of δ is H2(S, O)van, for large enough n and any S as above.

Proof. We first show that δ1 is surjective. By the long exact sequence of cohomology

associated with the first exact sequence above, it suffices to show that H1(S, �2
Y |S(2nH))

is zero. In terms of the sheaf �[2]Y of reflexive differentials, we have an exact sequence of

sheaves on Y :

0→ �
[2]
Y (nH)→ �

[2]
Y (2nH)→ �2

Y |S(2nH)→ 0.

By Serre vanishing on Y , both H1(Y, �[2]Y (2nH)) and H2(Y, �[2]Y (nH)) vanish for large n,

and so H1(S, �2
Y |S(2nH)) = 0 for all smooth S in |nH | with n large.

Next, the long exact sequence involving δ2 shows that the cokernel of δ2 is contained

in H2(S, �1
Y |S(nH)). Since KS = nH |S by the adjunction formula, the dual of that H2

space is H0(S, T Y |S) = H0(S, �2
Y |S).

By the exact sequence

0→ �
[2]
Y (−nH)→ �

[2]
Y → �2

Y |S → 0

of sheaves on Y , we have an exact sequence

H0(X, �[2]Y (−nH))→ H0(Y, �[2]X )→ H0(S, �[2]Y |S)→ H1(Y, �[2]Y (−nH)).

Since Y is normal, the sheaf �[2]Y is reflexive, and dim(Y ) > 1, the groups on the left and

right are zero for n large. (Consider an embedding of Y into some PN and use Serre

vanishing and Serre duality on PN , as in [17, proof of Corollary III.7.8].) So the map

H0(X, �[2])→ H0(S, �2
Y |S) is an isomorphism. By the results above on δ1 and δ2, this

gives an exact sequence

H0(S, KS(2nH)) −→
δ

H2(S, O)→ H0(Y, �[2])∗.

Finally, we need to rephrase this in terms of du Bois’s object �2
Y in the derived category

of Y . The cohomology sheaves of �
j
Y are in degrees > 0, and the zeroth cohomology sheaf

is �
[ j]
Y because Y is klt [20, Theorems 5.4 and 7.12]. So there is a natural map �[2]Y → �2

Y

https://doi.org/10.1017/S1474748019000665 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000665


1712 B. Totaro

in D(Y ). Because the other cohomology sheaves of �2
Y are in degrees > 0, it is immediate

that the map H0(Y, �[2])→ H0(Y, �2
Y ) is an isomorphism. So the previous paragraph

yields an exact sequence:

H0(S, KS(2nH)) −→
δ

H2(S, O)→ H0(Y, �2
Y )
∗.

Equivalently, the image of δ is H2(S, O)van.

Assume that v ∈ V satisfies the condition that rank(µv) < A. Using that n is sufficiently

large, Höring and Voisin show that δ(H0(S, OS(3nH))) is orthogonal to v with respect

to Serre duality [19, after Proposition 3.40]. By Lemma 5.7, H2(S, O)van is orthogonal
to v. Since V = H0(S, KS)van is dual to H2(S, O)van, it follows that v = 0. Lemma 5.6 is

proved. This also completes the proofs of Proposition 5.3 and Theorem 4.1.

6. The integral Tate conjecture for 3-folds

We now prove the integral Tate conjecture for 3-folds in characteristic zero that are

rationally connected or have Kodaira dimension zero with h0(X, K X ) > 0 (Theorem 6.1).

In any characteristic, we will prove the integral Tate conjecture for abelian 3-folds

(Theorem 7.1).

Theorem 6.1. Let X be a smooth projective 3-fold over the algebraic closure of a finitely

generated field of characteristic zero. If X is rationally connected or it has Kodaira

dimension zero with h0(X, K X ) > 0 (hence equal to 1), then X satisfies the integral Tate

conjecture.

Proof. We start by proving the following known lemma.

Lemma 6.2. Let X be a smooth projective variety over the separable closure ks of a finitely

generated field k. For codimension-1 cycles on X , the Tate conjecture implies the integral

Tate conjecture.

Proof. For a prime number l invertible in k and a positive integer r , the Kummer sequence

0→ µlr → Gm −→
lr

Gm → 0

of étale sheaves on X gives a long exact sequence of cohomology and, hence, an exact

sequence involving the Picard and Brauer groups:

0→ Pic(X)/ lr
→ H2

et(X, µlr )→ Hom(Z/ lr ,Br(X))→ 0.

Writing N S(X) for the group of divisors modulo algebraic equivalence, we have

Pic(X)/ lr
= N S(X)/ lr because the group of ks-points of an abelian variety is l-divisible.

Since N S(X) is finitely generated, taking inverse limits gives an exact sequence:

0→ N S(X)⊗Zl → H2(X,Zl(1))→ Hom(Ql/Zl ,Br(X))→ 0.

The last group is automatically torsion-free. It follows that the Tate conjecture implies

the integral Tate conjecture in the case of codimension-1 cycles.
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Lemma 6.3. Let X be a smooth projective 3-fold over the algebraic closure k of a

finitely generated field k of characteristic zero. Suppose that the Tate conjecture holds

for codimension-1 cycles on X and that the integral Hodge conjecture holds on XC for

some embedding k ↪→ C. Then the integral Tate conjecture holds for X (over k).

Proof. By Lemma 6.2, the integral Tate conjecture holds for codimension-1 cycles on

X . It remains to prove integral Tate for 1-cycles on X . Let u ∈ H4(X,Zl(2)) be a Tate

class; that is, u is fixed by Gal(k/ l) for some finite extension l of k. Let H be an ample

line bundle on X . Multiplication by the class of H is an isomorphism from H2(X,Ql(1))
to H4(X,Ql(2)), by the hard Lefschetz theorem. So there is a positive integer N with

Nu = Hv for some v ∈ H2(X,Zl(1)). Because the isomorphism from H2(X,Ql(1)) to

H4(X,Ql(2)) is Galois-equivariant, v is a Tate class (this works even if there is torsion

in H2(X,Zl(1)) because we are considering Tate classes over k). By our assumptions, v

is algebraic, that is, a Zl -linear combination of classes of subvarieties of X . So Hv = Nu
is algebraic and thus a Zl -linear combination of classes of curves on X .

In particular, Nu is a Zl -linear combination of Hodge classes in H4(XC,Z). Since the

subgroup of Hodge classes is a summand in H4(XC,Z), it follows that u is a Zl -linear

combination of Hodge classes in H4(XC,Z). Since the integral Hodge conjecture holds

for XC, u is a Zl -linear combination of classes of curves on X .

We prove Theorem 6.1 using Lemma 6.3. The integral Hodge conjecture holds for

rationally connected 3-folds by Voisin [39, Theorem 2] and for 3-folds X with Kodaira

dimension zero and h0(X, K X ) = 1 by Theorem 4.1, generalizing Voisin [39, Theorem 2].

It remains to check the Tate conjecture in codimension 1 for X over k. That is clear if
h0,2(X) = 0; then all of H2(XC,Z) is algebraic by the Lefschetz (1, 1) theorem, and so all

of H2(X,Zl(1)) is algebraic. That covers the case where X is rationally connected.

It remains to prove the Tate conjecture in codimension 1 for a 3-fold X over k of

Kodaira dimension zero with h0,2(X) > 0. Let Y be a minimal model of X ; then Y is

terminal and has torsion canonical bundle. By Höring and Peternell, generalizing the

Beauville–Bogomolov structure theorem to singular varieties, there is a projective variety

Z with canonical singularities and a finite morphism Z → Y , étale in codimension one,

such that Z is a product of an abelian variety, (singular) irreducible symplectic varieties,

and (singular) Calabi–Yau varieties in a strict sense [18, Theorem 1.5]. Their theorem is

stated over C, but that implies the statement over k. Höring and Peternell build on the
earlier work by Druel and Greb–Guenancia–Kebekus [8, 14].

Since Y has dimension 3 and h0(Z , �[2]) > h0(Y, �[2]) = h0(X, �2) > 0, the only

possibilities are: Z is an abelian 3-fold or the product of an elliptic curve and a K3

surface with canonical singularities. (A strict Calabi–Yau 3-fold Z has h0(Z , �[2]) = 0,
by definition.) So there is a resolution of singularities Z1 of Z which is either an abelian

3-fold or the product of an elliptic curve and a smooth K3 surface. Since we have a

dominant rational map Z1 99K X , the Tate conjecture in codimension 1 for X will follow

from the same statement for Z1 [36, Theorem 5.2].

It remains to prove the Tate conjecture in codimension 1 for Z1, which is either an

abelian 3-fold or the product of a K3 surface and an elliptic curve over k. Faltings

proved the Tate conjecture in codimension 1 for all abelian varieties over number fields
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[10], extended to all finitely generated fields of characteristic zero by Zarhin. Finally,

the Tate conjecture holds for K3 surfaces in characteristic zero, by Tankeev [34]. Since

H2(S× E,Ql)
∼= H2(S,Ql)⊕ H2(E,Ql) for a K3 surface S and an elliptic curve E , the

Tate conjecture in codimension 1 holds for S× E .

7. The integral Tate conjecture for abelian 3-folds in any characteristic

We now prove the integral Tate conjecture for abelian 3-folds in any characteristic. In

characteristic zero, we have already shown this in Theorem 6.1. However, it turns out that

a more elementary proof works in any characteristic, modeled on Grabowski’s proof of the

integral Hodge conjecture for complex abelian 3-folds [13, Corollary 3.1.9]. More generally,

we show that the integral Tate conjecture holds for 1-cycles on all abelian varieties of

dimension g if the “minimal class” θ g−1/(g− 1)! is algebraic on every principally polarized

abelian variety (X, θ) of dimension g (Proposition 7.2).

Theorem 7.1. Let X be an abelian 3-fold over the separable closure of a finitely generated

field. Then the integral Tate conjecture holds for X .

Proof. The argument is based on Beauville’s Fourier transform for Chow groups of

abelian varieties, inspired by Mukai’s Fourier transform for derived categories. Write

C H∗(X)Q for C H∗(X)⊗Q. Let X be an abelian variety of dimension g over a field k,

with dual abelian variety X̂ := Pic0(X), and let f : X × X̂ → X and g : X × X̂ → X̂ be

the projections. The Fourier transform FX : C H∗(X)Q→ C H∗(X̂)Q is the linear map

FX (u) = g∗( f ∗(u) · ec1(L)),

where L is the Poincaré line bundle on X × X̂ and ec1(L) =
∑2g

j=0 c1(L) j/j !. For k

separably closed, define the Fourier transform H∗(X,Ql(∗))→ H∗(X̂ ,Ql(∗)) by the same

formula.

By Beauville, the Fourier transform sends H j (X,Zl(a)) to H2g− j (X,Zl(a+ g− j), and

this map is an isomorphism [2, Proposition 1]. By contrast, it is not clear whether the
Fourier transform can be defined integrally on Chow groups; that actually fails over a

general field, by Esnault [26, § 3.1]. Beauville’s proof (for complex abelian varieties) uses

that the integral cohomology of an abelian variety is an exterior algebra over Z, and the

same argument works for the Zl -cohomology of an abelian variety over any separably

closed field.

Next, let θ ∈ H2(X,Zl(1)) be the first Chern class of a principal polarization on an

abelian variety X . Then we can identify X̂ with X , and the Fourier transform satisfies

FX (θ
j/j !) = (−1)g− jθ g− j/(g− j)!

[2, Lemme 1]. Here, θ j/j ! lies in H2 j (X,Zl( j)) (although it is not obviously algebraic,

meaning the class of an algebraic cycle with Zl coefficients). Finally, let h : X → Y be an

isogeny, and write ĥ : Ŷ → X̂ for the dual isogeny. Then the Fourier transform switches

pullback and pushforward, in the sense that for u ∈ C H∗(Y )Q,

FX (h∗(u)) = ĥ∗(FY (u))

[2, Proposition 3(iii)].
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The following is the analog for the integral Tate conjecture of Grabowski’s argument

on the integral Hodge conjecture [13, Proposition 3.1.8].

Proposition 7.2. Let k be the separable closure of a finitely generated field. Suppose that

for every principally polarized abelian variety (Y, θ) of dimension g over k, the minimal

class θ g−1/(g− 1)! ∈ H2g−2(Y,Zl(g− 1)) is algebraic. Then the integral Tate conjecture

for 1-cycles holds for all abelian varieties of dimension g over k.

Proof. Let X be an abelian variety of dimension g over k, and let u be a Tate class in

H2(X,Zl(1)) (meaning that u is fixed by some open subgroup of the Galois group). The

Tate conjecture holds for codimension-1 cycles on abelian varieties over k, by Tate [35],

Faltings [10], and Zarhin. This implies the integral Tate conjecture for codimension-1

cycles on X , by Lemma 6.2. So u is a Zl -linear combination of classes of line bundles and,
hence, of ample line bundles.

For each ample line bundle L on X , there is a principally polarized abelian variety

(Y, θ) and an isogeny h : X → Y with c1(L) = h∗θ [28, Corollary 1, p. 234]. Then the

Fourier transform of c1(L) is given by

FX (c1(L)) = FX (h∗θ)

= ĥ∗(FY (θ))

= (−1)g−1ĥ∗(θ g−1/(g− 1)!).

By assumption, θ g−1/(g− 1)! in H2g−2(Y,Zl(g− 1)) is algebraic (with Zl coefficients).

Since the pushforward preserves algebraic classes, the equality above shows that

FX (c1(L)) is algebraic. By the previous paragraph, it follows that the Fourier transform

of any Tate class in H2(X,Zl(1)) is algebraic in H2g−2(X̂ ,Zl(g− 1)).
Since the Fourier transform is Galois-equivariant and is an isomorphism from

H2(X,Zl(1)) to H2g−2(X̂ ,Zl(g− 1)), it sends Tate classes bijectively to Tate classes.

This proves the integral Tate conjecture for 1-cycles on X̂ and, hence, for 1-cycles on

every abelian variety of dimension g over k.

We now return to the proof of Theorem 7.1. Let k be the separable closure of a finitely

generated field, and let X be an abelian 3-fold over k. We want to prove the integral Tate

conjecture for X .

By Proposition 7.2, it suffices to show that for every principally polarized abelian
3-fold (X, θ) over k, the class θ2/2 in H4(X,Zl(2)) is algebraic. (This is clear for l 6= 2.)

A general principally polarized abelian 3-fold X over k is the Jacobian of a curve C of

genus 3. In that case, choosing a k-point of C determines an embedding of C into X ,

and the cohomology class of C on X is θ2/2 by Poincaré’s formula [15, p. 350]. (Poincaré
proved this for Jacobian varieties over C, but that implies the same formula in l-adic

cohomology for Jacobians in any characteristic.) By the specialization homomorphism

on Chow groups [12, Proposition 2.6, Example 20.3.5], it follows that θ2/2 is algebraic

for every principally polarized abelian 3-fold over k. Theorem 7.1 is proved.
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(1974), 79–85.

8. S. Druel, A decomposition theorem for singular spaces with trivial canonical class of
dimension at most five, Invent. Math. 211 (2018), 245–296.

9. P. du Bois, Complexe de de Rham filtré d’une variété singulière, Bull. SMF 109 (1981),
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