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Previous laboratory measurements on drag of tandem rigid bodies moving in viscous
incompressible fluids found that a following body experienced less drag than a leading
one. Very recently a laboratory experiment (Ristroph & Zhang, Phys. Rev. Lett.,
vol. 101, 2008) with deformable bodies (rubble threads) revealed just the opposite –
the leading body had less drag than the following one. The Reynolds numbers in the
experiment were around 104. To find out how this qualitatively different phenomenon
may depend on the Reynolds number, a series of numerical simulations are designed
and performed on the interaction of a pair of tandem flexible flags separated by
a dimensionless vertical distance (0 � D � 5.5) in a flowing viscous incompressible
fluid at lower Reynolds numbers (40 � Re � 220) using the immersed boundary (IB)
method. The dimensionless bending rigidity K̂b and dimensionless flag mass density
M̂ used in our work are as follows: 8.6 × 10−5 � K̂b � 1.8 × 10−3, 0.8 � M̂ � 1.0. We
obtain an interesting result within these ranges of dimensionless parameters: when
Re is large enough so that the flapping of the two flags is self-sustained, the leading
flag has less drag than the following one; when Re is small enough so that the
flags maintain two nearly static line segments aligned with the mainstream flow,
the following flag has less drag than the leading one. The transitional range of Re

separating the two differing phenomena depends on the value of K̂b. With Re in this
range, both the flapping and static states are observed depending on the separation
distance D. When D is small enough, the flags are in the static state and the following
flag has less drag; when D is large enough the flags are in the constant flapping state
and the leading flag has less drag. The critical value of D depends on K̂b.

1. Introduction
The interaction between a viscous incompressible fluid and a deformable body

is ubiquitous in Nature: a flag flapping in the air, a parachute falling in the sky
and an eel swimming in the water. In this type of fluid-flexible-structure-interaction
problem, the shape of the deformable body can change with time due to the unsteady
hydrodynamic forces acting on the bodies; and the changing shape of the bodies, on
the other hand, imposes a time-dependent constraint on the local viscous flow (no-slip
condition on the non-stationary interfaces between the bodies and the fluid). Due
to the unsteady interplay among inertia, body flexibility and hydrodynamic forces,
the flexible-structure-fluid-interaction may possess some differing features in contrast
with the rigid-body-fluid-interaction. A few such examples were already illustrated
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in the literature: the bistability of a one-dimensional flag in a two-dimensional
wind (Zhang & Childress 2000), the drag reduction of a flexible fibre in a moving
viscous flow (Alben, Shelley & Zhang 2002; Zhu 2008), the spontaneous oscillations
of heavy flags in flowing water (Shelley, Vandenberghe & Zhang 2005), the flutter
of a flag induced by fluid flow (Argentina & Mahadevan 2005) and the flapping
dynamics of a flag in a uniform stream (Connell & Yue 2007). Here in this paper we
report another such instance in a more complex setting – two tandem flexible bodies
interacting in an incompressible viscous flow.

The presence of multiple deformable objects in a moving viscous fluid complicates
the problem further because the deformable objects may interact one another through
the ambient moving fluid (sometimes even through direct contact). Some of such
examples include: fish schooling in the ocean, birds flocking in the sky and red blood
cells aggregating in the flowing blood in human blood vessels. Much research has
been done under this direction. Liao et al. (2003) demonstrated how a trout might
exploit the vortices to reduce the cost of locomotion in the wake of a stationary object
in a water flow. Bill & Herrnkind (1973) investigated the drag reduction induced by
formation movement of spiny lobsters. Fauci (1990) investigated the interaction of
oscillating elastic filaments. Zhu & Peskin (2003) studied the synchronization of two
interacting elastic parallel filaments. Zhu & Chin (2008) simulated the interaction of
multiple flexible fibres with a pulsatile viscous flow. Farnell, David & Barton (2004)
studied the coupled states of flapping flags. Jia et al. (2007) studied theoretically
and experimentally various coupling modes between two flapping filaments. Dong &
Lu (2007) investigated the characteristics of flows past multiple waving flexible foils.
Qi & Shyy (2008) simulated the dynamics of free falling of multiple flexible fibres in
moderate Re flows. Here we shall discuss simulations of two interacting deformable
flags placed in tandem in a moving viscous fluid.

The direct motivation of our work is a recent interesting laboratory experiment on
two tandem flapping rubber threads in a two-dimensional viscous flow reported by
Ristroph & Zhang (2008). The experiment was conducted in a flow tunnel bounded
by two rigid nylon wires with two ends attached to a lifted discharging container of
soapy water, and the other two ends attached to a receiving container on the ground.
With the switch being turned on, the soapy water flowed down due to gravity along
the two wires and formed a thin layer of flowing soap film. Two flexible rubble threads
were introduced in tandem at the centre of the tunnel with only their upstream tips
fixed. The two threads were separated by a vertical distance D that could be varied.
The laboratory measurements revealed that the drag of the downstream flag was
greater than that of the upstream flag. This result was surprising because the previous
experiments with tandem rigid cylinders (Zdravkovich 1977), race cars (Romberg,
Chianese & Lajoie 1971) and energetics of bicyclists (Kyle 1979) had found the
opposite: the drag of a trailing object was less than that of a leading one. Presumably
this is because the objects in the recent experiment were deformable and those in the
previous experiments were rigid. See detailed explanations in § 5.

The Reynolds numbers (Re) in the laboratory experiment were around 104. In both
the laboratory experiment and our simulations, Re is defined as UL/ν, where U is
the inflow speed at the inlet, L is the total length of the flags (all the flags are of
equal length) and ν is the fluid kinematic viscosity. To find out how this qualitatively
different phenomenon may depend on the Reynolds number, we design and perform
a series of numerical simulations on the interaction of two tandem flags separated by
a varying distance (0 � D � 5.5) with a flowing viscous incompressible flow at lower
Re (in the range of 40–220) using the immersed boundary (IB) method (Zhu & Peskin
2002; Zhu & Chin 2008). In addition to the Reynolds number, two more important
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dimensionless parameters are introduced: the dimensionless flag bending rigidity
K̂b and dimensionless flag mass density M̂ which are defined as K̂b = Kb/ρ0U

2L3

and M̂ = M/ρ0L, respectively. Here Kb is the dimensional flag bending rigidity
and M is the mass density of the flag. The number K̂b characterizes the relative
importance between the fluid kinematic energy and the flag elastic potential energy.
A smaller value of K̂b implies a more flexible flag. The number M̂ characterizes the
relative importance between the fluid inertia and the flag inertia. The values of these
parameters used in our work are: 8.6 × 10−5 � K̂b � 8.6 × 10−3 and 0.8 � M̂ � 1.0.
The flags are not neutrally buoyant in the fluid, instead they are heavier than the
fluid. Therefore the multigrid version of the IB method (Zhu & Peskin 2002; Zhu &
Chin 2008) which can handle massive boundaries are used in our work. For more
references on the IB method the readers are referred to the following articles: Peskin
(1977), Fauci & Peskin (1988), Fogelson & Peskin (1988), Peskin (1993a), Fauci &
Fogelson (1993), Roma, Peskin & Berger (1999), Lai & Peskin (2000), Peskin (2002),
Wang & Liu (2004), Mittal & Iaccarino (2005), Griffith & Peskin (2005), Atzberger,
Kramer & Peskin (2006), Mori & Peskin (2006), Sheldon Wang (2007), Kim &
Peskin (2007) and Borazjani et al. (2008). For other relevant numerical methods
for fluid-structure-interaction, see the references below and therein: the immersed
interface method (LeVeque & Li 1994; LeVeque & Li 1997; Li & Lai 2001; Li 2006),
the immersed finite element method (Zhang et al. 2004; Liu, Kim & Tang 2005),
the immersed continuum method (Wang 2006; Sheldon Wang 2007), the level set
method (Hou et al. 1997; Cottet & Maitre 2004; Cottet & Maitre 2006; Xu et al.
2006), the material point method (Sulsky, Chen & Schreyer 1994a; Sulsky, Shou &
Schreyer 1994b), the fictitious domain method (Glowinski, Pan & Periaux 1994a,b;
Glowinski et al. 2001), the ghost fluid method (Fedkiw 2002; Fedkiw et al. 1999),
and the arbitrary Lagrangian–Eulerian method (Hughes, Liu & Zimmerman 1981;
Donea, Giuliani & Halleux 1982).

Our numerical simulations reveal an interesting result: when Re is high enough such
that the flapping of the flags is self-sustained, the ‘inverted’ hydrodynamic drafting
(hydrodynamic drafting refers to the drag reduction induced by queuing of moving
objects in a fluid) is observed, i.e. the drag of the trailing flag is always greater than
that of the leading one; when Re is small enough such that the flapping of the flags is
not self-sustained (the flags become two static straight segments aligned with the flow
after the initial disturbances die out), the hydrodynamic drafting is observed, i.e. the
drag of the trailing flag is always less than that of the leading one. The transitional
range of the Reynolds number separating these two qualitatively differing scenarios is
found to be dependent of the dimensionless bending rigidity K̂b. When the Re falls in
such a range, the two flags can stay at either of the two states: the straight static state
(hydrodynamic drafting) when D is sufficiently small; the self-sustained flapping state
(inverted hydrodynamic drafting) when D is sufficiently large. The critical separation
distance Dc is dependent of K̂b. The ranges of the transitional Reynolds number Ret

and the critical distance Dc are determined for two values of the bending modulus
through simulations.

In this paper we demonstrate and discuss such three typical cases: the first
corresponds to the sustained flapping case (Re =165, ‘inverted’ drafting); the second
corresponds to the static straight case (Re = 70, drafting); the third corresponds to
the transition case with Re = 80.

The remainder of the article is as follows: § 2 addresses a model problem inspired
by the laboratory experiment conducted in Ristroph & Zhang (2008); § 3 gives the
corresponding IB mathematical formulation for the model problem; § 4 briefly talks
about the discretization and solution method of the mathematical formulation and
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Figure 1. A diagram of the model problem. The black rectangle represents the computational
domain. The positive x-axis points from left to right along the width direction, and the positive
y-axis points from bottom to top along the height direction. The gravity acts along the negative
y-axis, and the fluid flows from top to bottom. The two black curves represent two flags. The
upper tips of the flags are fixed. No other parts are restricted. The curves on inlet (top) and
outlet (bottom) represent the inlet/outlet velocity profile. The arrows represent the magnitude
of the velocity.

§ 5 discusses the details of the simulation results. The § 6 concludes the article with a
summary and discussion.

2. A model problem
Idealized and simplified from the laboratory experiment (Ristroph & Zhang 2008),

a model problem is set up as follows for the study of fluid-deformable-flag-interaction
(see figure 1 for a diagram). We consider a viscous incompressible flow past a pair of
flexible flags placed in tandem at the centre of a two-dimensional rectangular domain
with aspect ratio 2:1 (height to width). The fluid is Newtonian, and the flags are
linear elastic. The fluid is driven by gravity and flows from top to bottom (along
the negative direction of y-axis). The same velocity profile (i.e. the initial velocity
evaluated on a fixed y coordinate) is specified at the inlet and outlet boundary (top
and bottom). The no-slip condition is used on the two side rigid walls (left and right,
i.e. x direction). The upstream two tips of the two flags are fixed, and no other parts
are restricted. The pair of flags is separated by a distance D along y direction between
the free-tip of the upper flag and the fixed-tip of the lower flag which is measured
when the flags are static and straight. No separation distance is allowed along the
x direction. The initial velocity is the velocity field that satisfies the steady viscous
incompressible Navier–Stokes equations with two external forcing terms (gravity and
air drag) on a two-dimensional rectangular domain (finite width and infinite height)
using the no-slip condition on the two side boundaries.
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3. The IB mathematical formulation
The IB method we employ for our fluid-flexible-flag problem is the version described

in (Zhu & Peskin 2002; Zhu & Chin 2008). The IB mathematical formulation for our
model problem is non-dimensionalized by three reference quantities (the inflow speed
U , the fluid mass density ρ0 and the flag length L). The dimensionless IB formulation
in component form reads as follows:

ρ(x, y, t)

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
+ fx(x, y, t) − λu, (1)

ρ(x, y, t)

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
+ fy(x, y, t) − λv − γ, (2)

∂u

∂x
+

∂v

∂y
= 0, (3)

ρ(x, y, , t) = 1 +

∫
Γ

M̃δ(x − X(α, t))δ(y − Y (α, t)) dα, (4)

fx(x, y, t) = −
∫

Γ

∂E
∂X

δ(x − X(α, t))δ(y − Y (α, t)) dα, (5)

fy(x, y, t) = −
∫

Γ

∂E
∂Y

δ(x − X(α, t))δ(y − Y (α, t)) dα, (6)

E =
1

2
K̂s

∫
Γ

⎛
⎝

√(
∂X

∂α

)2

+

(
∂Y

∂α

)2

− 1

⎞
⎠

2

dα +
1

2
K̂b

∫
Γ

((
∂2X

∂α2

)2

+

(
∂2Y

∂α2

)2
)

dα,

(7)

∂X

∂t
(α, t) =

∫
Ω

uδ(x − X(α, t))δ(y − Y (α, t)) dx dy, (8)

∂Y

∂t
(α, t) =

∫
Ω

vδ(x − X(α, t))δ(y − Y (α, t)) dx dy. (9)

In above equations, x and y are the Eulerian coordinates associated with the fixed
computational domain, α is the Lagrangian coordinate associated with the moving
flags and t is the time. The ρ is Eulerian mass density of the fluid and the flags. The
u and v are the components of the fluid velocity along x and y axes, respectively.
The p is pressure, Re is the Reynolds number. The fx and fy are the components
of the Eulerian force density along x and y axes, respectively, which are associated
with the forces applied by the flags to the surrounding fluid. The λ is the dimensionless
air drag coefficient and γ is the dimensionless gravitational constant, both of which
happen to be the reciprocal of the Froude number Fr for our problem after non-
dimensionalization: λ= γ = 1/Fr , where the Froude number Fr = U 2/gL, here g is
the dimensional gravitational acceleration constant. The symbol Γ represents the
flags, and the symbol Ω represents the two-dimensional fluid domain (the rectangle
with an aspect ratio of 2:1). The Eulerian mass density ρ is computed by (4) where
M̃ is the difference in mass density of the flag and the fluid, and δ is the Dirac
delta function. The Eulerian force density is computed by (5) and (6) where E is
the elastic potential energy density associated with the flags, and X and Y are the
Eulerian coordinates (x and y components, respectively) of the flags whose associated
Lagrangian coordinate is α. The elastic energy stored in the flags is generated by
stretching/compression (the first term in (7)) and bending (the second term in (7)).
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Here K̂s and K̂b are the stretching/compression coefficient and bending modulus of
the flags. The flag position (X, Y ) is updated by (8) and (9).

4. Discretization of the IB formulation
The above IB formulation (defined in (1)–(9)) is discretized by a finite difference

method on a series of gradually coarsened fixed grids. Because the mass density ρ(x, t)
varies with space and time in our case, the discrete FFT frequently utilized by the IB
method is no longer appropriate. Instead, a geometrical multigrid method (seven-gird
V-cycle) is employed to solve the formulation. The finest grid has a resolution of 256
(x direction) by 512 (y direction) grid points, the coarsest grid has a resolution of
4 by 8 grid points. Each of the flags is represented by a collection of 116 moving
Lagrangian points. The Navier–Stokes equations are discretized by Chorin’s projection
method (Chorin 1968, 1969) generalized to the case of variable mass density. We refer
readers interested in this method to the following papers and references therein:
(Bell, Colella & Glaz 1989; Bell, Colella & Howell 1991; Perot 1993; Weinan &
Liu 1995, 1996; Botella 1997; Lopez & Shen 1998; Brown, Cortez & Minion 2001;
Lopez, Marques & Shen 2002). The nonlinear term is linearized by taking advantage
of the velocity field at the previous time step, and the skew-symmetrical scheme is
used for its discretization. The IB force is computed explicitly. The time derivative
is discretized by the forward Euler scheme and the spatial derivatives are discretized
by the centred difference scheme. The Dirac delta function is approximated by the
4-point δh involving the cosine function (Peskin 2002). The δh is defined at each
discrete point of the flags, and has a support of a square consisting of 4 × 4 fixed
Eulerian grid points. See (Zhu & Peskin 2002; Zhu & Chin 2008) for details of the
discretization and the solution processes.

5. Major numerical results
Before the numerical results are discussed, we would like to address how the drag

is defined and computed in our simulations. The drag of the tethered flag is defined
as the integral of the y component (vertical) force applied by the fluid to the flag
along the flag. In the IB method, the instantaneous drag (Df ) each tethered flag
experiences can be conveniently computed as the y component of the tension at the
flag tethered point. The reason is as follows. In the IB method the flag is represented
by a collection of Lagrangian moving points. The upper flag endpoint is tethered
to a fixed Eulerian point (i.e. its coordinates are constant depending on where the
flag is tethered) by a stiff virtual spring. The dimensionless spring stiffness (defined
as K/ρ0U

2L where the K is the dimensional spring constant) is chosen to be very
large (1.2 × 107 in our case) such that the maximum of |d| (d is the displacement of
the flag upper endpoint) is nearly zero (less than or equal to 0.1 % of the flag total
length in our case). Thus the flag is almost ‘fixed’ to the Eulerian point. The tension
at the ‘fixed’ flag endpoint equals the product of the displacement and the spring
stiffness. By the Newton’s second law, this tension is just equal to the summation
of the forces applied by the fluid to the flag defined at all the flag Lagrangian
points because the flag mass is spread to the fluid and enters into the Navier–Stokes
equations.

Because the flow is unsteady, the instantaneous drag Df varies with time. To remove
the unsteadiness in the instantaneous drag, an averaged drag (D̄) is computed as a
time average over N equally spaced instants between time T1 and T2. The T1 and T2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

79
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009007903


Interaction of two tandem deformable bodies in a viscous flow 461

are the beginning and ending instants of drag average, respectively. The time T1 is
chosen such that the initial disturbances on the flags have died out and the flags have
reached either a self-sustained flapping state or a stationary state. The values of T2

and N are chosen arbitrarily. In this work N = 400, T1 = 10, T2 = 50.
A series of simulations are performed on two tandem interacting flags separated

by a varying distance D immersed in a moving viscous fluid with Reynolds number
in the range 40–220. The dimensionless parameters used for this work are as follows:
the fluid density ρ0 = 1.0, the flag length L = 1.0, the inflow speed U = 1.0, the flag
mass density M̂ = 0.8–1.0, the flag bending modulus K̂b = 8.6 × 10−5–8.6 × 10−3, the
stretching coefficient K̂s =8.2 × 107, the Froude Fr = 24.7, the Reynolds number
Re =40–220, the flag vertical separation D = 0–5.5 and the width and height of the
computational domain is 5 and 10, respectively.

We find an interesting result on the drag of the two flags: when Re is sufficiently
high such that the two flags flutter sustainedly, the drag of the leading flag is always
less than the trailing flag (i.e. the leading flag enjoys a drag reduction); when Re is
sufficiently small such that the flags maintain two static line segments in the flowing
fluid after the initial oscillation is completely damped, the drag of the leading flag
is always greater than the trailing flag (i.e. the trailing flag enjoys a drag reduction).
The transitional range of the Reynolds number separating these differing behaviour
is found to be dependent of the flag bending rigidity K̂b. For Re in such a range,
the motion and drag of the flags depend on a critical separation distance Dc: when
D < Dc, the flags settle down to a straight static state after the initial disturbances die
out and the downstream flag has less drag than the upstream flag; when D >Dc, the
two flags settle down to a self-sustained flapping state and the upstream flag has less
drag than the downstream one. The value of Dc varies with K̂b. The intervals of Ret

and Dc are determined via computations for two typical values of K̂b.
In this paper we demonstrate three typical such cases: a fluttering case with

Re =165, a stationary case with Re = 70 and a transition case with Re =80. For
the three cases all the parameters except Re are the same. The flag mass density
M̂ = 0.87, the flag bending modulus K̂b = 8.6 × 10−4 (see above for other dimensionless
parameters used for the three cases). For each case, we discuss the drag of the two
flags as a function of the separation distance D, the envelopes of the flags versus
D (fluttering case only) and some typical flow visualization (fluid motion and the
vortical field). The account of the numerical results are accompanied by physical
explanations whenever possible.

First, the flapping case with Re = 165. Figure 2 plots the dimensionless drag versus
the separation distance D. The drag of the two flags is non-dimensionalized by the
drag d0 of a single flag flapping in the viscous flow (all the flow and flag parameters
used for computing d0 are the same as in the two-flag case). The flag separation
distance D is non-dimensionalized by the flag length L. The triangles (‘�’) represent
the drag of the leading flag, the squares represent the drag of the trailing flag and the
circles (‘o’) represent the total drag of the flags (i.e. the sum of the drag of the two
flags). We can see that the drag of the trailing flag is always greater than that of the
leading one for the range of D in 0–5.5. Compared to the single-flag case, the leading
flag enjoys a drag reduction while the trailing one undergoes a drag increase (except
for D = 0 and 0.1 where both flags experienced a drag reduction). The total drag
of the flags is reduced (i.e. the total drag is less than 2) only for a small separation
distance (D =0 and 0.1). For greater values of D the two flags as a whole experiences
a drag increase: the total drag is greater than twice of the drag of the single flag, i.e.
the total drag is more than 2.
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Figure 2. Drag versus separation distance for Re = 165. The x-axis is the flag separation
distance D (dimensionless). The y-axis is the dimensionless drag. The dashed line represents
the drag of a single flag. The triangles represent drag of the upper flag, the squares represent
drag of the lower flag and circles represent the total drag of the flags.

Figure 3. The envelopes of the flags versus the separation distance for Re = 165. The first row
represents the upstream flag, and the remaining represents the downstream flag. The leftmost
envelope corresponds to the single-flag case. The remaining ones corresponds to the two-flag
case. The separation distance D is, starting the second column, 0, 0.1, 0.3, 0.6, 1, 2, 3, 4, 5, 5.5,
from left to right, respectively. For each column the vertical distance is proportional to the
actual flag separation distance D. The space between neighbouring columns is an arbitrary
constant.

Figure 3 plots the envelopes of the flags versus separation distance D. The first row
represents the upstream flag, and the remaining represents the downstream flag. The
leftmost envelope corresponds to the single-flag case. The remaining ones correspond
to the two-flag case. The separation distance D varies from 0 (the second column)
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to 5.5 (the last column). The remaining values of D are 0.1, 0.3, 0.6, 1, 2, 3, 4, 5,
from left to right, respectively. For each column the vertical distance is proportional
to the actual flag separation distance D. The space between neighbouring columns is
a constant taken arbitrarily. We see that the envelope of the trailing flag is always
broader than that of the corresponding leading one. This may explain why the trailing
flag experiences greater drag. Notice that the size and shape of the envelope of the
leading flag is roughly the same and all look similar to the single-flag case when the
separation distance is large enough (D � 0.3). This seems to indicate the influence of
the downstream flag weakens as D is increased. As a result the drag of the leading
flag is nearly constant for D � 0.3. For the same range of D, the size and shape of the
trailing flag all look similar to one another as well. When D = 0 and 0.1, the envelopes
of the leading flag are slightly smaller compared to the corresponding case for greater
values of D. The size of the trailing flag is slightly narrower when D = 0 and slightly
broader when D = 0.1, compared to those when D is greater. This differing behaviour
of the leading flag for D =0 and 0.1 may be explained by the local suppression effect
of the fixed-tip of the trailing flag on the motion of the free-end of the leading flag:
the localized vortices around the fixed-point may hinder the passage of the free-tip
of the leading flag. Thus the size of envelope of the leading flag becomes smaller,
and the drag is decreased when D =0 and 0.1.

The flag fluttering-frequency in the single-flag case is approximately 0.43, the
flapping amplitude is approximately 0.75. This frequency is inherited by the two-flag
system for sufficient large separation distance: each of the two flags flutter at the same
frequency (approximately 0.43) when 0.3 � D � 5.5. When D =0 and 0.1, however,
the frequency of the upper flag is approximately 0.29 and that of the lower flag is
approximately 0.32. The downstream flag is immersed in the wake of the upstream
flag and its flapping motion is caused by the oscillating wake generated by the leading
flapping flag. Because the flag is passive, it simply oscillates with the wake. Therefore
the downstream flag inherits the flapping frequency of the upstream flag. The loss
of resonance for D = 0 and 0.1 is probably caused by the strong interaction between
the free-tip of the upper flag and the local vortices around the fixed tip of the lower
flag. The amplitude (the maximum displacement of the free-tip along x direction) of
each of the two flags is roughly a constant for the range of separation distance D

considered here. It is approximately 0.75 for the upper flag and approximately 1.0 for
the lower flag. (The amplitude of the upper flag is slightly smaller for D = 0 and 0.1;
that of the lower flag is slightly smaller for D = 0 and slightly bigger for D =0.1.)

While the larger flapping amplitude of the lower flag is responsible for the greater
drag it experiences, it is not apparent why the lower flag would have a larger flapping
amplitude than the upper flag. A mathematical explanation seems to be out of
question given the complexity of the nonlinear system that governs the problem at
finite Reynold numbers. An intuitive physical explanation is offered as follows. The
flags are passive and they simply follow the motion of the surrounding fluid because
of fluid viscosity. While a majority of the upstream flag is surrounded by a nearly
uniform flow the downstream flag is entirely immersed in the wake of the upstream
flag. The flapping motion of the upper flag generates a disturbed vortex-embedded
wake which oscillates with the upper flag (as can be seen from a simulation animation).
The oscillatory wake is beneficial to the flapping motion of the downstream flag. This
may explain why the downstream flag has a broader flapping amplitude than the
upstream one.

Figure 4 demonstrates a typical visualization of the flow and the flags for D = 0.
The top figures plots the instantaneous positions of massless fluid markers introduced
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Figure 4. Visualization of the flow and the flags for Re = 165 and separation distance D = 0.
The upper panel plots the instantaneous positions of fluid markers. The lower panel plots the
vorticity contours. Each column corresponds to a different time instant. The dimensionless
time is 13.75, 16.5, 19.25 and 22, from left to right, respectively.

along the inlet boundary and carried away by the flowing fluid. The bottom figures
plots the vorticity contours from which vortices can be seen. Each column (markers
and contours) corresponds to a different time instant. Although the two flags share
the same flutter frequency, the phase difference is clearly shown in the top figures:
at t =13.75 the leading flag moves towards the right while the trailing one moves
towards the left; at t = 19.25 the leading flag moves towards the left while the trailing
one moves towards the right; At the other two instants the flags move towards the
same side but with perceivable phase difference. It is interesting to notice that the
wake of the flags is narrowed when the two flags move towards different directions
(the first and third figures on top) and accordingly the shed vortices are flattened (the
corresponding figures on bottom); the wake is widened when they move towards the
same direction (the second and the fourth figures on top) and accordingly the shed
vortices are circulated (the corresponding figures on bottom). Figure 5 demonstrates a
typical visualization of the flow and the flags for D =1 for four different time instants.
An animation based on the simulation results shows that the two flags separated by
D =1 have less phase difference than the case of D = 0: they flutter always along the
same direction with a roughly constant phase difference. (See top figures: the flags
fluttered towards the left in the first three figures, and they flutter towards the right in
the fourth figure.) Consequently, the wake is wider and shed vortices are much closer
to being circular compared to the D = 0 case. Also the shed vortices are more or less
discrete rather than somewhat attached to one another in the previous case.
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Figure 5. Visualization of the flow and the flags for Re = 165 and separation distance D = 1.
The upper panel plots the instantaneous positions of fluid markers. The lower panel plots the
vorticity contours. Each column corresponds to a different time instant. The dimensionless
time is 13.75, 16.5, 19.25 and 22, from left to right, respectively.
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Figure 6. Drag versus separation distance for Re =70. The x-axis is the flag separation
distance D (dimensionless). The y-axis is the dimensionless drag. The dashed line represents
the drag of a single flag. The triangles represent drag of the upper flag, the squares represent
drag of the lower flag and circles represent the total drag of the flags.

Now let us look at a typical non-flapping case with Re = 70. Figure 6 and figure 7
display some typical results when self-sustained fluttering no longer occur. Figure 6
plots the drag of the two flags versus the separation distance. All the symbols used
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for this figure are the same as those used in figure 2. Interestingly we see that the drag
of the leading flag is always greater than that of the trailing one for the range of D

in 0–5.5. Compared to the single-flag case, both of the flags enjoy a drag reduction,
and the total drag is less than 2 for all the separation distance. This result is in sharp
contrast with the fluttering case, and is in agreement with previous results for rigid
bodies (Romberg et al. 1971; Zdravkovich 1977; Kyle 1979). Notice that the drag
of the trailing flag gradually increases with the increase of separation distance and
appear to converge to the drag of the leading one, which is not seen at the higher Re

flapping case. This seems to suggest that the interaction of the two flags at lower Re

is weaker in general. The weakening appears to be caused by the increased damping
viscous force as Re is decreased.

Presumably, the vanishing self-sustained flapping for a fixed value of K̂b is caused
by the decreasing of Re which renders the viscous force more and more important
than the inertial force. The dominating viscous force causes damping of the flag
oscillation and makes the flapping not sustainable. Because the flags remain nearly
straight aligned with the flow, the shape drag is not significant. The drag the flag bears
is mainly the viscous force acting on the flags which is proportional to the magnitude
of velocity gradient ∂v/∂x (velocity u = (u, v)) on the flags. The downstream flag
is surrounded by the wake of the upstream flag where the vertical momentum
is decreased compared to the upstream flag whose upper part is enclosed by the
uniform oncoming flow. Noticing the no-slip boundary condition on the flags, the
velocity gradient magnitude |∂v/∂x| is therefore smaller for the downstream flag than
the upstream one. As a consequence the drag is reduced for the downstream flag.
Note that the mechanism of hydrodynamic drafting for the flags in the static case
is different from that in (Romberg et al. 1971; Zdravkovich 1977; Kyle 1979). The
physics of the hydrodynamic drafting observed in (Romberg et al. 1971; Zdravkovich
1977; Kyle 1979) may be as follows. The trailing body is submerged in the wake of the
leading one where the pressure is reduced. The reduced pressure on the front of the
trailing body (in contrast with the pressure on the front of the leading body) causes
the reduction of the form drag for the trailing body. The skin friction for the two
bodies is roughly the same. Therefore the total drag of the trailing body is reduced
compared to the leading one. In the case of two flapping flags, the downstream flag
is nearly aligned with the wake (rather than somewhat lateral to the wake as the
bodies in Romberg et al. 1971; Zdravkovich 1977; Kyle 1979 were). Both sides of it
are exposed to low pressure in the wake. Therefore the above drafting mechanism
does not apply to the flag case.

Figure 7 demonstrates some typical visualizations for the flow and the flags. The
upper panel plots the instantaneous fluid marker positions and the lower panel plots
the vorticity contours for four different values of D. The first column (top and bottom
figures) corresponds to D = 0, the second column D = 0.3, the third D = 1 and the
fourth D = 4. From animations based on the simulations we can see that, in all the
cases, after the oscillations induced by the initial disturbances on the flags are gone,
the two flags maintain two nearly static line segments aligned with the flow. The
flags are not strictly straight because they are flexible. The downstream flag causes
widening of the wake starting near the fixed-tip of the downstream flag. It seems
that the wake and vortices corresponding to different values of D are similar to
one another in the sense that one picture may be constructed roughly through a
vertical translation of another by an appropriate distance. Again this indicates that
the interaction between the two flags in the non-flapping case is weaker because of
the lowered Re.
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Figure 7. Visualization of the flow and flags for Re = 70. The upper panel plots the
instantaneous positions of fluid markers. The lower panel plots the vorticity contours. Each
column corresponds to a different separation distance. The value of D is 0, 0.3, 1, 4, from left
to right, respectively. The dimensionless time is 27 for each case.

Notice that in both scenarios (flapping and non-flapping), the upper flag has
less drag than that of the corresponding single-flag case (the upper-flag drag <1).
Presumably this is caused by the presence of the downstream flag that serves as
an obstacle for the upstream flow. This incurs additional resistance to the upstream
flow compared to the single-flag case. The deterred mainstream flow presents less
drag for the upper flag. It appears that this influence is strong when D = 0 and 0.1,
and becomes weak as D increases. Also this influence is weaker in the non-flapping
case. However, it seems that the hindered upstream flow does not have significant
influence on the flapping frequency, amplitude and envelope of the upper flag once
the separation distance D is large enough (D � 0.3).

Finally, we address a typical transition case with Re =80. Figure 8 and figure 9
display some typical results. Figure 8 plots the drag of the two flags versus the
separation distance. All the symbols used for this figure are the same as those used
in figure 2. We can see from the figure that: when D is relatively small, the trailing
flag has less drag than the leading flag and both flags experience a drag reduction
compared to the single-flag case, therefore the total drag is less than 2; when D is
larger, however, the leading flag has less drag than the trailing one and both flags
experience a drag increase than in the single-flag case, therefore the total drag is
greater than 2. It appears that the transition between these two scenarios is not
gradual in D: it jumps from one to the other for some critical value of D in (0.7, 0.8).
This may be explained as follows: there exist no other states for the two flags; either
both flags flap sustainedly or both flags become static straight lines aligned with the
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Figure 8. Drag versus separation distance for Re = 80. The x-axis is the flag separation
distance D (dimensionless). The y-axis is the dimensionless drag. The dashed line represents
the drag of a single flag. The triangles represent drag of the upper flag, the squares represent
drag of the lower flag and circles represent the total drag of the flags.

main flow. In the former case, the leading flag has less drag; in the latter case, the
trailing flag has less drag. Therefore the transition on the drag-distance plot shows
a jump. One may argue that the following scenarios are also possible: the leading
flag in the flapping state and the trailing flag in the static state; or the leading flag
in the static state and the trailing flag in the flapping state. But according to our
simulations, this is not the case. The reason may be as follows. When the leading
flag flaps sustainedly, it generates a constantly oscillating wake which facilitates the
flapping of the trailing flag embedded in the wake. Hence a constantly flapping leading
flag causes the trailing flag to flap constantly as well. When the leading flag settles
down into a static state, the wake behind it is non-oscillatory and much narrower
than in the flapping case. This seems to restrict the flapping motion of the embedded
trailing flag. Hence a static leading flag tends to make the trailing flag static as well.
Note that in our problem the two flags are identical.

Figure 9 visualizes the motion of the flag-fluid system for four different values of
D. All the parameters in the four simulations are the same except the separation
distance D. The top panel demonstrates the motion of the fluid particles and the flags
and the bottom panel demonstrates the motion of the vortices and the flags. Each
column (top and bottom figures) corresponds to a simulation with different separation
distance: D = 0, 0.7,0.8, 2.0, from left to right, respectively. The time instant is 66
(dimensionless) for each simulation. It can be seen that when D = 0 or 0.7, both flags
settle down to the straight-line state where the flags are nearly static and aligned with
the mainstream flow, and the hydrodynamic drafting is observed; when D = 0.8 or 2,
both flags settle down to a flapping state where the flags oscillate sideway constantly,
and the inverted hydrodynamics is observed.

The critical separation distance Dc is between 0.7 and 0.8 for this series of
simulations (Re = 80). We find that the value of Dc remains within in this range
when Re is varied within the transitional Re range (77–84) for this set of simulations
(K̂b = 8.6 × 10−4, M̂ = 0.87).

As already discussed in the flapping case, a small separation distance D may hinder
the flapping motion of the leading flag (eventually the flapping of the trailing flag
as well since a static leading flag tends to induce a static trailing flag). When D is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

79
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009007903


Interaction of two tandem deformable bodies in a viscous flow 469

Figure 9. Visualization of the flow and flags for Re = 80. The upper panel plots the
instantaneous positions of fluid markers. The lower panel plots the vorticity contours. Each
column corresponded to a different separation distance. The value of D is 0, 0.7, 0.8, 2, from
left to right, respectively. The dimensionless time is 66 for each case.

K̂b 8.6 × 10−5 8.6 × 10−4 �2.8 × 10−3

Ret (45, 50) (77, 84) >220
Dc (0.9, 1.0) (0.7, 0.8) N/A

Table 1. Ret and Dc versus K̂b .

small, the wake of the oscillating leading flag may not have enough time and space
to evolve into a fully developed oscillating wake before it encounters the trailing flag
which may weaken the oscillatory motion of the leading flag. This seems to restrict
the flapping motion of both the flags. Therefore a smaller D is disadvantageous to
constant flapping of the flags. It seems that a separation distance that is approximately
the flag total length (D between 0.7 and 0.8) is sufficient for the flapping leading flag
to develop a fully fledged oscillating wake.

To find out how the range of transitional Reynolds number Ret and the critical
separation distance Dc may vary with the dimensionless bending modulus K̂b, several
more sets of simulations were performed with the values of K̂b decreased by ten times
in one set of simulations and increased to 8.6 × 10−3, 4.7 × 10−3 and 2.8 × 10−3 in
other sets of simulations. The results are summarized in table 1. The first row lists
the value of the dimensionless bending modulus, the second row lists the transitional
Re range and the last row lists the interval where Dc is located. As we can see from
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the table, the Ret is not a linear function of K̂b. When K̂b becomes ten times smaller,
i.e. the flags are much more flexible, the Re transitional range becomes smaller
accordingly (from 77–84 to 45–50). This may be explained by the fact that more
flexible flags tend to flap more easily. The Dc is located in (0.9, 1.0). Note that the
value of Dc is approximately the total length of the flag. When K̂b becomes ten times
lager, i.e. when the flags are much more stiff, the Ret range is above 220. This remains
true when K̂b � 2.8 × 10−3. The IB method we used for this work cannot solve the
Navier – Stokes equations with a reasonable accuracy when Re is greater than a few
hundreds, therefore we cannot find the Re transitional range and the corresponding
value of Dc when K̂b is sufficiently large, i.e. K̂b � 2.8 × 10−3. We did not try to find
the Ret and Dc for other smaller values of K̂b because the computations are slow.

According to numerous simulations, it appears that for the self-sustained flapping
to occur (for fixed K̂b), the Reynolds number has to be sufficiently large so that the
inertial force dominates the viscous force. On the other hand, when Re is sufficiently
small, the viscous force dominates and renders the flapping not sustainable. When
the Re lies in a transitional range, presumably the inertial force and viscous force are
of the same order; and it seems that the secondary effect of the separation distance
D starts to dominate the flag dynamics. Therefore the flags can either flap constantly
or be straight and static depending on D. Our simulations indicate that this is true
for K̂b in the range used in our work.

6. Summary and discussion
Previous laboratory measurements with tandem rigid bodies moving in a viscous

fluid showed that it was more beneficial to follow than to lead in terms of the
resistance the bodies encountered in the moving fluid. However, a very recent
laboratory experiment with deformable bodies Ristroph & Zhang (2008) revealed
just the opposite. Inspired by this experiment at high Re, we conduct a series of
numerical computations on the drag of a pair of deformable flags placed in tandem
in a flowing viscous incompressible fluid at moderate Re in the range of 40–220. Our
simulations show that the drag relationship of the two flags depends on the Reynolds
number. When Re is high enough, the two flags flap sustainedly, the drag of the
leading flag is less than that of the following one (i.e. the inverted hydrodynamic
drafting is observed); when Re is small enough, the flags maintain two stationary
straight line segments, the drag of the following flag is less than the leading one
(i.e. the hydrodynamic drafting is observed). These drag relationships hold for all the
dimensionless parameters used in our work: separation distance 0 � D � 5.5, Reynolds
number 40 � Re � 220, the flag bending rigidity 8.6 × 10−5 � K̂b � 1.8 × 10−3 and the
flag mass 0.8 � M̂ � 1.0. The transitional range of Re separating the differing drag
relationships depends on the value of K̂b. For Re in the transitional range, either of the
motion modes and drag relationships may occur depending on the separation distance
D: if D < Dc, both flags are in the static straight line state and the downstream flag
has less drag; if D > Dc, both flags are in the constant flapping state and the upstream
flag has less drag. The critical separation distance Dc depends on K̂b. The ranges of
Ret and Dc are given for two specific values of K̂b.

One may argue that the inverted hydrodynamic drafting observed in the recent
experiments Ristroph & Zhang (2008) and our simulations (the flapping case) is not
surprising because the physical system in our problem is not the same as those in
(Romberg et al. 1971; Zdravkovich 1977; Kyle 1979). On the surface of it, tandem
flapping flags, tandem circular cylinders and queued race cars/bicyclists seem to be
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different problems. However, all of these problems involve the complicated coupled
interaction between the viscous fluid and the objects. This type of fluid-structure
interaction is characterized by the interplay of fluid forces, body inertia and elasticity.
The dynamics is controlled by the three dimensionless parameters: Re, K̂b and M̂ .
Therefore the differing phenomena may be explained by different values of these
parameters. It seems that the inverted hydrodynamics drafting observed in the recent
experiments and our simulations requires the immersed body be sufficiently flexible,
i.e. K̂b has to be small enough. When the body is sufficiently flexible, the shape of
the body may be changed by the fluid forces. In the meantime, the changing shape
may alter the fluid motion as well. Such interaction mediated by the change of body
shapes may generate new phenomena different from the rigid case where the body
shapes are fixed.

Our simulations indicate that the similar phenomenon discovered in the laboratory
experiment at high Re (∼ 104) occurs as well at lower Re in the range of 50–220.
In the meantime we also notice some differences in the results between Ristroph &
Zhang (2008)’s and ours. First, the experimental values for K̂b and M̂ were 2.3 × 10−3

and 0.51, respectively. We find that flags with such values of K̂b and M̂ do not
flap constantly for Re in 50–220: they always settle down to the static state. It
is likely that this is because the Reynolds number is not high enough. Second, in
the former work when Re was much higher the drag of each of the flags equalled
approximately the drag of the single-flag case when D was greater than 5 (i.e. drag
was approximately 1 when D � 5). In our case, however, while the drag of the trailing
flag approximately equals 1, the drag of the leading flag is apparently greater than 1
when D � 5. Third, in our case the lower flag also experiences a drag reduction when
D = 0 and 0.1. But in Ristroph and Zhang (2008)’s case, it did not happen. There
could be two reasons behind these observed discrepancies. First, in the laboratory
experiments the soap film was approximately 4.7 microns in thickness and the flag
(rubber thread) was nearly 300 microns in diameter. So the actual physical problem
in the experiments was a quasi-two-dimensional flow past a three-dimensional object.
In contrast, in our simulations the flow is two-dimensional and the flags are one-
dimensional flexible curves without volume which are totally immersed in the flow.
Second, The Reynolds numbers in our simulations are approximately 200 times less
than those in the experiments. Because of the high Re the flow in the laboratory
experiments was probably turbulent. In our simulations the Reynolds numbers are
significantly lower. The velocity field from our simulations at Re =220 does not show
any fluctuations in space and time (the plots of u(x, y, t) are not highly oscillatory
in x, y and t). This seems to suggest that the flows in our simulations are laminar.
Therefore it seems unlikely that the critical Ret found in our work would correspond
to a transition from laminar to turbulent when Re is increased from 40 to 220. Note
that our numerical method for the Navier–Stokes equations is independent of the
nature of the flow as long as the Re is roughly less than a couple of hundred. The
uncertain nature of the flow does not affect the accuracy of our numerical results.

The drag of the flag may be roughly classified into two categories: form drag and
skin-friction drag (here the induced drag is treated as part of the form drag). The
friction drag is defined as the y component of the total force due to the tangential
stress exerted by the fluid on the flag. It is caused by the fluid viscosity. The form
drag is defined as the y component of the resultant pressure difference on the leading
and trailing edges of the flag (in flapping case). It strongly depends on the shape of
the flag. Presumably the form drag dominates the total drag if the Reynolds number
is large enough and the skin-friction drag dominates the total drag if the Reynolds
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number is small enough. The ratio of the form drag over the skin-friction drag
signifies the relative importance of the two types of drag. While in the non-flapping
case the flags are nearly stationary and the shape drag is not thought to be important,
it seems that both the shape and friction drag are important in the flapping case. It
would be interesting to compute separately the two types of drag for the flapping case.
However, we did not obtain such a decomposition sufficiently accurately. Interested
readers may refer to a very recent publication by Williams, Fauci & Gaver (2009) for
how this may be done.

We may speculate that when the separation distance D is sufficiently large the
interaction between the two flags would become so weak that the drag of each flag
would equal to 1. When Re is very high, the critical D is approximately 5 Ristroph &
Zhang (2008). It appears that the critical value of D depends on Re and is larger at
lower Re. Because of limitations in the size of the computational domain (increase
of the size has to be accompanied by the increase of grid points), we are not able to
identify such values for D at lower Reynolds numbers.

Our work has focused on the interaction and the resultant drag relationship of two
tandem flags separated by a distance solely in the longitudinal direction (y direction).
Presumably a finite lateral separation distance may change the interaction between
the flags and alter the drag relationship. It would be an interesting piece of future
work to investigate the interaction and drag relationship of two flags separated in
both longitudinal and lateral directions.

There are three important dimensionless parameters in our problem: the Reynolds
number Re, the flag bending modulus K̂b and the flag mass density M̂ . (In all of our
simulations the flag stretching/compression coefficient K̂s and the Froude number

Fr are kept fixed. The K̂s is chosen such that the flags are almost inextensible. It is
assumed that the influence of K̂s and Fr are not important.) Presumably, the drag
relationship would depend on these dimensionless parameters. The results of our
work are based on the simulations with these parameters in certain ranges: Re in
40–220, K̂b in 8.6 × 10−4–1.8 × 10−3, M̂ in 0.8–1.0. Because of these three controlling
dimensionless parameters, the seemingly simple two-flag-fluid system is in fact quite
complicated in nature. There may exist other transitions corresponding to the critical
values of other parameters such as K̂b. To obtain a comprehensive understanding of
this system, we need a complete picture of the transitions associated with each critical
value of these dimensionless parameters. It would be interesting to explore the whole
three-dimensional parameter space (Re, K̂b, M̂) for an exhaustive parametric study.
However, this is out of question at the time being because the computations are
pretty slow. Even a less ambitious task – a parametric study on the two-dimensional
(Re, K̂b) half-plane (Re � 220) may well take more than one year to accomplish given
the fastest computers at our dispose. We have to postpone this piece of work to the
future.
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and findings, and thanks the three unknown referees whose comments and suggestions
have made the paper better. The author thanks the USA National Science Foundation
for the support under the research Grant DMS-0713718.
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