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Abstract

This paper is concerned with presenting the Exponential-Lognormal (ELN) regression model as a com-
petitive alternative to the Pareto, or Exponential-Inverse Gamma, regression model that has been used in a
wide range of areas, including insurance ratemaking. This is the first time that the ELN regression model is
used in a statistical or actuarial context. The main contribution of the study is that we illustrate how maxi-
mum likelihood estimation of the ELN regression model, which does not have a density in closed form, can
be accomplished relatively easily via an Expectation-Maximisation type algorithm. A real data application
based on motor insurance data is examined in order to emphasise the versatility of the proposed algorithm.
Finally, assuming that the number of claims is distributed according to the classic Negative Binomial and
Poisson-Inverse Gaussian regression models, both the a priori and a posteriori, or Bonus—Malus, premium
rates resulting from the ELN regression model are calculated via the net premium principle and compared
to those determined by the Pareto regression model that has been traditionally used for modelling claim
sizes.
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1. Introduction

The Pareto distribution, which was discovered by Vilfredo Pareto (1848-1923), while he was
studying distributions for modelling income in Switzerland, has been widely used for modelling
heavy-tailed phenomena which appear frequently in a plethora of different scientific fields such
as sociology, economics, physics and seismology among others. In actuarial science, where quan-
tifying the risk posed by the more risky types of insurance has often been an imperative task
for actuaries, the Pareto distribution and its generalisation, namely the Generalised Pareto (GP)
distribution, which has been used in the context of Extreme Value Theory, see, for example,
Embrechts, Kliippelberg & Mikosch (1997), are the most popular heavy-tailed models which
have been employed by actuaries for effectively modelling extreme losses, which may have low
frequencies but usually represent the biggest part of the indemnities paid by insurance compa-
nies. For instance, the economic losses from natural catastrophes in 2017 hit the second-highest
level ever recorded, see Munich Re (2017). However, the Pareto distribution, similar to any other
claim size distribution, has both merits and demerits. In what follows we provide a thorough
discussion about the advantages and limitations of a special case of the GP distribution, the two
parameter Pareto, or Exponential-Inverse Gamma, density with a regression structure, henceforth
called the Pareto regression model, when it is used for premium determination in Motor Third
Party Liability (MTPL) insurance which is the main focus of the present study.
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As far as MTPL insurance is concerned, traditionally, a dual approach to ratemaking has been
adopted by actuaries who developed both a priori ratemaking schemes and a posteriori ratemak-
ing mechanisms or Bonus—Malus Systems (BMSs). The former process relies on the use of claim
frequency and severity generalised linear models (GLMs) for computing the a priori premi-
ums. References for a priori ratemaking include, for example, Haberman & Renshaw (1996),
Denuit & Lang (2004), Boucher, Denuit & Guillen (2007), De Jong & Heller (2008), Kaas
et al. (2008), Frees (2010) and Tzougas, Vrontos & Frangos (2015). The latter process uses
information about the claim frequency and severity history of the policyholders to calculate a
posteriori, or Bonus—Malus (BM), premium rates in a way which takes into account the a pos-
terior criteria, i.e. all the factors that could not be identified, measured and introduced in the
previous a priori tariff. An excellent account of BMSs can be found in Lemaire (1995). Further
references for BMSs include, among many others, Trembley (1992), Picech (1994), Pinquet
(1997, 1998), Brouhns et al. (2003), Mert & Saykan (2005), Gémez-Déniz & Calderin-Ojeda
(2018), Gémez-Déniz, Herndndez-Bastida & Ferndndez-Sanchez (2014), Ni, Constantinescu &
Pantelous (2014), Ni et al. (2014), Santi, Purnaba & Mangku (2016), Karlis, Tzougas & Frangos
(2018) and Gémez-Déniz & Calderin-Ojeda (2018). Furthermore, a basic interest of actuarial
literature research is the design of BMSs for the number and costs of claims based on both the
a priori and a posterior criteria, making the price discrimination even more fair and reason-
able. Nevertheless, since the seminal work of Dionne & Vanasse (1989, 1992), who employed
the Negative Binomial Type I (NBI), or Poisson-Gamma, regression model for constructing a
BMSs by updating the posterior mean claim frequency based on explanatory variables for claim
counts, the steady march of methodological innovation has mainly focused on deriving BMSs
with a frequency component based on alternative count regression models to the NBI, such as
the Poisson-Inverse Gaussian (PIG) regression model, which has also been a traditional choice,
see Denuit et al. (2007), Boucher, Denuit & Guillen (2008), Tzougas & Frangos (2014) and
Tzougas, Hoon & Lim (2018) among many others, while, unlike the case without covariates,
the severity component has been largely ignored even if it is critical in the ratemaking process.
Specifically, to the best of our knowledge, only the Pareto regression model! has been used so far
for deriving BMS by updating the posterior mean claim severity based on covariate information
for claim sizes, see, for instance, Frangos & Vrontos (2001), Mahmoudvand & Hassani (2009)
and Tzougas, Vrontos & Frangos (2014, 2018). The main advantage of the Pareto model lies in
the conjugacy, in a Bayesian sense, between the Inverse Gamma prior, or mixing, distribution
and the Exponential distribution, which facilitates maximum likelihood (ML) estimation and a
Bayesian approach towards calculating a posteriori, or BM, premiums. However, regardless of
the statistical and mathematical convenience of conjugancy, there is no guarantee that variation
in claim sizes has precisely the distributional forms implied by the Pareto model. In particular,
a serious drawback of the Pareto model is that it is among the most heavy-tailed claim severity
models and hence not flexible enough to adequately cover the behaviour of claims with moder-
ate sizes. Thus, if very few observations are available in the tail area, meaning that claims with
large amounts are so rare that their numerical impact is low, then an inappropriate imposition
of the Pareto model may lead to biased estimates for moderate claim costs. Moreover, even if
large claims have a significant contribution to the overall portfolio risk, as empirical evidence has
shown, claims with moderate severities usually constitute the largest proportion of MTPL data and
hence may also lead to substantial losses. More importantly, unless the assumption that the actual
claim size distribution is a Pareto is valid, then due to its very heavy-tailed character, the Pareto
model can be ill-suited for pricing risks since it will result in a severe penalisation of policyholders
with moderate claim costs. Nevertheless, unlike large claims that will always be reported to the
company, only moderate claims are subject to the Bonus-Hunger phenomenon. Consequently,
this situation can lead to huge financial impacts for the insurance company since in those BMSs
resulting from the Pareto model for claim severities it is very likely that moderate claim costs will
be defrayed by the policyholders themselves and hence the insurer will have a false appreciation of
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the real risks they are taking. Furthermore, taking into consideration that according to the latest
report of Insurance Europe, in 2014 MTPL remained the most widely purchased non-life product
in the European Union, accounting for 27.3% of non-life business, see Insurance Europe (2016), it
becomes clear that the Bonus-Hunger phenomenon requires an accurate modelling for moderate
claim amounts based on representative distributions for the claim sizes data that have the potential
to capture more efficiently their stylised characteristics and thus determine the appropriate level of
premiums.

The aim of the present work is to propose the Exponential-Lognormal (ELN) regression model
as a competitive alternative to the Pareto regression model. The ELN model can be considered as
a prominent candidate for MTLP claim severity data due to the following academic and practi-
cal reasons. Firstly, it is desirable to construct some distributions similar in nature to the Pareto
distribution which can adequately capture the tail of claim size data, since large size claims gener-
ally affect liability coverages. The ELN distribution has the heavy-tailed property since, as is well
known, mixing tends to produce heavy-tailed distributions, see, for example, Halliwell (2013). For
instance, similar to the Pareto distribution, the ELN distribution can more adequately model the
tail of the claim size data when compared to the Gamma distribution which has been very often
used in the literature for modelling moderate claims, see Klugman, Panjer & Willmot (2012) and
Denuit et al. (2007). Secondly, the advantage that the ELN distribution enjoys over the more
heavy-tailed Pareto distribution is that it has a more promising shape for moderate claims. This
effect is most notable when the a posteriori correction for claim amounts is calculated since the
ELN model can enable the actuary to calculate a fair increment in the a posteriori, or BM, pre-
miums that must be paid to cover all the expenses caused by a large number of medium size
claims hitting the portfolio, alleviating thus the Bonus-Hunger phenomenon. We will investigate
the right tail behaviour of the ELN distribution and compare it to that of the Gamma and Pareto
distributions based on the set up of Wang (1998), who proposed the use of the right tail index
for classifying claim severity distributions by their right tail behaviour without referring to higher
moments.

At this point, we would also like to call attention to the fact that unlike the vast pricing literature
on mixed Poisson models for claims counts, the study of mixed Exponential models stemming
from continuous mixing distributions, which can be used for describing claim size heterogeneity
and for deriving ratemaking mechanisms for claim costs, still remains a largely uncharted terri-
tory. In particular, regarding the case without covariates, except for the Pareto distribution the
only other mixed Exponential distribution that has been used in an a posteriori ratemaking con-
text so far is the Weibull, or Exponential-Lévy (Stable 1/2) distribution, which was studied in depth
by Ni, Constantinescu & Pantelous (2014) who gave an excellent account of its statistical prop-
erties, putting special emphasis on its ability to fit moderate size claims well, and demonstrated
how BM premiums can be derived based on the Bayesian approach. Furthermore, Ni et al. (2014)
calculated the a posteriori correction for claim sizes by using a hybrid structure which was based
on the Weibull distribution for modelling medium sized claims and the Pareto distribution for
modelling larger ones. Additionally, the Exponential-Inverse Gaussian (EIG) distribution, which
is also less heavy-tailed than the Pareto model and can apt for moderate claim costs, was presented
by Bhattacharya & Kumar (1986), who used it for reliability purposes, while Hesselager, Wang &
Willmot (1998) proposed a different parameterisation of the distribution and Frangos & Karlis
(2004) considered the case with covariates by allowing a regression specification in the function
for the mean parameter of the EIG distribution. However, this is the first time that the ELN model
is used in a statistical or actuarial setting for the cases with and without covariate information
because, due to the complexity of its log-likelihood, direct maximisation is difficult and has not
been addressed in the literature so far. In particular there is no analytical form for the distribution
of the cost of claims if the random effect variable, which follows the Lognormal distribution, is
marginalised out. As a result, ML estimation of the ELN regression model is not straightforward
to calculate and requires a special effort.
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The main achievement of this study is that we propose a relatively simple Expectation-
Maximisation (EM) type algorithm for ML estimation of the ELN regression model. The ML
estimation framework we consider is based on the inherent latent structure of mixed Exponential
models and is particularly useful for situations where the mixing distribution, such as the
Lognormal, is not conjugate to the Exponential distribution. Furthermore, using the Negative
Binomial Type I (NBI) and the PIG regression models for claim counts, both the a priori and a
posteriori, or BM, premium rates resulting from the new model are calculated via the law of total
expectation and the use of numerical approximation, and are compared to those determined by
the Pareto model that has been widely used for modelling claim severity.

The rest of this paper proceeds as follows: Section 2 presents the derivation of the ELN regres-
sion model. Section 3 fully describes the ML estimation through the EM algorithm. Section 4
contains an application to a data set concerning car insurance claims at fault. Finally, concluding
remarks can be found in section 5.

2. The ELN Regression Model

The ELN regression model which is considered in this study can be described as follows. Assume
that the individual claim costs, y;, arising from a policyholder i, i =1, ..., n are independent and
identically distributed random variables according to an Exponential distribution with probability
density function (pdf) given by

_Ji
e Mi%i

f (ilxi> zi) = 1)

Hizi
where y; > 0 and z; > 0, with u; =exp (xiTﬂ) , where x; is the vector of covariate information

regarding individual characteristics and characteristics of the vehicle related to the i insured
person and where 8 is the vector of the regression coefficients.
The mean and the variance of y;|x;, z; are given by

E(yilxi,z) = exp (xiTﬂ +log (z;) ) and 2)

Var(yilxi,z) = [exp (x,»Tﬂ +log (z;) )]2 (3)

Let us now assume that z; follows a Lognormal distribution with pdf given by

I\ 2

g @)= 25

1
V27 ¢z

with ¢ >0, where E(z;) =1 ensures the identifiability of the model and where Var(z;) =
exp (¢?) — 1, fori=1,...,n.

Considering the assumptions of the model, i.e. equations (1 and 4), it is easy to see that the
resulting distribution of y;|x; is the ELN distribution with pdf

log(z)+ %2 )
e [_%}
e Mz
i) = / dz;
0

i amen ®

Unfortunately, the above integral cannot be simplified but it can be computed via numerical
integration.
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Finally, based on the laws of total expectation and total variance and the moments of the
Exponential distribution, one can easily see that the mean and the variance of y;|x; are given by

E(yilx;) = Ez, [E(yilz))] = exp (x] B)E; [zi] = p; (6)
and
Var(yilx;) = Eg [Var(yi|z)]+ Var;, [E(yilz)]
= u[2exp(¢?) —1] (7)

3. The EM Algorithm for ML Estimation of the ELN Regression Model

In this section we describe how an EM type algorithm can be used to facilitate the ML estimation
of the ELN regression model. Let (y;,x;), i =1, ..., n, be a sample of independent observations,
where y; is the claim severity and where x; is the vector of covariate information. Also, consider
that the data are produced according to the ELN model. Then, the log-likelihood can be written as

10) = log (f(rilx)) (8)
i=1

where 6 = (¢, B) is the vector of the parameters and where f(y;|x;) is the pdf of the ELN model,
which is given by equation (5). Maximisation of the above function with respect to the vector of
parameters @ is not easy because the pdf of the model does not exist in closed form and hence
cannot be estimated via traditional numerical maximisation methods, such as, for instance, the
Newton-Raphson algorithm. Fortunately, ML estimation of the model can be achieved in easy
manner via an EM type algorithm. The EM algorithm (see Dempster, Laird & Rubin 1997 and
McLachlan & Krishnan 2007) is suitable for mixed Exponential models, since their stochastic
mixture representation involving a non-observable random variable, denoted by z; herein, can
be considered to produce missing data. In particular, if one augments the unobserved data z; to
the observed data (y;, x;), for i = 1, ..., n, then the complete data log-likelihood factorises into two
parts

n -

Loy = Y —L—log(m)—log<zi>]+

i=1 =

n

1
Z -3 log (2m) —log (¢) —log (zi) —

i=1

(log (zi) + %2>2

e ©)

for i=1, ...n. The regression coefficients B are involved in the first term and the parameter ¢
is involved in the second term of equation (9) which correspond to the log-likelihoods of the
Exponential and Lognormal distributions respectively.

The conditional expectation of the complete data log-likelihood is proportional to

Q(0;07) = E,(l 0)1yix:,0")

n [ yiEz | 21y xi, 00
x Z _ [Z - ] —log (Ml(r)) n
i=1 | M
n [ E, (log (Zz'))2 lyi, i, 07 (1)?
- [ )2 ] - (¢8) —log (#") (10)
i=1 2(¢ ’ )
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where 81 is the estimate of § at the ™ iteration in the E-step of our EM type algorithm. In what
follows, the expectations E, [z% lyi> X, 0(”] and E;, [(log (zi))2 lyi> Xi» 0(’)] have to be calculated for

implementing the E-step of the algorithm, while the M-step involves maximising the Q—function
with respect to 8. The EM type algorithm for the ELN regression model can be formally described
as follows.

« E-Step: Given the current estimates, say O(r), taken from the ' iteration, calculate for all

i=1,..,n, the pseudo-values
1
wLi = EZ,' |:—|)/i; X, o(r)i|
Zi
2 2
(r)
(log(z,')Jr (¢ 5 ) )
)

T W
Lo M dz;
Zi M,(r)zi V2mpMz; !
0

exp| —

= T2 (11)
(r)
(log(zi)Jr (¢2) )
&Xp| — 7
(r)
© )
e MiF ]
/ w2 Vargz; dzi
0
and
2
wyi = Ey [(log (z)) |)/i,Xi,0(r)]
2\ 2
()
(log(zi)+ (¢2) )
eXp| — =5
(r)
o) __Ji Z(d) )
2, 1z
f (log @) NFORE
0
_ i (12)
(r)
(log(z,-)+ (¢2) )
EXP — )
(r)
i )
e “1r Zi .
0

Clearly the expectations involved in the E-step of the algorithm do not have closed form
expressions and thus numerical approximations are needed. Specifically, equations (11 and
12) can be evaluated numerically. Alternatively, a Monte Carlo approach can also be used
based on a rejection algorithm. The latter case leads to variants of the EM algorithm such as
the Monte Carlo EM algorithm (see, for instance, Booth & Hobert 1999 and Booth, Hobert
& Jank 2001) which do not require knowledge of the pdf f(y;|x;), but it is sufficient to be able
to simulate from the posterior density g(zi|y, x;, 8), where g (z;) in our case is the pdf of the
Lognormal mixing distribution, which is given by equation (4).
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o M-Step: In the M-Step, the pseudo-values w;; and w,; from the E-Step can be used to
maximise the Q—function.
- Firstly, the Newton-Raphson algorithm is employed to obtain ML estimates of the ele-
ments of B. Taking the necessary derivatives of the Q—function with respect to 8 we obtain
the following results:

3Q(0;0" " :
h(ﬂ):%:z (%Wl,i_ 1) X; (13)
i=1 i

1

and

22Q(0;0") & yi T _ T
H(ﬂ):Wzg _M(’)Wl’i xx! =X WX (14)

i

fori=1,..,n, where W = diag{ - %wl,i} and where wy ; is given by equation (11).

The Newton-Raphson iterative procedure for obtaining ML estimates of the elements
of B goes as follows:

B0 =~ [H(8")] " h(8?) as)
- Secondly, update ¢ with

$r) = [ ( ST+ — 1) (16)

Xn: W2,i

where w; = =— and where w,,; is given by equation (12).

« Note also that when the regression component of the model is limited to a constant B, one
obtains E(y;|x;) = exp (xiT,BO) = u, and thus this EM type algorithm can be employed for the

ML estimation of the univariate, without a regression component, model.

4. Numerical Illustration

In this paper, we worked with a sample of data that were kindly provided by a major insurance
company operating in Greece and concern a MTPL insurance portfolio observed over 3 years.
In our sample we considered only policyholders with complete records, i.e. with availability of
all a priori rating variables that correspond to their characteristics, including the characteristics
of their car. Response variables are the number of claims at fault reported to the company and
the loss corresponding to each claim made. The sample comprises 9,986 policies which met our
criteria. The available a priori rating variables we employ are the BM class of the policyholders,
the horsepower (HP) of their car and the size of the city (CS) where they live.

o This BMS has 20 classes and the transition rules are described as follows: Each claim free
year is rewarded by one class discount and each accident in a given year is penalised by one
class. The variable BM class divides the classes of the current Greek BMS into four categories
of drivers, those who belong to BM classes: C1= “Class 1-Class 2”7, C2 = “Class 3-Class 57,
C3 = “Class 6-Class 9” and C4 = “Class 10-Class 20”.

« The variable HP consists of three categories of cars, those with a HP: C1 = “0-1,400 cc”, C2 =
“1,400-1,800 cc” and C3 = “greater than 1,800 cc”.

o The variable CS consists of three categories of policyholders, those who live in a: C1 = “large
city”, C2 = “middle sized city” and C3 = “small city”.
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Table 1. Descriptive statistics of claim severities - size of the different categories of the
explanatory variables

Claim Bonus-Malus Horsepower (HP) Size of the
Statistic severities (BM) category of the car city (CS)
Minimum 55.4 Cl: 6,709 Cl1: 4,252 Cl: 4,942
Median 1,931 C2: 1,393 C2: 2,037 C2: 2,539
Mean 2,685.8 C3: 1,168 C3: 3,697 C3: 2,505
Maximum 141,432 C4: 716 - -
Size of the City Age of the Car Horsepower of the car
4,000
5,000
4,000+
4,000- 3,000
3,000+
3,000
2,000
2,000+
2,000
1,000
1,000
1,000
0 0 0
Small Middle Large 0-8 years 8-16years =16 years 0-1400 cc 1400-1800 cc =1800cc

Figure 1. Descriptive histograms for the explanatory variables.

Furthermore, since in this study we focus on the claim severity component, in Table 1
we present some standard descriptive statistics for claim severities along with the number of
observations in each category of the three explanatory variables.

Additionally, Figure 1 displays the corresponding to the explanatory variables descriptive
histograms, giving us an indication of the range of their values.

Finally, Table 2 presents a summary of the effects of the covariates on claim severities for 36
different risk classes, which can be formed by dividing the portfolio into clusters defined by the
combinations of the characteristics of the policyholders and their cars based on all 9,986 observa-
tions. In particular, Table 2 depicts the percentage of observations with claim sizes less than 2,500
euros, higher than or equal to 2,500 euros and less than 3,500 euros, higher than or equal to 3,500
euros and less than 4,500 euros, and higher than or equal to 4,500 euros for each of the 36 groups
of policyholders.

In the following subsections, we fit the Negative Binomial Type I (NBI) and PIG distributions
on the number of claims, and the ELN and Pareto distributions on claim sizes. Moreover, we will
compare the two aforementioned claim severity distributions with the Generalised Beta of the
second kind (GB2) distribution, which has been used in an abundance of actuarial settings for
accommodating the long-tailed nature of claim sizes. Furthermore, regression components are
introduced in their mean parameters, and all the risk classifying characteristics presented above
are included so as to use all the available information in the estimation of the claim frequency
and severity distributions. Additionally, the a priori and a posteriori, or BM, premium rates
resulting from the combinations of the NBI and PIG claim frequency distributions/regression
models with the Pareto and ELN distributions/regression models will be calculated via the net
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Table 2. Summary statistics of the claim severities of the different risk classes determined by the combination of the
explanatory variables

Explanatory
Risk variables Claim severity y

class BM HP cs y < 2,500 2,500 <y < 3,500 3,500 < y < 4,500 y > 4,500
1 c1 c1 c1 75.80 8.52 8.68 7.00
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premium principle with independence between the claim frequency and severity components
assumed?.

« Because we will be comparing the ELN distribution/regression model with the Pareto and
GB2 distributions/regression models, we give below some rudimentary facts concerning the
latter two.

- The Pareto model, taken for instance from Frangos & Vrontos (2001) and Mahmoudvand
& Hassani (2009), can be constructed as follows. Following a similar approach, as in the
case of the ELN model, consider that y;|x;, z;, for i = 1, ..., n, is distributed according to the
Exponential distribution with mean p;z;, where y; > 0, where u; = exp (xiTﬂ ), where x; is
the vector of covariate information regarding individual characteristics and characteristics
of the car related to the i insured person and 8 is the vector of the regression coeffi-
cients, and where z; > 0 is a continuous random variable which follows an Inverse Gamma
distribution with pdf

1 @—1)
@D P (‘ Zi )

(=) r@

with ¢ >2 and mean E(z;) =1. Then, the resulting distribution of y;|x; is a Pareto
distribution with pdf given by

(17)

gz)=

¢
(@ —Dp
filx)=¢ [ d pw} (18)
[yi+ (@ —1 u]
The mean and the variance of the Pareto distribution are given by
2
(=D p, 2 1
E(yilx;) = p; and Var(yilx)) = [ 51 d <¢ y Salran 1) (19)

- Regarding the GB2 distribution, it should be noted that many heavy-tailed distributions
can be written as special or limiting cases of the GB2, see, for instance, McDonald & Xu
(1995). However, despite the prominence of the GB2 distribution in fitting heavy-tailed
data, relatively few applications use the GB2 in a regression context. Further details of
the GB2 regression model can be found, for instance, in Frees & Valdez (2008), Frees,
Derrig & Meyers (2014a) and Calderin-Ojeda, Fergusson & Wu (2017). Herein we use a
simple specification of the GB2, see Rigby & Stasinopoulos (2009), which has as a special
case the Pareto model given by equation (18) and allows us to parameterise the location
parameter, i;, in terms of covariates, i.e. ; = exp (xiTﬂ), fori=1, .., n. The pdf of the GB2

distribution is defined by
VT -1
o1y {u?’”B (v, 7) [1+ (i—) } }

rw+r ¢ (%)w

' wv) T () y |:1 N (ﬁ_ii)qvﬂ

for y; > 0, where —0o <¢ <00, v>0 and 7 >0, see also McDonald & Xu (1995),
equation (2.7), and where

flilx)

(20)
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1
_ _ LT ()
B (v, — v—1 1—%)° 1 __ A 21
(v, 1) /x (1—x)°"""dx IR, (21)
0
is the Beta function.

The first and the second moment of the GB2 distribution are given by

1 1
,u,iB(l)—}—a,T—q—b)

1
E(yilxi) = B0.0) ,for—v<—<rt (22)
and
2 2 2
wiB(v+ >t 3 2
E(y; %) = <B ) ) for —v < i T (23)

see McDonald (1996). Hence, the variance of the GB2 distribution can be easily calculated
using equations (22 and 23).

« Furthermore, the NBI and PIG claim frequency models can be derived as follows. Consider a
policyholder i whose number of claims, denoted as k;, with k; =0, 1, 2, 3, ..., are independent
and suppose that yx; is the vector of individual characteristics and characteristics of the car
related to the i insured person, i = 1, ..., n, which represent different a priori rating variables.
We assume that given a continuous random variable u; > 0 with pdf v (4;) defined on R,
kil x ;> ui follows the Poisson distribution with mean X;u;, where A; = exp ( X,-Tb) and where
b is the vector of the regression coefficients. Then, the unconditional distribution of k; is a
mixed Poisson distribution. The following are the well-known results applied to the above sit-
uation, see, for example, Dionne & Vanasse (1989, 1992), Boucher, Denuit & Guillen (2007,
2008) and Tzougas, Vrontos & Frangos (2018). We consider that E(u;) =1 as this ensures
the identifiability of the model.

- Let u; follow a Gamma distribution with pdf given by
1 4.1 )
ul 5" exp(=5)
r@)

where o > 0. Parameterisation (24) ensures that E(u;) = 1.

Under this assumption the distribution of k;|x; becomes a NBI distribution, with proba-

bility mass function (pmf) given by

T . ki %
P(ki|x,->=r(k’+")( o ) ( ! ) (25)

(24)

v (u) =

KT (1) \1+o04 14+ oA
The mean and the variance of the NBI distribution are given by
E(ki|x;) = A and Var(k;| x;) = A +)L120 (26)
- Let u; follow an Inverse Gaussian distribution with pdf given by
v () = — exp [—L (i — 1)2} (27)
2rou’ 2ou;

i
where o > 0. Parameterisation (27) also ensures that E(u;) = 1. Then, the distribution of
ki| x ; becomes a PIG distribution, with pmf given by

1 g 1
2a 2 A'eo Kki—l (a)
P(kilx;) = (;) l(aaTsz (28)
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2A;

= and where

K, (w) = /x”_l exp [—%w (x+ i)] dx (29)
0

is the modified Bessel function of the third kind of order v with argument w.
The mean and the variance of the PIG distribution are given by

where a2 =02 +

E(kilx;) = A and Var(ki|x;) = A + Aio (30)

« Finally, note that when the regression component in each of the aforementioned claim sever-
ity and frequency regression models is limited to a constant, one obtains the univariate,
without a regression component, models.

4.1 Modelling results

This subsection presents the modelling results of the ELN distribution/regression model and
the traditional NBI, PIG, GB2 and Pareto distributions/regression models. The EM algorithm
described in section 3 was used to estimate both the ELN distribution and regression models. The
model, for both the cases with and without covariate information, converged after a few itera-
tions using a rather strict stopping criterion. In particular, we iterated between the E-step and the
M-step until the relative change in log-likelihood, which is given by equation (8), between two
successive iterations was smaller than 10~!2, We also emphasise that for this model the choice
of initial values for both the vector of the regression coefficients f and the parameter ¢ of the
Lognormal mixing distribution needed special attention because one may obtain inadmissible
values if the starting values are bad. Good starting values for 8 were obtained by fitting the expo-
nential regression model. Also, a good initial value for ¢ was feasible by calculating Var(y;|x;)
based on all observations, i =1, ..., n, in our data set and solving equation (7) with respect to
¢ > 0. Additionally, to ensure that the global maximum had been obtained and the algorithm
had not been trapped in a local maximum, we checked with many initial values for ¢, but for
all cases we converged on the same solution. Furthermore, standard errors were obtained using
the standard approach of Louis (1982). All computing was done using the statistical computing
environment language R. Additionally, ML estimation of the NBI, PIG, GB2 and Pareto distri-
butions/regression models, for which the definition of a log-likelihood function in closed form
is feasible, was straightforward by using standard statistical packages in R, such as the GAMLSS
package. For more details on the GAMLSS package, see Stasinopoulos, Rigby & Akantziliotou
(2008). Finally, the computational time requirements of the ELN distribution/regression model
were compared to those of the over-simplistic Exponential distribution/regression model. As
anticipated, the Exponential distribution/regression model compared favourably to the ELN dis-
tribution/regression model in terms of computing times required for ML estimation since both
the cases took fewer than 10 seconds of CPU time. Nevertheless, taking into account that there
were 9,986 policies in the sample of MTPL data that was examined in this study, that we used a
rather strict stopping criterion for EM iterations and that the expectations involved at the E-step
of the algorithm do not have closed form expressions, the CPU times of the EM algorithm used
for ML estimation of both the ELN distribution and the ELN regression models can be char-
acterised as modest. In particular, the ML estimation of the ELN regression model was more
chronologically demanding than that of the ELN distribution because the numerical evaluation
of the integrals at the E-step for the case with covariates is more computationally time consum-
ing than for the case without covariates. However, both cases took less than 2 minutes of CPU
time. Finally, it should be mentioned that the trade-off between CPU time requirements and the
efficiency of the ELN regression model for approximating claim costs in our sample and for deriv-
ing ratemaking mechanisms is sifted in favour of the latter two. In particular, regardless of the
very low CPU time required for ML estimation of the Exponential model, the assumption of an
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Exponential response distribution is inadequate both for modelling the tail of the claim sever-
ity and for ratemaking purposes since firstly this model cannot effectively capture the tail of the
claim size distribution and secondly all the possible important factors, such as reaction times and
aggressive driving behaviour, etc., whichto a great extent reveal the riskiness of the insureds, but
are either unmeasurable or unobservable, cannot be integrated into the model as it can only take
into account covariate information of the policyholder and/or their car. As a result, heterogeneity
may still be observed in tariff cells despite the use of many classification variables. On the con-
trary, as far as the ELN regression model is concerned, firstly, as illustrated later in this subsection,
it has an upper tail which can sufficiently fit large claims in our sample and secondly, as was previ-
ously shown, it allows us to correct for this unobserved heterogeneity since it was constructed by
assuming that y;|x;, zi, for i = 1, ..., n, is distributed according to the Exponential distribution with
mean (,z;, where y; > 0, where u; = exp (xiTﬂ), and where the risk parameter z; > 0, which rep-
resents the risk proneness of policyholder i, i.e. unknown risk characteristics of the policyholder
having a significant impact on the occurrence of claims, was regarded as a random variable that is
distributed according to the Lognormal distribution, see equations (1 and 4).

The ML estimates of the parameters and the corresponding standard errors in parentheses for
the NBI, PIG, GB2, Pareto and ELN distributions are presented in Panel A of Table 3, while Panel
B of Table 3 reports our findings with respect to the NBI, PIG, GB2, Pareto and ELN regression
models.

Furthermore, we rely on normalised quantile residuals®, see Dunn & Smyth (1996), as an
exploratory graphical device for investigating the adequacy of the fit of the competing NBI and
PIG models for claim frequencies and GB2, Pareto and ELN models for the claim severities.
Also, for comparison purposes, we fitted the simple Exponential regression model, which obvi-
ously has a thinner tail than the GB2, Pareto and ELN models, and included the corresponding
plot. For continuous response distributions, the normalised (randomised) quantile residuals are
defined as #; = ®~! (w;), where ®~! is the inverse cumulative distribution function of a standard
Normal distribution and where w; = Fi(y,-lé), where F; is the cumulative distribution function

estimated for the ith individual, y; is the corresponding observation and 0 contains all esti-
mated model parameters. For discrete response distributions, the aforementioned definition is
extended and w; is defined as a random value from the uniform distribution on the interval
[Fi(yi — 1|0), Fi(y;10)]. In both cases, the model fit can be evaluated by means of usual quantile-
quantile plots. Specifically, if the data indeed follow the assumed distribution, then the residual on
the quantile-quantile plot will fall approximately on a straight line. Figure 2 shows the normalised
(random) quantiles for the NBI, PIG, Exponential, GB2, Pareto and ELN regression models. From
Figure 2, we see that the residuals of the NBI and PIG models are very close to the diagonal and
indicate a very good fit to the distribution of the claim frequencies. Also, regarding claim sever-
ities, the residuals indicate that the GB2, Pareto and ELN models are better assumptions than
the Exponential model since the residuals of the former three are very close to the diagonal and
indicate a very good fit to the distribution of the claim sizes, while the sample quantiles of the
Exponential model greater than 2 are significantly higher than the theoretical quantiles and thus,
as expected, the Exponential model does not capture the tail of the claim size distribution which
corresponds to significantly large claim sizes.

Additionally, in what follows, we will investigate the behaviour of the ELN distribution at large
claim sizes and compare it to that of the Gamma and Pareto distributions. In particular, we will
present a ranking of these claim severity distributions by the right tail index* which is a risk mea-
sure for right tail deviation that was suggested by Wang (1998). The right tail index is defined as

/ JSy (Ddt

— 0 —_— —
aiy)= EY) 1 (31)
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Table 3. Results of the fitted NBI, PIG, GB2, Pareto and ELN models

Panel A: Distributions

NBI PIG GB2 PAR ELN
Variable Variable Variable Variable Variable
)L .......... 041070 (001971) — A ......... 041070(001951) — M ......... 1.’1.7.4.41.. (003551) ..... H ........ 2’72550 (003536) ..... u ......... 2’68820(003521) .
. \}a}iéblé .................... Var|able ....................... Vanable ....................... \)auri.ab.lé ...................... Vériab[e .....................
- 100570 (0.0004) o 108170(0.00038) ¢ 381521(004071) ¢ 516000 (0.03719) ¢ 0.33040 (0.02272)
Vanab[e
: : ; : Vanab[e ; : ;
Panel B: Regression models
NBI PIG GB2 PAR ELN

Variable Coeff. b Variable Coeff. b Variable Coeff. B Variable Coeff. B Variable Coeff. B
Intercept —0.68410 (0.01161) Intercept —0.68440 (0.01158) Intercept 7.01870 (0.03859) Intercept 7.84670 (0.03767) Intercept 7.82290 (0.03697)
BM BM BM BM BM

Cc2 —0.07752 (0.03672) Cc2 —0.07622 (0.03543) Cc2 —0.02332 (0.01131) Cc2 —0.03933 (0.01057) Cc2 —0.04183 (0.01007)
c3 —0.14731 (0.06998) C3 —0.14751 (0.06978) c3 0.02811 (0.01355) C3 0.04953 (0.01257) C3 0.05442 (0.01232)
c4 —0.03912 (0.01922) C4 —0.04101 (0.01918) Cc4 —0.00682 (0.00326) C4 —0.02092 (0.00261) C4 —0.01872 (0.00241)
HP HP HP HP HP

Cc2 0.00613 (0.00281) Cc2 0.00682 (0.00279) Cc2 0.04733 (0.02017) Cc2 0.09281 (0.01999) Cc2 0.08801 (0.01958)
c3 0.06832 (0.02791) C3 0.06893 (0.02788) c3 0.01692 (0.00704) C3 0.04222 (0.00607) C3 0.06443 (0.00546)
cs cs cs cS cs

Cc2 —0.16933 (0.07912) Cc2 —0.17273 (0.07909) Cc2 0.00493 (0.00222) Cc2 0.07911 (0.00189) Cc2 0.09313 (0.00170)
c3 —0.46392 (0.21731) C3 —0.49493 (0.21725) c3 —0.00313 (0.00139) C3 0.04243 (0.00122) C3 0.05152 (0.00105)
Variable Variable Variable Variable Variable

o 0.96700 (0.00794) o 1.03820 (0.00791) ¢ 3.81210(0.04062) ¢ 5.18670 (0.03710) ¢ 0.32600 (0.02262)
- - - - Variable - - - -

. s = 5 v 3.28361(0.06844) - = = .

- - - - Variable - - - -

. s = 5 T 0.60491(0.06263) - = = .
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Figure 3. Plot of the right tail index as a function of the variance for the Gamma, Pareto and ELN distributions with unit
mean.

where Sy (t) =P (Y > t) is the survival function, or the decumulative distribution function,
of Y.

Figure 3 displays three plots of the right tail index, d(Y), as a function of the variance for
the Gamma, Pareto and ELN distributions respectively. The parameters were chosen so that the
Gamma, Pareto and ELN distributions have a unit mean, i.e. E(Y) =1, and varying variance,
Var(Y), taking on the same values for all densities. From Figure 3, we observe that the ranking
of all models in terms of their right tail index values is consistent with what was discussed in sec-
tion 1. Specifically, the right tail index ranks the Pareto distribution as having a fatter tail than
ELN distribution, which in turn has a fatter tail than the Gamma distribution.

Finally, the empirical estimator of the right tail index, d(Y), which was considered by Jones &
Zitikis (2003) can be calculated as

R "L Y
=Y c,»% (32)

i=1

where Y(;) is the i — th ordered observation of the sample Y7, ..., Y;, and where the coefficients

c; are given by
n—i n—i+1 1
NEREIE
n n n
fori=1,..,n.

Regarding our data set, the value which we obtained for the empirical estimator of the right

~

tail index is d(Y) = 1.362, while the ELN distribution has a right tail index d(Y) = 1.217 which
is close to the empirical result. Nevertheless, since for smaller data sets the empirical approach
can lead to an underestimation of d(Y), it makes sense to build a parametric bootstrap two-sided

A

confidence interval (CI) for d(Y). Given our data, we generated B = 100,000 bootstrap samples of
size 9,986 and we calculated the 95% bootstrap-based CI for d(Y) to be (1.113, 1.560). The value
1.217 is included in this CI and hence this is an additional indicator that the ELN distribution is
able to effectively model the right tail of the data.

4.2 Models comparison

Thus far, we have the NBI, PIG and GB2, Pareto and ELN competing distributions/regression
models for the claim frequency and severity component respectively. Consequently, to differenti-
ate between these models, this subsection compares them so as to select the best for each case,
employing the Global Deviance (DEV), Akaike information criterion (AIC) and the Schwarz
Bayesian Criterion (SBC) which are classic hypothesis/specification tests. The (fitted) Global
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Table 4. Global deviance, AIC and SBC values for the NBI, PIG, GB2, Pareto and ELN models

Panel A: Distributions Panel B: Regression models
Model df AlC SBC Model df DEV AlC SBC
NBI 2 17,021.61 17,036.03 NBI 9 16,949.97 16,967.97 17,032.86

Pareto 2 176,518 176,532.40  Pareto 9 176,485.40 176,503.40  176,568.30

ELN 2 176,173 176,187.40  ELN 9 176,120.80 176,138.80  176,203.70

Deviance is defined as

A A

DEV = —21(0) (34)

where [ is the maximum of the log-likelihood and 4 is the estimated parameter vector of the model.
Furthermore, the AIC is given by

AIC=DEV +2 x df (35)
and the SBC is given by
SBC=DEV +log (n) x df (36)

where df are the degrees of freedom, that is, the number of fitted parameters in the model and »
is the number of observations in the sample.

It should be noted that special emphasis should be placed on the comparison of the NBI dis-
tribution/regression model with the PIG distribution/regression model and the comparison of
the Pareto distribution/regression model with the ELN distribution/regression model since their
stochastic mixture representation, see sections 2 and 4, enables the use of a Bayesian approach
towards deriving a posteriori, or BM, ratemaking mechanisms for the number and the cost of
claims. Moreover, in a posteriori ratemaking it is of crucial importance to the actuary to have
interpretable results in order to refine their a priori risk classification and restore fairness by using
a premium structure that can be sufficiently explained to policyholders and regulators. Therefore,
while the GB2 model is also included in this subsection for the sake of comparison with the two
mixed Exponential models, in the following subsections we will limit our analyses only to the NBI,
PIG, Pareto and ELN distributions/regression models since the differences between those models
will produce different a posteriori, or BM, premiums. Note also that since the NBI and PIG models
for the frequency component and the Pareto and ELN models for the severity component have the
same number of parameters, it is sufficient to examine the respective log-likelihoods. The result-
ing Global Deviance, AIC and SBC values for the NBI, PIG, Pareto and ELN models are given in
Table 4 (Panels A and B). As is well known, a commonly used rule-of-thumb states that a model
significantly outperforms a competitor if the difference in their log-likelihoods exceeds five, cor-
responding to a difference in their AIC values of more than ten and to a difference in their SBC
values of more than 5, see Burnham & Anderson (2003) and Raftery (1995) respectively. This
means here that, as can be seen from Panels A and B, as far as claim frequencies are concerned,
the best fit is given by the PIG distribution/regression model, while regarding the claim severities,
the ELN distribution/regression model is superior to the Pareto distribution/regression model.

Finally, Table 4 (Panels A and B) also includes the Deviance, AIC and SBC values for the GB2
model. Our findings suggest that with respect to the AIC (see Panels A and B) and the Global
Deviance (see Panel B) test results, the fit provided by the GB2 distribution/regression model is
only marginally better than the fit given by the ELN distribution/regression model, which has
fewer parameters. However, when the SBC test is used, we observe a slight superiority of the ELN
distribution/regression model versus the GB2 distribution/regression model. The difference in the
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outcome of the AIC and SBC tests for the GB2 and ELN distributions/regression models is under-
standable because, as has been mentioned on several occasions in the applied statistical literature,
the AIC may fail to choose the most parsimonious model because the AIC function is largely based
on the deviance function, whereas the BIC penalises model complexity, i.e. the number of param-
eters, more heavily. In particular, as it can be seen from equations (35 and 36), only the penalty
term differs between each formula, while the goodness of fit parts remain the same. Therefore, in
this case the BIC favours the more parsimonious ELN distribution/regression model since in the
BIC the penalty for additional parameters is stronger than that of the AIC. Of course, for other
data sets the GB2 distribution/regression model, which has more parameters, may perform better
than both the Pareto and ELN distributions/regression models. In such cases, if we knew that the
actual distribution is a GB2, we would prefer to fit a GB2 instead of a mixed exponential model.
Nevertheless, before using any distribution for carrying out different tasks, such as setting the
appropriate level of premiums, reserves and reinsurance, its appropriateness for modelling claims
data should always be investigated. In the case of the GB2 distribution, if the data set is large, even
if the GB2 provides parameter estimates with small standard errors, these estimates may be sig-
nificantly biased if the assumption that the distribution is a GB2 is not valid. Moreover, if the data
set is small, the parameter estimates of the GB2 distribution can be unstable, as for instance was
reported in Calderin-Ojeda, Fergusson & Wu (2017). In particular, Calderin-Ojeda, Fergusson &
Wu (2017) developed a novel EM algorithm for ML estimation of the parameters of the heavy-
tailed Double Pareto-Lognormal (DPLN) regression model. As was discussed in Reed & Jorgensen
(2004), the DPLN model exhibits Paretian behaviour in both tails, among other theoretical prop-
erties, and hence can be considered as a valid alternative to other parametric heavy-tailed models
such as the GB2 model. With this in mind, Calderin-Ojeda, Fergusson & Wu (2017) compared
the performance of the DPLN distribution with the GB2 distribution and reported that regard-
ing small sample sizes the standard errors of the parameter estimates of the DPLN distribution
are noticeably smaller, highlighting the consistency of the parameter estimation for the DPLN
distribution and its advantage over the GB2 distribution in this case.

4.3 Calculation of the a priori premiums

In this subsection, based on the use of the net premium calculation principle, we analyse the dif-
ferences between the Pareto and ELN claim severity regression models through the mean of the
cost of claims of the policyholders who belong to the 36 different risk classes, which are deter-
mined by the relevant a priori characteristics. In particular, E(y;|x;), for i = 1, ..., n, forms the basis
of the premium for each risk class. Note that in the case of the ELN model, which does not have a
pdfin closed form, the estimated expected annual claim severity for each risk class was calculated
in equation (6) using the law of total expectation. Additionally, we calculate the a priori premiums
that must be paid by all the different groups of policyholders based on the combinations of the
NBI and PIG regression models for approximating claim frequency and the two competing claim
severity regression models. Specifically, assuming independence between the claim frequency and
severity components, the premium rates calculated according to net premium principle are given
by E(ki|x;) x E(yilx;), for i=1,...,n, in the case of the ELN, Pareto, NBI and PIG regression
models, see equations (6, 19, 26 and 30) respectively.

The results are summarised in Table 5. At this point we should emphasise that if the ratemak-
ing exercise is only based on the number of claims at fault, regardless of their severity, which is
usually the case encountered in the literature, this over-simplification can be regarded as prob-
lematic since it can limit any insights one can get into the extent to which certain explanatory
variables can predict insurance outcomes as these can significantly differ between the number and
the costs of claims. The key idea is that both the a priori and a posteriori corrections should aim at
creating tariff cells as homogeneous as possible by integrating the severity of the claims since this
can improve ratemaking by providing a more complete picture to the actuary about the extent to

https://doi.org/10.1017/51748499519000034 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499519000034

60

Tzougas et al.

Table 5. A priori premium rates, NBI, Pareto, PIG and ELN regression models

Explanatory

Risk variables A priori premiums
class BM HP cs Pareto ELN NBI-Pareto NBI-ELN PIG-Pareto PIG-ELN
1 C1 C1 C1 2,557.30 2,497.14 1,290.27 1,259.92 1,289.88 1,259.54
2 C1 C1 Cc2 2,767.52 2,740.79 1,178.87 1,167.48 1,174.51 1,163.16
3 C1 C1 C3 2,668.06 2,629.11 846.50 834.14 820.41 808.43
4 C1 C2 C1 2,805.98 2,726.84 1,424.40 1,384.23 1,424.97 1,384.78
5 C1 C2 Cc2 3,036.64 2,992.91 1,301.42 1,282.67 1,297.52 1,278.83
6 C1 C2 C3 2,927.51 2,870.96 934.50 916.44 906.33 888.82
7 C1 C3 C1 2,667.53 2,663.24 1,441.02 1,438.71 1,441.45 1,439.14
8 C1 C3 Cc2 2,886.81 2,923.10 1,316.60 1,333.15 1,312.53 1,329.02
9 C1 C3 C3 2,783.07 2,803.99 945.40 952.51 916.82 923.71
10 Cc2 C1 C1 2,458.75 2,394.91 1,148.04 1,118.23 1,149.18 1,119.35
11 Cc2 C1 Cc2 2,660.87 2,628.58 1,048.91 1,036.18 1,046.40 1,033.70
12 Cc2 C1 C3 2,565.24 2,521.48 753.18 740.33 730.92 718.45
13 Cc2 Cc2 C1 2,697.84 2,615.21 1,267.38 1,228.56 1,269.54 1,230.65
14 Cc2 C2 Cc2 2,919.62 2,870.38 1,157.95 1,138.42 1,155.99 1,136.49
15 Cc2 Cc2 C3 2,814.69 2,753.42 831.48 813.38 807.47 789.89
16 Cc2 C3 C1 2,564.73 2,554.21 1,282.17 1,276.91 1,284.22 1,278.96
17 Cc2 C3 Cc2 2,775.56 2,803.43 1,171.46 1,183.23 1,169.36 1,181.10
18 Cc2 C3 C3 2,675.81 2,689.20 841.18 845.39 816.81 820.90
19 Cc3 C1 C1 2,687.08 2,636.74 1,170.06 1,148.14 1,169.47 1,147.57
20 Cc3 C1 C2 2,907.96 2,894.02 1,069.03 1,063.90 1,064.87 1,059.76
21 c3 C1 C3 2,803.45 2,776.09 767.63 760.14 743.83 736.57
22 Cc3 C2 C1 2,948.37 2,879.29 1,291.69 1,261.43 1,291.95 1,261.68
23 Cc3 C2 Cc2 3,190.74 3,160.23 1,180.16 1,168.88 1,176.39 1,165.14
24 Cc3 Cc2 C3 3,076.07 3,031.46 847.43 835.14 821.73 809.81
25 Cc3 C3 C1 2,802.90 2,812.14 1,306.76 1,311.07 1,306.89 1,311.20
26 Cc3 C3 C2 3,033.31 3,086.52 1,193.93 1,214.88 1,190.00 1,210.88
27 Cc3 C3 C3 2,924.3 2,960.76 857.32 868.01 831.23 841.60
28 c4 C1 C1 2,504.41 2,450.87 1,215.13 1,189.16 1,212.46 1,186.54
29 c4 C1 Cc2 2,710.28 2,690.01 1,110.21 1,101.91 1,104.01 1,095.76
30 c4 C1 C3 2,612.88 2,580.40 797.20 787.29 771.17 761.58
v 3i c4 C2 C1 2,747.94 2,676.33 1,341.45 1,306.49 1,339.44 1,304.53
32 c4 Cc2 Cc2 2,973.84 2,937.46 1,225.63 1,210.63 1,219.64 1,204.72
33 c4 Cc2 C3 2,866.96 2,817.77 880.08 864.97 851.93 837.31
v 34 c4 C3 C1 2,612.36 2,613.90 1,357.10 1,357.91 1,354.93 1,355.74
35 4 c3 Q2 2,827.10  2,868.95 1,239.93 1,258.28 123374 1,252.00
36 B vC4 vC3 C3v 2,725;50‘ ‘ 2,752.65 ‘ 890.34v 899.02 v 861.7v9 870.18
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which the amounts of premiums vary according to observable characteristics of policyholders and
their cars. For instance, from Table 5 we observe that the premium payment for a policyholder
who belongs to the first BM category lives in a large city and has a car with HP between 0 and
1,400 cc, i.e. for the reference class, is equal to 2,557.30 and 2,497.14 euros, while another insured
who belongs to the same BM category has a car with similar characteristics and lives in a small city,
i.e. risk class 3, has to pay a higher premium equal to 2,668.06 and 2,629.11 euros in the case of the
Pareto and ELN models respectively. However, when the number of claims is also taken into con-
sideration, the premium payment for the first individual we described before, i.e. for the reference
class, reduces to 1,290.27 and 1,259.92 euros in the case of the NBI-Pareto and NBI-ELN mod-
els respectively, and to 1,289.88 and 1,259.54 euros in the case of the PIG-Pareto and PIG-ELN
models respectively, and hence is now higher than the premium required to be paid by the second
individual we described before, i.e. for risk class 3, which goes down to 846.50 and 834.14 euros in
the case of the NBI-Pareto and NBI-ELN models respectively, and to 820.41 and to 808.43 euros in
the case of the PIG-Pareto and PIG-ELN models respectively. Moreover, we observe that regarding
all combinations of both claim frequency models with the two corresponding claim severity mod-
els, the group of policyholders with the lowest expected claim severity are those who belong to
the second BM category, live in a large city and have a car with HP between 0 and 1,400 cg, i.e.
risk class 10, whereas the group of insureds with the highest expected claim severity are those
who belong to the third BM category, live in a middle sized city and have a car with HP between
1,400 and 1,800 cc, i.e. risk class 23. On the other hand, when claim frequencies are also taken into
account, the lowest premium payment is required by those insureds who belong to the second
BM category, live in a small city and have a car with HP between 0 and 1,400 cc, i.e. risk class 12,
whereas the highest premium payment is required by those policyholders who belong to the first
BM category, live in a large city and have a car with HP greater than 1,800 cc, i.e. risk class 7.

Overall, as expected, Table 5 shows that small differences lie in the a priori premiums resulting
from the Pareto and ELN claim severity models and also in those determined by their combina-
tions with the NBI and PIG claim frequency models because, as is well known, in this case only
the mean parameters of the Pareto and ELN models, which are modelled using the same covariate
information, affect the estimation of the premium rates. However, on the path towards actuarial
relevance where the Bayesian view will be taken to calculate the severity of the a posteriori cor-
rections, it is the value of the dispersion parameter of the Lognormal mixing distribution that
will consequently affect the calculation of the a posteriori, or BM, premium rates. In particular, as
was previously mentioned, the ELN model which is less heavy-tailed than the Pareto model will
show much less extreme relative a posteriori, or BM, premiums for policyholders with some claim
experience.

4.4 Calculation of the a posteriori premiums

In this subsection, we examine how the ELN model responds to claim experience. Consider a
policyholder i who was observed for ¢ years of their presence in the portfolio with claim fre-
quency history k/, ..., k! and denote by y{ . the loss incurred from their claim k for the period j, for
i=1,..,nandj=1,..,t Then, the information we have for their claim size history will be in the

e Ko
form of a vector )’},1’ - yf,kf and the total amount of their claims will be equal to Z Z yi i The
j=1 k=1

problem is to determine at the renewal of the policy the expected claim severity of the policyholder
i for the period t 4 1 given the observation of the reported accidents in the preceding ¢ periods and
observable characteristics in the preceding t 4 1 periods and the current period. Applying Bayes

theorem, one can find that the pdf of the posterior distribution of zf“, given claim size records
Vi oo ylf o and x5 xf.H individual characteristics records, is given by
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FOR s yilaisxd kit g(2)

t+1
|y11,.,ykt, l,...x )— = (37)

J 7Okl ) gt
0

( t+1

where f ( ktlx,, z,) is the pdf of the Exponential distribution, which is given by equation (1),

and where g(z tH) is the pdf of the Lognormal prior distribution® which is given by equation (4).
Using the quadratic loss function and the net premium principle, one can find that the mean of
the posterior structure function given by®

[e¢]

t+1 t 1 t+1 t+1 t+1 t+1 t+1
E(z i - >}’ikt;xi>~->xi+ )Z/zi+ (AR »)’ K> Xi e )dz; (38)
M
0

The expectation in equation (38) does not have a closed form expression. However, it can be
easily computed based on either numerical integration or a Monte Carlo approach since neither
scheme requires knowledge of the pdf of the posterior distribution of zt+1

Based on the aforementioned methodology, we compute the a posterlori, or BM, premium
rates resulting from the ELN model based only on different claim costs, i.e. the a posteriori cri-
teria, and based both on different claim costs and the characteristics of the policyholder and the
automobile, i.e. the a priori criteria. When both criteria are considered, we examine a group of pol-
icyholders who share the following common characteristics: We consider that the policyholder i
belongs to the first BM category, lives in a large city and has a car with HP between 0 and 1,400
cc. The premium rates will be divided by the premium when t =0, i.e. we calculate the relative
premiums, since we are interested in the differences between various classes and the results are
presented so that the premium for a new policyholder is 100. Table 6 (Panels A and B) shows
comparable relative premiums for the Pareto and ELN distributions/regression models respec-
tively, assuming that the cost of one claim in the first year of observation ranges from 1,000 euros
to 20,000 euros. Table 6 (Panels A and B) shows that when the claim size increases the premium
rates also increase. Furthermore, we observe that while for very small claim sizes up to 2,000 euros
the bonuses awarded by the ELN and Pareto distributions/regression models are almost indistin-
guishable, in all other cases, as expected, the less heavy-tailed ELN distribution/regression model
in general penalises policyholders who reported claims with moderate amounts significantly less
severely than the Pareto distribution/regression model. For example, from Panel A, when only
the a priori criteria are considered, we see that policyholders who had one claim size of 12,000
euros in the first year will have to pay a malus of 65.94% and 31.75% of the basic premium, while
those who had one claim size of 15,000 euros in the first year will have to pay a malus of 87.27%
and 40.62% of the basic premium in the case of the Pareto and ELN distributions respectively.
Additionally, from Panel B when both the a priori and the a posteriori criteria are considered, we
see, for instance, that policyholders who had one claim size of 14,000 euros in the first year will
have to pay a malus of 86.28% and 39.88% of the basic premium, while those who had one claim
size of 17,000 euros in the first year will have to pay a malus of 108.90% and 48.79% of the basic
premium in the case of the Pareto and ELN regression models respectively.

Let us now compute the BMSs with a frequency and a severity component using the net
premium calculation principle. As far as the claim frequency component is concerned, simi-
lar to the severity component, employing a Bayesian approach and using the quadratic error

loss function, one can easily see that the BM premium rates are given by the posterior’ mean

E(ufrl |k} . kt X1 s e Xf“), where X,-l, s X,tH is the vector of individual characteristics. In what
follows, based on the NBI and PIG distributions/regression models and the Pareto and ELN dis-
tributions/regression models for approximating the number and the cost of claims respectively,
the relative premiums resulting from those systems are calculated via the product of the posterior
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Table 6. A posteriori, or BM, premium rates, Pareto and ELN distributions/regression

models
Panel A: Distributions Panel B:Regression models
Claim severity Pareto ELN Claim severity Pareto ELN
1,000 87.73 93.84 1,000 88.26 94.29

e 2’000 i v 2’000 e ey
e 3’000 Moy 3’000 e ey

. 5’000 it e e 5’000 ey

. 6’000 My 6’000 M e e

. 8’000 B P C i 8’000 v

. 9’000 T M-y 9’000 v
. 11’000 S o 11’000 M ey
. 12’000 e au 12’000 e e
13’000 e oau 13’000 e e
14’000 B PR 14’000 e e
. 15’000 M su 15’000 e
16’000 Sy e 16’000 e e
17’000 B P 17’000 e e
18’000 B P 18’000 e e
19000 M aus 19000 e e
20000 e 20000 e e

. . . . . t+1,7.1 £.o1 t+1
mean claim frequency and the posterior mean claim severity, i.e. E(u} ™" [k}, .. ki3 x 15 o xi71) X

E(zf+1 | y}l, . ylf o xil, . xf-“), assuming that the accumulative claim severities range from 1,000
\ Kt

euros to 20,000 euros when the age of the policy is up to j = 2 years. Tables 7 and 8 summarise our
findings with respect to the a posteriori criteria in the case of the NBI-Pareto and NBI-ELN and
PIG-Pareto and PIG-ELN distributions respectively. Also, Tables 9 and 10 present our results with
respect to both the a priori and a posteriori criteria in the case of the NBI-Pareto and NBI-ELN and
PIG-Pareto and PIG-ELN regression models respectively. Note that for the BMSs derived based
on both criteria, since the explanatory variable BM category varies substantially depending on the
number of claims of policyholder i for year j, the explicit claim frequency history determines the
calculation of the premium rates resulting from the NBI, PIG, Pareto and ELN regression models
and not just the total number of claims K, as in the case when only the a posteriori criteria are
considered or when the policyholder is observed for a single year and both criteria are taken into
account. Due to the aforementioned reason, in the examples presented in Tables 9 and 10, we con-
sider two cases in which we specify the exact order of the claim frequency history in order to derive
the relative premiums that must be paid by the same insured we described before when only the
severity component was examined. Specifically, we assume that the specific policyholder has either
reported one claim in the first year and another claim in the subsequent year, i.e. k! = 1,k? =1,
thus K =2 at j =2, or that they have made one claim in the first year and two claims in the sub-
sequent year, i.e. k! = 1,k? =2, hence K =3 at j= 2. In what follows we discuss our findings.
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Table 7. A posteriori, or BM, premium rates, NBI, Pareto and ELN distributions

Yearj=1 NBI-Pareto NBI-ELN Yearj=2 NBI-Pareto NBI-ELN

Claim Fr.\ Claim Fr.\

ClaimSev.  K=1 K=2 K=1 K=2  ClimSev. K=1 K=2 K=1 K=2
1,000 156.55 196.88 167.45 226.51 1,000 140.98 177.32 150. 80 204.00
2,000 169.23 212.85 174.59 237.15 2,000 152.41 191.70 157.23 213.58
3,000 181.92 228.79 181.44 247.33 3,000 163.83 206.05 163. 40 222.75
4,000 194.61 244.75 188.06 257.13 4,000 175.26 220.43 169. 36 231.58
5,000 207.29 260.69 194.46 266.59 5,000 186. 69 234.79 175.13 240.10
6,000 219.98 276.66 200.67 275.78 6,000 198.11 249.17 180.72 248.37
7,000 232.67 292.63 206.74 284.72 7,000 209. 54 263.55 186. 19 256.43
8,000 245.36 308.57 212.65 293.43 8,000 220. 96 277.91 191.51 264.27
9,000 258.04 324.53 218.43 301.92 9,000 232.39 292.29 196.71 271.92

10,000 270.73 340.47 224.10 310.25 10,000 243.81 306. 64 201.82 279.43

11,000 283.42 356.44 229.65 318.40 11,000 255.24 321.20 206. 82 286.76

12,000 296.10 372.41 235.09 326.41 12,000 266. 67 335.40 211.72 293.98

13,000 308.79 388.35 240.45 334.26 13,000 278.09 349.76 216.54 301.05

14,000 321.48 404.31 245.73 341.97 14,000 289. 52 364. 14 221.30 307.99

15,000 334.16 420.25 250.93 349.58 15,000 300.94 378.50 225.98 314.85

16,000 346.85 436.22 256.03 357.08 16,000 312.37 392.88 230.57 321.60

17,000 359.54 452.19 261.08 364.45 17,000 323.79 407. 26 235.12 328.24

18,000 372.23 468.13 266.05 371.74 18,000 335.22 421.61 239.60 334.80

19,000 384.91 484.10 270.96 378.94 19,000 346. 65 435.99 244.02 341.29

20,000 397.60 500.04 275.81 386.04 20,000 358.07 450. 35 248.39 347.68

Firstly, from all Tables7-10, we observe that the systems resulting from the NBI-Pareto, NBI-ELN,
PIG-Pareto and PIG-ELN distributions/regression models are fair since if the total accumulated
number of claims K is kept constant the premium reduces over time while it increases propor-
tionally to the total claim severity, whereas if time and the total claim size are fixed the premium
increases when the total claim frequency increases. Secondly, for very small accumulative claim
costs, specifically from 1,000 up to 5,000 euros in both the first and the second year of observation,
when only the a posteriori criteria are considered, see Tables 7 and 8, and from 1,000 up to 5,000
euros and from 1,000 up to 7,000 euros in the first and the second year of observation respectively,
when both criteria are taken into account, see Tables 9 and 10, we observe that the BMSs result-
ing from the NBI-ELN and PIG-ELN models punish slightly more those policyholders who had
more than one claim in a given year than the systems determined by the NBI-Pareto and PIG-
Pareto models respectively. On the contrary, those individuals who had only a single small claim
in a given year of a cost which is equal to the total cost of those with more than one claim are,
in the majority of cases, penalised slightly more under the BMSs provided by the NBI-Pareto and
PIG-Pareto models. Those two observations imply that, regarding those claims with very small
amounts, the ELN model generally puts more emphasis on the frequency component and hence
distributes their burden among insureds in a more fair and equitable manner than the Pareto
model. For instance, from Table 7, when j = 1, we see that policyholders who had one claim size of
4,000 euros will have to pay a malus of 94.61% and 88.06% of the basic premium, while those who
had two claims with total size amounting to 4,000 euros will have to pay a malus of 144.75% and
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Table 8. A posteriori, or BM, premium rates, PIG, Pareto and ELN distributions

Yearj=1 PIG-Pareto PIG-ELN Yearj=2 PIG-Pareto PIG-ELN
Claim Fr.\ Claim Fr.\

Claim Sev. K=1 K=2 K=1 K=2 Claim Sev. K=1 K=2 K=1 K=2
1,000 152.85 221.55 163.50 254.89 1,000 132.72 187.18 141.96 215.35
2,000 16524  239.52 17047 26686 2,000 14347 20236 14801 22546
3000 17763 25746 17716 27832 3,000 15423 21751 15382 23514
4000 19002 27542 18362  289.35 4,000 16500 23260 15043 24446
5000 20240 29336 189.88  300.00 5000 17574  247.85 16486 25345
6000 21479 31133 19594 31033 6000 18650 26303 17013 26219
7000 22718 329.30 20186 32040 7,000  197.25 27821 17527  270.70
8000 23957 34723 20763 33020 8000 20801 29336 18028  278.97
9,000 25195 36520 21327  339.76 9,000 21877 30854 18518  287.05
10,000 26434 38314 21882 34913 10,000 22952 32370 19000  294.97
11,000 27673  40L11 22423 35830 11,000 24028  338.88 19470 30271
12,000 28902  419.07 22955 36731 12,000 25103 35406 19931  310.33
13,000 30151  437.01 23477 37614 13,000 26179  369.21 20385  317.79

157.13% of the basic premium in the case of the NBI-Pareto and NBI-ELN distributions respec-
tively. From Table 7, when j = 2, we observe that policyholders who had one claim size of 4,000
euros will have to pay a malus of 75. 26% and 69.36% of the basic premium, while those who had
two claims with total size equal to 4,000 euros will have to pay a malus of 120.43% and 131. 58%
of the basic premium in the case of the NBI-Pareto and NBI-ELN distributions respectively. From
Table 8, when j =1, we see that policyholders who had one claim size of 4,000 euros will have to
pay a malus of 90.02% and 83.62% of the basic premium, while those who had two claims with
total size amounting to 4,000 euros will have to pay a malus of 175.42% and 189.35% of the basic
premium in the case of the PIG-Pareto and PIG-ELN distributions respectively. From Table 8,
when j =2, we observe that policyholders who had one claim size of 4,000 euros will have to pay
a malus of 65% and 59.43% of the basic premium, while those who had two claims with total size
equal to 4, 000 euros will have to pay a malus of 132.69% and 144.46% of the basic premium in
the case of the PIG-Pareto and PIG-ELN distributions respectively. From Table 9, when j =1, we
see that policyholders who had one claim size of 5,000 euros will have to pay a malus of 103.16%
and 88.82% of the basic premium, while those who had two claims with total size equal to 5,000
euros in the first year will have to pay a malus of 128.93% and 130.69% of the basic premium in the
case of the NBI-Pareto and NBI-ELN regression models respectively. From Table 9, when j =2,
we observe that policyholders who had claim frequency history k} =1,k? =1 (i.e. total number
of claims K =2 at j = 2) and the total size of their claims amounts to 7,000 euros will have to pay
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Table 9. A posteriori, or BM, premium rates, NBI, Pareto and ELN regression models

Yearj=1 NBI-Pareto NBI-ELN Yearj=2 NBI-Pareto NBI-ELN
Claim Fr.\ Claim Fr.\ k=1, k=1, K=1 k=1,
Claim Sev. K=1 K=2 K=1 K=2 Claim Sev. k=1 k*=2 k=1 k?=2
1,000 151.42 169.04 161.76 193.96 1,000 151.16 173.02 173.44 208. 56
2000 16435 18401 16892 20374 2000 16455  188.34  182.19  220.10
300 17729 199.00 17578 21307 3000 17795  203.66  190.53 23106
4’000 T e ey Ty P 4’000 e e
5,000 20316 22893 18882  230.69 5000 20472 23432 206.29  25L.70
6,000 ‘‘‘‘‘‘‘‘ 216 10 243 90 19503 ‘‘‘‘‘ 239v(‘)v7 ‘‘‘‘‘‘ 6,000 21‘8”10 vm249v 64 vm2vl3 78 261.49
7000 22903 25887 20109 24722 7000 23149 264.96  221.07  270.98
8,000 24197 27383 20699 25515 8000  244.87  280.27  228.16  280.22
9,000 25490  288.80 21275 26289 9,000  258.25 29559  235.09  289.23
10,000 26784 30377 21841 27047 10,000  271.64  310.91  241.86  298.04
11,000 26078 31874 22395  277.88 11,000  285.02  326.23  248.49  306.66
12,000 20371  333.73 22938 28515 12,000  298.43  34L57  254.99  315.10
13,000 30665 34869 23473 20228 13,000  311.81  356.89 26137  323.38
14,000 319.58 363.66 239.98 29932 ” ”1;1;000 325.19 372.21 267.66 331.52
15,000 332.52 378.63 24514 30621 ” ”lé,OOO 338.58 112.26 273.82 339.55
17000 35839 40856 25526 31971 17000  365.35  418.16  285.89  355.20

a malus of 131.49% and 121.07% of the basic premium, while those who had claim frequency
history k! =1, k? =2 (i.e. total number of claims K = 3 at j = 2) and the total size of their claims
amounts to 7,000 euros will have to pay a malus of 164.96% and 170.98% of the basic premium,
in the case of the NBI-Pareto and NBI-ELN regression models respectively. From Table 10, when
j =1, we see that policyholders who had one claim size of 5, 000 euros will have to pay a malus of
87.98% and 74.71% of the basic premium, while those who had two claims with total size equal
to 5,000 euros in the first year will have to pay a malus of 135.12% and 136.92% of the basic pre-
mium in the case of the PIG-Pareto and PIG-ELN regression models respectively. From Table
10, when j = 2, we observe that policyholders who had claim frequency history k! =1,k* =1 (i.e.
total number of claims K =2 at j = 2) and the total size of their claims amounts to 7, 000 euros
will have to pay a malus of 108.76% and 99.36% of the basic premium, while those who had claim
frequency history k! =1, k? =2 (i.e. total number of claims K = 3 at j = 2) and the total size of
their claims amounts to 7,000 euros will have to pay a malus of 157.25% and 163.10% of the basic
premium, in the case of the PIG-Pareto and PIG-ELN regression models respectively. Finally, sim-
ilar to the results presented in the Table 6, in every other case, Tables 7-10 show that the BMSs
resulting from the NBI-ELN and PIG-ELN distributions/regression models penalise policyhold-
ers with moderate costs considerably less severely than the systems determined by the NBI-Pareto
and PIG-Pareto distributions/regression models. For example, from Table 7, when j = 1, we see
that policyholders who had K = 1 claim size of 14,000 euros will have to pay a malus of 221.48%
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Table 10. A posteriori, or BM, premium rates, PIG, Pareto and ELN regression models

Yearj=1 PIG-Pareto PIG-ELN Yearj=2 PIG-Pareto PIG-ELN
Claim Fr.\ ClaimFr\  kl=1 k=1, k=1, k=1,
ClaimSev.  K=1 K=2 K=1 K=2  ClaimSev. k’=1 k=2 k=1 Kk}=2
1,000 14010 17361 14968  199.20 1,000 13632 16800 15641  202.49
2,000 15207 18898 15630 20924 2,000 14839  182.86 16430  213.70
3000 16404 20438  162.65 21883 3,000 16048  197.74 17182  224.34
4000 17601  219.75 16877 22804 4,000 17253 21261  179.06  234.53
5000 187.98 23512 17471  236.92 5000 18462 22751 18603 24437
6000 19995 25049  180.46 24553 6,000 19667 24238 19278  253.80
7,000 21192 26586  186.06 25390 7,000 20876 25725  199.36  263.10
8000 22389 28124 19152  262.05 8000 22081 27210 20574  272.07
9,000 23586 29661  196.85  270.00 9,000 23288  287.00 21201  280.82
10,000 247.82 31198  202.09  277.78 10,000 24497 30187 21810  289.37
11,000 25979 32735 20722 28539 11,000 257.02 31674  224.08  297.74
12,000 27176 34275 21224 292.86 12,000 26913 33161 22994 30591
13,000 28373 35812  217.19  300.18 13,000 28118 34651 23571  313.95
14,000 29570 37349 22205  307.41 14,000 20325 36138 24138 321.88
15,000 307.67  388.86  226.82  314.48 15,000 30532 109.00 24692  329.67
16000  319.64 40423 23154 32146 16,000 31730 39110 25242  337.32
17,000 33161 41960 23619 32835 17,000 32946 40597  257.80  344.87
18,000 34358 43497  240.78  335.16 18,000 34153 42090  263.15  352.30
19,000 35555 45035 24530 34185 19,000 35360 43574 26840  359.63
20,000 367.51 46572  249.78 34846 20,000 36567 45061  273.60  366.90

and 145.73% of the basic premium, while those who had K =2 claims with total size amounting
to 14,000 euros will have to pay a malus of 304.31% and 241.97% of the basic premium in the case
of the NBI-Pareto and NBI-ELN distributions respectively. From Table 7, when j = 2, we observe
that policyholders who had K =1 claim size of 17,000 euros will have to pay a malus of 223.79%
and 135.12% of the basic premium, while those who had K =2 claims with total size equal to
17,000 euros will have to pay a malus of 307.26% and 228.24% of the basic premium in the case
of the NBI-Pareto and NBI-ELN distributions respectively. From Table 8, when j = 1, we see that
policyholders who had K =1 claim size of 14,000 euros will have to pay a malus of 213.89% and
139.93% of the basic premium, while those who had K =2 claims with total size amounting to
14,000 euros will have to pay a malus of 354.98% and 284.83% of the basic premium in the case
of the PIG-Pareto and PIG-ELN distributions respectively. From Table 8, when j = 2, we observe
that policyholders who had K =1 claim size of 17,000 euros will have to pay a malus of 204.81%
and 121.34% of the basic premium, while those who had K =2 claims with total size equal to
17,000 euros will have to pay a malus of 329.91% and 246.49% of the basic premium in the case
of the PIG-Pareto and PIG-ELN distributions respectively. From Table 9, when j = 1, we see that
policyholders who had K =1 claim size of 15,000 euros will have to pay a malus of 232.52% and
145.14% of the basic premium, while those who had K =2 claims with total size equal to 15,000
euros in the first year will have to pay a malus of 278.63% and 206.21% of the basic premium in the
case of the NBI-Pareto and NBI-ELN regression models respectively. From Table 9, when j =2,

https://doi.org/10.1017/51748499519000034 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499519000034

68 Tzougas et al.

we observe that policyholders who had claim frequency history k! = 1, k7 =1 (i.e. total number
of claims K =2 at j =2) and the total size of their claims amounts to 18,000 euros will have to
pay a malus of 278.73% and 191.82% of the basic premium, while those who had claim frequency
history k! =1, k* = 2 (i.e. total number of claims K = 3 at j = 2) and the total size of their claims
amounts to 18, 000 euros will have to pay a malus of 333.51% and 262.86% of the basic premium,
in the case of the NBI-Pareto and NBI-ELN respectively. From Table 10, when j = 1, we see that
policyholders who had K =1 claim size of 15,000 euros will have to pay a malus of 207.67% and
126.82% of the basic premium, while those who had K =2 claims with total size equal to 15, 000
euros in the first year will have to pay a malus of 288.86% and 214.48% of the basic premium in the
case of the PIG-Pareto and PIG-ELN regression models respectively. From Table 10, when j =2,
we observe that policyholders who had claim frequency history k! =1,k* =1 (i.e. total number
of claims K =2 at j=2) and the total size of their claims amounts to 18,000 euros will have to
pay a malus of 241.53% and 163.15% of the basic premium, while those who had claim frequency
history k] =1, k* = 2 (i.e. total number of claims K = 3 at j = 2) and the total size of their claims
amounts to 18,000 euros will have to pay a malus of 320.90% and 252.30% of the basic premium,
in the case of the PIG-Pareto and PIG-ELN respectively.

Overall, as was illustrated in Tables 6-10, it is reasonable to agree that in MTPL data sets like
the one used in this study, where moderate observations constitute the largest proportion of our
sample, whereas large observations have very low frequencies, under the Pareto model it is very
likely that policyholders will bear the cost of claims themselves because of the growth in premium
payments, while the employment of the new model is beneficial for the insurance company as it
can enable them to adopt a generally more mild pricing strategy for policyholders who reported
a large number of claims with moderate severities, leading to a discouragement of the Bonus-
Hunger phenomenon.

5. Conclusions

The main purpose of this paper was to propose an EM type algorithm that reduces the com-
putational burden for ML estimation in the ELN regression model. The ELN regression model
extends the commonly used specification that assumes that claims costs are distributed accord-
ing to the Pareto regression model which was widely accepted for designing merit rating plans
in accordance with the a priori ratemaking structure of the insurance company. The ELN model
has just the appropriate level of generality for deriving both a priori and a posteriori ratemak-
ing mechanisms, since while its upper tail can sufficiently fit large size claims, the ELN model
can be considered as a candidate model for approximating moderate claim severities with high
frequencies. Furthermore, the ELN regression model is suitable for application not only in
insurance ratemaking but also in survival analysis, since, as is well known, all the distributions
with decreasing failure rate can be retrieved as mixtures of the exponential distribution, see, for
instance, Proschan (1963) and Barlow & Proschan (1975). Additionally, it should be noted that
the novel EM type algorithm we developed in this study was based on the mixture representation
of the ELN model, and did not require knowledge of its pdf, which could not be written in closed
form, while it is computationally parsimonious and can avoid overflow problems which may
occur via other numerical maximisation schemes. Therefore, it is obvious that the ML estima-
tion scheme we presented has the considerable mathematical flexibility for fitting an abundance
of mixed Exponential regression models stemming from several other mixing distributions which
are not conjugate to the Exponential.

An interesting possible line of further research would be to go through the ratemaking exer-
cise based on generalisations of the proposed model such as a finite mixture of the ELN model
and two component mixture models, where the first component distribution is the ELN and the
second component model can be a different more or less heavy-tailed claim severity distribution,
thus providing alternative options to the insurer when they are deciding on their pricing strategies,
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see Tzougas, Vrontos & Frangos (2014), and Ni et al. (2014) and Tzougas, Vrontos & Frangos
(2018) respectively. The log-likelihood function of the general models can be maximised with-
out special effort using standard techniques for finite mixtures, see Bohning (1999). Finally, the
data augmentation which was used in the paper to derive the EM algorithm can be the basis for
constructing Bayesian estimation methods, including functional forms other than the linear pro-
ceeding along similar lines as Klein et al. (2014) in which Bayesian generalised additive models
for location, scale and shape claim frequency models were employed for non-life ratemaking and
risk management.
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Notes

1 Note that the Pareto response distribution can also be derived as a mixture of the Exponential distribution with Gamma
mixing weights. However, the Exponential-Inverse Gamma mixture representation of the Pareto is preferred for ratemaking
purposes. Specifically, the latter parameterisation assumes that the mean is an explicit parameter of the Pareto distribution.
This allows easier interpretation when the mean is modelled in terms of explanatory variables and provides a framework for
analysing the extent to which a priori and a posteriori ratings interact. The Exponential-Lognormal model we consider in this
study is derived in a similar way by using a Lognormal mixing distribution instead of the Inverse Gamma one.
2 Note that the BM premium rates calculated according to the net premium principle based only on the a posteriori criteria
are obtained if the regression components of the NBI, PIG, Pareto and ELN regression models are limited to constants.
3 Note that the deviance residuals have also been traditionally utilised to examine goodness of fit of GLMs. Moreover, Pierce
& Schafer (1986) indicated that the deviance residuals should be more nearly normal than the Pearson residuals. However, the
deviance residuals cannot be guaranteed to be closely normal when the data are highly dispersed relative to the mean and their
distribution is mostly skewed. As was mentioned in Dunn & Smyth (1996), normalised quantile residuals remedy the above-
mentioned problem of the deviance residuals. Furthermore, the only information needed for computing normalised quantile
residuals is knowing the cumulative distribution function of the response variable, which makes calculation much easier than
deviance residuals, which might be challenging to define in more complex models. Finally, the randomised quantile residuals
can also be applied for model diagnosis when the response variable does not belong to the GLM family of models.
4 Note also that the residuals and the right tail index for the ELN model which does not have a pdf in closed form can be
accurately computed based on numerical integration methods.
5 Note that in the case of the Pareto model g(zf*l) is the pdf of the Inverse Gamma prior distribution which is given by
equation (17).
6 Note also that for the sake of brevity, we have not included the BM premium functions resulting from the traditional NBI,
PIG and Pareto models. Those functions can be easily computed in closed form based on the methodology presented, for
instance, in Dionne & Vanasse (1989, 1992), Frangos & Vrontos (2001), Mahmoudvand & Hassani (2009) and Tzougas,
Vrontos & Frangos (2014, 2018) respectively. Note also that the Bonus-Malus premium rates calculated according to the net
premium principle based only on the a posteriori criteria are obtained if the regression components of the ELN, Pareto, NBI
and PIG regression models, see equations (5, 18, 25 and 28), are limited to constants.
7 Note that 4/ follows the Gamma prior distribution which is given by equation (24) in the case of the NBI model.

Note also that u!*! follows the Inverse Gaussian prior distribution which is given by equation (27) in the case of the PIG
model.
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