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External and internal monotonicity properties for Jackson networks have been es-
tablished in the literature with the use of coupling constructi®ecently Lopez

et al derived necessary and sufficient conditions for ¢sieong stochastic com-
parison of two-station Jackson networks with increasing service matesnstruct-

ing a certain Markovian couplingn this article we state necessary and sufficient
conditions for the stochastic comparisorLe$tation Jackson networks in the gen-
eral caseThe proof is based on a certain characterization of the stochastic order for
continuous-time Markov chainsvritten in terms of their associated intensity
matrices

1. INTRODUCTION

Questions concerning external gied internal monotonicity properties of queuing

networks have attracted the interest of many investigators in the lite(akege.g.,

Lindvall [3,4], Shanthikumar and Yal®,10], and LopezMartinez and SanZ5]).
Lindvall [3] considered the problem of the stochastic comparison of Jackson

networks with identical transition probabilities and derived easily verifiable suffi-

cient conditionsShanthikumar and Yal®-11] studied mainly internal monotonic-

ity and convexity questions for certain classes of closed Jackson netwbeksain

tool in these works is the so-called coupling methbithdvall [3] is the standard
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reference on couplingvhereas Thorissdri 4] studied more theoretical issu&haked
and Shanthikumdi8] summarized many results about various stochastic orders and
their work contains many applications in diverse fielflee works of SzeklI[13]
and Stoyari12] have many queuing applicatians

Recently Lopez et al[5] derived necessary and sufficient conditions for the
stochastic comparison of tytwo-station Jackson networks with increasing service
rates by constructing a certain Markovian couplintheir methodalthough inter-
esting is quite involvedIn this article we extend their conditions for the stochastic
comparison of.-station Jackson networks in the general dass without assum-
ing increasing service rate§ he proof is simplgbased on a characterization of the
stochastic comparison of two continuous-time Markov chains via their associated
intensity matricesThis characterization has been established by Ma&esnd
extended by Brandt and Lgsk] in their work on the stochastic domination of pro-
cesses defined in partially ordered spa&esentlythis approach has been success-
fully used by Miyazawa and Tayldi7] and Economodqi2] for obtaining tractable
stochastic bounds for nontractable queuing networks with batch transfers

2. THE NECESSARY AND SUFFICIENT CONDITIONS

Let (E,=) be a countable partially ordered s&tsetl’ C E is said to be increasing
if x € I' implies that{y:y = x} C I'. Consider two Markov semigroug®(t) =
(Py(t):x,y € E) andP’'(t) = (py(t): X,y € E). The semigrougP is said to be
stochastically dominated By’ (denoted byP =4 P’) if p, (t) =g py.(t) forall x =

y andt = 0. This is equivalent tauP(t) =, vP’(t), for all initial distributionsu and
v on E such thay =5, » andt = 0.

Massey[6] proved a useful characterization of the stochastic domination for
two Markov semigroups defined ofE,=) in terms of their associated intensity
matrices More specifically he considered two continuous-time Markov chains on
(E,=) with semigroup$® andP’ and intensity matrice® andQ’, respectivelyand
showed that the following two conditions are necessary and sufficieit fay, P':

(i) Foreveryx,y € Eandrl’ C E increasing

x=yandy&T'= > q(x,2) = > q'(y,2). (1)

zel zerl

(ii) Foreveryx,y € EandrI’' C E increasing

x=yandxeTl'= > q(x,2= >, q'(y,2). (2)

zere zere
We will now use condition$l) and(2) to establish conditions for the stochastic

domination of twolL-station Jackson network¥/e generalize the framework and
notation of Lindvall[ 3] slightly by allowing the service rates to depend on the num-
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ber of customers at each statidine dynamics of such a network are given by the
following:

(i) Customers arrive from outside at statioaccording to a Poisson process
at rategy,
(i) The service rate at statidnis 6,(x,) whenever there ang, present cus-
tomers at statiok.
(iif) After finished service at statioky a customer goes to statiom+# k with
probability y, or leaves the system with probabiliy =1 — > .k Yim-
(iv) All of the random quantities in item@$)—(iii ) are independent

The state of the network at each time is described by a v&etdix,, X, ..., X ),
wherex, denotes the number of customers at stakonhe stochastic process de-
scribing the number of customers at the various stations is a continuous-time Mar-
kov chain with state spadeé= Z% and transition rates

g(x,x + en) = Bm m=12,...,L,
g(x, X — &) = 8(X) Vi, k=12,...,L,
Q(X,X - ek+ em) = 6K(Xk)ykm’ kym: :L27~"7 L’

where bye, we denote th&-unit vector with 1 in thekth position and O elsewhere
The partial order it is the coordinatewise ordéi/e are now in position to state the
main result of the article

THEOREM 1: Consider two L-station Jackson networks with Markov semigroups P
and P and parameter§Bm, 5x(+), Ykm Yi) @NA( B, 8k(+), Yiem Vi), FESPECtively. The
following conditions are sufficient for B4 P":

(i) Foreverym=1,2,...,L,AC{12,...,L}and0=s =t,k E A,
B+ >, 0k(S)Vkm = B+ >, 8k(t) Yim: (3
keA keA

(i) Foreveryk=1,2,...,L,AC{1,2,...,L} and =0,

meA

6k<sa(yk+ %\@ = aa(so(w > yam). (4)

Proor: It suffices to prove that3) and(4) imply conditions(1) and(2).

For verifying condition(1), considerx,y € Z4 andT increasing such that
x =y andy & I'. Then we have thak & I' alsa We will use the following notation
Forz&T,letl'(z)={i:z+e €T} C{L2,...,L}. ltiseasytoseethai=w &T
impliesI'(z) C I'(w). We also denote the indicator function of a et Z4 by 1A(2)
and the complement @& by A°.
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The only states i that can be reached in a single transition froomderP are
of the formx + e, or x — e, + e,,. Therefore we have

L
2 q(%,2) = X q(x,X + epn) (X + ep)
zerlr m=1
L L
+ > qx,x — e+ el (x— e+ ey
k=1m—=1
L
= > But X 2 5(X)Vim (5)
meT (x) k=1 mer (x—ey)
Similarly,
L
29020= X Bt > X (%) Vim (6)
zerr mer(y) k=1 mer(y—ey)

Subtracting5) from (6) and taking into account th&t(x) C I'(y) andI'(x — g,) C
I'(y — &), we obtain

Z q,(y’z) - Z q(X’Z) = Z 13|/71+ Z (Br"n_Bm)

zer zer meTr (y)\I'(x) mer (x)

+E< S UV Vi

k=1\ mer(y—e)\I'(x—ey)

+ > (6¢(yk>yam—ak<xk>ykm)>

mer (x—ey)

= E (Br,n_ﬁm)

mer (x)

+ Z Z (8% (Vi) Yiem — Ok X)) Yiem)-

k=1 mer(x—ey)

Sincel'(x — g,) C I'(x), we can interchange summations on the right-hand side of
the above and write it equivalently as

Sqy2-Saxd= D ((ﬂéﬁ > 8a<y.<mm>

zer zerlr mer(x) k:mer (x—ey)

—<3m+ S 6k<xk>ykm>>. (7)

k:meT (x—ey)

However now (7) and(3) imply (1) immediately
For condition(2), considerx,y € Z4 andTI increasing such that < y and
XETl Theny el.Forze T, letl'’(z) ={i:z—¢ &€T'} C{12,...,L}. Then
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z=wandz € T'imply I'(w) C I'°(z). Now, the only states il © that can be reached

in a single transition fronx underP are of the fornx — e, or x — g, + e,,. We have

> aq(x,2) = k2:,lq(x,x —J)lre(x — &)

zere©

L L
+ 2 > qX,X — e+ ep)lpe(X — e+ e)
k=1m=1

L
= 2 &t XY X &%) Yikm (8)
keT €(x) m=1Kker(x+ey,)
and similarly,
L
2 9= X St X > (V) YVim 9)

zere kerC(y) m=1kErc(y+e,,)

Subtracting9) from (8) and taking into account th&t°(y) C T'°(x) andl'°(y + e;,,)
CTIréx+e, foralm=1,2,...,L, we obtain
k(X)) v + 2 (8 (%) Yk — Bk(Yi) Yio)

kere(y)

> ax2- > qy,2= X

zere zere kel (x)\'(y)

m=1 \ kel ¢(x+e, )\I'S(y+e,)

+ E < 2 Sk X)) Yiem

+ 2 (8 (X)) Yiem — 5&(Yk)’)’|/<m))

ker¢(y+eny)

= E (8 (%) vk — k(i) vi)

kere(y)

+ D (k%) Yin— (Vi) Viem)- (10)

m=1kerc(y+e,)
CLAIM:
() x=y,x €T, and k€ I'°(y) implies % = Vi
(i) x=y,x €T, and kE I'*(y + ey) implies % = Y.

For part(i), we have thak € T'°(y) impliesy — e, € T°. If x, < Y4, then
X =y — e. However thenT increasing impliex € I'°, contradiction Therefore

Xk = Y. Part(ii) is immediate from parti).
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Using the claim(10) is reduced to

> a2 = 2 qy2= > (58X vk — k(%) i)

zere zere ker(y)

+ 2 2 (0k(Xi) Yiem = k(%) Vi) (11)

m=1kerc(y+e,)

Becausé °(y + e,,) C T °(y), we can interchange summations on the right-hand side
of the above and write it equivalently as

2 qx2 - X q,2= X <5k(xk) <7k+ > 7km>

zere zere kET<(y) mker(y+ey)

mkerc(y+ey)

—Sﬁ(xk)<%’<+ > 7&>>. (12)

However now (12) and(4) imply (2). [ |

Unfortunately the conditions of Theorem 1 are not necessary in general for
P =, P’. However they are necessary if we limit the class of networks under con-
sideration To this end we will first give necessary conditions f&* =g P’ in the
general case

THEOREM 2: Consider two L-station Jackson networks with Markov semigroups P
andP’ and parametenBm, 5k(-), Ykm, Yk) @nd( B, 0k(-), Ykm: Y), respectively. The
following conditions are necessary for; P’:

(i) Foreverym=1,2,...,L,AC{1,2,...,L},and =0,k € A,

B+ 2 8k(S) Yim = Bin + 2 8i(S) Viem: (13)

kEA kEA

(i) Foreveryk=12,...,L,AC{12,...,L},and =0,

8i(s) (w > ykm) = aasa(w > m). (14)

meA meA

Proor: We will show that conditiongl) and(2) imply (13) and(14) for special
choices ofx, y and increasing sela

We introduce the following notatiorFor z € Z'; set[=z] = {w:w = z} and
[=z]={w:w = z}. Then[=z] and[=z]° are increasing\ote also that the union and
the intersection of increasing sets are increasing sets
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For proving(13) forafixedm=1,2,..., L, we can assume without loss thfaC
{1,2,...,L}\{m}, sincey,m= 0. Fix m, A, ands, = 0, k € A. Take

X=y=> 6, I'=[=x+e,JUlJ[=x—¢g+e,]. (15)

heA ieA
Then
I'(x)=T(y)={ix+e=x—¢ +e, forsomej EAorx+e =X+ ey}
= {i:e + g = e, for somej € Aore = e} = {m}, (16)

sinceg # ey for j € A (because we assumed thaC {1,2,...,L\{m}).
Similarly, for everyk € {1,2,...,L}\{m}, we obtain

{m} ifkeA

17
& otherwise (17)

T'(X — &) =F(y—ek)={
Taking into accoun€16) and(17), (5) and(6) give

2 A(x,2) = B+ kEA(Sk(SK)Vkm, 2 A'(¥,2) =B+ 2 8(S) Vim

zer zerlr keA
and(1) implies(13).

For proving(14) for afixedk=1,2,..., L, we can assume without loss tHat
{1,2,...,L}\{k}, sinceym= 0. Fix k, A, ands, = 0. Take

X=y=56, I=[=x-el°N[)[=x—e+g]° (18)

jeA

Then I'¢ = [=x — &] U Ujea[=x — & + ] and we can easily seas in the
previous casehat

Ie(x) = re(y) = {kj, (19)

and for everym € {1,2,..., L}\{k}, we obtain

C ) kb ifmeA
Fe(x+ep) =Ty +ey) = & otherwise 20
Taking into account19) and(20), (2), (8), and(9) imply (14). .

We will now state as corollaries two results that have been reported in the lit-
erature Their original derivations use certain coupling constructions
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CoroLLARY 1 (Lopez et al[5] conditiong: Consider two L-station Jackson net-
works with Markov semigroups P and Bnd parameters B, 8k(+), Ykm» Yx) and
(B, 8k(4), vims Y1), respectively, with increasing service rates at each station. Con-
ditions (13) and (14) are necessary and sufficient foeRP’.

Proor: The necessity of conditiond3) and (14) has been established in Theo-
rem 2 Condition(13) together with the assumption of the increasing service rates at
each station imply conditio(3). Therefore in this case (13) and (14) are also
sufficient [ ]

CoroLLARY 2 (Lindvall [3] conditions: Consider two L-station Jackson networks
with Markov semigroups P and 'Pand parameters(Bm,8k(+), ykms Yx) and
(B, 61(4), vims Y1), rEspectively, with identical constant service rates at each sta-
tion and identical transition probabilitie$dx = 8/, Vikm = Vi Yk = Yi). Then

P =P’ if and only if 8,,, = B/, for every m.

Consider now two Jackson networks with constant service rates and parameters
(Bmy S Yims Yi) @nd (B, Ok, viems Y1)~ Lindvall [4] observed that if we modify
the conditions of Corollary 2 into the more gene¥g& ¢, Ykm = Yim» Yk = Yr and
Bm= B, the two networks may not be comparabitefact itis immediate to see that
Theorems 1 and 2 imply the following result in this case

CoroLLARY 3: Consider two L-station Jackson networks with Markov semigroups
P and P and parametersBm, Sk(+), Ykms Yx) @and (B, 8k(+), Yiem Yi)» FESPECtiVEly,
with constant service rates at each station. Supposedpat 5;, Ykm = Yim, and
Y= vi. Then P =4 P’ if and only if forevery m=1,2,...,Land AC {1,2,...,L}

Bmt 2 8cVim= Bt 2 Vi

keA keA
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