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An argument to the effect that quantum mechanics commits us to the existence of non-

supervenient relations, and therefore that we should admit such relations into our quantum

ontology as fundamental entities, has been given by Teller and reformulated by French. This

paper aims, first, to explicate and evaluate that argument; second, to extend its premises in

order to assess its relevance for other interpretations of quantum mechanics; and, third, to

clarify its implications for holism and individuation in quantum ontology.

1. Ontology After Hobbes and Leibniz. One of the chief metaphysical
prejudices of modernity is that real, physical relations (what Russell called
‘internal’ relations) between individuals do not exist as such. But, because
we observe manifest relationality in the world, this leaves us with a ‘‘meta-
physical puzzle’’: ‘‘How could the mere exemplification of genuinely non-
relational attributes possibly give rise to an appearance of relatedness?’’
(Cleland 1984, 21) Two chief historical sources of the modern view are
Hobbes and Leibniz. Hobbes denied the existence of genuine relations
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between individuals at every ontological level—from primitive material
bodies (i.e., atoms) to persons. Any relation between material bodies in
such an atomism is merely a comparison of the likeness or unlikeness,
equality or inequality of individuals (Hobbes 1905, 82–83). In short, there
are no relations as such, only juxtapositions of monadic properties or
attributes. Nature, according to Hobbes, does not unite and harmonize, but
rather divides and disperses, so that individuals are held together collect-
ively not by any inherent relationality, but only by artificial, external
constraint—whether atoms by forces in a material body or subjects by
fear of the sovereign will in political society. Leibniz (as he is often read)
claimed that relations, and spatial relations in particular, are ‘‘ideal’’ in the
sense that they exist solely in the mind as a result of abstraction from real
monadic properties; all physical relations are reducible (logically, at least)
to monadic terms. And any appearance of relationality in the physical
world is due not to efficient or physical causality, but rather to a ‘‘pre-
established harmony’’ between the orders of efficient and final causation.
Thus, in a manner not unlike Hobbes, it is God that harmonizes individuals,
not nature.

Teller (1986, 1989) has recently characterized such a metaphysical
view, which he has variously called ‘local physicalism’ and ‘particular-
ism,’ as follows: first, the world is composed of numerically diverse
physical individuals that possess non-relational (i.e., monadic) properties;
and, second, all relations existing among such entities supervene upon the
non-relational properties of the relata. In contrast, ‘relational holism’
admits the possibility of ‘inherent’ or ‘non-supervenient’ relations, that
is, relations that do not supervene upon the non-relational properties of the
relata. If one can give a precise characterization of the sufficient conditions
for non-supervenient relations, then to the extent that one can show that a
given contemporary physical theory satisfies those conditions, and thereby
commits its adherents to the existence of such relations, one will have
gone a long way toward overcoming our Hobbesian atomist inheritance.
And, to the extent that such relations are embedded in the physics of the
world, one will have done so without introducing a Leibnizian pre-
established harmony by which to explain away the manifest relationality
in the world.

An argument to the effect that quantum mechanics commits us to the
existence of non-supervenient relations, and therefore that we should admit
such relations into our quantum ontology as fundamental entities, has been
given by Teller (1986) and reformulated by French (1989). This paper
aims: first, to explicate and evaluate that argument; second, to extend its
premises in order to assess its relevance for other interpretations of quan-
tum mechanics; and, third, to clarify its implications for holism and indi-
viduation in quantum ontology.
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2. Relations, Non-supervenience and Non-separability. First, we need to
introduce the idea of ‘relation’ in the context of physical theory. Roughly, a
‘physical relation’ is formally represented as a quantity or magnitude that
refers to two (or more) individuals that are distinguished prior to and inde-
pendently of that quantity; and a ‘non-supervenient’ physical relation is a
physical relation that cannot be completely represented formally in terms
of physical quantities or magnitudes that each refer respectively to only
one individual. Taking physical quantities or magnitudes that refer to only
one individual as non-relational or ‘monadic’ properties, we can say that
non-supervenient relations are not reducible to or determinable by the non-
relational properties of the relata (cf. Teller’s ‘inherent relation’). Cleland
(1984, 25) formulates these notions in modal terms:

A dyadic relation R is supervenient upon a determinable non-relational
attribute P if and only if

1. (bx,y)t[R(x,y) and there are no determinate attributes Pi and Pj of
determinable kind P such that Pi (x) and Pj (y)];

2. (bx,y){R(x,y) � there are determinate attributes Pi and Pj of deter-
minable kind P such that Pi (x) and Pj ( y) and (bx,y)[(Pi (x) and
Pj ( y)) � R(x,y)]}.

French (1989, 9–10) explicates her supervenience conditions (1) and
(2) as follows: let R be a dyadic relation and P be a determinable non-
relational attribute; then,

If R is genuinely supervenient on P then (1) implies that R cannot
possibly appear in the absence of each of its relata instancing the requisite
reductive property P, whereas (2) says that there must exist one or more
pairs of determinate monadic properties (of kind P) whose exemplification
alone is sufficient to guarantee the appearance of R.

He then characterizes ‘strong non-supervenience’ as the failure of both
(1) and (2) and ‘weak non-supervenience’ as the failure of (2) alone. These
notions, of course, can be explicated precisely only given an interpreted
physical-theoretical formalism.

To illustrate these notions abstractly, consider the case of two physical
systems S1 and S2 that jointly comprise the composite system S12; and
suppose P1, P2 and P12 represent properties of determinable kind P. Here,
P1 and P2 each refer independently to S1 and S2, respectively, and thus are
non-relational properties in the sense that P1 could be exemplified even if
P2 were not and even if there exists no system other than S1, and vice-versa
regarding P2; and P12 is clearly a composite relational property or relation,
for its exemplification refers explicitly to two entities and is possessed by
neither of those entities alone. Now, on the one hand, P12 would be
genuinely supervenient on P if its exemplification implies that its relata S1
and S2 each exemplify a non-relational property P1 and P2, respectively,
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and further if the exemplification of P1 and P2 alone is sufficient to
guarantee to the exemplification of P12. On the other hand, P12 would be
weakly non-supervenient on P if the exemplification of P1 and P2 alone is
not sufficient to guarantee the exemplification of P12, and would be strongly
non-supervenient on P if it is possible that P12 is exemplified without either
S1 or S2 exemplifying P1 or P2, respectively.

The question to be considered is whether quantum-mechanical systems
can exhibit such non-supervenient relations in either of these senses. One
might think that systems in superposed quantum states of the form jwi =
Sicijuii—which states have been taken by some to be the defining char-
acteristic of the ‘‘quantum strangeness’’ (e.g., Dirac)—would surely exhib-
it non-supervenient relational properties if any quantum-mechanical sys-
tems do. But, as Teller (1986, 78) rightly points out, superposition alone
yields only another monadic property of one and the same particle, not a
relation between particles. Thus, a superposed quantum state by itself is
not sufficient for the appearance of relations in quantum-mechanical
systems. In order to find quantum-mechanical relations one must consider
many-particle systems prepared in ‘non-separable’ quantum states.

We should next formulate a strict sense for the term ‘non-separable’ for
our purposes that is ‘‘disentangled’’ from the many varied uses of that term
in the literature. Suppose the quantum state of an N-particle system is
represented by a vector in an N-fold tensor product Hilbert space jwi a H
= H1 � H2 � : : : � HN, such that the set of all vectors of the form juii1 �
jvji2 � : : : �jwkiN comprise a complete orthonormal basis for H, where
{juii},{jvji}, . . . ,{jwki} are sets of basis vectors for H1,H2, . . . , HN,
respectively. Then jwi is said to be separable if it can be represented by a
single basis vector in H —

Awi ¼ Auii1 � Avji2 � : : : � AwkiN ;

for some choice of i,j, . . . , k, and non-separable if it cannot. In general, a
non-separable quantum state will be of the form

Awi ¼
X

i; j;:::;k
ci; j;:::;kAuii1 � Avji2 � : : : � AwkiN :

For the N = 2 case, there always exists a (not necessarily unique) set of
orthonormal basis vectors {juii1 � jvji2} for H = H1 � H2 and a set of
(non-zero) complex numbers {ck} such that jwi = Skckjuki1 �jvki2 (bi-
orthogonal decomposition theorem); but such quantum states are still non-
separable.

Thus, from a mathematical point of view at least, there is nothing at all
mysterious about non-separable quantum states. The ‘‘strangeness’’ arises
only when one attempts to interpret non-separable quantum states as
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referring in some sense to properties possessed by systems prepared in
such states. And this, as Teller (1986, 77–78) himself emphasizes, is the
first interpretive assumption required by any argument for ontological
commitments to relations, non-supervenient or otherwise, namely, that the
quantum state be interpreted ontologically, as opposed to instrumentally,
that is, as representing in some (perhaps incomplete) way the physical
reality of quantum-mechanical systems and not merely as a mathematical
tool for statistical prediction.

3. Non-supervenience in Quantum Mechanics. This brings us to the
Teller-French argument that ‘entangled’ systems prepared in non-separable
quantum states do in fact exhibit non-supervenient relations. The following
is an elaboration of French’s (1989) reconstruction of Teller’s (1986)
original version.

Consider a two-particle system—composed of ‘particle-1’ and ‘particle-
2’—prepared in a quantum state represented in terms of the eigenstates of a
two-valued observable represented by the Hermitian operator O having
distinct eigenvectors jai and jbi — Ojai = ajai and Ojbi = bjbi. Possible
two-particle quantum states for the composite system, represented in terms
of the eigenstates of the composite system observable represented by O12 =
O1 � O2, are as follows:

(i) jai1jai2,
(ii) jbi1jbi2, and
(iii) 1ffiffi

2
p ðAai1Abi2FAbi1Aai2Þ.

The states (i – iii) will be recognized to be the (anti-)symmetric
eigenvectors of O12 having corresponding eigenvalues a2, b2 and ab,
respectively, and the state (iii) will be seen to be non-separable. The
operators O1 and O2 represent single-particle monadic, non-relational
properties of particle-1 and particle-2, respectively, and the operator O12

represents a relation between particle-1 and particle-2.
Now assume the following: a physical system possesses a definite

property represented by a Hermitian operator if and only if the system is
prepared in a quantum state represented by the associated eigenvector of
that operator, in which case the property is represented by the correspond-
ing eigenvalue. This, of course, is just the Eigenvector-Eigenvalue Prop-
erty Rule (EE) that is common to the so-called ‘orthodox’ interpretations
of Dirac and von Neumann. Given this rule, the following analysis results:
If the two-particle system were prepared in any one of the above quantum
states (i–iii) there would be a relation between the two particles repre-
sented in terms of the eigenvalues of O12—namely O12 = a2, O12 = b2, and
O12 = ab, respectively. Moreover, if the two-particle system were prepared
in either of the quantum states (i) or (ii), then particle-1 and particle-2
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would each be in a single-particle quantum state represented by an eigen-
vector of O—jai1 and jai2 for case (i), jbi1 and jbi2 for case (ii)—so that
each would possess a corresponding monadic, non-relational property—O1

= a and O2 = a for case (i), O1 = b and O2 = b for case (ii). However, if the
two-particle system were prepared in quantum state (iii), then neither of the
particles would have a single-particle quantum state represented by an
eigenvector of O. This is because, first, the quantum states (i–iii) are all
distinct in the sense that each belongs to a mutually orthogonal sub-space,
so that a system prepared in state (iii) is never in either (i) or (ii); and,
second, because the states jai1jbi2 F jbi1jai belong to neither of the
subspaces spanned by jai1jbi2 or jbi1jai2, a system in state (iii) is never
simply in one or the other of the latter two states. Rather, the single-particle
states of each would be represented by the same mixed-state density
matrix—q1 ¼ 1

2 ðAaihaAFAbihbAÞ ¼ q2; and because the state of neither
particle would be represented by an eigenvector of O, neither would
possess any single-particle monadic, non-relational property represented
by O.

So, we have the following results for the three cases:

(i) particle-1 possesses O1 = a, particle-2 possesses O2 = a, and the
two-particle composite possesses O12 = a2;

(ii) particle-1 possesses O1 = b, particle-2 possesses O2 = b, and the
two-particle composite possesses O12 = b2;

(iii) neither particle-1 nor particle-2 each possess an O-property, but the
two-particle composite possesses O12 = ab.

In cases (i) and (ii), both of the supervenience conditions (1) and (2) are
clearly satisfied, for in each case both particles exhibit a non-relational O-
property and those properties are jointly sufficient to guarantee that the two-
particle composite exhibits the O-relation that it does; hence, the O-relation
in each case genuinely supervenes upon the respective pairs of non-
relational O-properties. In case (iii), however, both of the supervenience
conditions (1) and (2) fail to be satisfied; for not only does the two-particle
composite exhibit an O-relation that is not guaranteed by the exemplifi-
cation of pairs of non-relational O-properties, thus violating supervenience
condition (2), but neither of the relata of that relation exemplify any non-
relational O-property at all, thus violating supervenience condition (1).
Therefore, in case (iii) the O-relation exhibited by the two-particle
composite is strongly non-supervenient on O.

Thus, ‘entangled’ many-particle quantum systems prepared in non-
separable quantum states do in fact exhibit non-supervenient relations. The
question, then, is whether we ought to admit such relations into our quan-
tum ontology as fundamental entities. French (1989, 18) argues that we
should. But, must one make an ontological commitment to the existence of
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non-supervenient relations? For sure, only if one accepts all the argument’s
premises, both explicit and implicit.

One can block the argument’s conclusion, and thus avoid commitment
to non-supervenient relations in quantum-mechanical systems, in (at least)
either of two ways. First, of course, one can simply deny EE, in particular,
the ‘only if’-clause, which is crucial for the inference in case (iii) that
neither particle possesses a non-relational O-property. And, inasmuch as
the ‘only if’-clause is one of the notoriously problematic assumptions that
generates the infamous ‘measurement problem,’ there is perhaps good
reason for rejecting it. But, if one wishes to maintain the ‘only if’-clause of
EE and yet still avoid commitment to non-supervenient relations, then one
must deny that the operator O12 represents a genuine relation between
particle-1 and particle-2. Here one might say instead that O12 represents
merely the single-particle non-relational properties that are jointly
exhibited when the states of both particles are measured together. French
counters such a move by emphasizing that the operator O12 admits
eigenvectors of type (iii) that express statistical correlations between the
outcomes of joint measurements of the observable represented by O on
both particles and claims that such statistical correlations ‘‘clearly express
a relation between . . . the particles’’ (French 1989, 12). Implicit in
French’s claim is the assumption that the existence of such a statistical cor-
relation between measurement outcomes is sufficient for the existence of a
real, physical relation between the systems the measurement outcomes for
which are correlated. Such an assumption is plausible if one takes, say, a
‘disposition’ or ‘propensity’ interpretation of probability, according to
which quantum-mechanical probabilities themselves would be ‘objective’
in the sense of being primitive predicates in their own right that directly
represent (dispositional) particle properties.

Along the lines of such thinking, one could replace EE with a weaker
(i.e., less restrictive) property rule. This would extend the scope of the
Teller-French argument by expanding the possible supervenience base for
quantum-mechanical relations (i.e., the set of single-particle non-relational
properties). But, introducing a weaker premise does not necessarily
eliminate non-supervenient relations. Consider what might be called the
Disposition Property Rule (D), which can be understood as a ‘‘widening’’
of EE that includes EE as a special case. This rule takes marginal
probabilities to represent monadic or non-relational single-particle proper-
ties and joint probabilities to represent multi-particle relational properties
(cf. French and Redhead 1988; Butterfield 1993); such an interpretation of
quantum probabilities would support French’s claim above. Suppose, then,
that we have an N-particle system in a non-separable quantum state jwi; N-
particle relations would be represented by the composite-system density
matrix q12 . . . N = jwihwj, and single-particle non-relational properties
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would be represented by the respective single-particle density matrices qi =
Trj,k, . . . p i q12 . . . N. Because jwi is non-separable, we have q12 . . . N p q1
� q2 � : : : � qN; that is, the respective single-particle density matrices
taken together are not sufficient to determine uniquely the composite system
density matrix. Invoking D, it follows that the exemplification of the
respective single-particle non-relational properties alone is not sufficient
to guarantee the exemplification of the N-particle relational properties.
Thus, while supervenience condition (2) is clearly violated here, super-
venience condition (1) is still satisfied. In that case, the relations represented
by q12 . . . N are weakly non-supervenient upon the non-relational properties
represented by the respective qi’s. So, even on the interpretation of
quantum-mechanical probabilities in terms of dispositional properties,
one is still committed to weakly non-supervenient relations.

A further implicit premise in the Teller-French argument and the exten-
sion thereof just given is that the quantum states (i–iii) are complete physical
descriptions. By ‘completeness’ is meant here that all information necessary
to determine a physically (and not merely statistically or empirically)
complete assignment of (possible or actual) properties to a physical system
is contained in the quantum state alone, i.e., that all single-particle and
composite properties are to be assigned solely on the basis of the quantum
state, so that the quantum state by itself is, via some specifiable rule,
exhaustive of the properties assignable to a physical system, whether simple
or composite. Teller (1986, 79) has claimed, though, that even if one denies
the completeness of the quantum state-description, one can not avoid
commitment to non-supervenient relations because hypothetical ‘‘hid-
den’’-variable states could not provide a supervenience basis for the relations
exhibited by systems in non-separable quantum states such as (iii). French
(1989, 12) disagrees with Teller’s claim and appeals to a particular example
—namely, the Bohm-Vigier stochastic ‘sub-quantum ether’ theory—as
evidence in favor of the possible reduction of such relations to non-relational
single-particle properties in a hidden-variable state-description. I agree with
French’s conclusion on this point, though I would state the reason why
more strongly. Both the ‘only if’-clause of EE and D are warrantable, I
would argue, only on the presupposed completeness of the quantum state-
description. Therefore, if one denies the completeness assumption, then the
‘only if’-clause of EE and D are also rejected; thus, the conclusion of the
argument would be undercut without the need to appeal directly to any
particular hidden-variable theory. Of course, this leaves open the question of
whether or not there exists a hidden-variable theory that is consistent with
the pertinent quantum-mechanical correlations but does not carry commit-
ment to non-supervenient relations. We’ll return to this question below.

The upshot of the above discussion is this. From the point of view of
the Teller-French argument, at least, one can avoid commitment to non-
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supervenient relations in quantum-mechanical systems provided one denies
any of the following assumptions: that the quantum state-description is
physically complete, that preparation in a quantum eigenstate is both a nec-
essary and sufficient condition for a system to possess a definite property, or
that the existence of statistical correlations is sufficient for the exemplifi-
cation of a real, physical relation.

4. Non-supervenience in Other Interpretations.

4.1. Non-supervenience in ‘‘Hidden’’-Variable Theories. Let’s consider
hidden-variable theories, which deny at least the completeness assumption.
While denying the completeness assumption leaves ontological commit-
ment to non-supervenient relations undecided on the basis of the Teller-
French argument, it is not obvious that assuming the incompleteness of the
quantum state-description by itself is sufficient to avoid such commitment
altogether. As mentioned above, Teller has made the claim that hidden-
variable theories not only do not necessarily avoid ontological commitment
to non-supervenient relations, but cannot in fact avoid such commitment.
For, his argument runs, due to the Kochen-Specker theorem, the variables in
any hidden-variable state-description must be contextual, ‘‘which,’’ he
claims, ‘‘comes to the same thing as being relational’’ (Teller 1986, 79,
n. 1). But, whereas the former claim that hidden variables must be
contextual is correct (with non-trivial qualification), the latter claim
identifying ‘contextual’ with ‘relational’ is at least questionable if not
simply incorrect.

‘Contextuality’ in the Kochen-Specker theorem refers to the following:
if all the projection operators on a Hilbert space (of dimension greater
than two) are to be simultaneously and consistently assigned definite and
unique (eigen)values that are compatible with the quantum-mechanical
expectation values of all the Hermitian operators on that space for an
arbitrary quantum state, then such values must be ‘contextual’ in the sense
that which value is assigned to any given projection operator can not be
independent of which complete set of projection operators it is taken to be
a member; and this implies that the value assigned to any Hermitian
operator on the Hilbert space as a function of those projection-operator
values (according to the spectral theorem) will likewise be contextual so
that the expected value of any given quantum-mechanical observable will
depend upon the set of mutually commuting observables together with
which it is measured, that is, its measurement context. But, the Kochen-
Specker theorem shows only that the quantum-mechanical observables
must be contextual in a hidden-variable state-description, while the hidden
variables themselves will be contextual if they are identified with the
projection operators, which need not be the case (as, e.g., with Bohm’s
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theory, where the hidden variables are actual positions in configuration
space).

Thus, Teller’s claim that hidden-variable theories cannot avoid onto-
logical commitment to non-supervenient relations because hidden varia-
bles must be contextual appears to be incorrect for two reasons. First, as
just pointed out, only certain classes of hidden-variable theories are con-
strained by the Kochen-Specker theorem to have contextual hidden
variables; hence, even if ‘contextual’ here were to just mean ‘relational,’
not all hidden-variable theories would be committed to non-supervenient
relations on the basis of the Kochen-Specker theorem alone. Second, the
sense of ‘contextual’ relevant to the Kochen-Specker theorem has no clear
connection to the sense of ‘relational’ relevant to the Teller-French argu-
ment. For ‘contextual’ in the Kochen-Specker theorem refers at most to a
‘‘relation’’ between a projection operator and a complete set of projection
operators, or between a quantum-mechanical observable and its measure-
ment context, not to a physical magnitude or quantity predicated jointly or
compositely of several individuals, which is what ‘relation’ refers to
specifically in the Teller-French argument. I thus agree with French
(1989, 13) that contextual hidden variables are not equivalent to relations.
So, it seems clear that even those hidden-variable theories whose hidden
variables are constrained to be contextual by the Kochen-Specker theorem
are not committed thereby to non-supervenient relations.

Let’s now consider the question of non-supervenience in one particular
hidden-variable theory, viz., Bohm’s theory. Whether ‘entangled’ many-
particle systems described by non-separable quantum states exhibit non-
supervenient relations in Bohm’s theory depends crucially upon how one
chooses to interpret the quantum state and particle properties within the
theory, over which there is considerable ongoing debate (cf. Cushing et al.
1996, Belousek 2003). At the risk of oversimplifying that debate, we will
consider here three broad proposals for such an interpretation.

What all interpretations of Bohm’s theory have in common is that the
quantum state is taken to be an incomplete description of the physical
reality of quantum systems, i.e., that by itself the quantum state is insuf-
ficient to exhaustively determine all (possible or actual) particle properties.
In particular, Bohm’s theory supplements the quantum state description
with independent variables—viz., actual single-particle positions. And it is
on the basis of the single-particle position, taken together with the quantum
state, that all other particle properties (however extensive that set may be
taken to be) are defined and assigned; primary among these other particle
properties is the actual single-particle velocity or momentum, which is
defined as the gradient of the phase of the quantum state and is assigned by
evaluating the phase at the actual particle position. Bohm’s theory also
denies the other two assumptions under question—viz., the ‘only if’-clause
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of EE and that correlations imply dispositional properties; the actual single-
particle positions need not be eigenvalues of the position operator, and
correlations are explained via the non-local effects of the quantum state
dynamics rather than taken as primitive properties of ‘entangled’ systems.

The first interpretive proposal I’ll call ‘minimalist’ (e.g., Dürr et al.
1996). In this view, the only properties a Bohmian particle really possesses
(in addition to its state-independent classical properties, mass and charge)
are its actual position and velocity; all quantum properties or ‘observables’
represented by Hermitian operators, such as ‘spin,’ are regarded as merely
fictions or as constructions that only catalogue possible position measure-
ment outcomes and are thus eliminated from the theory’s ontology (because
they add neither empirical content nor explanatory power to the theory). On
this view one might further interpret the quantum state itself as having only
an ‘instrumental’ significance for statistical predictions, as merely repre-
senting a convenient summary of the possible motions of a system, and thus
as being an abstract mathematical entity in configuration space having no
concrete existence in physical space (as do Dürr et al.). On such an inter-
pretation, there is simply no room for non-supervenience to arise in the first
place, even when the quantum state is non-separable.

Consider an N-particle system represented in the 3N-dimensional con-
figuration space by the quantum state w(q1, . . . ,qN) and the actual system
configuration of single-particle positions Q = (Q1, . . . ,QN). The system
velocity is simply vw(Q) = (v1

w, . . . ,vN
w), where vi

w = dQi/dt = (t/m)Im(jiw/
w). Now, for an ‘entangled’ system in a non-separable quantum state, each
respective actual single-particle velocity vi

w will depend upon the actual
configuration for the entire system and not just on the respective single-
particle position, i.e., will not be a function solely of the coordinates of the
ith particle. But, such non-independence is not non-supervenience. There is
here only a case of non-local state-dependence of each single-particle
velocity on positions of the other particles in the system, where the actual
system configuration, taken together with the quantum state, is sufficient to
determine all of the single-particle velocities; thus, though the single-
particle velocities are themselves (non-locally) relational quantities, there
are, strictly speaking, no non-supervenient relations between the respective
single-particle velocities themselves and, hence, no non-supervenience of
either kind. One should not conflate either non-locality or (as will be
emphasized further below) state-dependence with non-supervenience.

A second interpretive proposal agrees with the ‘minimalist’ view that the
only real properties possessed by Bohmian particles are position and veloc-
ity, but, contrary to the previous view, seeks to interpret the quantum state
itself ‘realistically,’ i.e., as in some sense representing a concrete reality in
physical space (for methodological reasons such as explanation and the clas-
sical limit). Here there are two options. On the first option, only the phase S
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of the quantum state, where wðq1; : : : ; qNÞ ¼ Rðq1; : : : ; qNÞeiSðq1; : : : ;qN Þ=t,
is interpreted dynamically as a ‘guiding field’ or ‘pilot wave’ that causally
directs the motions of particles in a system according to the ‘guidance con-
dition’ for the single-particle velocities, vi = (1/mi)ji S, which is mathe-
matically equivalent to the above velocity formula (e.g., Valentini 1996).
On this view the quantum state represents a real entity existing in config-
uration space over and above the particles themselves and their trajectories
in physical space. Here no question of the non-supervenience of the ‘pilot
wave’ on particle positions even arises because the former is posited from
the beginning as an ontologically separate entity subsisting independently
of the particles. On the second option, the modulus R of the quantum state
is also interpreted dynamically in terms of the ‘quantum potential,’ U =
(�t2/2m)(j2R/R). On this view, there are two further possibilities: either
the quantum potential is interpreted as determining direct, non-local,
many-particle ‘quantum forces,’ via a modified Newton’s Second Law in
analogy with classical mechanics, F = �jU, that act on the particles in a
system in addition to the local, two-particle classical forces arising from
the classical potential (e.g., Bohm and Hiley 1993); or the quantum
potential can be interpreted in terms of physical relations holding between
the particles and having an existence over and above the particle postions.
On the one hand, if the quantum potential is taken to represent direct
forces, there is also no question of non-supervenience; for, again, although
F would be non-local and state-dependent, neither of these by themselves
imply non-supervenience. If, on the other hand, the quantum potential is
taken to represent relations, then one would have non-supervenience.

For an N-particle system the quantum potential is given by U = Si (�t2/
2m)(ji

2R/R). Here, one might take Ui = (�t2/2m)(ji
2R/R) to represent the

‘single-particle quantum-potential’ of the ith particle. But, even though one
would have simply U = SiUi, U would not supervene on the respective Ui

when the quantum state is non-separable. In that case, R is irreducibly
relational, referring to the coordinates of all particles in the system; and
because Ui would depend upon R for the total system, each Ui would not
be a monadic ‘property’ of the ith particle alone, but rather is already a
relational property. Thus, although the N-particle quantum potential is just
the sum of the single-particle quantum potentials, it is nonetheless strongly
non-supervenient in the case of a non-separable quantum state: the rela-
tional N-particle quantum potential does not supervene upon non-relational
single-particle quantum potentials because there simply are no such non-
relational single-particle quantum potentials to begin with, in which case
supervenience condition (1) fails. Insofar, then, as one takes the quantum
potential to be in some sense a ‘property’ of a system, it can be interpreted
as a (strongly) non-supervenient relational property of the N-particle sys-
tem itself or as a system of N-place (strongly) non-supervenient relations
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holding among the particles themselves. Again, one should not conflate
state-dependence with non-supervenience here: the quantum potential is
state-dependent, but that the quantum potential is non-supervenient is not
because it is state-dependent.

A third interpretive proposal, which is prima facie compatible with any
of the above interpretations of the quantum state, I’ll call ‘expansive.’ It
holds that, in addition to the classical properties of position and velocity
(or momentum) that are attributed to Bohmian particles in the ‘minimalist’
view, one should (for methodological reasons beyond prediction and
explanation, e.g. the classical limit) expand the range of particle properties
to include at least some of the usual quantum properties or ‘observables,’
such as ‘spin,’ that are represented by Hermitian operators (e.g., Holland
1993). Here, such operators are to be reconstructed out of the quantum
state and particle position, but would nonetheless (again for methodo-
logical reasons) be interpreted as having an independent ontological status.
Each such property would always be assigned a definite value, determined
by the actual configuration of the system, whether or not the quantum
state is an eigenstate of the Hermitian operator representing that property
(i.e., the ‘only if’-clause of EE is rejected). Thus, by the Kochen-Specker
theorem, such definite-value assignments will be contextual in general (for
operators on Hilbert spaces of dimension greater than two); but, as argued
above, the inevitable contextuality of such properties does not necessarily
imply non-supervenience. Whether or not such properties do in fact entail
non-supervenient relations will depend precisely upon how those proper-
ties are defined.

Consider, for example, the following proposed definition for the state-
dependent z-component of the single-particle ‘spin’ (cf. Dewdney 1992):
sz ¼ t

2 ðw
�rzw=w

�wÞ. For a two-particle system, the joint spin-component
would be sz

ð12Þ ¼ t2

4 ðw
�
12r

ð1Þ
z rð2Þz w12=w

�
12w12Þ. Now, in the case of a sepa-

rable quantum state, w12 = w1 � w2, the joint spin-component will be
determined by the respective single-particle spin-components, sz

(12) = sz
(1) �

sz
(2), satisfying supervenience condition (2); and, because the single-particle
spin-components sz

(1) and sz
(2) would depend upon w1 and w2, respectively,

they would refer only to the respective coordinates of each particle sepa-
rately and, hence, be monadic properties, satisfying supervenience con-
dition (1). Thus, the joint spin-component relation genuinely supervenes
upon the non-relational single-particle spin-components. In the case of a
non-separable quantum state, w12 p w1 � w2, however, one will have sz

(12) p
sz
(1) � sz(2), in violation of supervenience condition (2); and, because the
single-particle spin-components sz

(1) and sz
(2) would both depend upon w12,

and thus refer jointly to the coordinates of both particles, each is already a
relational property, in violation of supervenience condition (1). In this case,
then, because there are no monadic single-particle spin-component proper-
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ties upon which the joint spin-component relation could supervene, in vio-
lation of both supervenience conditions, the joint spin-component relation
would be strongly non-supervenient.

So, one has several interpretive options within Bohm’s theory, two of
which entail a commitment to non-supervenient relations (for a compara-
tive appraisal of the various interpretive options in Bohm’s theory accord-
ing to normative criteria such as coherence and explanation, see Belousek
2003).

4.2. Non-supervenience in a ‘‘Radical’’ Interpretation. Let’s reconsider
ontological commitment to non-supervenient relations within an interpre-
tation that takes the quantum state-description to be complete and accepts
either the (strong) EE or the (weak) D property rule. What we aim to exhibit
here is a possible interpretation of non-separable states that bears no
commitment to non-supervenience in any sense and thus presents an interes-
ting case in this context regardless of its ultimate plausibility. As we saw
earlier, one can avoid commitment to non-supervenient relations from an
‘orthodox’ view by denying that the operator O12 = O1 � O2 represents a
genuine relation exhibited by the two-particle composite system. But, as
mentioned above, even if one denies the D property rule, EE itself seems to
imply that O12 does indeed represent a relation existing between particle-1
and particle-2 in the state Awi ¼ 1ffiffi

2
p ðAai1Abi2FAbi1Aai2Þ, where jai and

jbi are eigenvectors of O. Thus, to avoid commitment to non-supervenient
relations altogether—which commitment follows evidently from the as-
sumptions of completeness and either the EE property rule (strongly non-
supervenient relations) or D (weakly non-supervenient relations)—one
must re-interpret the non-separable quantum state jwi itself in such a way
that the above inferences to non-supervenience are rendered non sequitur.
And the most direct way to do so is to deny the very conditions which make
such inferences to non-supervenient relations possibly valid, namely, that
jwi represents the quantum state of two, numerically distinct entities whose
prior and independent distinguishability is necessary for the existence of
any relation represented by operators of which jwi is an eigenvector.

To motivate such a view, one might propose that the quantum-mechan-
ical state-description be taken strictly and literally as it stands as ontolog-
ically primary, that is, that one should let the quantum state itself suggest
how to parse the world and thereby ‘‘read off’’ the ontology of the world
directly from its representation. The present suggestion is this: First,
assume the quantum state-description to be complete and take whatever
physical system is referred to by a (pure) quantum state itself as a single
‘simple quantum entity.’ Second, define a ‘composite quantum entity’ as
any system referred to by a quantum state jCi—whether pure or mixed—
that admits ‘proper parts,’ that is, sub-systems whose own state is itself a
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pure quantum state, where the state of a sub-system is obtained by partial
tracing over the appropriate degrees of freedom of the composite-system
density matrix; if a system admits of no ‘proper’ sub-systems, then it is a
simple, not composite, quantum entity. One would have, then, only two
cases of ‘composite quantum entities’ having ‘proper parts’: (i) a physical
system whose quantum state is represented by a single product of (pure)
quantum states—jCi = jui � jvi � jni� : : : or q = juihuj � jvihvj �
jnihnj � : : :; and (ii) a physical system whose quantum state is represented
by a mixture (i.e., non-trivial convex sum) of (pure) quantum sates—q =
Sijcij2 qi, where each qi = jCihCj is a pure-state density matrix of type (i).
In case (i), each vector in the product quantum state would itself represent
a single simple ‘quantum entity’; and in case (ii), each pure-state density
matrix would itself represent a single simple ‘quantum entity,’ while the
sum would represent a mixture having jcij2 proportion of each simple
‘quantum entity.’ The individuation of such simple ‘quantum entities’
would be grounded upon distinction among quantum states themselves:
two distinct quantum states refer to two distinct simple ‘quantum entities’;
and quantum states are distinct if they differ by more than a phase factor. In
this way, quantum states are defined by the rays of a Hilbert space such that
there is in some sense an ambiguity here in referring to basic quantum
entities; but, such referential ambiguity is founded upon a precise math-
ematical description subject to an unequivocal criterion for distinguishing
referents and thus is unproblematic.

Now, were the quantum state of a system represented by a coherent
superposition of (pure) product states of type (i),

ACi ¼
X

i; j;k; : : :
ci; j;k; : : :Auii � Avji � Anki � : : :;

that is, by a non-separable quantum state, the ‘quantum entity’ referred to
by such a state would have no definable ‘proper parts’; for every state
obtained by partial tracing over q = j8ih8j would represent an ‘improper’
mixture, which could not be interpreted here as referring to a simple
‘quantum entity.’ By denying that ‘improper’ mixed states have any proper
reference and, hence, ontological significance, one effectively stipulates
that the non-separable quantum state j8i refers to a single simple
‘quantum entity,’ a single basic subject of quantum-predication, one
individual physical system. So, the answer to our question—namely,
whether or not the two-particle O-relation exhibited by a system in a quan-
tum state represented by Awi ¼ 1ffiffi

2
p ðAai1Abi2FAbi1Aai2Þsupervenes upon

non-relational single-particle O-properties—is that not only are there no
non-relational O-properties upon which the O-relation could supervene,
but there simply are no simple ‘quantum entities’ other than that referred to
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by jwi itself that could even possess such properties; that is, there is no
relation at all in this case because, strictly speaking, there are no relata in
the first place! On this view, then, instead of taking the operator O12 = O1

� O2 as representing a relation between two simple ‘quantum entities,’ it
should rather be taken as representing a monadic property possessed by a
single simple ‘quantum entity.’ And in the case where jwi = jai1jai2, or
jwi = jbi1jbi2, etc., jwi would refer to a composite ‘quantum entity’
according to rule (i) and O12 would represent a relation exhibited by the
composite that genuinely supervenes upon the non-relational properties
represented by O1 and O2 and possessed by the simple ‘quantum entities’
whose respective quantum states are jai1 and jai2, etc. Therefore, on this
ontological interpretation of the quantum state-description, one is not
committed to non-supervenient relations in either sense.

One might, of course, think such an interpretation to be ad hoc, invented
simply to avoid a certain mode of ontological commitment. Such a
criticism, though, would fail to appreciate the point of view that motivates
the proposal. The interpretive stance does not seek to avoid the question of
ontological commitment, but rather to ‘naturalize’ it in a radical way. One
may very well disagree with such a project on other methodological or on
metaphysical grounds, but it is surely not ad hoc. Another possible ob-
jection to such a view is that it appears to be guilty of equivocating upon the
ontological significance of the operator O12 = O1 � O2: does it represent a
relation or a non-relational property? The interpretation proposed above
seems to answer ‘both,’ and thus is evidently incoherent. But, again, such a
criticism would fail to see the point. The proposed interpretation takes the
quantum state itself as the basic entity in the ontology, not the operators; and
doing so is motivated by taking seriously the notion that the quantum state
is a complete description the physical reality of quantum-mechanical
systems and represents directly the physical systems themselves. Thus,
the quantum state itself is ontologically primary, and operators only
secondary, the significance of the latter being founded upon that of the
former. Whether a given operator represents a relation or a non-relational
property depends upon the quantum state concerned, and the rules here for
deciding whether a given quantum state refers to a simple or composite
‘quantum entity’—and, hence, whether operators of the form O = O1 � O2

� O3 � : : : represent relations or non-relational properties—are unequiv-
ocal. So, the charge of incoherence fails.

However, at least two potential interpretive difficulties do immediately
present themselves. First, if a non-separable quantum state refers to a single
simple ‘quantum entity,’ how are the ‘‘particle’’ labels in the representation
of the state to be understood? On the one hand, one might say here that they
merely refer to the ‘‘internally correlated’’ degrees of freedom of one and
the same system. On that view, one would have to interpret the outcomes of
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correlation experiments (such as in the EPR-Bell arguments) likewise in
terms of the impinging of one and the same simple ‘quantum entity’ upon
two space-like separated detectors, which would explain (non-locally, for
sure) the observed statistical correlations well enough but leave one with
space-like extended entities in one’s ontology (cf. Howard 1989). On the
other hand, it is well known that one can do quantum mechanics of systems
of many ‘identical particles’ in a label-free representation (e.g., in a Fock-
space, rather than a Hilbert-space, representation); and such an approach
here would eliminate this interpretive difficulty altogether, where label-free
‘occupation number’ states could be taken as referring to so many non-
individual ‘quanta’ (cf. Teller 1995). Second, what happens when two
simple ‘quantum entities’, each prepared in a pure quantum state, interact in
such a way that results in a non-separable quantum state for the ‘‘compos-
ite’’ system (as is the case in general)? By the above interpretation, there is
post-interaction only a single simple, not composite, ‘quantum entity’.
Thus, there is here a clear loss of self-identity of the original simple
‘quantum entities.’ Still, this is in itself nothing logically absurd, for there is
no a priori reason why the number of simple ‘quantum entities’ must be
conserved in interactions (as is not the case, e.g., in some interpretations of
states in quantum field theory). Of course, this view would engender a
measurement problem with a vengeance so that one might not want to
consider it further. Nonetheless, while this interpretation may not be
compelling enough to take seriously because of its high collateral commit-
ments, it at least provides a possible interpretation that does not bear any
ontological commitment to non-supervenient relations and which provides
an unequivocal criterion for individuating its basic entities.

We may summarize the above results for the various interpretive options
regarding ontological commitment to non-supervenient relations as follows:

A: Assume Eigenvector-Eigenvalue Property Rule (EE) and complete-
ness Z strongly non-supervenient relations
B: Assume Dispositional Property Rule (D) and completeness Z weakly
non-supervenient relations
C: Assume either EE or D and completeness, but deny ontological
reference of ‘improper’ mixed states and ontological status to ‘im-
proper’ sub-systems Z no non-supervenient relations (if any relata!)
D: ‘Minimalist’ Bohm theory, with only position and velocity as real
particle properties Z single-particle velocities genuinely supervene on
single-particle positions
E: ‘Minimalist’ Bohm theory with ‘pilot wave’ Z no non-supervenient
relations
F: ‘Minimalist’ Bohm theory with ‘quantum potential’ interpreted as
non-local, many-particle forces Z no non-supervenient relations
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G: ‘Minimalist’ Bohm theory with ‘quantum potential’ interpreted
as relational system property or as system of N-place relations Z N-
particle quantum potential strongly non-supervenes upon relational
single-particle quantum potentials
H: ‘Expansive’ Bohm theory, with some quantum observables as real
particle properties alongside position and velocity Z contextual quan-
tum relations that are not necessarily non-supervenient, depending upon
choice of definition for such properties

One thus sees quite clearly that the question of non-supervenience in quan-
tum ontology turns crucially upon one’s initial choice of interpretive as-
sumptions. Deciding one’s ontological commitment, then, depends upon the
choice of an interpretation and, hence, upon an overall appraisal of the
several interpretations with respect to normative criteria of theory choice.

5. Non-supervenience, Holism, and Individuation. Much has already
been written concerning ‘holism’ in connection with both non-separability
and non-supervenience in quantum-mechanical systems (e.g., Teller 1986,
1989; Healey 1990). Rather than adding to this literature, we seek here
only to add a few cautionary notes regarding the characterization of a
‘quantum holism’ in terms of non-supervenience.

First, it should be emphasized here that non-supervenient relations are
not ubiquitous in quantum-mechanical systems, but rather involve only
state-dependent relations and non-relational properties. The state-
independent relations or composite properties of many-particle quantum-
mechanical systems are genuinely supervenient upon the state-independent
properties of the individual particles, just as in classical mechanics. To
illustrate this point, consider the composite state-independent properties—
mass, charge and ‘spin-type’—of a nucleus of atomic number Z(= number
of protons) and mass number A (= number of nucleons, i.e., number of
protons and neutrons together). The nuclear charge is simply

PZ
i¼1 ei¼Ze;

where e is the magnitude of the electronic charge. And the nuclear mass,
though not the mere sum of the single-nucleon masses, is nonetheless de-
termined (to a very close approximation, at least) as a function of the
nucleon masses, the atomic number and the mass number via the so-called
‘semi-empirical mass formula’:

MðZ;AÞ ¼ Zmð1HÞ þ NmN � BðZ;AÞ=c2;

wherem(1H) is the hydrogen nuclear mass (i.e., proton mass), N(= A� Z) is
the neutron number, mN is the neutron mass, and B(Z, A) is the nuclear
binding energy (cf. Krane 1988, chap. 3). Similarly, the ‘spin-type’ of a
nucleus, which determines its statistical behavior, genuinely supervenes on
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the ‘spin-types’ of the respective nucleons (or particles): e.g., a deuterium
nucleus, composed of two spin-1/2 nucleons, behaves compositely as a
spin-1 system obeying Bose-Einstein statistics.

Second, not every case of non-supervenience listed above is peculiar to
quantum mechanics. In particular, a sort of ‘correlational’ non-super-
venience similar to that in interpretive option B, due to the Dispositional
property rule (D), is found in classical statistical mechanics. There the N-
particle correlation function on the phase space for an N-particle system
similarly cannot be recovered from the single-particle correlation functions;
i.e., the marginal or single-particle probability distributions are insufficient
to uniquely determine the joint or N-particle probability distribution. And
this classical ‘correlational’ non-supervenience arises for precisely the same
reason as it does in quantum statistics for N-particle systems interpreted
according to D, viz., that the single-particle functions or states are obtained
by integrating over or ‘tracing out’ degrees of freedom pertaining to all
other particles, which in both cases effectively averages out all the multi-
particle correlations contained in the particle function or composite state
(cf. Huang 1987, chap. 3). Thus, such ‘correlational’ non-supervenience
would seem to reflect more the choice of definition for the single-particle
states rather than an inherent physical holism.

Third, regardless of one’s interpretive stance, even the quantum-
mechanical world is manifestly particularistic in many of its characteristic
features. This is illustrated, for example, by the granular ‘‘exposure specks’’
that comprise the ‘interference’ pattern generated on a photographic plate
by a double-slit experiment, the singular detector events that register the
radiative decays of unstable nuclei, and the singular space-like-separated
detector events that comprise the empirical data that confirm the very
correlations and ‘entanglement’ under study. Thus, any adequate quantum
ontology capable of accounting for the manifest features of characteristic
quantum phenomena must exhibit both a well-defined particularism as well
as a relationalism (which would seem to rule out the ‘‘radical’’ interpretive
option C). The ontology of the quantum world is better described as a
‘relational particularism’ or ‘paricularist relationalism’ rather than Teller’s
‘relational holism.’

The issue of the particularity and singularity of the phenomena raises the
problem of individuation in quantum ontology. Quantum non-separability,
interpreted ontologically, presents us with properties of ‘entangled’
composite systems that cannot be attributed solely to the respective single
components of such systems. The implications of this for the problem of
individuation in quantum ontology can be understood in either of two
mutually exclusive ways: either as indicating the lack of individuation of
those single components, i.e., as denying the ontological separateness of
what are formally non-separable; or as suggesting the existence of real
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physical relations among entities that are already individuated or onto-
logically separate, though not formally separable. The former view, to be
convincing and conclusive, must make two key presuppositions: first, the
contentious assumption (in light of, e.g., the measurement problem) that the
quantum state is a complete description of the physical reality of such
systems; and, second, the chief metaphysical prejudice of modernity that all
real physical properties are strictly monadic, properly attributable only to
single entities. The denial of individuation on the basis of formal non-
separability, moreover, would seem to undercut any ontological explanation
for the particularity and singularity of the very empirical phenomena that
experimentally confirm the existence of quantum non-separability (noted
above). Non-supervenience challenges this view and its metaphysical
prejudice by presenting the option of interpreting non-separability in
terms that not only need not deny the possibility of individuation but
actually presuppose it: a necessary condition for the possibility of the very
existence of a real relation is the (ontologically) prior and independent
physical distinguishability of the relata; a real relation must be grounded in
a physical, not merely numerical, distinction. It is thus clear that the failure
of formal separability by itself does not necessarily imply the failure of the
possibility of individuation or ontological separation; for insofar as non-
separability can be interpreted in terms that presuppose individuation,
formal separability cannot itself be taken to be a necessary condition of
individuation (cf. French 1989, 4, 7–8).

However, it also becomes clear that the coherence of the interpretation of
non-separability in terms of non-supervenience requires the articulation of a
precise sense in which the quantum-mechanical entities between which
such relations exist are physical individuals, i.e., one must provide a
physical principle of individuation adequate to such an interpretation of
non-separability. Thus, one needs to examine the possibilities for particle
individuation under each interpretation that admits non-supervenient
relations. The primary question here will be to what extent the possibility
of individuation within quantum mechanics, and hence ontological
commitment to non-supervenience, necessitates the assumption of the
incompleteness of the quantum state (cf. Belousek 1999, 2000a), which
would constrain the range of possibilities for interpreting non-separability
in terms of non-supervenience. For sure, if one assumes the incompleteness
of the quantum state, which is common to each of the interpretive options
within Bohm’s theory, then one can give a precise physical characterization
of the individuation of quantum particles within the theory itself in terms of
unique, physically distinguishable space-time trajectories and thus provide
the requisite ontological underpinning for non-supervenient relations (cf.
Belousek 2000b); and, by choosing an interpretive option under Bohm’s
theory that admits non-supervenience relations, one would have a coherent
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quantum ontology that naturally provides a relatively clear explanation of
the ‘relational particularism’ characteristic of quantum phenomena. In any
case, coherent ontological commitment to non-supervenient relations must
be underpinned by an account of the physical individuation of quantum-
mechanical systems that characterizes such individuation as prior to and
independent of the existence of such relations.
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