
One-dimensional model for a laser-ablated
slab under acceleration

J. RAMÍREZ, R. RAMIS, and J. SANZ
E.T.S.I. Aeronáuticos, Universidad Politécnica Madrid, Pl. Cardenal Cisneros, 1, 28040 Madrid, Spain

~Received 9 May 2003;Accepted 31 August 2003!

Abstract

A one-dimensional model for a laser-ablated slab under accelerationg is developed. A characteristic valuegc is found to
separate two solutions: Lowerg values allow sonic or subsonic flow at the critical surface; for higherg the sonic point
approaches closer and closer to the slab surface. A significant reduction in the ablation pressure is found in comparison
to theg50 case. A simple dependence law between the ablation pressure and the slab acceleration, from the initial value
g0 to infinity, is identified. Results compared well with fully hydrodynamic computer simulations with Multi2D code.
The model has also been found a key step to produce indefinitely steady numerical solutions to study Rayleigh–Taylor
instabilities in heat ablation fronts, and validate other theoretical analysis of the problem.
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1. INTRODUCTION

The problem of a solid being ablated by a laser light has
been studied in the past from different points of view~Max
et al., 1980; Sanzet al., 1981!, mostly in the context of
inertial confinement fusion studies~laser driven! and differ-
ent geometries~one-dimensional@1D# to three-dimensional
@3D# !. Several ablative models have been proposed on
which to base Rayleigh–Taylor instability analysis~Takabe
et al., 1983; Kull & Anisimov, 1986; Kull, 1989, 1991;
Sanz, 1996!, a key problem in achieving ignition of implo-
sion targets. Here we approach the problem in a somewhat
different way.

Let us consider a solid slab with initial temperatureT0 and
densityr0 being thermally ablated by a laser. After a short
transient period of time, a certain~high! temperatureTb is
assumed to stabilize at a certain distance~critical surface! L
from the slab surface~Fig. 1! that is now at temperature
Ta ,, Tb and densityra. Heat conduction moves the energy
from the critical surface to the slab and a~supposed! con-
stant mass flow rate_m is ablated from the slab massM0. The
high ablation pressurePa moves the slab with acceleration

g~t ! 5 Pa0~M0 2 _mt!. The process is analyzed using a
reference attached to the slab surface.

2. HYDRODYNAMIC EQUATIONS

Continuity, momentum, and energy Navier–Stokes equa-
tions read as follows:

]r0]t 5 2]~rv!0]x ~1!

]~rv!0]t 5 2]~ p 1 rv2!0]x 1 rg ~2!

]$ r~e1 v202!%0]t 5 ]$ rv~h 1 v202! 1 q%0]x 1 rgv, ~3!

where the accelerationg has been included in the momen-
tum and energy equations, andv is velocity,x is the distance
from the slab surface~positive toward the incoming laser!,
p is pressure,e is specific energy,h is specific enthalpy, and
q is the heat flux.

For simplicity, the ablated plasma will be taken as an ideal
mono-atomic gas with equations of state~EOS!: p 5 rT,
h 5 ~502!T, ande5 ~302!T. Also we will assume classical
~Spitzer! heat flux withq 5 2 PKT 502 dT0dx.

The basic initial and boundary conditions, at any time,
will be T 5 Tb at x 5 L and T 5 Ta at x 5 0. Other
variables will be discussed later in consistency with above
equations and assumptions to be made.
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3. THE QUASI STEADY 1D MODEL FOR
THE PLASMA CORONA

Although a real problem is not steady and requires solving
fully Eqs. ~1!–~3!, we think a quasisteady approximation,
valid on a time scale when the slab mass change is not too
big, can shed some light onto the problem. Then, neglecting
temporal derivatives, a constant mass flow rate_m is ablated
at the slab surfacex5 0 by the energy flux coming from the
right ~x . 0 region!. Integrating~1!–~3! from x5 0 we have

rv 5 _m5 rava 5 rbvb ~4!

_m~v2 va! 1 p 2E
0

x

rgdx5 Pa ~ the ablation pressure! ~5!

_m~h 1 v202 2 gx! 1 q 5 const. , ~6!

where, in consistency with the previous assumptionTa ,, Tb,
we will put Ta5 va5 0, and thenconst.5 0, as a convenient
first approximation in our model.

The exact solution to thecomplete modelin Eqs.~4!–~6!
is discussed later in Appendix B; briefly, the eigenvalues
Pa and _m get determined, as functions of the boundary
conditions and profiles of the different variables, only when
the complete solution of the problem has been obtained. As
we will confirm later, a good approximation appears, in a
simplified model, neglecting velocity and gravity terms
v202 2 gx ,, h in ~6!; then, we have

x0L 5 ~T0Tb!502 ~7!

with _m5 ~205!2 PKTb
5020L for the temperature profile and the

eigenvalue mass flow for allg values in terms of physical
quantities.

Using dimensionless variablesx '5 x0L, T '5 T0Tb, v '5
v0Tb

102, and the EOS we have for the momentum equation

v ' 1 T '0v ' 2 ZE
0

x '

dx'0v ' 5 R ~8!

with Z5 gL0Tb andR5 Pa0~ _mTb
102! the normalized gravity

accelerationand thenormalizedablationpressure, respectively.
In the case of no gravity,g5 0, and assuming sonic flow

in x 5 L, we have the solutionT ' 5 x '~205!, andv ' 5 1 2
~1 2 T '!102, whereT ' andv ' grow from zero inx ' 5 0, to
sonic conditionsv '2 5 T '51 in x '51, included in Figure 2.
The eigenvalue ablation pressure is nowPa 5 2 _mTb

102.
Solution with subsonic conditions inx ' 5 1 are also possi-
ble; then, the ablation pressure increases toPa 5 ~Mb 1
10Mb! _mTb

102 with Mb 5 vb0Tb
102 # 1, the Mach number at

x 5 L. Continuous solutions, supersonic inx ' 5 1, are not
allowed in this case.

For every nonzero value of the gravityg, Eq. ~8! admits
phase variablesh,j discussed inAppendixA. Here, we sum-
marize the results. For everyZ, a singular~saddle! sonic point
~xs
' ,vs'!5 ~~0.40Z!503, ~0.40Z!103! permits crossing from sub-

sonic conditions, nearx50, to supersonic ones, far from the
origin, traveling along the integral linev '~x '! that links the
origin with the saddle point.

For a certain characteristic valueZc 5 gcL0Tb 5 2
5
_ ~the

inverse number of the exponent in the Spitzer law!, the
saddle locates exactly atx '51, where sonic conditions are
allowed~point B in Fig. A1 in Appendix A!. The eigenvalue
ablation pressure is nowPa 5 2 _mTb

102~1 2 0.2IZ5205~1!!,
beingIZ5205~1! 5 *0

1 dx'0v '51.8100 . . . , anumerical value

Fig. 1. A laser-ablated slab.

Fig. 2. Pressure, temperature, and velocity profiles forZ # 0.4 ~notePa is
Z dependent!.
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that appears~see Table 1! after integrating along the above
mentioned integral line~note the ablation pressure is reduced
about 36% in comparison with theg 5 0 case!.

For 0 , Z , 2
5
_ ~low Z!, the saddle point locates at

xs
' . 1 ~point A in Fig. A1; note thatZ approaching zero

gives xs
' going to infinity, and thenhs 5 10xs

' , 1!. Both
sonic or subsonic conditions are possible now inx ' 5 1;
we are only interested in the sonic case. The solution for
~8! can easily be obtained through an iterative process,
if we start with the solution forg 5 0 ~with R0 5 2! and
use the recursive formulavi11

' 5 Ai 2 ~Ai
2 2 x '~205! !102,

and new variableAi 512 0.5Z~Ii ~1! 2 Ii ~x '!!, with Ii ~x '! 5

*0
x ' dx'0vi' and A0 5 1. The numerical convergence of the

iterations is fast~three or four cycles are enough to get a
stable graphical result; the use of absolute value inside the
square root may be convenient through the calculations,
and it does not influence the final true solution!. The eigen-
value ablation pressure is, in this casePa 5 2 _mTb

102~1 2
0.5ZI ~1!! whereI ~1! is a function tabulated in Table 1 for
someZ values.

ForZ. 2
5
_ ~highZ! the saddle sonic point locates atxs

', 1
~i.e.,hs510xs

'. 1, point C in Fig.A1!. In x '51 only certain
supersonic conditions are allowed~the ones given by the
mentioned integral line at that position!, and the ablation
pressure is nowPa 5 2 _mTb

102~0.40Z!103~1 2 0.2IZ5205~1!!
where the factor~0.40Z!103 can also be read asvs' , orTs

'102, or
xs
'105 ~note thatZ approaching infinity givesPa going to

zero!.
In Figure 2, the corresponding profiles for pressure, tem-

perature, and velocity are given for someZ values~0, 0.1,
0.2, 0.3, and 0.4!. Also, in Figure 3, we show the normalized
ablation pressureR as a function of the normalized gravity
accelerationZ for a moderate range ofZ values.

4. THE NONSTEADY EVOLUTION
OF THE SLAB

At every instant time, the slab massM 5 M0 2 _mt is
accelerated by the ablation pressurePa 5 R~Z! _mTb

102 and
this allows us, in a first approximation, to couple the corona
model and the slab evolution in a consistent manner. In
terms of a characteristic burning timetb 5 M00 _m with _m
from ~7! and a characteristic fluid timetc 5 L0Tb

102, we
found the simple expression

t0tc 5 tb0tc 2 R~Z!0Z. ~9!

At t50 we have~R~Z!0Z!05 tb0tc. In Figure 4, it is given
R~Z!0Z, nearly a straight line in logarithmic scale, for a wide
range ofZ values. For every practical case~givenTb, L, PK,
andM0!, entering withtb0tc in the vertical axis, we can read
the normalized initial accelerationZ0 in the horizontal one.

Although Eq.~9! and Figure 4 provide a useful tool to
evaluate the functionZ~t !, taking into account that for
Z . 0.4 is R0Z 5 const.0Z403 andZ necessarily increases
with time, for practical purposes, we propose the simple
analytical formula

Z 5 Z00~12 ~t0tc!0~R0Z!0!304 ~10!

for the normalized slab acceleration due to the ablation
pressure.

Table 1. The integral*0
1 dx'0v ' in Eq. (8) for some Z values

(simplified model)

Z

0.0 0.1 0.2 0.3 0.4

I ~1! 2.648 2.404 2.193 1.988 1.810

Fig. 3. Normalized ablation pressureR versus normalized accelerationZ.

Fig. 4. TheR~Z!0Z function.
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5. THE MODEL AND THE NUMERICAL
SIMULATION

Two kinds of problems have been studied numerically,
using computer code Multi2D~Ramis & Meyer-ter-Vehn,
1992!, to test and validate the above simplified model.
First, a plane target with initial velocityV0 is decelerated
by a laser until the target is completely ablated. Typically,
we have usedTa0Tb around 1

40
_ and an initial normalized

deceleration in the range of 0.05 to 0.15. Computed tem-
perature, velocity, and pressure profiles have been fol-
lowed along the time and compared to the ones in the
model. In velocity and pressure the agreement has been
found good, except that numerical values for the ablation
pressurePa are typically around 90% the ones provided in
the model. The neglecting of the velocity and gravity terms
in the energy equation~6!, to solve the model in Section 3,
has been found responsible for half of this disagreement.
The other part may be due to the fact that numerical sim-
ulations are really nonsteady whereas the model is quasi-
steady and, obviously, they must show differences. Regarding
the temperature profiles, the fitting has been found very
good.

Second, both the simplified and the complete models for
the plasma regionx . xa, besides the isentropic approxima-
tion withgnonzero~v5va~Ta0T !302, T5Ta10.4Z~x2xa!!
for the slab regionx , xa, up to a position where profiles
get multivalued~Mach number~503!102!, have been used
as initial solution to build “indefinitely steady numerical
profiles” on which to study numerically the evolution of
fundamental Rayleigh–Taylor instability problems in abla-
tion fronts ~Sanzet al., 2002; including single and multi-
mode evolution in 2D and 3D axisymmetrical geometries,
cutoff wave length determination, etc.! in a wide range of
values for the parametersTa0Tb andZ. No special advantage
has been found in using the complete model instead of the
simplified one. Results of these studies will be published
shortly, elsewhere.

6. CONCLUSIONS

From fundamental laws we have developed a 1D model
for a laser-ablated slab under accelerationg. The assump-
tion of a quasisteady problem, although strictly valid only
for short periods of time or low mass ablation rates, has
been found useful to close the nonsteady problem. A
simple law for the accelerationg~t ! of the nonsteady laser-
ablated slab is proposed. In the quasisteady approxima-
tion, a characteristic accelerationgc is identified; above
this value, a sonic point appears between the slab and
the critical surface; the ablation pressure is strongly re-
duced@10g103. The hydrodynamic profiles in the simpli-
fied model have been proved a key step in the numerical
analysis of basic Rayleigh–Taylor instability problems in
ablation fronts.
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APPENDIX A: THE PHASE PLANE IN
THE SIMPLIFIED MODEL

The complete discussion of the solutions in Eqs.~7!–~8!
appears analyzing the corresponding phase plane. Using~7!
in ~8! and after derivation we have

dv '0dx' 5 v '~Z 2 0.40x '~305! !0~v '2 2 x '~205! ! ~A.1!

that shows, in the physical plane~x ',v '! a singular~node!
critical point at the origin~0,0!, a singular~saddle! critical
point at~xs

' ,vs'! 5 ~~0.40Z!503, ~0.40Z!103!, and a sonic line
v '2 5 x '~205! ~with T ' 5 x '~205! ! where the Mach number is
unity. Normalizing position and velocity with correspond-
ing values at this saddle point we have, for the new phase
variablesh 5 x '0xs

' andj 5 v '0vs' , the normalized equation

dj0dh 5 0.4j~12 10h305!0~j2 2 h205!, ~A.2!

with the singular points at~0,0! and~1,1!, and the sonic line
~j 5 h105!, all of them represented in Figure A1; also some
integral lines coming from the node and others approaching
the saddle are drawn.

The characteristic valueZc5 0.4~i.e.,g5 0.4Tb0L! plays
an important role in the solutions of Eq.~A1!. For Z 5 Zc,
both the physical~x ',v '! and the normalized~h,j! phase
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planes are identical; only one integral line is allowed to go
continuously from the originx ' 5 0 to sonic conditions in
x ' 5 1 ~point B in Fig. A1!; supersonic conditions are not
possible there. ForZ . 0.4~highg! xs

', 1 ~thushb5 10xs
'.

1, point C in Fig. A1! and only specific supersonic condi-
tions are allowed inx ' 5 1 when coming fromx ' 5 0 ~the
ones fixed by the mentioned integral line at that point!. For
Z , 0.4 ~low g! xs

' . 1 ~thus hb 5 10xs
' , 1, point A

in Fig. A1! and only a specific sonic solution is possible in
x ' 5 1 ~also several subsonic ones, or supersonic multival-
ued, which we are not interested in!.

APPENDIX B: THE COMPLETE MODEL

As we advanced in Section 3, in the case ofg 5 0, in the
simplified model, we neglectv202 ,, h; then the solution of
Eq. ~4!–~6! with Ta 5 va 5 0 leads to

_m 5 r.v, ~Pa0 _m2 v!v5 T, x 5 ~4025!~ PK0 _m!T 502,

~B.1!

the condition of the sonic point inx5 L giving eigenvalues
_m 5 ~4025! PKTb

5020L and Pa 5 2 _mTb
102 in terms of the

physical quantities PK, Tb, andL.
Using dimensionless variablesx ' 5 x0L, r ' 5 r0~ _m0vb!,

v ' 5 v0vb, andT ' 5 T0Tb, we have the normalized solution

r ' 5 10v ', v ' 5 1 2 ~12 T ' !102, T ' 5 x '~205!,

p' 5 p0Pa 5 1 2 v '02, ~B.2!

which is represented in Figure B1.
As we are interested here in thecomplete model, the

energy equation~6! can be put in differential formdx~1 1
0.2v20T 2 0.4gx0T ! 5 0.4~ PK0 _m!T 302 dT. Using the above
dimensionless variables and integrating fromx '50 we have

L~x ' 1 0.2J~x ' ! 2 0.4ZK~x ' !! 5 0.16~ PKTb
5020 _m!T '~502!, ~B.3!

with Z 5 gL0Tb, J~x '! 5 *0
x ' dx'v '20T ', and K~x '! 5

*0
x ' dx'x '0T ' . Evaluating the above equation inx '51 gives

the eigenvalue mass flow

_m 5 0.16 PKTb
5020~L@11 0.2J~1! 2 0.4ZK~1!# !. ~B.4!

In the same manner, the dimensionless momentum equa-
tion is

@Pa0~ _mTb
102! 1 ZI ~x ' ! 2 v ' #v ' 5 T ' , ~B.5!

with I ~x '! 5 *0
x ' dx'0v ' , and, after evaluation inx '51, with

Mach unity there for moderateZ values, we have the other
eigenvalue

Pa 5 2 _mTb
102@12 0.5ZI ~1!# . ~B.6!

The quantitiesI ~1!, J~1!, andK~1! for every Z appear
after the complete integration of the problem has been done,
and are given in Table B1 for someZ values of interest.

The complete analysis of Eqs.~B3!–~B6! leads to a phase
plane similar to the one considered in Appendix A. For
everyZ, a ~saddle! critical sonic point is found in~xs

' ,vs'! at

Fig. A1. The normalized phase plane~h, j! ~dashed, the sonic line!.

Fig. B1. The normalized profiles forg 5 0.

Table B1. The integrals I, J, K for some Z values (complete
model)

Z

0.00 0.10 0.20 0.30 0.40 0.4027

I ~1! 2.7052 2.4469 2.2061 2.0034 1.8056 1.8050
J~1! 0.3623 0.4094 0.4701 0.5490 0.6620 0.6624
K~1! 0.6312 0.6298 0.6285 0.6267 0.6259 0.6260
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the xs
' value that is solution of the equationdT '0dx' 5 Z

and is numerically obtained after integrating the solution
T '~x '!. We have found that for a certain characteristic value
Zc 5 0.4027 . . . xs

'5 1.
For Z below thisZc value, sonic solutions inx ' 5 1 are

possible, and can be obtained as follows: Using~B4! and
~B6! in ~B3! and~B5!, we have

T '~502! 5 @x ' 1 0.2J~x ' ! 2 0.4ZK~x ' !#0

3 @11 0.2J~1! 2 0.4ZK~1!# ~B.7!

v1' 5 B 2 ~B2 2 T ' !102, ~B.8!

with B 5 1 2 0.5Z@I ~1! 2 I ~x '!# , which can be solved
numerically. Starting with the universal solution~B2!
T0
'5 x '0.4, v0' 512 ~12 T0

'!102, we evaluate the integralsI,
J, K, and the auxiliary variableB; with ~B7! we getT1

' and
with ~B8! alsov1' and so on for the following steps~three or
four cycles are enough for good graphical results!. In Fig-
ure B2 we show the obtainedv ' profiles for someZ values;
to compare, dashed lines show the corresponding ones using
the simplified model described in Section 3. We see that the
simplified model represents quite well the complete one.

For Z aboveZc, the saddle sonic pointxs
' moves toward

the origin~and this distance becomes the convenient normal-
izer, instead ofL, for the subsonic part of the plasma region!.

Figure B3 showsxs
' as function ofZ ~dashed line represents

the simplified model!. We also see both models fit quite
well.

Finally Figure B4 compares both models as far as both
eigenvalues, the ablation pressure, and the mass flow is
concerned. Typically, the complete model proposes around
6–8% less flow mass and more ablation pressure.

Fig. B2. Velocity profiles for someZvalues in the complete model~dashed
lines represent the simplified one!.

Fig. B3. Sonic point location versus acceleration~dashed line represents
the simplified model!.

Fig. B4. Ablation pressure and mass flow versus acceleration~dashed
lines represent the simplified model!.
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