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Abstract

Aone-dimensional model for a laser-ablated slab under accelegniateveloped. A characteristic valggis found to

separate two solutions: Lowgvalues allow sonic or subsonic flow at the critical surface; for highttre sonic point
approaches closer and closer to the slab surface. A significant reduction in the ablation pressure is found in comparison
to theg = 0 case. Asimple dependence law between the ablation pressure and the slab acceleration, from the initial value
Jo to infinity, is identified. Results compared well with fully hydrodynamic computer simulations with Multi2D code.

The model has also been found a key step to produce indefinitely steady numerical solutions to study Rayleigh—Taylor
instabilities in heat ablation fronts, and validate other theoretical analysis of the problem.
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1. INTRODUCTION g(t) = Py/(My — mt). The process is analyzed using a
reference attached to the slab surface.

The problem of a solid being ablated by a laser light has

been studied in the past from different points of vieMax

et al, 1980; Sanzt al, 1981, mostly in the context of 2. HYDRODYNAMIC EQUATIONS

inertial confinement fusion studi¢kser drivenand differ-  Continuity, momentum, and energy Navier—Stokes equa-

ent geometrieone-dimensiondllD] to three-dimensional tions read as follows:

[3D]). Several ablative models have been proposed on

which to base Rayleigh—Taylor instability analy§igkabe ap/at = —a(pv)/ox 1)
et al, 1983; Kull & Anisimov, 1986; Kull, 1989, 1991;

Sanz, 199§ a key problem in achieving ignition of implo- I(pv)/ot = —d(p+ pv?)/ox+ pg 2
sion targets. Here we approach the problem in a somewhat

different way. o{p(e+ v?/2)}/t = 6{pv(h+1)2/2) + qi/ox + pgy, 3

Let us consider a solid slab with initial temperattigand

densityp, being thermally ablated by a laser. After a short Where the acceleratiophas been included in the momen-
transient period of time, a certaihigh) temperaturel, is ~ tUmand energy equations, anib velocity,xis the distance

assumed to stabilize at a certain distafwtical surfaceL. 1o the slab surfacépositive toward the incoming laser
from the slab surfacéFig. 1) that is now at temperature P IS Pressureeis specific energyh is specific enthalpy, and
T, < T, and density,. Heat conduction moves the energy 918 the heat flux. _ _
from the critical surface to the slab andsupposeticon- For 5|mpI|_C|ty, the gblated pl_asma will be taken as anideal
stant mass flow rateénis ablated from the slab mas, The ~ Mono-atomic gas with equations of std€0S: p = pT,

high ablation pressurg, moves the slab with acceleration N = (5/2)T, ande = (3/2)T. Also we will assume classical
(Spitzed heat flux withg = —KT ¥2dT/dx.

The basic initial and boundary conditions, at any time,
wil be T=T,atx =L andT = T, at x = 0. Other
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Fig. 1. Alaser-ablated slab.

3. THE QUASI STEADY 1D MODEL FOR
THE PLASMA CORONA

J. Ramirez et al.

with m= (2/5)2KT/?/L for the temperature profile and the
eigenvalue mass flow for aj values in terms of physical
quantities.

Using dimensionless variables= x/L, T' = T/Ty, v’ =
v/T2, and the EOS we have for the momentum equation

v+ T — Zf dx'/v' =R (8
0

with Z = gL/T, andR = P,/(mT?) the normalized gravity
acceleration and the normalized ablation pressure, respectively.

In the case of no gravityg = 0, and assuming sonic flow
in x = L, we have the solutiom’ = x’#® andv’ =1 —
(1—-T"Y2, whereT’ andv’ grow from zero inx’ = 0, to
sonic conditions’2=T’'=1inx’ =1, included in Figure 2.
The eigenvalue ablation pressure is n®y= 2mTY>2
Solution with subsonic conditions i = 1 are also possi-
ble; then, the ablation pressure increase®te= (M, +
1/Mp) T2 with My = v,/TY2 = 1, the Mach number at
x = L. Continuous solutions, supersonicxh= 1, are not
allowed in this case.

For every nonzero value of the gravigy Eq. (8) admits
phase variables, ¢ discussed in Appendix A. Here, we sum-
marize the results. For eveZya singulafsaddle sonic point
(x4,v8) =((0.4/2)%3,(0.4/Z)*3) permits crossing from sub-
sonic conditions, near= 0, to supersonic ones, far from the
origin, traveling along the integral lin€(x’) that links the
origin with the saddle point.

Although a real problem is not steady and requires solving For a certain characteristic valdg = g.L/T, =  (the

fully Egs. (1)—(3), we think a quasisteady approximation,

inverse number of the exponent in the Spitzer)lathe

valid on a time scale when the slab mass change is not togaddle locates exactly at =1, where sonic conditions are
big, can shed some light onto the problem. Then, neglectingllowed(point B in Fig. A1 in Appendix A. The eigenvalue

temporal derivatives, a constant mass flow ratis ablated
at the slab surface= 0 by the energy flux coming from the
right (x> 0 region. Integrating(1)—(3) fromx = 0 we have

pv =M= pava= ppip 4

My —vy) +p ,f pgdx= P, (the ablation pressuye (5)
(0]

m(h+v%2 — gx) + g = const, (6)
where, in consistency with the previous assumptipi< Ty,
we will put T, = v, = 0, and thertonst = 0, as a convenient
first approximation in our model.

The exact solution to theomplete modeh Egs.(4)—(6)

is discussed later in Appendix B; briefly, the eigenvalues

P, and m get determined, as functions of the boundary

conditions and profiles of the different variables, only when 0.2
the complete solution of the problem has been obtained. A

we will confirm later, a good approximation appears, in a
simplified model neglecting velocity and gravity terms
v?/2 — gx < hin (6); then, we have

x/L = (T/Ty)>? 7
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ablation pressure is no®, = 2MTY2(1 — 0.21z-5/5(1)),
beinglz—,5(1) = f3 dx//v’ =1.81®..., anumerical value
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Fig. 2. Pressure, temperature, and velocity profilesZer 0.4 (noteP, is
Z dependent
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Table 1. The integralf, dx'/v’ in Eq. (8) for some Z values e B e L o e e e B e e e B S N
(simplified model)
R
z 1.6
0.0 0.1 0.2 0.3 0.4
1(1) 2.648 2.404 2.193 1.988 1.810 1.2

0.8
that appeargsee Table Lafter integrating along the above
mentioned integral lineote the ablation pressure is reduced
about 36% in comparison with tlge= 0 case. 04
For 0 < Z < 2 (low Z), the saddle point locates at
x5 > 1 (point A in Fig. Al; note thaZ approaching zero Py I S B SR
gives x; going to infinity, and thems = 1/x; < 1). Both 0 0.4 0.8 1.2 1.6 2

sonic or subsonic conditions are possible nowin= 1;
we are only interested in the sonic case. The solution foFig. 3. Normalized ablation pressuRversus normalized accelerati@n
(8) can easily be obtained through an iterative process,
if we start with the solution fog = 0 (with Ry = 2) and
use the recursive formula,, = A, — (A? — x'@#®)V/2,

arx1,d new variablé = 1 O'SZ(Ii(l)_ (), with 1 (x') = R(Z)/Z, nearly a straight line in logarithmic scale, for awide
Jo dx/vi andA, = 1. The numerical convergence of the ., 0 of7 values. For every practical cagivenT,, L, K
iterations is fas(three or four cycles are enough to get 2 andM,), entering witht, /t, in the vertical axis, we can read
stable graphical result; the use of absolute value inside thg, a1z initial acceleraticty, in the horizontal one.
square root may be convenient through the calculations, Although Eq.(9) and Figure 4 provide a useful tool to
and it does not influence the final true solutjomhe eigen- evaluate the functiorZ(t), taking into account that for
value ablation pressure is, in this caBe= 2mT,"%(1 = ' 1'js R/Z = const/Z‘,‘/3 andZ necessarily increases
0.5Z1(1)) wherel (1) is a function tabulated in Table 1 for with time, for practical purposes, we propose the simple

someZ values. .
. . . analytical formula
ForZ > £ (highZ) the saddle sonic point locates@t< 1 4

(i.e.,ms=1/x{> 1, point Cin Fig. Ad. Inx’ =1 only certain
supersonic conditions are allowéthe ones given by the
mentioned integral line at that positiprand the ablation
pressure is nowP, = 2mT;%(0.4/2)3(1 — 0.20,-5,5(1))
where the factof0.4/Z)*® can also be read a$, or T.*/2, or
x5 (note thatZ approaching infinity gived?, going to
zero.

In Figure 2, the corresponding profiles for pressure, temg /g
perature, and velocity are given for soealues(0, 0.1,
0.2,0.3,and 0.4 Also, in Figure 3, we show the normalized
ablation pressurR as a function of the normalized gravity
acceleratior? for a moderate range &fvalues.

Att=0we havedR(Z)/Z)o =ty /t.. In Figure 4, itis given

Z=2o/(1— (t/tc)/(R/Z)0)¥* (10

for the normalized slab acceleration due to the ablation
pressure.

I =T
Lokl

I R
i .I.II.I.I.Ill

100
4. THE NONSTEADY EVOLUTION
OF THE SLAB

Ll

At every instant time, the slab masg = My — mt s 10

accelerated by the ablation press&e= R(Z)mT? and
this allows us, in a first approximation, to couple the corona
model and the slab evolution in a consistent manner. Ir
terms of a characteristic burning tintg = Mg/ with m
from (7) and a characteristic fluid timg = L/TY2, we T T T
found the simple expression 0.001 0.01 01 1

T ||||||||
bl
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t/t. = to/t. — R(2)/Z. 9 Fig. 4. TheR(Z)/Z function.
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lowed along the time and compared to the ones in thé&uLL, HJ. & AnisiMov, S.1.(1986. Ablative stabilization in the
model. In velocity and pressure the agreement has been incompressible Rayleigh-Taylor instabilit?hys. Fluids29,
found good, except that numerical values for the ablation 2067-2075.

pressureP, are typically around 90% the ones provided in MAX, C.E., McKEE, CE & Meap, W.C. (1980. A model for
the model. The neglecting of the velocity and gravity terms laser-driven ablative implosionBhys. Fluids23, 1620-1645.
. . . . Rawmis, R. & MEYER-TER-VEHN, J. (1992. A computer code for
in the energy equatiof6), to solve the model in Section 3,

. .. two-dimensional radiation hydrodynamics, Report MPQ-174.
has been found responsible for half of this disagreement. \, = 5. nstitute fiir Quantenoptik. Garching, Germany.

The' other part may be due to the fact that numeripal SimSANz, J.(1996. Self-consistent analytical model of the Rayleigh-
ulations are really nonsteady whereas the model is quasi- Taylor instability in inertial confinement fusio®hys. Rev. E
steady and, obviously, they must show differences. Regarding 53 4026—4045.
the temperature profiles, the fitting has been found verysanz, J., LINAN, A., RODRIGUEZ, M. & SANMARTIN, J.R.(1981).
good. Quasi-steady expansion of plasmas ablated from laser-irradiated
Second, both the simplified and the complete models for pellets.Phys. Fluids24, 2098-2106.
the plasma regior > x,, besides the isentropic approxima- SANZ, J, RAMIREZ, J, Rawmis, R., BETTI, R. & Town, R.P.J.
tion withgnonzerdv = v (Ta/T)¥2 T= Ty + 0.4Z(X— Xa)) (2002. Nonlinear theory of the ablative Rayleigh-Taylor insta-
for the slab region < x, up to a position where profiles __ PIity- Phys. Rev. LetB9, 195002-1-195002-4.
. 12 TAKABE, H., MONTIERTH, L. & Morsg, R.L. (1983. Self-

get multivalued(Mach numbern5/3)*<), have been used ) . : . i -

initial soluti build “indefinitel d ical consistent eigenvalue analysis of Rayleigh-Taylor instability in
as mltla o] uthn to build “inde |n|Fey steady numerica an ablating plasma@hys. Fluids26, 2299-2307.
profiles” on which to study numerically the evolution of
fundamental Rayleigh—Taylor instability problems in abla-
tion fronts (Sanzet al, 2002; including single and multi- APPENDIXA: THE PHASE PLANE IN
mode evolution in 2D and 3D axisymmetrical geometries, THE SIMPLIFIED MODEL

cutoff wave length determination, etén a wide range of he complete discussion of the solutions in EG§~(8)

values for the parametefs/ T, andZ. No special advantage appears analyzing the corresponding phase plane. U&ing
has been found in using the complete model instead of thg, (8) and after derivation we have

simplified one. Results of these studies will be published
Shortly, e|seWhel’e. dU//dX/ — U’(Z _ 0.4/)(/(3/5))/(0/2 _ X/(Z/S)) (Al)

that shows, in the physical plari&’,v’) a singular(node
6. CONCLUSIONS critical point at the origin(0,0), a singular(saddle critical
point at(xZ,vs) = ((0.4/2)%3,(0.4/2)Y®), and a sonic line
From fundamental laws we have developed a 1D mode}'2 = x'@/5 (with T’ = x'??) where the Mach number is
for a laser-ablated slab under acceleragpiThe assump-  unity. Normalizing position and velocity with correspond-
tion of a quasisteady problem, although strictly valid onlying values at this saddle point we have, for the new phase
for short periods of time or low mass ablation rates, hasjariablesy = x’/x, and¢ = v’/v., the normalized equation
been found useful to close the nonsteady problem. A
simple law for the acceleratiag(t) of the nonsteady laser- dé/dn = 0.4¢ (1 — 1/n¥5)/(£2 — n?5), (A.2)
ablated slab is proposed. In the quasisteady approxima-
tion, a characteristic acceleratiap is identified; above with the singular points &0,0) and(1,1), and the sonic line
this value, a sonic point appears between the slab ant = 5'/®), all of them represented in Figure Al; also some
the critical surface; the ablation pressure is strongly reintegral lines coming from the node and others approaching
ducedoc1/g¥3. The hydrodynamic profiles in the simpli- the saddle are drawn.
fied model have been proved a key step in the numerical The characteristic valué. = 0.4(i.e.,g= 0.4T,/L) plays
analysis of basic Rayleigh—Taylor instability problems inan important role in the solutions of EGAL). ForZ = Z,
ablation fronts. both the physica(x’,v’) and the normalizedn, ¢) phase
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planes are identical; only one integral line is allowed to go Fig. B1. The normalized profiles fog = 0.

continuously from the origix’ = 0 to sonic conditions in
x" =1 (point B in Fig. Al); supersonic conditions are not
possible there. Fd& > 0.4 (highg) x; < 1 (thusn, = 1/x{ > . _ N (X 2T N
1, point C in Fig. A) and only specific supersonic condi- with Z = gL/, J(x') = Jo dX'v™/T’, and K(x') =
tions are allowed ix’ = 1 when coming fronx’ = 0 (the
ones fixed by the mentioned integral line at that ppiRbr

Z < 0.4 (low g) x{ > 1 (thusn, = 1/x{ < 1, point A

in Fig. A1) and only a specific sonic solution is possible in
x" =1 (also several subsonic ones, or supersonic multival-
ued, which we are not interested.in

J¥ dx'x/T'. Evaluating the above equationsn= 1 gives
the eigenvalue mass flow

m= 0.16KT,>2/(L[1+ 0.2](1) — 0.4ZK(1)]). (B.4)

In the same manner, the dimensionless momentum equa-
tion is

APPENDIX B: THE COMPLETE MODEL [P/(MT¥2) + ZI(x') — o' Jo’ = T, (B.5)

As we advanced in Section 3, in the caseget 0, in the

simplified modelwe neglect?/2 < h: then the solution of ~ With I (x") = [ dx'/v’, and, after evaluation ix’ = 1, with
Eq. (4)—(6) with T, = v, = 0 leads to Mach unity there for moderatévalues, we have the other

eigenvalue
m=pv, (P/Mm—v)v=T,  x=(4/25(K/m)T>?
P, = 2mT¥2[1— 0.521(1)]. (B.6)
(B.1)
The quantitied (1), J(1), andK (1) for every Z appear

the condition of the sonic point = L giving eigenvalues  after the complete integration of the problem has been done,
m = (4/25KT,"?/L and P, = 2mT}/? in terms of the  and are given in Table B1 for sonfevalues of interest.
physical quantitie«, T,, andL. The complete analysis of Eq83)—(B6) leads to a phase

Using dimensionless variables = x/L, p’ = p/(M/vp),  plane similar to the one considered in Appendix A. For
v' = v/vp, andT’ = T/T,, we have the normalized solution everyz, a(saddle critical sonic point is found irixZ,vZ) at

pl =1, v=1-Q1-THYZ T =x@5,

Table B1. The integrals }J,K for some Z values (complete

p=p/P=1-072, (B.2) model)

which is represented in Figure B1. 7
As we are interested here in tloemplete modelthe

energy equatioli6) can be put in differential fornax(1 + 0.00 0.10 0.20 0.30 0.40  0.4027
0.20%T — 0.4g%/T) = 0.AK/MT¥2dT. Using the above | (3) 57052 24460 22061 20034 18056 18050
dimensionless variables and integrating fror=Owe have  j3(1)  0.3623  0.4094 0.4701 05490 0.6620  0.6624
K(1) 0.6312 0.6298 0.6285 0.6267 0.6259  0.6260

L(x" + 0.2J(x") — 0.4ZK(x")) = 0.16(KT,>2/m)T'®2, (B.3)
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the x§ value that is solution of the equatiaiT’/dx’ = Z
and is numerically obtained after integrating the solution

T'(x"). We have found that for a certain characteristic valuex-s

Z.=0.40Z...x;=1.

For Z below thisZ; value, sonic solutions iR’ = 1 are
possible, and can be obtained as follows: UsiBg) and
(B6) in (B3) and(B5), we have

T2 =[x’ 4+ 0.2(x') — 0.4ZK(x")]/

X [1+ 0.23(1) — 0.4ZK(1)] (B.7)

vy =B—(B2-T")v? (B.8)
with B =1 — 0.5Z[1(1) — I(x")], which can be solved
numerically. Starting with the universal solutidi32)
T =x"2% vi=1— (1—T3)Y¥2, we evaluate the integrals
J, K, and the auxiliary variabl8; with (B7) we getT, and
with (B8) alsov; and so on for the following stefithree or
four cycles are enough for good graphical resultis Fig-
ure B2 we show the obtained profiles for someZ values;
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Fig. B3. Sonic point location versus accelerati@ashed line represents

the simplified model

to compare, dashed lines show the corresponding ones usin

the simplified model described in Section 3. We see that th
simplified model represents quite well the complete one.
For Z aboveZ,, the saddle sonic point moves toward

the origin(and this distance becomes the convenient normal-

izer, instead ok, for the subsonic part of the plasma region
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Fig. B2. Velocity profiles for som& values in the complete mode@lashed
lines represent the simplified one
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igure B3 shows/ as function oZ (dashed line represents
the simplified model We also see both models fit quite
well.
Finally Figure B4 compares both models as far as both
eigenvalues, the ablation pressure, and the mass flow is
concerned. Typically, the complete model proposes around
6—8% less flow mass and more ablation pressure.
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Fig. B4. Ablation pressure and mass flow versus acceleratdashed
lines represent the simplified model
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