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SUMMARY
Wheel slip prediction on rough terrain is crucial for secure, long-term operations of planetary
exploration rovers. Although rough, unstructured terrain hampers mobility, prediction by model-
ing wheel–terrain interactions remains difficult owing to unclear terrain conditions and complexities
of terramechanics models. This study proposes a vision-based approach with machine learning for
predicting wheel slip risk by estimating the slope from 3D information and classifying terrain types
from image information. It considers the slope estimation accuracy for risk prediction under sharp
increases in wheel slip due to inclined ground. Experimental results obtained with a rover testbed on
several terrain types validate this method.

KEYWORDS: Planetary exploration rovers; Machine learning; Wheel slip prediction;
Exteroceptive sensing; Slope estimation.

1. Introduction
Planetary exploration rovers have been used for conducting detailed investigations of extraterrestrial
surfaces such as those of Moon and Mars. During these missions, rovers have to be operated with
weak communication signals and nonnegligible communication lag. To overcome these constraints,
rovers have been required to automatically recognize their surrounding environment, detect obsta-
cles, and travel through uncharted regions. For example, the Spirit and Opportunity rovers (National
Aeronautics and Space Administration (NASA)) used conventional perception strategies that eval-
uated their surrounding environments by using stereo vision and detecting geometric obstacles.1

Although this approach enabled successful long-term operation of the rovers, loose, granular materi-
als on celestial surfaces can make the rover’s wheels slip and, in the worst case, can cause the rover
to get stuck without the possibility of recovery. In the Mars Science Laboratory (MSL) mission,
Curiosity experienced excessive wheel slip in the Hidden Valley (Fig. 1).2 The terrain here com-
prised rippled sand that seemed safe and nonhazardous; nonetheless, Curiosity was forced to avoid
these nongeometric obstacles.

To assess wheeled robots’ mobility on rough terrain, the mechanical phenomena occurring in
wheel–terrain interaction have been studied in the field of terramechanics.3 Slip causes a lack of
movement when wheeled robots traverse terrain. Although considering wheel slip is crucial for
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Fig. 1. The Hidden Valley on Mars c©NASA/JPL-Caltech. Curiosity experienced excessive wheel slip here
and failed to traverse this region although it is relatively flat. At the beginning of the mission, Curiosity was
commanded to travel on the flat surface and avoid obstacles such as rocks; however, wheel slip occurred owing
to loose sand with megaripples. Wheel traces on these megaripples indicated that Curiosity gave up traversing
this surface and turned back to avoid getting stuck.

rovers, the complexity of modeling the highly nonlinear characteristics of rover–terrain interaction
makes it difficult to evaluate and predict rovers’ traversability to accomplish autonomous operations.

Visual information provides rovers with more clues to predict wheel slip from a distance.
Geometric information of the terrain topography, such as steep slopes that cause wheel slip,4 can
be obtained from 3D measurements through stereo vision. Further, visual characteristics such as
color and texture provide semantic descriptions of terrain types to evaluate rovers mobility. Both of
these clues are obtained from a distance; hence, exteroceptive sensing can potentially be used to pre-
dict wheel slip before entering the hazardous area by estimating slopes and assessing terrain types
for rovers operating on rough terrain.

This study proposes a method to predict the wheel slip risk for a rover operating on rough ter-
rain. This method involves two procedures: (1) slope estimation from 3D information and (2) terrain
classification from images by using a machine learning classifier. A regression curve optimized with
previously experienced data is used as a slip versus slope relation to predict the wheel slip risk corre-
sponding to the estimated slope angle and classified terrain. The terrain-dependent slip risk, classified
as low, medium, or high, is predicted using the slip versus slope relation in consideration of the slope
estimation accuracy. Thresholds are set for each terrain type because different terrain types have dif-
ferent impacts on the rover. Experimental results obtained using a rover testbed operated on several
terrain types are presented to validate the proposed approach.

The rest of this paper is organized as follows. Section 2 defines wheel slip and discusses
related work. Section 3 presents details of the proposed slip risk prediction approach. Section 4
describes the experiment for validating the proposed approach, including detailed information of the
testbed, data collection, and experimental conditions. Section 5 presents experimental results vali-
dating the performance of the proposed slip risk prediction approach. Finally, Section 6 concludes
this paper.

https://doi.org/10.1017/S0263574721000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000035


Terrain-dependent slip risk prediction 1885

Fig. 2. Longitudinal wheel slip on loose soil.

2. Related Work

2.1. Background on slip
Wheel slip is considered as one of the critical factors for rovers to traverse rough terrain. Wheel slip
is quantitatively described by the slip ratio.5 The slip ratio s is a proportion of the desired and actual
traveling velocities and is expressed as follows:

s = rω − v

rω
= 1 − v

rω
(0 ≤ s ≤ 1), (1)

where v is the actual traveling velocity, and r and ω are the radius and angular velocity of the wheel,
respectively, as shown in Fig. 2. The slip ratio represents the degree of longitudinal slip. A positive
slip ratio implies that a rover is traveling slower than commanded, and a slip ratio of 1 implies that
the rover is completely stuck in rough terrain.

2.2. Traversability assessment
Mobile robots must have vision so that they can assess their traversability. NASA’s Mars Exploration
Rover (MER) mission conducted geometric analyses using a stereo camera that detected natural
obstacles, such as small rocks, to assess whether the rover’s wheels could get over them.1 However,
this approach could not solve problems caused by rough terrain, such as wheel slip, sinkage, and
complete immobilization of the rover, because geometric information does not contain semantic
characterizations of the physical properties of the target terrain.

Learning-based terrain assessment approaches using visual information have been actively studied
to enable mobile robots to detect such nongeometric hazards and avoid wheel slip on rough terrain.
These approaches afford two main advantages: traversability can be predicted to detect potential risks
before entering the region in front of the robots and modeling of complex wheel–terrain interactions
can be avoided. Halatci et al.6 presented a multisensor terrain classification method that applied
Bayesian fusion of individual support vector machines (SVMs) using color, texture, and depth infor-
mation acquired by stereo imagery. Brooks et al.7 expanded this approach to self-supervised terrain
classification by associating exteroceptive data with proprioceptive wheel vibration data. Otsu et al.8

proposed co- and self-training approaches that classified the surrounding terrain of a rover with lesser
image data. Several studies have also investigated traversability prediction as well as terrain classi-
fication. Berczi et al.9 showed that Gaussian process (GP) classifiers enable learning and assessing
the traversability of terrain with a high-dimensional representation. Schilling et al.10 implemented a
geometric and visual terrain classification method that predicts terrain traversability in a mixture of
environments with less training data. Higa et al.11 proposed a vision-based approach that remotely
predicts the energy consumed by rovers when driving to search for and traverse desirable paths on
rough terrain. Wheel slip is one of the indexes used to assess traversability. Angelova et al.12 applied
a mixture of expert models for combining the results of terrain classification and terrain-dependent
slip prediction using locally weighted projection regression (LWPR) to predict wheel slip from
visual information. Cunningham et al.13 used GP regression for considering the uncertain wheel–
terrain relation for each terrain, which was classified using convolutional neural networks (CNNs).

https://doi.org/10.1017/S0263574721000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000035


1886 Terrain-dependent slip risk prediction

Fig. 3. Architecture of proposed slip prediction approach. Input posture and 3D information acquired using
the IMU and RGB-D sensor, respectively, are used for slope estimation, and image data is used for terrain
classification. Wheel slip is predicted by integrating both the slope estimation and the terrain classification
results.

Skonieczny et al.14 evaluated the trafficability risk of planetary rovers using a slip-slope table specific
to each terrain, which adapts to variable slip versus slope data, and by assigning thresholds between
low, medium, and high slip risk. These thresholds were defined by considering the hazardous slip
ratio to be 0.2; however, these fixed thresholds could cause incorrect wheel slip risk evaluation owing
to the uncertainty of slope estimation. Although the slip risk monotonically increases with increasing
slope, wheel slip trends differ with the terrain type being traversed. For instance, uneven gravel ter-
rain causes a sudden increase in wheel slip, and the slip versus slope relation on terrain consisting of
homogeneous loose sand is almost linear. Thus, terrain-dependent thresholds are a more reasonable
criterion for evaluating the slip risk of wheeled robots on rough terrain.

This study predicts the slip risk of a rover traversing rough terrain. The main idea is to enable the
rover to discover hazardous region from a distance. Two factors – terrain slope and terrain type – that
affect the degree of wheel slip are investigated using visual information to predict wheel slip corre-
sponding to the obtained slope angle and terrain classification. The proposed approach differs from
the above-described methods in that it introduces terrain-dependent thresholds for the slip versus
slope relation for the rover to predict the wheel slip risk. The mean absolute error (MAE) between
the estimated slope angle and the ground truth value is used as a margin to bound the thresholds. By
using this prediction method, (1) the characteristic wheel slip risk is predicted on the target region
of the terrain and (2) the MAE enables avoiding underestimating the slip risk owing to the uncertain
terrain surface.

3. Overview of Slip Risk Prediction
This section presents an overview of the proposed approach for learning the relation between visual
information and wheel slip based on data obtained from both exteroceptive and proprioceptive sen-
sors. Wheel slip results from wheel–terrain interactions, and the amount of wheel slip depends on
geometric conditions such as the slope, state, and composition of the terrain. Therefore, the pro-
posed slip risk prediction approach is based on slope estimation and terrain classification, as shown
in Fig. 3, and the use of visual information from an RGB-D sensor. The slip risk is finally predicted
by assessing the classified terrain and slip ratio corresponding to the estimated slope angle.

3.1. Slope estimation
The slope estimation procedure acquires the slope angle of terrain in front of the rover by calculating
the least squares plane using 3D point clouds acquired from an RGB-D sensor. To remove outliers
in the point cloud data, the RANdomized SAmple Consensus (RANSAC) algorithm is applied as
follows:15

1. Select n sample points at random from 3D point clouds U .
2. Calculate the plane equation that minimizes the sum of squares of plane Z and n points.
3. Evaluate the coincidence between U and Z calculated in step 2.
4. Repeat from step 1 to obtain the least squares plane Z ′.
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Fig. 4. ROI in front of rover in RViz 3D visualization tool. The ROI is expressed by a 3D point cloud of 0.8
m2. Two coordinate systems are used for the camera and the rover body, respectively, and 3D point cloud
information is converted from the camera into the body coordinate system for slope estimation.

5. Calculate slope angle θ as the pitch angle for the rover coordinate
∑

Rover{X, Y, Z} by using the
following equation:

θ = − tan−1 ∂Y
∂Z ′.

(2)

This procedure also reflects the rover posture by acquiring data from inertial measurement units
(IMUs) and potentiometers in the rover’s suspension mechanism, as discussed in Section 4. The
region of interest (ROI) for slope estimation is 0.8 m2 in front of the rover, as shown in Fig. 4,
considering the effective measurement range of the RGB-D sensor.

3.2. Terrain classification
To assess the distinctive terrain type of a given region, terrain is classified by a machine learning
classifier using images as the input. Terrain classification mainly consists of two procedures: feature
extraction and classifier training.

Before feature extraction, the image viewpoint is converted from the camera view into a top
view for evaluating the region corresponding to the ROI for slope estimation. Inverse perspective
transformation is applied for image transformation preprocessing.16

Visual features are then selected and extracted from the converted RGB image acquired using the
exteroceptive sensor. In this study, color- and texture-based features are applied for classification. To
obtain color-based features, the original RGB image is converted to the L*a*b* color space, where
L* represents lightness, and a* and b* represent color dimensions. The mean values of a* and b*
inside a patch are calculated to compose a two-element feature vector, and the L* value is not used to
reduce the effect of lighting conditions. Texture-based features are also extracted from the obtained
images. A texture is a measure of the local spatial variation of image intensity. In this study, energy
and contrast, which express the grayscale distribution homogeneity and image sharpness, respec-
tively, are calculated from the gray-level co-occurrence matrix (GLCM). To decompose each image,
a superpixel representation is applied instead of fixed-sized patches. Each superpixel agglomerates
visually homogeneous pixels while respecting natural scene boundaries.17 Specifically, simple linear
iterative clustering (SLIC), in which a k-means clustering approach is used to efficiently generate
superpixels, is used to decompose the image into image patches for feature extraction.18 Figure 5
shows a sample image of this feature extraction process.

Finally, a classifier is trained using the color- and texture-based features. In this study, the gradient
boosting decision tree (GBDT) classifier is used for solving the classification problem. This learning
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Fig. 5. (a) Original visual image of cracked ground region. (b) Segmented image by superpixels. Blue lines are
boundaries for visually homogeneous pixels. (c) Mean color of L*a*b* color space. (d) Mean color of grayscale
image used for texture extraction.

method is selected as the terrain classifier since (1) it can achieve better predictive performance while
avoiding overfitting and (2) color and texture of terrain can be evaluated to improve its classification
performance. Gradient boosting is a type of ensemble learning that consists of multiple weak pre-
diction models.19 In particular, a GBDT comprises multiple decision trees that recursively partition
the input space for prediction.20 Thus, the output of GBDT, p(c|v), is expressed by the posterior
probability pt(c|v) of each decision tree as follows:

p(c|v) = 1

T

T∑
t=1

pt(c|v), (3)

where c, v, and T are the classes, input feature vectors, and number of decision trees, respectively.

3.3. Terrain-dependent slip risk prediction
3.3.1. Definition of slip risk. As mentioned in Section 2.1, wheel slip is quantitatively described by
the slip ratio. This study classifies the slip ratio as low (0 < s ≤ 0.3), medium (0.3 < s ≤ 0.6), and
high (0.6 < s). In previous literature,21, 22 the slip ratio was distinguished into three classes, as in the
present study, by referring to the behaviors of a single-wheel testbed with a flight spare wheel for
Curiosity. Another study noted that wheels exhibit a sharp increase in slip for slip ratio of 0.2–0.3.23

Similarly, the experimental results of the present study, as presented later, indicate that the rover
travels steadily for slip ratio of up to 0.3 but becomes unstable when the slip ratio reaches 0.6. Based
on both previous literature and the rover’s mobility in this study, this definition is used as a reasonable
indicator for evaluating the wheel slip risk.

3.3.2. Slip risk prediction. Before risk prediction, the slip ratio is predicted from a regression curve
using the acquired slip versus slope data. The true slip ratio t and a linear basis function model
y(x, w), that outputs predicted slip ratio for the given slope angle input x , are expressed as follows:

t = y(x, w) + ε, (4)

y(x, w) =
M−1∑
j=0

w jφ j (x) = wTφ(x), (5)

where ε and w in Eq. (4) are the additive noise and weight coefficient, respectively, and φ(x) in
Eq. (5) is the vector of M basis functions. A sum-of-squared error function E(w) is defined to obtain
optimized w with acquired N slope angle inputs and corresponding slip ratios, as follows:

arg min
w

E(w) = arg min
w

1

2

N∑
i=1

{
ti − wTφ(xi )

}2
. (6)
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Fig. 6. Concept of deciding new threshold considering inclination of function.

The slip ratio for the given slope angle is finally predicted by y(x, w). In this study, the Gaussian
basis function is used as the basis function to fit nonlinear slip versus slope relation:

φ j (x) = exp

{
−

(
x − μ j

)2

2σ 2

}
, (7)

where μ j is the location of the basis function in the input space and σ , its spatial scale.24

Then, the slip risk is predicted by comparing the acquired regression to the thresholds mentioned
in Section 3.3.1. While the three classes are defined as slip risk common to the terrain, this study
redefines the slip risk to a terrain-dependent one by reflecting the slope estimation accuracy. Figure 6
shows the concept of deciding the terrain-dependent threshold for risk prediction. The threshold
common to terrain, such as 0.3 and 0.6, is expressed as

s = f (φ). (8)

To redefine the terrain-dependent threshold in consideration of the slope estimation accuracy, MAE
τ is subtracted from φ as follows:

s ′ = f (φ − τ) = f (φ′), (9)

M AE : τ = 1

n

n∑
i=1

∣∣x̂i − xi

∣∣ , (10)

where x̂i and xi are the estimated slope angle value and ground truth value, respectively. Through
the above procedure, the thresholds of each terrain for risk prediction are shifted from common
points (φ, s) to terrain-dependent ones (φ′, s ′). Note that the regression curve for each terrain has a
different inclination because different terrain properties result in specific wheel–terrain interactions.
For instance, while wheel slip on homogeneous loose sand monotonously increases as the slope of
the traversing surface increases, a rover’s behavior on gravel terrain becomes more unpredictable
owing to the uneven constitution of this terrain. The slip risk is redefined in consideration of the
slope estimation accuracy for dealing with the terrain-dependent inclination of the regression curve,
especially when a sharp increase in slip ratio results in a difference between the actual and predicted
slip risk.

4. Experiment
An experiment was performed to validate the proposed approach using datasets including images,
3D point clouds, and slip versus slope data collected with a four-wheeled rover testbed operating
on rough terrain. This section describes the testbed, data collection, and experimental conditions in
detail.
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Table I. Specifications of El-Dorado IIB rover testbed.

Size (mm) L800 × W650 × H400
Mass (kg) 23.8
Wheel size (mm) φ 200 × W100
Wheel base (mm) 600

Table II. Specifications of Intel R© RealSenseTMDepth Camera D435 RGB-D sensor.

Image resolution (pixel) 320 × 180 – 1920 × 1080
Depth resolution (pixel) 424×240 – 1280 × 720
Frame rate (fps) 15 – 90
Measurement range (m) 0.2 – 10
Field of view of image sensor (◦) H69.4 × V42.5 × D77
Field of view of depth sensor (◦) H85.2 × V58 × D94

Fig. 7. El-Dorado IIB rover testbed on sandy terrain. RGB-D sensor, IMU inside the main body, and
potentiometers attached to each side of the body are used for acquiring data.

4.1. Testbed
In this study, the El-Dorado IIB four-wheeled rover testbed (Fig. 7) is used for data collection. Table
I lists the specifications of the testbed. Each wheel has a driving and steering motor, and the testbed’s
rocker-type passive suspension mechanism enables getting over obstacles such as small rocks. The
testbed is equipped with an Intel R©RealSenseTMD435 RGB-D sensor, an IMU, wheel encoders for
each wheel, and potentiometers between the suspension and the main body. The RGB-D sensor
simultaneously captures image and depth information with the resolution and field of view (FOV)
shown in Table II. Depth information is calculated by stereo imagery and complemented by project-
ing infrared patterns. The system configuration is implemented using the Robot Operating System
(ROS) and manually steered by using a joystick controller. The controller commands steering motors
for turning and driving motors for traveling with angular velocity of at most 0.5 rad/s. When no wheel
slip occurs, the testbed can traverse terrain with translational velocity of at most 0.05 m/s.

4.2. Data collection
Data were collected for five terrain types: Sand, Soil, Gravel, Asphalt, and Cracked ground. Figure 8
shows examples of these terrain types. Dry, cracked terrain is also classified as Cracked ground
because the terrain is solid, unlike Soil terrain, and is assumed to be a bedrock region on the surface
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Fig. 8. Images of different terrain types ((a) Sand in indoor test field and (b) Soil, (c) Gravel, (d) Asphalt, and
(e) Cracked ground in outdoor test fields) on which the testbed traversed during data collection. Dry, cracked
soil was classified as (e) Cracked ground assuming a bedrock region on the surface of Mars.

Fig. 9. (a) Indoor test field filled with loose, dry sand. (b) Schematic of indoor experimental setup. (c) Outdoor
test fields with smooth soil and cracked ground surfaces. (d) Schematic of outdoor experimental setup.

of Mars. Data for sandy terrain was collected indoors, and data for other terrains were collected
outdoors.

Figure 9(a), (b) shows the indoor test field. A sandbox is uniformly and loosely covered with
dry Toyoura Standard Sand; it can be jacked up manually at an inclination. The testbed motion was
tracked using a motion capture camera with accuracy of 1 mm and recording frequency of 100 fps.

Figure 9(c), (d) shows the outdoor test fields. For Soil and Gravel terrains, slopes were made
manually. The testbed motion was tracked using a total station with accuracy of 1 mm and recording
frequency of 5 fps.
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To collect slip versus slope data, the testbed tried to climb the slope for Sand, Soil, and Gravel
terrain types. During data collection, image and 3D point cloud data were collected using the RGB-D
sensor with recording frequency of 5 fps, posture information was collected by combining data from
the IMU and potentiometers, and angular velocity of each wheel was collected from the encoder. The
ground truth value of the slope angle was obtained from a digital inclinometer. The slip ratio s was
calculated as follows:

s = 1 − v

rω
= 1 −

(
dx

dt
cos θ + dz

dt
sin θ

)
1

rω
, (11)

where v is the translational velocity of the testbed; r , the wheel radius; ω, the angular velocity of the
wheel; and θ , the slope angle. Proportional–Integral (PI) control was performed for each wheel to
rotate at 0.5 rad/s for traveling at 0.05 m/s.

4.3. Experimental conditions
The experimental conditions for terrain classification and slip risk prediction are described below.
The MAE of slope estimation for terrain-dependent slip risk prediction is discussed in Section 4.3.2.

4.3.1. Terrain classification. The classifier was trained on approximately 500 images to predict the
terrain type in 25 test images for verification. Five terrain types – Sand, Soil, Gravel, Asphalt, and
Cracked ground – are contained in respective superpixels. Manually labeled images were also pre-
pared for images including multiple terrain types. When more than half the pixels in a superpixel
belonged to one class, the whole superpixel was classified as that class. During classifier training,
stratified K -fold cross-validation with K = 6 was applied for evaluating the generalization.

4.3.2. Slip risk prediction. The regression curve for each terrain was predicted using the collected
slip versus slope data. Before optimizing the function, the hyperparameters of the Gaussian basis
function φ j (x) were set. The maximum slope angle point of each terrain was regarded as the maxi-
mum value of μ j . Other hyperparameters s and j were decided by grid search. To predict slip risk,
absolute errors between the ground truth and the estimated value near s = 0.3 and s = 0.6 were used
as the MAE.

5. Results

5.1. Terrain classification results
Figure 10 shows examples of classification results. Figure 11 shows quantitative results of the terrain
classifier as a confusion matrix and a learning curve. By normalizing true positives (TPs), false
positives (FPs), true negatives (TNs), and false negatives (FNs), the accuracy (ACC) of each class
displayed in the confusion matrix was calculated as follows:

ACC = T P + T N

T P + T N + F P + F N
. (12)

These results indicate that the classifier predicts reasonable classes for each terrain; however, its
ability decreases for Cracked ground, as shown in Fig. 11(a). For instance, for the Cracked ground
image in Fig. 10, multiple terrain types including Cracked ground and Soil with unclear boundaries
are present in the image. Therefore, determining classes is difficult even for a human, and the classi-
fier uses these incorrect results to learn to predict terrain types from the image. This incorrect human
labeling is the main cause of reduced accuracy. Figure 11(b) shows the generalization performance
of the classifier. Two “learning curves" indicates whether the classifier overfits the training data. The
green curve representing the cross-validation score approaches the red curve representing the train-
ing score. This trend indicates that iterative training using cross-validation improves the classifier’s
generalization performance.

5.2. Slip risk prediction results
The slip versus slope relation was acquired using the regression curve and terrain-dependent risk
prediction for three terrain types: Sand, Soil, and Gravel. The slip versus slope data obtained during
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Table III. Terrain-independent slip versus slope standards for risk prediction.

Terrain MAE Slip risk Slip ratio Slope angle

Sand 0.75
Low

Medium
High

s < 0.26
0.26 ≤ s < 0.55

0.55 ≤ s

θ < 4.2
4.2 ≤ θ < 9.3

9.3 ≤ θ

Soil 1.15
Low

Medium
High

s < 0.23
0.23 ≤ s < 0.47

0.47 ≤ s

θ < 12.5
12.5 ≤ θ < 15.6

15.6 ≤ θ

Gravel 1.15
Low

Medium
High

s < 0.25
0.25 ≤ s < 0.53

0.53 ≤ s

θ < 16.0
16.0 ≤ θ < 21.5

21.5 ≤ θ

Fig. 10. (a), (b), (c), (d), and (e) Examples of classes predicted by terrain classifier for each terrain image.
Boundaries in each image indicate the superpixels made by SLIC. (f) Correspondence of classes to color.

Fig. 11. Summary of ability and validity of terrain classifier. (a) Confusion matrix of terrain classifier with
normalization. (b) Learning curve of terrain classifier. Green and red lines indicate the cross-validation score
and training score, respectively. Color bands around each line indicate standard deviation of their scores.

data collection, shown in Fig. 12, indicates that wheel slip trends, such as the rate of slip ratio, depend
on terrain properties whereas the slip ratio monotonously increases with increasing slope angle for
all terrain types. In Sand terrain that comprises homogeneous particles, the slip versus slope relation
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Fig. 12. Input slip versus slope data. Blue, red, and green points indicate data acquired on Sand, Soil, and Gravel
terrain, respectively.

Fig. 13. (a), (b), and (c) Slip risk prediction result for three terrain types: Sand, Soil, and Gravel. Black points
indicate input data obtained from data collection. The blue line indicates the predicted regression curve. Green,
yellow, and red regions indicate low, medium, and high slip risks, respectively. Green and red dotted lines
indicate the common boundaries of low and medium slip and medium and high slip, respectively.

becomes more linear compared to that in other terrain types. While the wheel gains driving force
via grousers pushing away particles in front of the wheel, a larger slope angle increases the slip
ratio by drawbar pull.4 In Soil terrain, the slip ratio increases sharply when the slope angle exceeds
15◦ because the fine grain surface suddenly collapses when the slope angle approaches the internal
friction angle of the composition. Further, wheel slip in Soil terrain is unlikely to occur because the
surface is solid until it breaks up. The Gravel terrain also makes the rover travel with low wheel slip
compared to that in the case of Sand terrain; however, the slip versus slope data is irregular owing to
the presence of large, nonuniform particles compared to other terrain types.25
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Figure 13 shows a summary of the results for three terrain types. The regression curves for each
terrain type fit the monotonic increase of the slip versus slope relation without overfitting the col-
lected data. The thresholds for risk prediction shift from common to terrain-dependent ones using
these regression curves, as shown in Table III. Table III also presents the slope estimation accuracy,
described in Section 3.1, as an MAE value. The MAE value for each terrain type shows that slope
estimation using the RGB-D sensor can well estimate the slope angle in front of the rover. However,
such estimation results can still cause problems for the rover; thus, MAE is subtracted from the slope
angle corresponding with common thresholds for risk prediction. For Sand terrain, the regression
curve linearly increases compared to those for Soil and Gravel terrains; therefore, the thresholds are
not significantly affected by the MAE. When the slope angle reaches 9.3◦, the slip risk is considered
high, and the rover seems to face difficulties in traversing Sand terrain. By contrast, the slope of the
regression curve for Soil terrain suddenly increases at around 17◦; therefore, the slip ratio threshold
between medium and high risk decreases to 0.13. This sharp increase causes a sudden transition of
the slip risk from low to high. In Gravel terrain, the regression curve avoids overfitting the irregular-
ity of the slip versus slope relation. Low slip risk, shown as a green region in Fig. 13(c), indicates
that the rover can climb a slope of around 16◦ safely, whereas it is unable to do so for other terrain
types.

6. Conclusion
This study proposes a data-driven approach to predict the slip risk of a rover operating on rough
terrain by estimating the slope angle and classifying surrounding terrain using visual information.
Terrain-dependent slip risk is predicted by setting the slip risk criterion for each terrain type in
consideration of the slope estimation accuracy. Experimental validation is performed using datasets
acquired from a four-wheeled rover testbed traversing different types of rough terrains. The proposed
approach can (1) estimate the slope angle within an MAE of 1.15◦, (2) classify five terrain types with
at least 77% accuracy, and (3) predict the wheel slip risk on three terrain types in consideration of
the slope estimation accuracy, which may be affected by noises such as those contained in 3D infor-
mation. The contribution of this study is to predict future wheel slip by interpreting terrain properties
using a vision-based terrain classifier. In order to incorporate terrain classification with geometric
assessment, terrain-dependent thresholds for the slip versus slope relation are introduced.

Future studies will implement online learning to update slip versus slope relation. This can be use-
ful especially in early exploration stages to adapt newly found terrain, for changing terrain conditions
such as compaction level, or in case of wheel–terrain relation changes due to the wheels’ damage.
Another direction is to further extend the current method to predict wheel slip for handling mixed
terrain. A more detailed evaluation method will be implemented in such a scenario, such as slip risk
prediction considering wheel configuration.
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