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Natural (red blood cells) and artificial biconcave-discoid-shaped capsules have
immense biological (a cellular component of blood) and technological (as drug
carrier) relevance, respectively. Their low reduced volume allows significant shape
changes under external fields such as extensional flows (encountered at junctions and
size-varying capillaries in biological flows) and electric fields (in applications such
as electroporation and dielectrophoresis). This work demonstrates biconcave-discoid
to capped-cylindrical and prolate-spheroid shape transitions of a capsule in uniaxial
extensional flow as well as in DC and AC electric fields. The shape changes of a
stress-free biconcave-discoid capsule in external fields are important in determining
the momentum and mass transfer between the capsule and the medium fluid as
well as dielectrophoresis and electroporation phenomena of a capsule in an electric
field. The biconcave-discoid to capped-cylindrical/prolate-spheroid shape transition is
demonstrated for both a capsule (with parameters relevant to drug delivery) as well
as for a red blood cell (physiological conditions). However, significant differences
are observed in this shape transition depending upon the applied external fields. In
an extensional flow, the pressure-driven transition shows the equator being squeezed
in and the poles being pulled out to deform into a capped cylinder at low capillary
number and a prolate spheroid at high capillary number. On the other hand, in
the transition driven by electric fields, the shoulders of the capsule seem to play a
significant role in the dynamics. The shape transition in the electric fields depends
upon the relative magnitude of the electric and the hydrodynamic response times,
particularly relevant for the dynamics of red blood cells in physiological conditions.
A new method of analysing the shape transition of red blood cells in AC electric
fields is suggested, where a large separation of time scales is observed between the
hydrodynamic and electric responses.

Key words: boundary integral methods, capsule/cell dynamics, electrohydrodynamic effects

1. Introduction
The study of the interfacial rheological response of a red blood cell (RBC)

membrane is of considerable significance given its relevance in biofluid dynamics
and rheology. The membrane rheology of RBCs has been used to ascertain the
health of biological cells in several studies using microfluidic devices (Lee et al.
2009a; Yaginuma et al. 2013; Henon, Sheard & Fouras 2014). An important
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application of polymeric biconcave-discoid capsules (popular model of an RBC)
is their use as promising drug-delivery carriers. In this context, it is of interest to
understand the rheological behaviour as well as the response of a biconcave-discoid
capsule to the deforming forces and the resulting dynamics (Kozlovskaya et al.
2014). Inspired by the shapes of the carriers in biological processes such as human
RBCs as well as bio-organisms in nature such as bacteria (She et al. 2013, 2014),
particles of varying shapes have been suggested for efficient drug delivery. Improved
bio-functionality has been reported with hydrogel microparticles (Merkel et al. 2011)
and capsules (Kozlovskaya et al. 2014) similar in size and shape to human RBCs. It
is reported that the shape of the carrier/capsule is an important parameter in biological
processes, influencing the enhanced cellular uptake of the loaded particle (Champion,
Katare & Mitragotri 2007; Venkataraman et al. 2011). Ellipsoidal capsules have an
ability to migrate laterally towards the wall of the vascular network in laminar flow,
whereas RBCs preferably flow through the core (Lee, Ferrari & Decuzzi 2009b;
Decuzzi et al. 2008).

From a mechanics point of view, RBCs can be considered to be comprised of a
Newtonian suspension of haemoglobin dispersed in water and encapsulated by a lipid
bilayer membrane and associated protein skeleton (spectrin network) (Evans 1980).
The lipid bilayer has several embedded but mobile proteins which impart a complex
rheology to the membrane. The RBC membrane incompressibility and interfacial
viscous behaviour are attributed to the lipid bilayer and the proteins, respectively.
The bilayer membrane is supported by a rigid protein (spectrin) network that endows
an elastic behaviour (Mohandas & Evans 1994). This complex structure makes the
cell membrane an area-preserving (incompressible) two-dimensional medium, and
therefore, it resists change in the area by generating inhomogeneous but anisotropic
tension. Moreover, unlike lipid bilayer membranes, which offer negligible resistance
to shear, the RBCs offer minimal but significant resistance to shear deformation.
Further, the resistance to bending (Pozrikidis 1990, 2003a; Kwak & Pozrikidis 2001)
is significant in the regions of high curvature.

Pozrikidis (1990) studied the dynamics of RBCs in uniaxial extensional flow
considering oblate-spheroid shapes. In this study, an initial oblate shaped cell was
positioned axisymmetrically, and its dynamics was solved by the boundary integral
method. Along with membrane elasticity, an area incompressibility constraint was
employed, whereas the bending rigidity of the membrane was neglected. It was
observed that oblate perturbed initial shapes evolved to prolate-spheroid shapes
through different transitional shapes depending upon the reduced shear elasticity. In
another analysis of the deformation of a spherical capsule in uniaxial extensional
flow, Kwak & Pozrikidis (2001) reported that the bending rigidity of the membrane
prevents the formation of sharp pointed tips at large deformation, and results in nearly
cylindrical shapes with rounded caps.

An RBC develops a large membrane tension due to the area incompressibility
constraint. Typically, a tension beyond 10 mN m−1 leads to the rupture of a
membrane, resulting in haemolysis (Evans, Waugh & Melnik 1976). Despite this,
it can admit a variety of shapes under deforming forces, due to a very low reduced
volume. Although shear flow is commonly encountered in biological systems, the
extensional flow profile often develops at the bifurcations of blood vessels and
size-varying capillaries. Moreover, extensional flow provides an excellent framework
to investigate soft particles, mainly due to its axisymmetric deformation field. The
computational (Yen et al. 2015) and experimental (Lee et al. 2009a; Yen et al. 2015)
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analyses suggested that the stress caused by the extensional flow plays a significant
role in the haemolysis of an RBC as compared to the shear stress. Therefore, to
understand the integrity of a synthetic biconcave-discoid capsule in maximum stress
conditions encountered in applications, an analysis in extensional flow is essential.

An electric field can induce deformation (Chang, Takashima & Asakura 1985),
change in orientation (Friend, Finch & Schwan 1975) and dielectrophoresis (Cruz
& García-Diego 1998). It can also cause the fusion and lysis of biological cells
(Scheurich et al. 1980). Engelhardt & Sackmann (1988) measured the shear
elastic moduli of erythrocyte membranes by carrying out a deformation study in a
high-frequency electric field (Engelhardt & Sackmann 1988). When the electric field
was turned off, a highly elongated erythrocyte returned to the actual shape of the cell,
thus supporting the proposed shape memory theory of an erythrocyte (Fischer 2004;
Cordasco & Bagchi 2017). A reversible deformation was noticed at a low-intensity
AC electric field, and the haemolysis of the cells was observed at a high-intensity
field (Engelhardt & Sackmann 1988; Gass, Chernomordik & Margolis 1991; Krueger
& Thom 1997). Moreover, the deformation also depends upon the conductivities of
the inner and outer fluids (Sukhorukov, Mussauer & Zimmermann 1998; Kononenko
& Shimkus 2000, 2002; Das & Thaokar 2018b). Apart from electrodeformation,
electrorotation and its dependency on the conductivities of the fluids as well as the
frequency of the applied AC electric field are observed (Das & Thaokar 2018a).
Attempts have also been made to calculate Maxwell stresses at the interface of an
erythrocyte (Sebastián et al. 2006). An improved understanding of the mechanics of
RBCs has enabled the development of better medical diagnostic devices (Engelhardt
& Sackmann 1988; Kononenko & Shimkus 2000; Kononenko 2002; Thom & Gollek
2006; Thom 2009; Du, Dao & Suresh 2014). A similar analysis can also be employed
to measure the mechanical properties of the synthetic biconcave-discoid capsule.

Even though the change in shape and lysis of an RBC in an electric field were
observed early on (Ur & Lushbaugh 1968), the underlying physics is still not well
understood. Most of the studies considered erythrocytes as spheroidal (Chang et al.
1985; Ashe, Bogen & Takashima 1988; Joshi et al. 2002) or oblate (Pozrikidis 1990)
shaped, although it is a biconcave discoid under normal quiescent conditions. Thus,
it is important to carry out a consistent electrohydrodynamic analysis on the exact
geometry of RBCs.

Knowledge of shape and shape transitions in biconcave discoids under external
fields is important on three counts. First, the transport processes (mass, momentum,
and heat) depend upon the instantaneous shape and shape changes under fields.
Second, knowledge of the tension and tension distribution in these capsules depends
upon a complicated coupling between shape and the external forces. Lastly, although
a biconcave discoid could undergo a transition into a prolate spheroid, several
questions can be raised. These include, what exactly is the mode of transition, is it
a continuous or discontinuous transition? Would the pathways be similar or different,
under different kinds of external forces such as extensional flow and electric fields?
Would the final shapes, although expected to be axisymmetric but highly deformed
spheroids, be similar or dependent upon the types of external forces?

It is known that extensional flows (Diaz, Pelekasis & Barthès-Biesel 2000; De
Loubens et al. 2015) and uniform electric fields (Karyappa, Deshmukh & Thaokar
2014; Das & Thaokar 2018b) cause identical deformations in spherical capsules,
owing to the similar angular distribution of the stresses (electric and hydrodynamic)
at the capsule interface. Our study confirms that these two different force fields cause
similar deformations in RBCs as well. It is then of interest to understand these two

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

87
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.879


118 S. Das, S. D. Deshmukh and R. M. Thaokar

force fields with respect to their similar and dissimilar characteristics, as well as their
relative merits in possible experiments.

Based on the above discussion of the literature, the following key objectives are
the motivation for the present study: (i) to understand the dynamics of a biconcave
discoid under axisymmetric external fields, such as extensional flow and uniform
electric fields, and explore the possibility of a biconcave-discoid to prolate-spheroid
transition in physiological and typical experimental conditions; (ii) to determine the
pathways of such a transition and the differences in the pathways when extensional
flow or electric fields are used; (iii) to examine the differences between the responses
to AC and DC fields, as well as the effect of the ratio of the electric to hydrodynamic
time scale on the transition and the associated shapes; (iv) to determine the mechanism
of the dynamics by a detailed analysis of hydrodynamic, electric, and elastic stress
distributions; (v) to obtain transmembrane potential distribution in biconcave discoids,
which has relevance in electroporation studies. Although few experimental studies
have been reported for near-RBC-shaped microcapsules, they lack a theoretical
analysis to comprehend their rheological behaviour. This is essentially due to their
complicated shapes, which make it difficult to obtain closed-form analytical solutions.
In this analysis, the transient deformation is computed numerically using the boundary
integral method for Stokes flow and considering the Skalak law as the model for the
elastic membrane.

2. Boundary integral formulations
The axisymmetric deformation of a biconcave-discoid elastic capsule and RBC

(commonly called as capsule in this article) under a uniaxial extensional flow at
vanishing Reynolds number is investigated. In the Cartesian coordinate system,
axisymmetric extensional flow is given by

ũ∞ = e

−1 0 0
0 2 0
0 0 −1

 x̃, (2.1)

where e is the axisymmetric uniaxial extensional strain rate and x̃ is the position
vector. The position vector is given by x̃ = x̃ex + ỹey + z̃ez, where ex, ey and ez are
the unit vectors in the x, y and z-directions, respectively. The axis of symmetry of
the capsule is assumed to coincide with the y-axis, such that its centroid is at the
origin (see figure 1d). In this article, all the notations with and without a tilde (˜)
represent dimensional and their non-dimensional counterparts, respectively.

The shape of a capsule is considered as that of a healthy human RBC (erythrocyte).
Although the RBCs have been modelled as oblate spheroids (Pozrikidis 1990), there
is a significant difference between the shape of a biconcave discoid and an oblate
spheroid. Figure 1(c) shows that the oblate-spheroid shapes considered by Pozrikidis
(1990) are quite different from the commonly conceived biconcave-discoid shape of
a healthy human RBC. Equation (2.2) describes the shape of an RBC possessing a
biconcave-discoid shape under normal physiological conditions (Evans & Fung 1972):

ỹ=±a
α

2

(
1−

r̃
α2

2
)1/2 (

0.207161+ 2.002558
r̃
α2

2

− 1.122762
r̃
α4

4
)
, (2.2)

where α = 1.385818 is the ratio of the maximum radius of the biconcave discoid in
the transverse plane of symmetry and equivalent radius a, the radius of a sphere of
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FIGURE 1. (Colour online) Schematic representation of a capsule in (a) extensional flow
(curves with arrows represent streamlines) and (b) uniform electric field (arrows represent
field lines). (c) Comparison of the shape of an RBC (——) with the oblate spheroids
perturbed with a second-degree Legendre mode (— — for ε =−0.5 and — · — for ε =
−0.3). (d) Schematic presentation of a prolate spheroid representing azimuthal (Tφ) and
meridional (Ts) elastic tensions. The centre of the spheroid is at the origin of the Cartesian
coordinate system.

equal volume. Here, ỹ and r̃=
√

x̃2 + z̃2 are the surface coordinates of the RBC in the
cylindrical coordinate system, where r̃ defines the radial coordinate. The thickness of
the RBC membrane is ∼10 nm, which is much smaller than the RBC’s equatorial
diameter (∼8 µm) (Helfrich & Deuling 1975).

Both the outer and the inner fluids are Newtonian, and the viscosities of the outer
and inner fluids are denoted by µe and λµe, respectively, where λ is the viscosity
ratio. The mechanical properties of the membrane are the surface Young modulus, Es
(force/length), and bending rigidity, κb. The membrane of the capsule is considered to
be purely elastic, and its viscous resistance is neglected. In the analysis of deformation
in extensional flow and electric fields, the length is scaled by a, the equivalent radius
of the capsule. For the analysis under extensional flow, the time, fluid velocity, stress
(force/area), pressure and tensions are scaled by µea/Es, Es/µe, Es/a, Es/a and Es,
respectively.

We also describe an investigation on the axisymmetric deformation of a biconcave-
discoid capsule subjected to a uniform DC electric field represented by Ẽ

∞

DC = ẼDC
0 ey,
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where ẼDC
0 is the electric field strength. Moreover, we investigate the electrohydrodynamic

response of an RBC in an AC electric field, Ẽ
∞

AC = ẼAC
0 cos(ω̃t̃)ey. Here, ẼAC

0 and ω̃
are the amplitude and frequency of the applied electric field, respectively, and t̃ is the
time.

For the inner and outer fluid media, the dielectric constants and electrical
conductivities are εi,e and σi,e, respectively. Subscripts i and e identify parameters for
inner and the outer fluids, respectively. The ratio of conductivities of the inner and
outer fluids is denoted by σr = σi/σe, and the ratio of dielectric constants is denoted
by εr = εi/εe. The electrical properties of the capsule membrane are the capacitance,
Cm, and the conductance, Gm. In the analysis of the dynamics of a biconcave-discoid
capsule in the DC electric field, the scaling is motivated by the electrostatics model
and is discussed later.

For simplicity of computations, the interface is considered to be impermeable to the
fluids over the simulation time scale, thereby preventing flow across the membrane.
The effect of bending is also considered in the present analysis, which was ignored
in earlier work by Zhou & Pozrikidis (1995). The ratio of the elastic to the bending
force is given by (1X/h2L)/4H2, where h is the thickness of the membrane, L is the
typical size, and 1X is the deformation. The bending force can be neglected only if
the mean curvature H < 1/2

√
1X/h2L.

For the boundary integral simulation, the parameters considered for the biconcave-
discoid capsule (Pozrikidis 2005; Karyappa et al. 2014) and the human RBC in
physiological conditions (Beving et al. 1994; Haidekker et al. 2002; Pozrikidis
2003b; Wolf et al. 2011; Freund 2014; Secomb 2017) are shown in table 1.

All the non-hydrodynamic and hydrodynamic forces responsible for the deformation
of a biconcave-discoid capsule and RBC are discussed in the following sections.

2.1. Elastic forces
The interface of a capsule is considered to be thin and elastic, as described by the
Skalak model (Skalak et al. 1973). According to the Skalak law, the non-dimensional
membrane elastic tension in the principal direction i (where i can be s or φ, see
figure 1d) is expressed as a function of the principal stretch ratios (λi,j) for a strain
hardening membrane as

T̃SK
i =

GSK

λiλj
[λ2

i (λ
2
i − 1)+C(λiλj)

2
{(λiλj)

2
− 1}]. (2.3)

Membrane tension in the principal direction j can be expressed by interchanging
indices in the constitutive relation (2.3). In this work, i is the meridional and j
is the azimuthal principal direction, and the corresponding tensions are considered
as Ts and Tφ . The principal stretch ratios are defined as λs = ds̃/dS̃ and λφ = r̃/R̃,
where s and r are the measures of arclength and the radius of the deformed capsule,
and the upper case alphabets represent their counterparts in the stress-free shape,
respectively. The first and second terms on the right-hand side of equation (2.3)
are the measures of the shear deformation associated with the modulus GSK and
the area dilatation with the modulus CGSK , respectively (Skalak et al. 1973). The
area dilatation parameter C regulates the extent of change of surface area; a large
value of C restricts the membrane dilatation. In the small deformation limit, GSK is
related to the surface Young modulus, Es (Barthès-Biesel, Diaz & Dhenin 2002) as
Es = 2GSK(1+ 2C)/(1+C).
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Capsule RBC Scaled Magnitude of
Parameters (C= 1 and 10) (C= 1 and 10) variables scaled variables

a (µm) 5 2.82a — —
Es (N m−1) 0.1 6.1× 10−6 — —
κb (N m) 2.5× 10−15 2× 10−19 κ̂b 0.001
µe (mPa s at 21 ◦C) 100 1.6 — —
µi (mPa s at 21 ◦C) 100 8.0 λ 1b

εe 80 70 — —

εi 80 42 εr
1 (Capsule)
0.6 (RBC)

σe (S m−1) 10−4 0.74 — 1

σi (S m−1) 10−3 and 10−5 0.78 σr
0.1, 10 (Capsule)

1.054 (RBC)

Cm (F m−2) 0.01 0.035 Ĉm
50 (Capsule)
282 (RBC)

Gm (S m−2) 0 0.1 Ĝm 0

t̃e (s) 7.2× 10−6 0.837× 10−9 te
1 (Capsule)

3.5× 10−3 (RBC)

t̃H (s) 5.0× 10−6 1.3× 10−3 tH
1 (Capsule)

1 (RBC)

t̃MW (s) 2.0× 10−6 (σr = 10)
1.01× 10−5 (σr = 0.1) 0.713× 10−9 tMW

0.28 (σr = 10),
1.403 (σr = 0.1) (Capsule)

3.0× 10−3 (RBC)

t̃cap (s) 3.0× 10−4 (σr = 10)
5.25× 10−3 (σr = 0.1) 3.42× 10−7 tcap

41.67 (σr = 10),
729.2 (σr = 0.1) (Capsule)

1.45 (RBC)

TABLE 1. Values of parameters and scaled variables used in boundary integral
simulation for the biconcave-discoid capsule and human RBC.

aThe equivalent radius of a capsule is considered in estimating scaled parameters.
bFor RBC λ∼ 5 in physiological condition.

The membrane elastic traction (force/area), governed by the combined contribution
of the elastic tensions (force/length) obtained from the constitutive law, is given by
1f el
= τ el

n n+ τ el
t t. The components of the elastic stresses can be obtained as

τ el
n =−(KsTs +KφTφ), (2.4a)

τ el
t =

dTs

ds
+

1
r

dr
ds
(Ts − Tφ), (2.4b)

where Ks = |dt/ds| and Kφ = nr/r are the curvatures of the meridional surface in the
principal directions s and φ, respectively. The components of the unit normal and the
tangent vectors at the interface can be calculated as ty = nr = dy/ds and tr = −ny =

dr/ds.

2.2. Resistance to bending
Even though a thin elastic membrane offers negligible resistance to bending, it can
have a significant contribution to the restoring forces, especially in the regions of high
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curvature. The overall non-dimensional bending force (force/area) is given by

1f b
= κ̂b[21sH + (2H − c0)(2H2

− 2KG + c0H)]n, (2.5)

where κ̂b = κb/a2Es is the non-dimensional bending rigidity, H = (ks + kφ)/2 is the
mean curvature, KG = kskφ is the Gaussian curvature, and c0 is the spontaneous
curvature (Vlahovska, Podgorski & Misbah 2009; Yazdani, Kalluri & Bagchi 2011).
In the axisymmetric cylindrical coordinate system, the Laplace–Beltrami of the mean
curvature is given as (Hu, Kim & Lai 2014)

1sH =∇s · (∇sH)=
1

r|xs|

∂

∂s

(
r
|xs|

∂H
∂s

)
, (2.6)

where |xs| =
√
(∂r/∂s)2 + (∂y/∂s)2. A spectral method is used to calculate the

higher-order derivatives of mean curvature with respect to the arclength, especially
for improved accuracy in estimating the bending force (Trefethen 1996). For the
boundary integral analyses of the deformation of a capsule and RBC in both the
extensional flow and electric field, a fixed value of κ̂b = 0.001 is considered (Freund
2014; Guckenberger & Gekle 2017).

2.3. Electrostatics
For the analysis of the dynamics of deformation of a biconcave-discoid capsule in
an externally applied DC electric field, the charge relaxation time of the outer fluid,
t̃e = εeε0/σe, is considered as the scaling for time, where ε0 is the permittivity of the
free space. The bulk fluids are assumed to be electroneutral on account of κ−1

� a,
where κ−1 is the Debye screening length. Other time scales of relevance are the
hydrodynamic response time, t̃H=µea/Es, the Maxwell–Wagner relaxation time, t̃MW =

ε0(εi + 2εe)/(σi + 2σe), and the membrane charging time, t̃cap = aCm(1/σi + 1/2σe).
The non-dimensional counterparts of these time scales are te = 1, tH = ˜tH/t̃e,
tMW = t̃MW/t̃e = (2 + εr)/(2 + σr) and tcap = t̃cap/t̃e = Ĉm(1/2 + 1/σr) (Grosse &
Schwan 1992). Fluid velocity (ũ), electric field (Ẽ), potential (Ṽ), and stress are
scaled by Es/µe, E0, E0a and Es/a, respectively.

The electric potential inside and outside the biconcave-discoid capsule satisfies the
Laplace equation, ∇2Vi,e = 0. The electric potential can be obtained by solving the
Laplace equation and using Green’s theorem as

1
2

Vi(x0) =

∫
s
[GE(x, x0)∇Vi(x) · n(x)− Vi(x)n(x) · ∇GE(x, x0)] ds(x), (2.7a)

1
2

Ve(x0) = V∞(x0)

−

∫
s
[GE(x, x0)∇Ve(x) · n(x)− Ve(x)n(x) · ∇GE(x, x0)] ds(x), (2.7b)

where GE(x, x0)= 1/4π|x̂| is the Green function for the Laplace equation (McConnell,
Vlahovska & Miksis 2015). x̂= x− x0, where x0 and x are the source and observation
points, respectively.

The discontinuity in electrical potential at the interface is termed as the transmembrane
potential (Vm = Vi − Ve), and it can be calculated by solving (2.7a) and (2.7b) along
with electrical current continuity across the membrane:

σrEn,i + εr
dEn,i

dt
= En,e +

dEn,e

dt
= Ĉm

dVm

dt
+ ĜmVm, (2.8)
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where En,i,e are normal electric fields inside and outside of the membrane. The
current in the fluids is assumed to be Ohmic and displacement currents corresponding
to the Ohmic resistance and the capacitance in the bulk to be in a parallel circuit.
In this model, the thickness of the double layer is infinitesimally thin such that the
interfacial free charge is given by En,e − εrEn,i = q, where q is the non-dimensional
charge density. The non-dimensional capacitance and conductance of the membrane
are Ĉm = aCm/εeε0 and Ĝm = aGm/σe.

The Maxwell electric stress tensor in a fluid is defined as τ̃ E
= εε0(ẼẼ− (1/2)Ẽ2I),

where I is the identity tensor. The net non-dimensional electric traction at the interface
is given by 1f E

=n · (τ E
e − τ E

i )= τ
E
n n+ τ E

t t, where the components of electric stresses
are

τ E
n =

1
2 [(E

2
n,e − E2

t,e)− εr(E2
n,i − E2

t,i)], (2.9a)

τ E
t = En,eEt,e − εrEn,iEt,i. (2.9b)

2.4. Hydrodynamics

From the values of parameters in table 1, the particle Reynolds number is Rep∼ 10−2;
therefore the flow inside and outside of the capsule can be described by the Stokes
equations (Secomb 2017)

∇ · u= 0, ∇ · τH
= 0, (2.10)

where u is the fluid velocity and τH is the viscous stress. Viscous stresses for the
inner and outer fluid media are given by

τH
i =−PI + λ(∇u+∇uT), (2.11a)
τH

e =−PI + (∇u+∇uT), (2.11b)

respectively, where P is the fluid pressure.
Far from the capsule membrane (|x| → ∞), u → u∞, where u∞ is assumed to

be the undisturbed flow velocity of the outer fluid and is given by the dimensional
form of the applied velocity in (2.1). The solution of the above equations gives rise
to an integral equation for the interfacial velocity Rallison & Acrivos (1978) in a
non-dimensional form as

u(x0) =
2

1+ λ
u∞(x0)−

1
1+ λ

1
4π

∫
s
1f (x) ·G(x, x0) ds(x)

+
1

4π

1− λ
1+ λ

∫
s
u(x) ·Q(x, x0) · n(x) ds(x), (2.12)

where G(x, x0) and Q(x, x0) are Green’s functions for velocity and stress, respectively,
and 1f is the unbalanced non-hydrodynamic traction at the interface. For an
unbounded three-dimensional flow, explicit expressions for these tensors are

G(x, x0)=
I

|x̂|
+

x̂x̂
|x̂|3

, Q(x, x0)=−6
x̂x̂x̂
|x̂|5

. (2.13a,b)

The general boundary integral equation (2.12) is solved for the velocity of the
interface of an axisymmetric deformable capsule in an axisymmetric flow and applied
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electric field. For the analysis of the dynamics of a biconcave-discoid capsule and
an RBC subjected to a uniform electric field, the stagnant outer fluid medium is
considered; therefore u∞ = 0.

Finally, the shape evolves to x(t+1t) with the kinematic condition given by

x(t+1t)= x(t)+ kf u(x)1t, (2.14)

where x(t) is the shape of the capsule at the current time, t, and 1t is the time
step considered for the boundary integral simulation. In (2.14), the kinematic factor
kf depends upon the scaling of the variables, and is described in the corresponding
sections.

2.5. Pressure calculation
The inside and outside pressure of a capsule can be calculated using the boundary
integral equations, given as

Pi(x0) = −
1

8π

∫
s
1f (x) · p(x, x0) dS(x)

+ λ
1− λ

8π

∫
s
u(x) ·Π(x, x0) · n(x) dS(x), (2.15a)

Pe(x0) = −
1

8π

∫
s
1f (x) · p(x, x0) dS(x)

+
1− λ

8π

∫
s
u(x) ·Π(x, x0) · n(x) dS(x), (2.15b)

where p(x,x0) and Π(x,x0) are the free space Green’s functions for pressure (Pozrikidis
1992; Lac, Morel & Barthès-Biesel 2007).

p(x, x0)= 2
x̂
x̂3 , Π(x, x0)= 4

(
−

I

|x̂|3
+ 3

x̂x̂
|x̂|5

)
. (2.16a,b)

3. Results and discussion
3.1. Dynamics of a capsule in extensional flow

The scaling of (2.1) gives rise to a non-dimensional quantity Caf =µea/Es, which is
termed as the flow capillary number and determines the dynamics of the deformation
of a capsule. The hydrodynamic force at the interface is balanced by the elastic and
bending forces, i.e. 1f H

=−(1f el
+1f b). With the values of the parameters in table 1

for the simulation of a biconcave-discoid capsule in extensional flow, the kinematic
factor kf = 1. The Skalak membrane parameter C is assumed to be 1 and 10 for two
separate studies.

The analysis of the dynamics of deformation of a capsule in extensional flow is
presented for a small dilatation parameter (C = 1 in this case). It is observed that
a considerable change in area (∼13 %) is admitted when the capsule is subjected
to a strong extensional flow. The capillary numbers are chosen in such a way that
they demonstrate three possible modes of deformation. Figure 2(a–c) shows that at
a small value of destabilizing force (Caf = 0.015), the deformation is small and
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FIGURE 2. (Colour online) Observed shapes during the evolution of a capsule at (a) t=10,
(b) t = 40, (c) t =∞ for Caf = 0.015; (d) t = 20, (e) t = 70 ( f ) t =∞ for Caf = 0.017;
and (g) t= 2, (h) t= 7, (i) t=∞ for Caf = 0.1, considering the dilatation parameter C= 1.
( j) Equilibrium displacement of the north pole from the initial position of an undeformed
biconcave-discoid as a function of Caf for C= 1 (——) and C= 10 (— —).

the biconcavity is maintained. The capsule slowly deforms such that the concavities
at the poles are affected the most (see figure 2a,b); subsequently, the flow reduces
the depression (in a way opening them up) and eventually reaches a steady-state
biconcave-cylindrical shape, as shown in figure 2(c). A capsule does not open up
into a prolate spheroid until a threshold capillary number is reached (in this case,
Caf = 0.017). At such a threshold capillary number (Caf = 0.017) the capsule shows a
remarkable shape transition wherein the biconcave cavities (see figure 2d,e) open up
and transform into a steady capped-cylindrical shape (a cylindrical body with convex
caps at both ends) (see figure 2f ). At a still higher capillary number (Caf = 0.1), the
dynamics is faster, and very similar behaviour is observed (see figure 2g–i), and the
capsule attains a highly stretched prolate-spheroid shape (see figure 2i).

Figure 2( j) represents the equilibrium displacement of the north pole ((yp − yp0)/yp0,
where yp and yp0 are the positions of the pole in the deformed and undeformed states,
respectively) from its position in the undeformed shape as a function of capillary
number. Figure 2( j) suggests that the evolution of the biconcave discoid to the
capped cylindrical and prolate spheroid undergoes a discontinuous shape transition at
the critical capillary number, i.e. Caf = 0.017 for C = 1 and Caf = 0.04 for C = 10.
For the deformation of a Skalak capsule, a large dilatation parameter restricts the
change in surface area, although at the cost of numerical stiffness. Therefore, the
analysis is restricted to a maximum value of dilatation parameter C = 10 allowing
∼10 % change in surface area. The higher threshold value (Caf = 0.04 compared to
Caf = 0.017 at C = 1) of the capillary number at C = 10 suggests the greater extent
of the membrane resistance to the deformation that leads to a biconcave-discoid to
capped-cylindrical transition as well as a prolate-spheroid shape transition.

To understand the mechanism for the transition from a biconcave shape to a prolate
spheroid, the pressure profile and elastic tension over the half arclength are plotted
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FIGURE 3. (Colour online) At Caf = 0.1 and C= 1. (a–c) Pressure profile. (d–f ) Variation
of the meridional, Ts (— —), azimuthal, Tφ (— · —) and mean, Tm (——) elastic tensions
along the arclength. (g–i) Streamlines (shown only in the right-hand half) and the velocity
profile (relative magnitude of the flow is proportional to the length of the short arrows
shown in the left-hand half). From left to right the columns correspond to times t= 2, 7
and ∞, respectively.

in figure 3(a–c) and figure 3(d–f ), respectively. The applied free stream uniaxial
extensional flow does not have an associated pressure profile because the velocity is
linear. When a rigid spherical particle is placed in such a flow, it generates a velocity
field to bring the velocity of the applied flow to zero on the particle surface. This
generates stress on the particle from the equator to the poles, which the particle
transmits to the fluid (from poles to equator), thereby leading to a stresslet-induced
disturbance velocity field. Since, in the case of a rigid spherical particle, the particle
brings the fluid to rest at its surface, the fluid has to generate a positive pressure at
the equator to resist the incoming flow and a negative pressure at the poles to suck
fluid into the poles. When the surface/interface is not rigid (e.g. a drop), it can give
way under this pressure and build a curvature. In a drop, this can result in a dimple
at the equator and a bump at the pole (the drop will try to adjust its curvature to
satisfy the Young–Laplace equation at the interface) leading to a prolate-spheroid
shape. Similar arguments will mean that the shape of a drop will be oblate in biaxial
extensional flow.
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In a capsule, the meridional and azimuthal tensions could be anisotropic and
compressive, unlike the isotropic tension in a liquid–liquid interface (a drop). While
a spherical drop cannot maintain its shape in extensional flow, a capsule can maintain
a near-spherical shape by generating a pressure inside which is intermediate between
that at the equator and the poles on the outer side. This can be attained by a
compressive membrane tension (predominantly azimuthal) at the equator and a tensile
membrane tension at the poles. In the case of a biconcave-discoid capsule, a similar
distribution of membrane tension (compressive at the equator and tensile at the poles)
can support an extensional flow, except the pressure inside is now less than that at
the poles.

When the capillary number is increased beyond the threshold, at short times (t= 2),
the pressure is lower at the poles, thereby generating an internal flow from the equator
to the poles. This leads to the shoulders of the biconcave-discoid capsule opening up.
The pressure generated at the equator is so high that the resulting inside pressure
at the poles continues to drive the fluid to the poles (t = 7). This fluid flow (see
figure 3g–i) eventually leads to the opening up of the poles and transformation of
the biconcave-discoid shape into a prolate spheroid (see figure 2i).

The elastic tensions are predominantly compressive, except at the shoulders. At the
poles, as the curvature is negative and the inside pressure is higher than at outside
(see figure 3a,b), the stresses have to be compressive (see figure 3d,e). The tension
at the shoulders, however, is tensile, leading to a higher pressure inside the capsule,
which further assists the shoulders to disappear by pushing the fluid into the poles.

For the deformed prolate spheroid at the steady state, the inside pressure is uniform
at the equator (see figure 3c); therefore, the flow inside disappears (see figure 3i).
The pressure inside is nearly identical to the outside pressure, due to the small
curvature at the equator. Thereby, the mean elastic tension at the equator disappears
(see figure 3f ). At the poles, the outside pressure is lower compared to the inside
pressure (see figure 3c), and since the curvature is positive, a high tensile mean
elastic tension (see figure 3f ) is generated.

3.2. Dynamics of a biconcave-discoid capsule in DC electric fields
The analysis of deformation of an elastic biconcave-discoid capsule in DC electric
fields is carried out in the absence of free stream fluid velocity, u∞ = 0. Therefore,
the hydrodynamic traction is balanced by the elastic traction, electric traction, and the
traction due to bending rigidity, i.e.

1f H
=−(1f el

+Cae1f E
+ κ̂b1f b), (3.1)

where Cae = εeε0aE2
0/Es is the electric capillary number. The scaling of variables

results in the kinematic factor as the hydrodynamic response time, i.e. kf = 1/tH .
Considering the parameters in table 1, Es ∼ 0.1 N m−1, µe ∼ 0.1 Pa s, σe ∼

0.1 mS m−1 and εe ∼ 80, for the dynamics of a capsule with an equivalent radius
a ∼ 5 µm, the hydrodynamic response time can be calculated to be unity, i.e.
tH = te = 1. For this analysis, the consideration of tH = te = 1 implies that the
hydrodynamic response of the capsule is over the same time scale as the evolution
of the electric stresses. Also, the membrane of the capsule is considered to be purely
capacitive with Ĉm = 50 and Ĝm = 0.
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FIGURE 4. (Colour online) Observed shapes during the evolution of a biconcave-discoid
capsule at (a) t = 26 and (b) t = ∞ for Cae = 0.02 and σr = 0.1. Corresponding
streamlines (shown only in the right-hand half), velocity profile (relative magnitude of
the flow is proportional to the length of the short arrows shown in left-hand half) and
electric stress distribution (shown by short arrows from the interface) are shown in (c)
and (d), respectively. Observed shapes during deformation at (e) t = 0 and ( f ) t = 15 at
Cae = 0.05 and σr = 0.1. Streamlines, velocity profile and electric stress distribution are
shown in (g) corresponding to the shape shown in (e). The variation of the meridional,
Ts (— —), azimuthal, Tφ (— · —) and mean, Tm (——) membrane tensions along the
arclength are shown in the inset of (g).

3.2.1. More conducting outer fluid medium: σr = 0.1
When the outer fluid is more conducting than the inner fluid (σr = 0.1), at Cae =

0.02, a biconcave-discoid capsule initially undergoes compression at the poles (see
figure 4a,c). In this case, the shapes are presented as 2D cross-sections in the plane
parallel to the axis of symmetry, for better visualization in small deformation. At
t< tcap, the polarization vector is in the direction opposite to the applied electric field;
therefore, the normal electric stresses are compressive at the poles (see figure 4c).
Later, at t > tcap, the membrane becomes charged, and the electric stress becomes
compressive, with the maxima at the equator (see figure 4d). This drives the poles
apart, and the capsule reaches a steady shape, as shown in figure 4(b). At this low
capillary number, a biconcave-discoid capsule does not undergo large deformation due
to the weak electric stresses at the interface.

At significantly high capillary number (Cae = 0.05), a biconcave-discoid capsule
exhibits a pinched discoid with the poles coming in close contact (see figure 4f ). At
t< tcap, strong compressive electric stresses at the poles and fluid flow from poles to
the equator are observed (see figure 4g, corresponding to figure 4f ). Beyond this state,
the high fluid flow and electric stresses indicate possible breakup of a capsule, which
manifests as a numerical singularity.

3.2.2. More conducting inner fluid medium: σr = 10
When the inner fluid medium is more conducting, the capsule does not collapse;

instead, it deforms through a series of cylindrical shapes to a steady-state shape. At
a small capillary number (Cae = 0.3), a biconcave-discoid capsule deforms through
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FIGURE 5. (Colour online) Observed shapes during the evolution of a biconcave-discoid
capsule at (a) t= 20, (b) t= 85 and (c) t=∞ for Cae = 0.3 and σr = 10. Corresponding
streamlines (shown only in the right-hand half), velocity profile (relative magnitude of the
flow is proportional to the length of the short arrows shown in the left-hand half) and
electric stress distribution (shown by short arrows from the interface) are shown in (d),
(e) and ( f ), respectively. The variation of meridional, Ts (— —), azimuthal, Tφ (— · —)
and mean, Tm (——) membrane tensions along the arclength are shown in the insets.

an intermediate cylindrical shape with concave ends (see figure 5a). In this case,
the polarization vector aligns with the applied electric field; therefore, the electric
stresses are tensile near the poles and highest at the shoulders (see figure 5d). Just
after t > tcap, as the membrane becomes charged, the tensile electric stresses at the
poles disappear, and the compressive electric stresses develop at the equator. In this
case, as the normal tensile electric stresses disappear, the intermediate shape (see
figure 5b) relaxes back (because of the stabilizing elastic traction) to an equilibrium
shape (see figure 5c). This equilibrium shape is the result of the balance of the elastic
traction and compressive electric stress (see figure 5f ).

At a high capillary number (Cae= 0.5), the biconcave-discoid capsule at short times
deforms into cylindrical shapes with diminishing concave ends near the poles (see
figure 6a,b) due to high tensile Maxwell stress at the poles and the shoulders (see
figure 6f,g). In this case, since the hydrodynamic time scale is small (tH = te = 1),
the deformation progresses rapidly. At t< tcap, due to the tensile electric stress (with
the maxima near the poles, see figure 6h) the biconcave-discoid shape evolves into a
cylindrical shape (see figure 6c). The tensile normal electric stress at the poles (see
figure 6i) continues to drive the capsule to evolve into a prolate-spheroid shape (see
figure 6d). Eventually, when the membrane becomes fully charged (t> tcap), it attains a
steady-state capped-cylindrical shape (see figure 6e), wherein the compressive electric
stress at the equator (see figure 6j) is appropriately balanced by the elastic tensions.

Thus, similar to the deformation in extensional flow (see figure 2), a biconcave-
discoid capsule deforms into a steady-state capped cylinder (see figure 6), but via
an intermediate prolate-spheroid shape (see figure 6d), when the inner fluid medium
is more conducting (σr = 10). In the former case, the deformation is driven by the
hydrodynamic pressure generated by the extensional flow around the biconcave-discoid
capsule, whereas in the latter case, it is due to the Maxwell electric stress developed
at the interface of the capsule.
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FIGURE 6. (Colour online) Observed shapes during the evolution of a biconcave-discoid
capsule at (a) t= 10, (b) t= 23, (c) t= 29, (d) t= 37 and (e) t=∞ for Cae= 0.5 and σr=

10. Corresponding streamlines (shown only in the right-hand half), velocity profile (relative
magnitude of the flow is proportional to the length of the short arrows shown in the left-
hand half) and electric stress distribution (shown by short arrows from the interface) are
shown in ( f ), (g), (h), (i) and ( j), respectively. The variation of meridional, Ts (— —),
azimuthal, Tφ (— · —) and mean, Tm (——) membrane tensions along the arclength are
shown in the insets.

During the deformation, the transmembrane potential evolves due to the charging
of the membrane as well as the change in the shape of the biconcave-discoid
capsule. A high transmembrane potential indicates a greater tendency to electroporate.
Figure 7(a,b) shows the variation of transmembrane potential over the interface for
different intermediate shapes during the deformation at Cae = 0.3 and Cae = 0.5,
respectively. From figure 7(a) it can be observed that the transmembrane potential is
always higher at the shoulders until the membrane becomes fully charged, as the shape
remains biconcave during the deformation (figure 5a,b). For the charged membrane
and the steady-state shape (figure 5c), the transmembrane potentials from the poles to
the shoulders are comparable and higher than the other locations at the interface. From
figure 7(b) it can be observed that in the deformation at Cae= 0.5 the transmembrane
potential is higher at the shoulders for the cylinders with concave ends (figure 6a–c),
whereas it is higher at the poles for the prolate-spheroid (figure 6d–e) shapes.
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FIGURE 7. (Colour online) Transmembrane potential at the interface during the shape
evolution of a biconcave-discoid capsule at (· · ·) t = 5, (— —) t = 20, (— · —) t = 35,
(– · ·) t= 55, (– – ·) t= 85 and (——) t=∞ for Cae= 0.3 (a), and at (· · ·) t= 10, (— —)
t= 23, (— · —) t= 29, (– · ·) t= 37, (– – ·) t= 50 and (——) t=∞ for Cae = 0.5 (b).
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FIGURE 8. (Colour online) Observed shapes during the deformation of a biconcave-discoid
capsule for Cae=0.4 and σr=10 at (a) t=0, (b) 20, (c) 42, (d) 52 and (e) ∞, considering
kf = 1 and at ( f ) t= 0, (g) 500, (h) 1500, (i) 5000 and ( j) ∞, considering kf = 0.01.

When the hydrodynamic response time and the electric response time are same,
tH = te = 1, i.e. kf = 1, at the critical capillary number (Cae = 0.4), a biconcave
discoid evolves into a capped cylinder through the intermediate shapes, such as
biconcave cylinder and stretched prolate spheroid, similar to the case of Cae = 0.5
(see figure 6). At this capillary number (Cae = 0.4), the shape evolution is shown in
figure 8(a–e). To demonstrate the effect of slow hydrodynamics, the shape evolutions
of a biconcave-discoid capsule at Cae= 0.4 and σr= 10 are presented in figure 8( f –j)
considering kf = 0.01. In this case, a biconcave-discoid capsule does not respond
instantly to the developed electric stresses at the interface. Therefore, for t< tcap, the
intermediate stretched biconcave-cylindrical (see figure 8b), stretched cylindrical (see
figure 8c), and highly deformed prolate-spheroid (see figure 8d) shapes are missing
in the deformation considering kf = 0.01. Instead, the biconcave-discoid capsule
undergoes a slow deformation through few intermediate shapes (see figure 8g–i), and
eventually attains a capped-cylindrical shape (see figure 8j) at the equilibrium. Hence,
for different hydrodynamic response times (here, tH = 1 and 100, i.e. kf = 1 and 0.01),
even though the final equilibrium shape, a biconcave-discoid capsule attains, is same
(see figure 8e and figure 8j), the pathways for the shape evolution are different.
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3.3. Dynamics of an RBC in AC electric fields
The electrohydrodynamic deformation of a biconcave-discoid capsule can be extended
to explore its suitability for studying an RBC in an electric field. In physiological
conditions, the non-dimensional parameters relevant for an RBC are: viscosity ratio
λ = 5, ratio of dielectric constants εr = 0.6, conductivity ratio σr = 1.054, non-
dimensional capacitance Ĉm = 282 and non-dimensional conductance Ĝm = 6.75 ×
10−7. Considering scaling parameters as used in the case of deformation of a
biconcave-discoid capsule, for the deformation of an RBC, the non-dimensional
hydrodynamic time scale is very large (non-dimensional tH = 0.625× 106). Therefore,
the kinematic factor kf = 1/tH ∼ O(10−6) implies that a negligible displacement
(2.14) of the interface will take place in a specific numerical time step, 1t ∼ O(t̃e),
suggesting that the computation time required for reaching a steady shape could be
prohibitively high.

Since the hydrodynamic response time is very high compared to the electric time
scale, the electric field at the interface reaches an equilibrium value (with respect to
the transmembrane potential that corresponds to the charging time of the membrane
and the frequency of the applied field) even before the capsule starts responding to the
electric stress developed at the interface. The electric field (2.7) is, therefore, solved
with the capacitor time scale, t̃cap = Ĉm× electric time scale (i.e. t̃cap = Ĉm × t̃e =

282× εeε0/σe), and the transmembrane potential is allowed to reach a steady value at
a particular shape of the RBC. Moreover, as the charge relaxation in both the inner
and outer fluids are very fast (εe/σe� 1 and εi/σi� 1), a simplification of the electric
current continuity (2.8) across the interface is made as

σrEn,i = En,e =
dVm

dte
. (3.2)

Subsequently, the hydrodynamic equation for RBC deformation (2.12) is solved
with the already calculated equilibrium electric stress, considering the hydrodynamic
response time (tH =µea/Es) as the scaling parameter for the time.

All the variables but time (here te = t̃/Ĉm × t̃e) for solving the electric potential
(2.7) are scaled with the scaling parameters used for the solution of electrostatics in
the case of a biconcave-discoid elastic capsule in a DC electric field, as discussed
in the previous section. Thus, 1/(Ĉm × t̃e) is used for scaling the frequency of the
applied field. For solving the hydrodynamic boundary integral equation (2.12), the
hydrodynamic time scale is used for scaling.

The hydrodynamic force is balanced by the non-hydrodynamic forces similar to the
case of deformation of an elastic capsule in a DC electric field (3.1). In this case,
time-averaged electric stress (ignoring the time-periodic stress that has instantaneous
dynamics but zero average) is used in the calculation of interfacial velocity (in (2.12)).
For faster numerical calculations, the viscosity ratio is considered to be unity, λ= 1.
The kinematic condition (2.14) for the shape evolution from the calculated interfacial
velocity, because of kf = 1, simplifies to

x(t+1t)= x(t)+ u(x)1t. (3.3)

The analysis of the deformation of an RBC in AC electric fields is conducted at
a high frequency of the applied field (ω = 2.5, corresponding to ∼10 MHz). This
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FIGURE 9. (Colour online) Transmembrane potential of the static shape of an RBC as a
function of frequency. Marker pointE represents t−1

cap.

is important in suggested experiments, wherein the transmembrane potential (Vm) has
to be restricted to a very low value to prevent the possibility of electroporation (see
figure 9) (Joshi & Hu 2012; Das & Thaokar 2018a). The electric capillary number
(Cae) remains the same as used in the case of the deformation of a biconcave-discoid
capsule in a DC field. In the case of the RBC deformation, Cae=1 is equivalent to the
applied electric field strength of 0.45 kV cm−1, much below the typical 1 kV cm−1

or higher used in electroporation studies.
At Cae= 0.5, the small electric stresses at the interface lead to a small deformation

of the RBC (see figure 10a,b). The transmembrane potential reaches an equilibrium
value before the hydrodynamic calculation begins. Since ω < t−1

cap, the electric stress
is purely compressive, with the maxima at the equator (similar to the case of a
biconcave-discoid capsule in DC electric field, shown in figure 5f ). This compressive
electric stress is responsible for the deformation of the RBC into a cylinder with
concave ends. At larger capillary number (Cae = 1), a substantial increase in the
deformation is observed (see figure 10g,h). From figure 10(c,d,i,j), it can be observed
that the azimuthal, meridional and mean elastic tensions are compressive near the
equator and tensile near the poles.

Consideration of the area dilatation parameter C= 1 allows a significant change in
the area during the deformation of an RBC, i.e. 4.7 % and 13.8 % at Cae = 0.5 and
Cae= 1, respectively. At a higher value of the area dilatation parameter (C= 10), the
constraint on the change in area (0.82 % and 1.75 % at Cae= 0.5 and 1, respectively)
restricts the deformation of an RBC. Considering C= 10, the shapes observed during
the deformation of an RBC at Cae = 0.5 and 1 are shown in figure 10(e, f,k,l),
respectively. It can be easily visualized that the deformation of an RBC considering
C= 10 is considerably less compared to the deformation with C= 1.

To understand the mechanical integrity of the cell membrane to the applied electric
field, the analysis of the transmembrane potential, during the deformation is important.
Figure 11(a) shows that at Cae = 0.5, the transmembrane potential of the membrane
at the north pole of an RBC during the calculation of the average electric stress
in a cycle of the applied electric field varies with time. Figure 11(b) represents the
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FIGURE 10. (Colour online) Shapes observed during the deformation of an RBC at (a)
t= 10 and (b) t=∞ for Cae= 0.5 and at (g) t= 20 and (h) t=∞ for Cae= 1 in an AC
field with ω=2.5, considering C=1. Variation of the meridional, Ts (— —), azimuthal, Tφ
(— · —) and mean, Tm (——) elastic tensions along the arclength for the corresponding
cases are shown in (c,d) and (i,j), respectively. Shapes observed during the deformation
of an RBC at (e) t= 24 and ( f ) t=∞ for Cae= 0.5 and at (k) t= 20 and (l) t=∞ for
Cae = 1, considering C= 10.
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FIGURE 11. (Colour online) At Cae= 0.5. (a) Transmembrane potential at the north pole
in a single cycle of the applied electric field during the calculation of average electric
stress at (– –) t = 10 and (——) t =∞. (b) Variation of the transmembrane potential at
the end of the particular cycle of the applied field over the arclength at (– –) t= 10 and
(——) t=∞, corresponding to figure 10(a,b), respectively.

variation of the transmembrane potential of the interface at the end of the cycle.
It can be clearly observed in figure 11(b) that the shoulders attain the maximum
transmembrane potential, suggesting the possibility of electroporation in those regions.
Similar behaviour of the membrane is suggested in figure 12(a,b) for the deformation
of an RBC at Cae = 1.

In an experimental condition with a low-conducting outer fluid medium (in this
case, σr = 10), an RBC undergoes large deformation even at a low capillary number
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FIGURE 12. (Colour online) At Cae= 1. (a) Transmembrane potential at the north pole in
a single cycle of the applied electric field during the calculation of average electric stress
at (– –) t= 20 and (——) t=∞. (b) Variation of the transmembrane potential at the end
of the particular cycle of the applied field over the arclength at (– –) t = 20 and (——)
t=∞, corresponding to figure 10(g,h), respectively.
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FIGURE 13. (Colour online) Shapes observed during the deformation of an RBC at (a)
t= 10, (b) t= 70 and (c) t=∞ for Cae = 0.5 in an AC field with ω= 2.5, considering
C= 1 and σr = 10.

(Cae = 0.5). The strong compressive electric stress causes an RBC to deform
through a cylindrical shape with biconcave ends (see figure 13a) to a cylinder
(see figure 13b), finally resulting in a prolate spheroid (see figure 13c). Unlike the
case of a biconcave-discoid capsule, an RBC does not show the intermediate large
deformation (as observed in figure 6d), as the partial charging of the membrane
results in consistent tensile electric stress at the poles and compressive electric stress
at the equator. In this case, since a small value of area dilatation parameter (C = 1)
is used, a significant change in the area is observed. From figure 14(a,b), it can
be observed that for the intermediate cylinder with concave ends (figure 13a) and
a cylindrical shape (figure 13b) the transmembrane potential is the highest at the
shoulders. On the other hand, when the RBC evolves into a prolate spheroid at the
time-averaged steady state, the transmembrane potential is maximum at the poles,
thereby suggesting the possibility of electroporation at the poles.

4. Conclusions
Red blood cells and biconcave-discoid capsules can encounter extensional flow

fields at the junctions and size-varying capillaries in blood vessels. Moreover, the
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FIGURE 14. (Colour online) At Cae = 0.5 and σr = 10. (a) Transmembrane potential at
the north pole in a single cycle of the applied electric field during the calculation of the
average electric stress at (– –) t= 10, (— · —) t= 70 and (——) t=∞. (b) Variation of
the transmembrane potential at the end of the particular cycle of the applied field over the
arclength at (– –) t= 10, (— · —) t= 70 and (——) t=∞, corresponding to figure 13(a–
c), respectively.

biconcave-discoid capsules are subjected to electric fields in applications such as
electroporation and dielectrophoresis. This study, therefore, investigates the responses
of biconcave discoids in extensional flow and electric fields. In the analysis of
the dynamics of deformations, a transition from a biconcave-discoid shape to
prolate-spheroid and capped-cylindrical shapes is predicted. The shape changes
of a biconcave discoid in the above-mentioned cases are relevant because they
determine the extent of momentum and mass transfer between the capsule and the
surrounding fluid. Additionally, these shape changes can also be used to characterize
the electromechanical properties of biconcave discoids. The dynamics of a biconcave
discoid is sensitively dependent upon elastic properties such as Youngs modulus, the
membrane dilatation parameter, electric properties such as the membrane capacitance
as well as the fluid conductivities, and the ratio of the electric time scale and the
hydrodynamic time scale.

In an extensional flow, a biconcave-discoid capsule undergoes axisymmetric
deformation while developing membrane tension. Recalling the dimensional variables
for RBCs from table 1, the estimated tension in the transition to prolate spheroid
is ∼O(1) mN m−1 and the corresponding strain rate is ∼O(10) s−1. Therefore,
considering the suggested tolerance limit of membrane tension in the literature (Evans
et al. 1976), there is a possibility of an RBC undergoing the biconcave-discoid to
prolate-spheroid transition without the rupture of the cell. In the case of an elastic
capsule, with comparatively larger membrane elastic modulus, a high strain rate
is required for the biconcave-discoid to prolate-spheroid transition, resulting in the
development of higher membrane tension. The experimental study concerning the
in-plane orientation of an RBC in four-roll elongational flow (Levant & Steinberg
2016), along with our computational analysis, suggests a possibility of visualization
of the biconcave-discoid to prolate-spheroid transition in experiments.

The electrohydrodynamic steady-state deformation of a spherical capsule is
independent of the conductivity ratio (Das & Thaokar 2018b), whereas for a
biconcave-discoid capsule the steady-state deformation is strongly dependent on
the conductivity ratio. The analysis shows that when σr = 0.1, high Cae can lead
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to breakup, whereas for σr = 10, the capsule attains a steady-state deformed shape.
Further, from the analysis, it is found that the kinematic factor (kf , consequently, tH)
influences the dynamics of the capsule deformation. For different kf , even though the
steady-state electrohydrodynamic deformation is the same, the pathways to reach the
steady state are different. Moreover, the analysis of the deformation of an RBC in an
electric field shows a weak response due to the typical values of the parameters in
physiological conditions. In experimental conditions, a lower electrical conductivity
of the outer fluid media makes the RBC sensitive to the applied AC electric field.

There are significant differences between the transition seen in extensional flow,
capsules in DC electric fields, and RBCs in AC fields. A biconcave-discoid capsule
and an RBC undergo axisymmetric deformation in extensional flow due to the
pressure profile which develops because of the complex geometry. In an extensional
flow, capped-cylindrical and prolate-spheroid shapes are seen at low and high capillary
numbers, respectively. On the other hand, the deformation in an applied uniform
electric field is due to the Maxwell electric stress at the interface. In extensional
flow, the maximum elastic tension develops at the shoulders of the biconcave-discoid
shapes, and the tension is maximum at the poles when the biconcave discoid evolves
into a prolate spheroid or capped cylinder. Therefore, the possible rupture of the
membrane could be at the shoulders or the poles in extensional flow. In an electric
field, a similar biconcave-discoid to capped-cylindrical shape transition is possible,
although through different pathways that depend upon the fields (DC and AC) and
kf . In the biconcave-discoid and biconcave-cylindrical shapes, the maximum elastic
tension and transmembrane potential develop at the poles and shoulders of the
deformed shape, respectively.

Thus for an RBC in an electric field, since the elastic tension is much smaller than
the threshold value, for mechanical rupture, a membrane can instead electroporate at
the shoulders or the poles corresponding to the maximum value of transmembrane
potential. The deformation can be conducted under extensional flow of strain rate
∼O(10) s−1 and under DC and AC (frequency ∼O(1) MHz) fields of strength
∼O(1) kV cm−1 for the rheological analysis and estimation of mechanical properties
of a biconcave-discoid capsules. However, both the methods have merits and demerits.
While the electrodeformation experiments are easy to conduct, the strength of the
typical electric field predicted in our analysis could cause electroporation in some
systems. On the other hand, although poration and lysis are discounted in extensional
flow, the experiments are difficult to conduct as they require sophisticated set-ups (De
Loubens et al. 2015; Levant & Steinberg 2016). The measure of maximum elastic
tensions in capsules and RBCs in the flow and electric field will help in understanding
the mechanical stability of the capsule, and thereby help improvements in designing
a capsule for specific applications.
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Appendix A. Additional information
Validation: deformation of oblate spheroids in extensional flow.
The developed numerical code to study the deformation of a biconcave-discoid

capsule and RBC is validated with the results reported by Pozrikidis (1990) for the
analysis of its deformation in a uniaxial extensional flow. In both our analysis and
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FIGURE 15. (Colour online) Comparison of boundary integral simulations at ks = 30 and
the reported (Pozrikidis 1990) evolution at k = 10 of an oblate-spheroid shape perturbed
with a second-degree Legendre mode (ε = −0.3). In each panel (——) t = 0, (— —)
t = 0.095, (— · —) t = 0.235, (– · ·) t = 0.540 and (— — ·) t = ∞. Boundary integral
simulation results (a–c) and reported (Pozrikidis 1990) shape evolution (d).

that of Pozrikidis (1990), the axisymmetric boundary integral method is used. The
stress-free shapes of oblate spheroids are considered as the initial shape of the capsule,
which is perturbed from the sphere with a second-degree Legendre polynomial, and
the equivalent volume is maintained as unity, as assumed by Pozrikidis (1990).
To define oblate-spheroid shapes, the coefficients of the Legendre polynomial are
considered; these are ε =−0.3 and ε =−0.5 for two different cases. Similar scalings
of variables as reported by Pozrikidis (1990) are used in this validation of the
numerical boundary integral code.

The neo-Hookean membrane constitutive equation is a special case of the
Mooney–Rivlin constitutive equations and is applicable for isotropic membranes.
Pozrikidis (1990) considered a neo-Hookean membrane constitutive law to describe a
RBC, where the tension components (see figure 1d) in the meridional and azimuthal
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FIGURE 16. (Colour online) Comparison of boundary integral simulations at ks = 60 and
the reported (Pozrikidis 1990) evolution at k = 20 of an oblate-spheroid shape perturbed
with a second-degree Legendre mode (ε =−0.3). In each panel (——) t= 0, (— —) t=
0.1, (— · —) t= 0.3 and (— — ·) t=∞. Boundary integral simulation results (a–c) and
reported (Pozrikidis 1990) shape evolution (d).

directions are given by

T̃MR
s,φ =

GMR

λsλφ

(
λ2

s −
1

(λsλφ)2

)
, (A 1)

where GMR is the shear modulus in the Mooney–Rivlin model. To assert a negligible
change in area, Pozrikidis (1990) imposed the incompressibility condition

ũ · j+ σ̃ t ·
∂ũ
∂s
= 0, (A 2)

where the notations used by Pozrikidis (1990) are that σ̃ is the radial distance in the
cylindrical coordinate system, ũ is the interfacial velocity, j is the local surface unit
normal, t is the local tangent vector, and s is the arclength.
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FIGURE 17. (Colour online) Comparison of boundary integral simulations at ks = 15 and
the reported (Pozrikidis 1990) evolution at k = 5 of an oblate-spheroid shape perturbed
with second-degree Legendre mode (ε=−0.5). In each panel (——) t=0, (— —) t=0.15,
(— · —) t = 0.375, (– · ·) t = 0.682 and (— — ·) t = ∞. Boundary integral simulation
results (a–c) and reported (Pozrikidis 1990) shape evolution (d).

In the reported analysis (Pozrikidis 1990), the elastic modulus is replaced with the
non-dimensional variable k=GMR/µea. In our numerical computations, we have used
the relation between the Skalak modulus (GSK) and the surface Young modulus (Es),
given by

Es = 2GSK
1+ 2C
1+C

, (A 3)

where C is the membrane dilatation parameter (Barthès-Biesel et al. 2002). For the
Skalak model, the non-dimensional elastic modulus is ks = Es/µea. Therefore, the
non-dimensional elastic modulus considered in this analysis is three times that of the
non-dimensional elasticity considered by Pozrikidis (1990), i.e. ks = 3× k. Moreover,
the area conservation is not explicitly implemented in the present work, since the
parameter C can be independently used to enforce area conservation.

In figures 15, 16, and 17, the comparisons of shape evolution with time are shown
for the oblate-spheroid shapes with perturbation coefficients of a second-degree
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C Change in area (%)

1 2.8
10 2.15
50 1.05

TABLE 2. Percentage change in area at different membrane parameter C for ε =−0.3
and ks = 30.

C Change in area (%)

1 2.81
10 1.78
50 0.62

TABLE 3. Percentage change in area at different membrane parameter C for ε =−0.3
and ks = 60.

C Change in area (%)

1 4.7
10 2.9
50 1.22

TABLE 4. Percentage change in area at different membrane parameter C for ε =−0.5
and ks = 15.

Legendre polynomial ε = −0.3, −0.3 and −0.5, respectively, in extensional flow.
The reported (Pozrikidis 1990) shape evolutions of oblate spheroids with ε = −0.3
at k = 10 and k = 20 are similar to the obtained boundary integral simulation
considering ks= 30 and ks= 60, respectively. Also, similar dynamics are observed for
the deformation of an oblate spheroid with ε=−0.5 reported for k= 5 and calculated
with ks = 15. The percentage changes in the surface area during the deformation of
the capsule are shown in tables 2, 3 and 4 for the boundary integral simulation with
ks = 30, ks = 60 and ks = 15, respectively. From the tables 2–4 and figures 15–17,
it can be observed that with an increase in the area dilatation parameter, C, the
change in area decreases and the simulated result with high area dilatation parameter
produces similar results to those reported by Pozrikidis (1990).
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