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Abstract

City road networks have been extensively studied for their social significance or to quantify

their connections and centralities, but often their geographical origin is forgotten. This work

focuses on the spatial-geographical and geometrical aspects of the road network skeleton.

Following previous work, a multi-scale object, the way, is constructed, based only on the

local geometry at road crossings. The best method to reconstruct significant elements is

investigated. The results show that this object is geographically meaningful, with many

particular characteristics. A new indicator, structurality, is introduced and compared with

previous indicators, on the cities of Paris and Avignon. Structurality appears to be stable over

the borders of the map sample, and is able to reveal the underlying coherence of the road

network. This stability can be interpreted as coming from the particular way the network

developed in time, and was later preserved. This link with the historical development of

the cites, which deserves to be further studied, is exemplified in the cases of Villers-sur-Mer

(France) and Manaus (Brazil). The construction method, the results, and their potential

meaning are discussed in detail so that they can be used in various related disciplines, such

as sociology, town planning, geomatics, and physics.

Keywords: road network, graph theory, spatial analysis, city modeling, morphogenesis

1 Introduction

Cities can be seen as the epitome of complex systems. Like living organisms they

are born, develop, need constant external influx, spread some of this influx around

to develop suburbs, and sometimes decline and die. They have been the subject of

research for a long time. Of the three elements that fill the city space—buildings,

space division properties, and road networks—buildings are the least persistent and

road networks are the most. While buildings are destroyed and reconstructed, with

possible property recomposition, roads have to remain functional to give access to

every occupied space, and allow permanent circulation through the whole space.
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City road networks are a key example of a spatial network. They develop in time

and, with minimal reorganization, their particular configuration is a record of their

history. In this sense, road networks are a perfect example of networks developing

both in space and time.

Road network graphs have been studied for a long time, first by town planners,

who developed good intuitions for their analysis. But this was based on their own

practice and personal knowledge. On a more abstract level, city maps were the origin

of network theory, starting with Euler’s problem of the seven bridges of Königsberg.

Since then, many measures have been developed to characterize networks (Albert &

Barabási, 2002; Boccaletti et al., 2006). One proposed measure is called betweenness

centrality (Freeman, 1977). It counts how many times an element of the graph is

used when traveling between any pair of elements through a certain type of minimal

path. In these studies, the spatial nature and particular geometry of the network is

often discarded (O’Sullivan, 2014). In the computation of betweenness, even if the

actual length can be taken into account, the topological aspect remains the only one

investigated. The road network is then reduced to the intersections as nodes and

the road segments as connections between them. In this way its treatment is similar

with non-geographical networks such as social networks. This is a major loss for a

spatial network: the link between two objects in this kind of network is not only

abstract, it is a geographical connection with a proper shape, an environment, and

a neighborhood, which make each link unique and more complex than a simple

topological connection.

Topologically, the road network appears to be rather homogeneous, with nearly

identical meshes where each node is connected to a small mean number of other

nearby nodes (between 3 and 4), similar to regular grids (see Figure 1) (Cardillo

et al., 2006; Crucitti et al., 2006). Other indicators seem to vary only a little between

extreme cases such as tree-like slums or perfectly regular Manhattan grids (Buhl

et al., 2006). This is very different from exhibiting organizing properties such as

small-world networks, which are found in so many other instances, where the

network has a biased growth toward the most connected nodes.

Roads are geographical elements used by humans for their displacement. Their

straightness is a key feature, for both visibility and conservation of energy. The

expansion of vision through straight street segments has been emphasized in

the “space syntax” concept developed by Hillier et al. (1993). It postulates that

people move according to the perception they have of the surrounding space.

Vision of distant elements, made possible with a straight empty space, favors

displacement. Locally-straight elements are then distinguished in the network,

and correlated with actual displacements of people (Genre-Grandpierre, 2001;

Genre-Grandpierre & Foltête, 2003). Contrary to previous approaches, the “space

syntax” one introduces the perception of the network by its users and develops a

quantitative tool to correlate its measurements with observed behavior. However,

constructing the straight elements is not straightforward when the width of the

street is taken into account. These works perform a morphological interpretation

of the city through local perspectives. The reconstructed straight parts do not

preserve the exact network geography and geometry: the elements constructed

could include several road segments, and also end within road segments (at

a turn).
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Fig. 1. Histogram of vertex degree, left, and of length of arcs, right, in the cities of Paris

(circles) and Large Avignon (triangles). Left: the two cities have nearly the same number

of end points. The most numerous degree is 3, and it decreases a bit more quickly than an

exponential with a characteristic number of 0.8 for Paris, and 0.5 for Avignon. This means

that crossings with more than 3+ 0.8 (4) or 3 + 0.5 (4) become very rare. The average is 3.08

for Paris and 2.72 for Avignon, and the organic ratio (see text) is 0.76 for Paris and 0.9 for

Avignon. Right: the distribution of length of the arcs is roughly exponential, with a very

similar characteristic length of 60m, and supernumerary long arcs especially for Avignon

corresponding to countryside roads.

The idea of continuity and larger elements was further developed by Jiang and

Claramunt (Jiang & Claramunt, 2004) following the actual toponymy of roads as

they are used in cities. The new elements (the named roads) are geographically well-

defined and offer another vision of the spatial organization, as they can be much

larger than road segments (up to the city width). From this geographical information

they construct a “dual” network, which represents how each road is connected to

others. They study this new abstract graph, ignoring its spatial properties. This

approach presents small-world characteristics. It is slightly weakened by relying on

GIS information of street names, which can be incomplete, and also depends on

administrative borders creating artificial change of name of continuous roads.

This led Porta, Latora, and co-workers to propose a quantitative method of

constructing the road continuity, through the observation of connecting road-

segment angles at a crossing, grouping the most aligned in a method they called

Intersection Continuity Negotiation (ICN) (Porta et al., 2006). They further studied

the small-world aspects of cities, showing a global similarity of their structure

(Cardillo et al., 2006; Crucitti et al., 2006; Scellato et al., 2006).

In this article, following Porta, Latora, and co-workers, we explicitly take into

account the geographical characteristics of road networks, in particular their geom-

etry at intersections. We revisit the ICN method to study what is the best way to

reconstruct the road’s continuity. To further emphasize the straightness, we define

a distance measure which is the minimal number of turns to go from one road to

another. We use this to construct an indicator, the structurality, which is how many

turns it takes on average to go from a given road to the rest of the city. This indicator

is shown to be different than the betweenness, and also robust to the delimitation of

the network sample. This robustness can be interpreted as the trace of the historical

development of the network with the addition only of smaller elements, without
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reorganization. The comparison of the actual historical road pattern development

and the analysis developed here is a promising future avenue for research.

We show that the traditional method of naming roads, further developed algo-

rithmically in the ICN method and refined here, leads to a geographical element that

is not only useful for statistical computation, but has geographical and historical

meaning. This study deals with the modeling process at the intersection of different

fields that require a link between scientific theory and social interpretation (Bordin,

2006). Our aim is to propose a cross-disciplinary object which brings relevant

information to a physicist, a geometrician, an archeogeographer, or a town planner.

Our main result is that the reconstructed geographical element, the way, not only

has a geographical and social meaning but also a historical one, allowing us to

discuss the city growth history. This property can be linked to the city’s particular

dynamics of expansion. The efficiency of this originally traditional description might

be based on the fact that it corresponds not only to the network construction in

time, but also to the actual way it is perceived and used.

2 Way definition and construction

The notion of “way” is polysemous, with different meanings such as “road”, “street”,

“path”, etc. It can cover very different concepts from the point of view of a town

planner, a sociologist, an archeogeographer, a geometrician, or a physicist. One will

consider the detailed object, with a width, a surface, a sidewalk; another will think

over a place of social exchange and perception, with different uses; a third will refer

to a two-dimensional object with attributes; and the last one will discuss of a subset

of a graph. The term “way” carries the idea of continuity, perspective, and path

between two points. So, it contains the ideas of aim and ultimately straightness.

Here, we restrict ourselves to the center line of streets, the wired network. We do

not consider the characteristics of the road available in modern GIS like their surface

(or width), their name, use, or other attributes. In particular, we do not consider

the distinction between “roads” (for countryside), “streets” (for urban settlement),

or “paths” (for pedestrian or bike ways). We remove all these aspects to see what

information can be extracted with minimal spatial (geographic) information.

A road network is usually approximated with linear segments linking crossing

points. Thus, a normal graph G that consists of edges E (links) connecting nodes N

(crossings) can be defined by G = (N, E). However, the connecting points of degree 2,

connecting only 2 linear segments, have no fixed meaning and depend on the degree

of approximation of the drawing (Courtat et al., 2011). We remove the connecting

points of degree 2, as side points, and consider only end-points or crossing nodes

with 3 or more links as vertices. Between two vertices we have groups of segments

(linear links) connected to each other to form an arc. A graph is then defined by its

arcs A, connecting the vertices V, G= (V, A). The main point here is that arcs, as a

group of segments between end points, are not necessarily straight. At a vertex, the

first straight segment (taken between the vertex and the first side point) indicates the

angle at which the curved arc connects to another one at the crossing. Considering

arcs as the aggregation of segments between two vertices is the introduction of

the geographic aspect in a topological representation. It allows us to work with a

network anchored in space, coherent with reality.
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A graph, embedded in a two-dimensional space, is not necessarily planar: two

arcs crossing each other will form a vertex only if they are on the same plane in

reality. For example, most city maps are planar as being laid on the earth surface,

but few streets can pass over each other (bridges) without connections between them

(as do “rue Pascal” and “Boulevard de Port-Royal” in Paris).

We test our measures on the city of Paris, an urban space with a long history, with

19,423 vertices and 32,173 arcs, and a large territory around Avignon (in the South

of France), mixing territories of all ages of urbanization and some agricultural areas,

with 9,742 vertices and 14,531 arcs.

Studying the road network graph G= (V, A) reveals a planar structure with

homogeneous connections around 3 (see Figure 1 left). We can define an organic

coefficient, giving the predominance of degree 3 and 1, corresponding to successive

connecting roads, compared to degree 4 or more (planned grid city), computed as
#[1]+#[3]

#[V ]
(Courtat et al., 2011). This coefficient is 0.75 for Paris, showing that only 1/4

can be considered as planned, and 0.9 for Avignon, showing a strong predominance

of organic growth, coherent with its preserved middle age center and agricultural

surroundings.

To further study the road network, we will keep aggregating the arcs to form

larger elements. Following previous work (Hillier et al., 1993), we emphasize the

notion of straightness, as used traditionally and in the space syntax. It defines

straight elements—straight portions of the network—which cut the arcs in pieces as

the segments, but can also join different segments if they are aligned at a crossing.

Here, as in the work of the Porta et al. (2006) we reconstruct elements similar to the

common use of “streets”, keeping the graph structure. We thus create a hypergraph

of ways, which are ensembles of arcs.

We want ways to be generic objects which allow us to broaden the quantitative

analysis from the local city block to the whole city. To remain simple and efficient,

their construction should be local, with simple rules applied to each vertex and the

segments linked to it. We will test three construction methods to identify the best

manner to create ways and to ensure their relevance.

The three different methods tested are all based on defining the aggregation of two

segments at a crossing. Each possible pair at each crossing is then constructed, ending

with a table of couples. This table is then followed to reconstruct ways. Because

pair construction is local, the reconstruction will give the same results independently

of the order of the segments considered. To connect pairs, we only consider local

geometric information: the angles between the last segments connecting to the

crossing. If the segments are aligned, then the two arcs extending them are considered

part of the same way.

• Method 0, or “M0”: The first method selects the pair of segments forming

the minimal deviation (complementary angle at 180◦), and associates them.

Then it checks if another pair with minimal deviation can be associated

among remaining segments, until all the possible pairs are made. This method

minimizes the deviations for each pair.

• Method 1, or “M1”: The second method builds the ensemble of pairs that

globally minimizes the deviations. For this, at each crossing, an aggregation

by pairs is made and the sum of the deviation angles for all the pairs is
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calculated. All the possible aggregations by pairs are computed, and the one

that minimizes the sum of the deviations is selected. This method minimizes

the deviations globally.

• Method 2, or “M2”: The third method aggregates the segments by pairs

randomly, without considering the actual connection angles. It is used as a

calibration.

The “straight” or “aligned” notion is either a strict mathematical condition, that

has no chance to happen in reality, or it has a vague meaning. In any case, we have

to determine a limit of deviation angle after which roads are no longer “aligned”.

We thus introduce a threshold angle α, to see its influence on the results. For method

0, each minimal pair is aggregated only if the deviation is smaller than this threshold

value. The same is done for method 2, which is a way to re-introduce the condition

of “alignment”, even if the pair is taken randomly and is not the one minimizing

the deviation. With method 1, the aggregation is made for the minimal global mean

of deviation, and the threshold is applied to the sum of angles.

The deviation angle is determined by considering the complement to 180◦ of the

angle formed by the two aggregated segments at the crossing. If αt = 0◦, arcs have

to be exactly aligned to be coupled. On the other hand, if αt = 180◦, there is no

angle constraint. This unconstrained situation was used before in M0 in Porta et al.

(2006), while (Courtat et al., 2011) used an αt = 90◦, meaning that a way is straight

at a crossing as long as it doesn’t go backward.

3 The multi-scale nature of the way

On the original distribution of angles of the segments, one observes a peak at 0◦,
and a slightly smaller one at 90◦ (see Figure 2). These two peaks, with the function

of probability decreasing around them as negative power laws, reflect the tendency

to create straight streets and perpendicular crossings. The asymmetric distribution

around these peaks, with an exponent twice as big for 0◦ than for 90◦, shows that

straight streets are more enforced than perpendicular crossings. In other words,

the road construction is more sensitive to alignment than perpendicularity. The

distribution of the selected angles along the ways for the random method M2 is

very close but not exactly proportional to the original distribution because selecting

pairs at a crossing removes potential angles for the remaining segments. When the

two distributions for M0 and M1 are renormalized by this random selection, they

form a Gaussian curve for angles smaller than 90◦. It thus seems that, once removed

the basic asymmetric preference for alignment and perpendicularity, the selection

of angles among the normalized possibilities is simply a normal distribution with a

wide standard deviation of 40◦. In other words, streets are aligned up to a deviation

angle of 40◦ in Paris (36◦ in Avignon), which is quite large.

The histogram of arc length appears to have a roughly exponential distribution

(Figure 1 right), with a very similar characteristic length for Paris and Avignon (60 m

and 59 m respectively). This corresponds to the typical size of a city block in French

cities. There are few arcs over the exponential in both distributions corresponding

to highways, such as surrounding belts, and rural roads for Avignon (in proportion

more numerous).
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Fig. 2. Left: Histograms of the angles at the crossings in Paris for the original segments (full

triangles), for the random method M2 (empty triangles), and for the methods M0 and M1

(full circles and empty squares, respectively). The original distribution can be fitted with two

different power laws (dashed lines), with an exponent –1.25 around 0◦ and −0.625 around

90◦, giving this asymmetric distribution. The random one is close to a reduced original

distribution, and the distributions for the two other methods constantly decrease for large

angles, except for a small peak around 90◦. Right: the two distributions for M0 and M1 when

renormalized by the random distribution for M2. For angles smaller than 90◦, it becomes a

Gaussian distribution of maximum 0◦ and width 40◦, and some remaining noise after 90◦.

Fig. 3. Histogram of the length of the ways, reconstructed with M0, left superposed to the

histogram of the arcs for Paris, and right the histogram for the logarithm of the same lengths.

Left: the characteristic length of the exponential is now increased from 60 m for the arcs to

150 m for the ways, so in average 2.5 blocks, but the supernumerary of long ways become

very important. Right: on the histogram of the logarithm of the lengths (normalized by 10 =

1 m), one can see that the distribution for the arcs is very asymmetric, with two Gaussian

parts of very different width (corresponding to a variation of factor 6 on the left and only 2.6

on the right, for a maximum still around 67 m). The successive histograms of the logarithm

of the way lengths—corresponding to threshold angles of (20◦, 60◦, 120◦, and 180◦) for M0,

in circles from empty to full—are closer to a Gaussian, except for a part at higher length that

is now supernumerary. The maximum correspond to a characteristic length of 135 m with a

width corresponding to a factor 4.

The histogram of the lengths of the ways appears to have a much wider

distribution, with a more extended tail toward very long ways (Figure 3 left and 4).

This is the aim of the aggregation process, to construct larger elements that can

extend across the map considered.

The logarithm histograms show many different things. The first is that they are

generally close to Gaussian curves, meaning the lengths are actually log-normal

distributions. This corresponds perfectly to a random space dividing process, where

a new segment cuts a surface between two previous segments, and also cuts those
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Fig. 4. Histogram of the logarithm of the length of of the ways, reconstructed with M1,

squares, left, and M2, triangles, right, superposed to the histogram of the log the length of

the arcs for Paris. The method M1 converges toward the same distribution as M0, but more

slowly, in particular for the right supernumerary large lengths. The method M2 seems to

converge only for the final threshold angle of 180◦, with a larger characteristic length around

180 m and width corresponding to a factor 7, keeping in particular more small elements of

the original arc distribution. Contrary to M0 and M1, there are still less large lengths than a

Gaussian would predict.

in two. The new smaller segments from the cut are thus fractions of the previous

length. If this fraction is purely random, the final lengths are products of random

numbers. Their logarithm is the sum of the logarithm of the random numbers,

which gives a Gaussian curve. For such processes, as observed in ceramic cracks,

quadrangular block are obtained after enough divisions (Bohn et al., 2005a; Strano

et al., 2012). In cities, with triangular junctions, we observed here (see Figure 1 left)

the same process, allowing us to recover in part their history of construction (Bohn

et al., 2005b).

From this general principle, which is compatible with a basic mechanism of

creation of street patterns, the deviations that we observed from the Gaussian

curves are significant and reproducible (as we found the same for Paris and Large

Avignon). First, the distribution of arc lengths shows that there is a strong lack of

long arcs. The random method M2 is able to create the longest ways, but it also keeps

the smallest ones (having a larger distribution). It excludes long ways compared with

the Gaussian distribution. In this way, it is able to construct large elements, without

changing its qualitative aspects. On the contrary, the two other methods, M0 and

M1, converge toward tighter distributions, with typical supernumerary long ways

compared with the Gaussian distribution. Between these two methods, M0 converges

the most quickly (already for 60◦), while M1 converges to supernumerary long ways

around 120◦.
The speed of transition is revealed by looking at the mean of these distributions

while increasing the threshold angle from 0◦ to 180◦ (Figures 5 and 6). The results

are comparable between Paris and Large Avignon, taking into account the difference

in number of points, which makes the histograms better defined for Paris, and the

dependance on the threshold angle easier to compute for Avignon. The first method

thus converges more quickly around 60 to 80◦, and is more efficient in creating

longer ways with smaller deviation angles.

Together with the length of the ways, another characteristic can be introduced,

called the connectivity of a way, which is the number of segments from other ways

connected to it. This is not exactly the number of vertices (or number of arcs +1), as
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Fig. 5. Left: decrease of the numbers of ways as the threshold angle increase for the three

methods (M0 circles, M1 squares, M2 triangles), for Avignon, with negative power law fits.

The first method M0 is the quickest to decrease, by a factor 2, while the numbers of ways

decrease only slightly with M2, before a second jump when crossing the 90◦ limit. The same

step at 90◦ can be visible even if much smaller on the two other curves. Right: the average

number of arcs in one way, for the three methods, as a function of the threshold angle, for

Avignon, with logarithm fits. Similarly, M0 converges quicker around 3, and there is the same

step around 90◦.

there are variable numbers of segments connecting at intersections. It is close to but

not exactly the degree of the vertex (Albert & Barabási, 2002), in the dual space (the

way) (Cardillo et al., 2006; Crucitti et al., 2006; Scellato et al., 2006), as one crossing

way can give two possible new directions (right or left, for a junction of degree 4),

or only one (for a junction of degree 3). This corresponds to the number of direction

changes offered by a way (a change of direction is considered, if it does imply a

change of way). The value of the connectivity indicator, as well as the length, are

local indicators of the way, independent from the network sample chosen, as long

as the reconstructed way does not cross the sample border. Thus, the only condition

is that its geometric identity remains the same from one sample to another.

In practice, the connectivity of a way wref is calculated by taking each vertex of

wref and summing their degree without taking into account the edges of wref . For

an intermediary vertex on the way, one has to remove two edges, but only one is

removed for the first and last vertex. This gives:

connectivity(wref) =
∑

v∈wref

[deg(v) − 2] + 2. (1)

The case in which the way makes a loop has to be treated specially, as formula’s

final “+2” is no longer necessary, since the degree of the last (and the first) vertex

does include two edges of the way. Only the degree of the first vertex is considered.

The distributions of connectivity (Figure 7 left) reveal a qualitative difference

between the methods. The random method gives an exponential distribution with a

small value of characteristic connectivities, around 2. The other two methods present

no characteristic connectivity and extend very far (over 100 for Paris) as a negative
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Fig. 6. Average angle selected along the ways, for the three methods, as a function of the

threshold angle, for Avignon. Left :The random method M2 increase quickly, present the

same step around 90◦ and converge toward a large value of 60◦. Right:—zoom for lower

angles—M0 converges quicker toward a smaller value, around 5◦, compared to 6◦ for M1,

before showing the same 90◦ step and converging both around 8◦. The first increase of M0

and M1 are compatible with a square root (dashed lines).

power law. This shows that they are able to reconstruct very large, coherent ways.

The corresponding reconstructed way can be observed in Figure 7.

When resulting maps are compared for the same small set, one can observe the

origin of the difference between M0 and M1. Degree 3 vertices are not impacted

as the result of the aggregation of segments at a degree 3 vertex will be the same

with the two methods. The main difference appears for vertices of degree 4, in the

particular type of figure similar to a “K” (see Figure 8). This is a configuration with

one main straight axis and two others ending on the crossing from the same side.

The minimum angle method M0 favors the straight line (the I part of the K), so

creates a couple with the two most aligned arcs and forms another couple with the

two remaining arcs (the < part of the K) according to the threshold angle. Method

1 splits the straight line to create two couples with optimized angles. The creation

of two deviating crossing ways does not correspond to the intuition we have of the

continuity of streets, and makes the way generally less straight.

This situation occurs preferentially at large squares and roundabouts. It emerges

precisely as a result of cutting the continuity of the street segments and forcing the

travelers to turn around. In this way, it is normal that this structure actually breaks

the continuity of the ways. Nevertheless, it could be interesting to remove those

disturbances in the analysis in future work.

We can also compare the result of method M0 with the actual street identification

in cities. What is found is a good correlation, except that a way is often cut in several

streets. This happens for two main reasons. The first is that streets usually change

names when crossing an administrative border. The second and more common

reason, is that it is tradition that a secondary street, when crossing a principal one,

changes its name to distinguish it from to the main one. Here, we do not make these
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Fig. 7. Top Left: Histograms of the connectivity of the ways for the three methods (M0

circles, M1 squares, M2 triangles) for a threshold angle of 60◦, for Paris the distribution for

M2 is compatible with an exponential of characteristic number of connectivity of 2.1, while

the distribution for M0 and M1, very close, have no characteristic number and are more

compatible with a negative power law of exponent − 2.7. Top Right and Bottom: Ways

connectivity for Paris with M0, M1, and M2 and a common threshold angle of 60◦. In dark

color the ways with the larger connectivity. The connectivity is much lower for M2, with a

very diffused homogeneous background. M1 is similar to M0, but with more contorted ways

(a curved way with a loop is visible around “place de l’étoile” for instance). For M0, one can

recognize some historical ways and observe a structured background, while the background

is diffused for M2. (Color online)

Fig. 8. Illustration of the “K” crossing situation. The impact on the structurality (see below

for definition) from the different ways reconstruction is clearly visible, with a way abruptly

changing of direction and the continuous half losing its structurality quality. (Color online)

distinctions because we do not take into account any characteristics other than the

geometry of the skeleton.

All measures indicate that the method M0 is the best for reconstructing significant

multi-scale structures from the road network: it converges more quickly, and creates

longer ways with low deviation angles and high connectivity. From the above
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measurements, we conclude that the best method is M0, with a threshold angle

around 60◦–70◦, where the distributions converge before the random transition

around 90◦.

4 Centralities and structurality of the ways

To further study reconstructed ways, we build other indicators that depend on

the global graph. To do so the notion of distance between points of the graph is

introduced, so centralities measure can be computed, which is the distance of the

city viewed from one element. The graph centers are then the elements with the

minimal average distance.

The first intuitive distance is the Euclidian distance between two points of the

network. This distance is measured as the crow flies between two elements of the

network.

A second distance is the geographical distance between two points of the network.

This distance is measured as the pedestrian walks along the network. It is the length

of a possible path along the network. This allows us to define a minimal length

path connecting two elements. Using the minimal paths a more particular centrality

can be defined, the betweenness centrality (Freeman, 1977). For each element of the

network, it counts the number of minimal paths passing through it, when all the

possible pairs of elements are investigated. The places with the highest number of

paths passing through are then the most in-between.

A third distance is the topological distance, where just the number of nodes

passed is considered. The centrality derived from this topological distance is called

the closeness.

The ways have been built in order to respect the optimum alignment. To reinforce

this idea another type of distance can be defined, similar to the topological one

described above. If alignment and straight lines are preferred, it means that the cost

of passing a crossing is zero when going straight, but is large when making a turn.

So there is no cost while staying on the same way, while having one when changing.

This is a topological distance in an abstract graph, where nodes are ways, and the

connections between these graph nodes are road crossings—as the Euclidean length

along the way is not considered a cost. In pattern theory, this graph is called the

dual of the original one (Porta et al., 2006). This distance can be called the simplicity

distance, dsimple, because the path between two points with such a minimal distance

is also the simplest one, i.e., the shortest to describe with a minimal number of turns

(Courtat et al., 2011).

This distance is a complex one, which mixes topology with underlying geometry.

The topological distance between the ways is based on the geometrical information

used to reconstruct the ways (do we have to change of way or not). Using this

distance on the ways, counting just the number of turns, a centrality can also be

defined. To take into account the number of possible original and destination points,

we weight a destination way by its length. This can be interpreted as counting the

number of addresses (destinations) on this way. For reasons exposed below, we call

this centrality the structurality of a way :

structurality(wref) =
∑

w∈G
[dsimple(w,wref) ∗ length(w)]. (2)
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Fig. 9. Structuralities of the ways reconstructed with M0, and a threshold angle of 60◦ for

Paris. To enhance the visualization of the indicator, ten length classes of equal total length

have been created. Each way have thus an attribute from 0 to 9 to characterize its structurality,

0, the lower values, being the most structural ways. (Color online)

Similar to the distance-based centralities, the more structural ways are those with

the minimum value for their structurality measure. From those structural ways it is

easier to reach any other point of the network with a minimum topological distance

(minimum number of turns, or way change).

With this topological distance in the dual space, a betweenness can also be

introduced by counting the number of shortest topological paths that pass through

a given way. This betweenness can be called the dual betweenness or betweenness in

the dual space. Conversely, the closeness can be interpreted as a type of structurality

computed on the arcs.

To plot a centrality value in contrasted maps, one has to take into account the

large distribution of values, but also the large distribution of the element (way or

arc) lengths. There is a correlation, as most of the very long ways tend to have

the lowest (best) structurality, especially if they have a high connectivity. If no care

is taken, plotting the values of the structurality in color results in maps which are

homogeneous (Scellato et al., 2006). To avoid this, we classify the centralities such

that each class has the same total length, thus giving the same visual signal on

the maps. With such care, the reconstructed ways and their structurality produce

contrasted maps (see Figure 9).

5 Comparison and spatial robustness of centralities

Contrary to the previous local indices, such as the length and connectivity of

ways, the main problem with any global measure on a geographical graph is that

they should be sensitive to the study area chosen. In other words, they might

indicate the center of the selected surface, with just some weighting considering

the inhomogeneous densities of the network. A striking illustration of this can be

found in Hamaina et al. (2012). For the same topological system, the arc network
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Fig. 10. Histogram of the structuralities of the ways (reconstructed with M0, and a threshold

angle of 60◦) for Paris. One find a Gaussian for lower (interesting) values, and an exponential

tail for high (uninteresting) values.

Fig. 11. The four map samples used to compare the centralities and explore their stability.

Left: the first one (S1) in black is the historical center of Avignon, within the late middle

age walls. The next one extend to the modern periphery belt (S2) in grey. Right: it is further

extended down to the durance (S3), in black, and then further to the East (S4), in grey.

was replaced by either the minimal spanning tree or the over connected Delaunay

triangulation, which connects all the vertices with triangles. Each are very different

networks in structure and geometry (except the unchanged vertices), but computation

of the centralities shows very similar results, indicating the center of the sample.

To investigate this effect as well as the similarity of the structurality and the

betweenness, we compute the closeness (structurality on the arcs), the betweenness

(on the arcs), the dual betweenness (on the ways), and the structurality for several

map samples around the historical center of Avignon (see Figure 11). Avignon is a

good study case because its historical center is located on a side of the map, due to

the natural obstacle of the Rhone river.

Several cuts of Avignon road network are studied here (see Figure 11). The results

computed on sample S4, but restricted to sample S2, are shown in Figure 12. We

apply the same process of drawing ten classes with the same total length for each

class (as in Figure 9), to provide a meaningful visual comparison. The four results
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Fig. 12. Maps of the four centralities restricted on sample S2, after being computed on S4.

Upper right: the betweenness computed on the dual space (ways). Upper left: the structurality

computed on the ways. Lower left: the betweenness computed on the arcs (normal space).

Lower right: the closeness (equivalent to the structurality computed on the arcs). The four

results are different, but there are some similarities: the betweenness are very contrasted,

with high betweenness being next to a very low one, on a noisy background, while the

structuralities, being the result of a mean distance measure, are by nature continuous and

more diffuse. In the same time, the betweenness and structurally on the ways reveal some

similar underlying structure, with converging axes toward the historical center of Avignon,

while the ones computed on the arcs reveal more the peripheral ways. (Color online)

appear clearly different, but common characteristics for indicators computed on

the ways (or arcs) can be seen. For a further quantitative comparison, we have to

take into account that structurality and closeness give very different results than

betweenness (in the dual and normal space). The first is a calculus of a radius on

a surface element, so the order of magnitude is N1/2, where N is the number of

elements in the graphs (arcs or ways). The most central element is the element with

minimum radius. The betweenness is the number of minimal paths passing through

an element, so its order of magnitude is N2, the number of possible pairs with N

elements. The most central element is the element with maximal number. In order

to compare these measures in a quantitative way we take the forth root of the

betweenness, thus also of order N1/2, and we subtract the structurality from twice its

average S , so that the average remains the same but now the most central element

is also the maximum value:

B̃ = B1/4, (3)

S̃ = 2S − S (4)
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Fig. 13. Left: probability density functions of the dual betweenness Bw
∗ and structurality

Sw
∗ for the map sample S4. The betweenness presents a lower cut-off with a large peak

(corresponding to a null value before rescaling), and a tail for higher values compatible with

an exponential. The structurality present on the contrary an exponential tail for low values,

and a Gaussian (more visible on larger sample as Paris, Figure 10) for higher values. Right: the

respective betweenness Bw
∗ and structurality Sw

∗ values for the same ways, when ordered by

increasing order of Sw
∗ (corresponding to the inverse of the cumulative probability). It shows

no clear correlation. More precisely, there are low values of betweenness for his structurally,

and vice-versa.

To further compare all the results (the same measurements on different map

samples and different measurements on the same map samples), we normalize all

the measures m̃ by removing the mean value m and dividing by the standard

deviation σm, giving comparable values all centered on 0 with the same standard

deviation of 1:

m∗ =
(m̃ − m)

σm
(5)

If we compare the two measurements on the ways, dual betweenness and

structurality, the first result is that they present very different distributions (Figure

13 left). The probability of the structurality Sw
∗ is a well-defined peaked and spread

density with an exponential tail toward small values, and a rather Gaussian tail

for high values. The probability of the betweenness Bw
∗ has a sharp lower cut

corresponding to numerous ways having a betweenness value of zero, and a tail

compatible with an exponential for larger values. Even with different scaling, there

does not seem to be a clear correlation when the values of the structurality are

ordered. The values of the betweenness fluctuate without clear tendency: high

betweenness corresponds to high as well as low structurality (Figure 13 left).

To get a better idea, one can directly plot the respective values for the same

elements. Once again there is not a correlation, both for the ways and the arcs

(Figure 14). To quantify this, a Pearson correlation is computed between the two

measurements: CB,S = S∗
w(k)B∗

w(k)k (Figure 16 left).

To analyze the stability of a measurement m within a map sample, one can plot the

respective values obtained for the elements common in both samples (see Figure 15).
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Fig. 14. Left: Dual betweenness plotted versus stucturality for all the ways of S4. Right: the

betweenness plotted versus the closeness for all the arcs of S4. The two clouds do not indicate

much correlation, rather for both cases the independence of the two distributions, except for

both high values (upper left corner).

The map plots show different results, but with some common features. In particular,

the measurements on the ways appear to be much more robust to border changes.

As for comparing different measurements, the robustness of a measurement m on

the map samples Si and Sj (Si being included in Sj) can be quantified using the

Pearson correlation between the two results, restricted to the common elements of

the map samples: Cm,i,j = mi
∗(k)mj

∗(k)k (Figure 16 right). The fact that the values for

each indicator make a monotonous curve, when drawn as a function of the sample

size ratio, indicates that this dominates the sample size effects. The results show

that the most stable measurement is the dual betweenness on the ways, followed by

the structurality, the betweenness on the arcs, and finally closeness. The closeness

shows some negative correlation when the sample size ratio is too large: it flips from

indicating the sample center to the periphery belts for larger samples.

These results indicate first that the way is a useful object for analyzing cities.

When one looks at the resulting maps (Figure 12), he can see that ways indicate

internal radial structures, showing some positive correlations on the high values. On

the contrary, these radial structures disappear in the centralities measured on the

arcs. Even if the self-correlation curve of the betweenness on the arcs is still high,

one can see in the direct plots (Figure 15 lower left) that the rare high betweenness

points are diffuse. Betweenness also remains somehow correlated with the closeness.

Those observations should lead to caution when using this indicator, and handling

its results.

Ways and indicators based on it can also be considered given a calculus efficiency

point of view. The computational time of betweenness and structurality indicators

differ. The computational complexity of betweenness on the arcs is high: one has to

compute the shortest path for each pair of elements, O(N2), where N is the number

of arcs. Unfortunately, when the real length along the elements is considered, there

is no quick algorithm to find it and one has to explore all the possible ways blindly,

with a complexity of O(N2). This results in a total complexity of O(N4). On the other

hand, when computed on the ways, betweenness can use a faster algorithm to find

the shortest path, topological, leading to a complexity of only O(n), where n is now
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Fig. 15. Plots of a measurement for the sample S2 as a function of the same measurement for

the sample S4, restricted to the common elements. Up left: dual betweenness computed on the

ways Bw
∗. Up right:structurality Sw

∗. Lower left: betweenness computed on the arcs Ba
∗. Lower

right: closeness Ca
∗. There are common trends for the betweenness, to have the strongest

accumulation for an originally zero value, and to remain even after the renormalization closer

to small values. On the contrary, the structuralities are more evenly spread, slightly toward

to high values. One can also see that the computation on the ways are very stable, focused

on the diagonal, while the measurement on the arcs are more diffused, with a cloud for high

values for the betweenness, and a global spreading for the closeness.

the number of ways, which is smaller than the number of arcs N (roughly 1/3rd).

This leads to a total complexity of O(n3). So computed on the ways the betweenness

is not only more robust but much quicker to compute. Finally, the complexity of the

structurality is lower. Because it is just a mean distance measure, it can be computed

for each element in O(n), resulting in a total complexity of O(n2) (the complexity of

the closeness is O(N2)). For tractable and reasonably stable results, one should thus

compute the structurality on the ways.

6 Robustness in space and time of the ways

The robustness of the centrality indicators computed on the ways might be surprising,

because they integrate the effects of all the elements in the chosen map. A first

explanation is that the ways are multi-scale spatial elements, ranging from small
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Fig. 16. Left: Pearson correlation between the betweenness and the structurality, computed

both on the ways and on the arcs, for the four map samples. They are ordered as a ratio of

number of elements to the maximum number of elements (for S4, 2687 ways, and 7771 arcs).

Except for the small sample S1, there is only a small correlation between the structurality

and the betweenness computed on the ways. When computed on the arcs, there remains a

medium correlation between the betweenness and the closeness. This could have been seen in

Figure 12. Right: Pearson correlation for the four measurements, for the same indicators but

on different size samples. The values are ordered along the ration of size of the two samples

compared, as indicated. The most stable measurement is the dual betweenness on the ways,

followed by the structurality, then the betweenness on the arcs, with finally a very unstable

closeness.

connections to large distances extending throughout the map. In this case, the

centrality of a small way surrounded by large ones does not depend strongly on

the rest of the map, beyond these large ways (when normalized). But this particular

type of structure comes from the development of the road network in time, similar

to crack patterns (Bohn et al., 2005b): the first elements are the longest, and the

successive ones are connections between the previous ones. This leads to degree three

intersections, which we found are common, even if the roads extend on average over

two or three crossings (Figure 1).

In cities, the earliest ways correspond to the connections of small city centers with

other surrounding urban centers. The number of city-connecting roads is a good way

to deduce the respective age and importance of cites (Watteaux, 2009; Watteaux,

2012). These essential first ways are very stable. This robustness is not necessarily in

their particular geographical inscriptions, as they can first wander around a globally

fixed itinerary. It is in the preservation of their continuity and local straightness

because they are the necessary ways that allow circulation (Watteaux, 2012). As soon

as these roads are urbanized (surrounded by houses) their geographical inscription

becomes more fixed. Heavy destruction and reconstruction of houses are then

necessary to align the streets. This has been a constant process in cities’ histories

since the renaissance and the discovery of perspective. These city-connecting roads,

which by construction cross a whole territory, are thus very stable. Their dense
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interconnection, denser than for cracks and closer to a Delaunay triangulation,

could explain the supernumerary of long ways (Figure 3).

Following the term of Scellato et al. (2006), we could say that those roads

create the backbones around which the space will be divided, first by rural parcels

and paths, then by local urban extensions. This corresponds to the creation of

numerous little perpendicular roads (Watteaux, 2003). The difference between roads

and cracks is that a new road can actually cross an older one, thus creating a degree

four intersection. Even if this is the general image we have of a crossing, Figure 1

shows that limiting new roads to connecting close previous ones and not extending

through the whole city is not the most common case. This explains why the typical

way length (150 m, Figure 3) is just few times the arc length (60 m, Figure 1). These

local connections maintain a successive hierarchical division of the space. It is this

hierarchical process in time that explains the log-normal distribution of the length

of the ways (Figure 3).

The fact that these successively created connections can still be identified by means

of the construction of ways also comes from the spatial stability of these elements,

in particular of their crossing geometry. This stability is not always present in other

hierarchical successive reticulated pattern creation. For instance, in leaf venation

patterns, the geometrical angle of the reconnections, even with only degree three

connections, are modified by the ongoing surface expansion, and finally converges

to an angular equilibrium closer to bubble foam (Bohn et al., 2002). In fact, detailed

observations of cities show that the goal of town planners to control the city

structure is precisely to modify the geometry of the crossings to impose particular

ways continuity and forbid others, like roundabouts (Figure 8).

Reconstructed ways are an indication of a particular spatial history, by their

successive hierarchical construction, and the preservation of their spatial geometry

in time. They are thus a good indication of a particular developmental pattern in

space and time.

This stability can be observed in the most structural elements, as in Paris (Figure 9)

or Avignon (Figure 17). For Paris, we indeed see that the most structural part is

on the right side of the Seine, where the middle age city first developed after the

destruction of the Gallo-Roman city (on the hills of the left bank) (Huard, 2013;

Rouleau, 1988). The radiating roads to the surrounding villages are indeed very

structural, such as the “route de St Jacques” (path to the Spanish pilgrimage site

built in the 15th century), and some oblique historic roads such as “route de Sèvre,”

“de Vaugirard,” and “de Belleville,” or the road to the West, “route du Faubourg St

Honoré,” before the 1800’s piercing of “rue de Rivoli” slightly closer to the Seine,

“du Faubourg Poissoniére” (North, bringing fish from the Channel to Paris), “du

Faubourg St Antoine” (East) etc. In Avignon, one can also see the radial structure

connecting the city center at the South bottom of the rock, on which Papal palace

is built to Lyon, going first East and then North along the left bank of the Rhone,

with the road “de la Carreterie” and “route de Lyon,” or to Arles, going south to

cross the Durance (on different crossing locations with time) and Aix-en-Provence,

South-East along the right bank of the Durance. Beyond these historic access roads,

one can also recover the successive belts of protecting walls, like the middle age

ones inside the present walls of Avignon, or the several successive ones in Paris, or

some of the more modern highway belts around Paris and South of Avignon.
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Fig. 17. Structuralities of the ways of Large Avignon, ways reconstructed with method 0–60◦,
and structuralities ranked in ten length classes. The upper part is limited by the major river

Rhone, on the South by the joining river Durance. On the East, the map has been cut around

the South French Highway (A7), just before another natural obstacle of South-North hills.

(Color online)

7 The strucurality of the ways as a mean to read history

It is interesting to see that we can recover historical ways, even when their historical

importance was not transcribed in large boulevards or modern highways. This

phenomenon appears precisely because we use only the geometrical core of the

roads, without considering other characteristics (width and treatment). It is also

interesting to see that modern planning can also be observed, such as most of

the highway belts, which usually fulfill the aim of making the city easier to cross.

One example is the case of “Hausmann”, a type of new road piercing with limited

extensions. In Paris, most of them do not appear to be very structural. For instance,

the “Boulevard St Michel” close and parallel to “rue St Jacques,” is much less

structural than this much older one. This is because these road piercings, even if

they have a strong local impact—in the road treatment (much wider), or offering

a nice view on essential buildings (the Opera)—are very limited in length and

do not cross the whole city. Another observation is that many of them, even if

long like the successive internal belts, are regularly cut at large places, creating

roundabouts. There is however a special case when the two structures are coherent,

like when the “rue de Turbigo” diagonally crosses the right bank square pattern, and

connect straightaway to “route de Belleville—an old exit of Paris from “Faubourg

du Temple” to the then outside village of Belleville. In this case, they both reinforce

each other to create the most structural element on the map. Such interactions

between old and new structures should be studied in more detail, as in (Barthelemy

et al., 2013), using the stable indicators computed on the ways.

In terms of structurality, the effect is simple to understand, because the addition

of any element, be it local or cutting through a larger territory, just makes the
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Fig. 18. Left : Structurality maps of Villers-sur-mer. Right : Google c© map showing present

representation. (Color online)

structurality of connected or crossed ways comparatively better. For the betweenness

the effect can vary. The new elements can create shortcuts decreasing the betweenness

of the surrounding previous elements. Alternatively, it might slightly increase the

betweenness of the local elements which shorten the path to get to them (Strano

et al., 2012). The asymmetrical cloud in Figure 15 shows that it is the betweenness

of elements that are degraded.

The structurality also has some advantages over dual betweenness, because of

its more continuous diffuse nature. The dual betweenness will highlight the main

important ways, but not the small ways connected to them (Figure 12 upper left).

On the other hand, the structurality will highlight the same important ways, but

also the ones closely connected to them (Figure 12 upper right). This is interesting

from the perspective of the historical development of road patterns. The main ways

are indeed the first ones but the small ways around them seem to be next to appear,

before the rest of the territory is densified. It is thus interesting to highlight them too.

A good example of this process is the small city of Villers-sur-mer on the Channel

(Figure 18).

Independent of the present use of the streets (Figure 18 right), the structurality

correlates with the history of the city (Figure 18 left). Villers-sur-mer started around

a small community around a church, slightly inland and protected at the base of

little hills. The main road was then diagonal to the sea reaching the harbor near

the intersection of the cliffs and the sea. Between the two, around this diagonal

street, houses with small perpendicular streets extended. They still constitute the

main structural ways, even if the main road is now along the sea shore and climbing

the cliff around the 19th century villas. The fact that the small perpendicular streets

are still quite structural, due to their direct connection with the first historical way,

reveals precisely their corresponding historical importance.

The diffuse structurality indicator can be checked in other cultural environments,

such as in the city of Manaus (Brazil). The reconstruction of the ways and

the analysis of their structurality is able to recover the city’s historical center,

which is globally very structural, the main connection roads, and the successive

urbanization, when compared with a historical maps reconstructed by D. Rietz
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Fig. 19. Manaus city (Brazil) left: structurality map. Right: expansion of the city from 1852

to 2012 (data from D. Rietz). (Color online)

(personal communication, Figure 19). Of course, more detailed studies of the link

between historical development and structurality analysis of the ways are necessary,

particularly in the case of large scale reorganization.

8 Conclusion - discussion

We have shown that the way is a complex multi-scale object with interesting

properties. First, it can be reconstructed using only the geometry of the road

skeleton and the local information at crossings, allowing for simple and rapid

analysis. Despite this simplicity, it reveals many features of the street pattern. We

presented many observations, such as the preponderance in the distribution of road

angles at crossings of 0◦ and 90◦. This exhibits distinct power laws, the Gaussian

distribution of angles inside ways (when normalized by random connections, Figure

2), the asymmetrical log-distribution of arc length, the log-normal distribution of way

length with supernumerary long ones (Figure 3), the power law of their connectivity

(Figure 7), and the Gaussian-exponential distribution of the structurality measure

(Figure 10). All these information on real street networks derived from ways are

quantitative benchmarks for any model of street pattern growth (Barthelemy, 2011).

After having specified the best method to reconstruct these ways, we defined a new

centrality indicator computed on the ways, the structurality. Compared with other

measures, such as the betweenness computed on the arcs, or the dual betweenness

computed on the ways, it appears to be a new independent indicator, that is quicker

to compute, easier to analyze, and more revealing.

In general the measures computed on the ways proved to be more significant,

because they revealed more underlying structure (like the radial roads), while the

ones computed on the arcs revealed the map centers or surrounding belts (Figure

12). They appear also to be more stable with respect to the sample map studied.

This is proof of the fundamental usefulness of the ways.

The construction of the way, and their analysis is based only on the network

skeleton. It thus cannot be directly related to other analysis that emphasized the

importance of the road treatment on the flux they can carry (Banos & Thevenin,
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2013; Genre-Grandpierre & Banos, 2010). Studying the skeleton characteristics

reveals what the use of the streets could be. It would be interesting however to

compare the result of the indicators computed on the ways to the studies on

the fluxes, to see if the treatment of the roads could also be correlated with the

importance of the way. A rapid assessment seems to show a correlation, even if

some exceptions exist, such as “rue St Honoré” in Paris.

The fact that the indicators based on the ways reveal some very particular

and structured networks can be explained by the particular formation of a spatial

pattern in time. It shows that the street pattern is essentially a successive hierarchical

construction, with first the longest streets appearing and then smaller ones branching

from them in successive, nearly local, divisions. The fact that this process is still

visible in the present street pattern also shows that the network, and in particular

its geometry, has been only slightly modified during its evolution, preserving its

hierarchical nature.

This successive growth and this stability should be questioned in view of the users

(and planners) of these networks. This particular growth must correspond to the

nature of people, gathering successively close to already dense human aggregations.

They need access to living space, and thus create new roads, that begin hierarchical

growth. The fact that this first growth structure is preserved afterward, like in cracks

but not like in leaf veins (Bohn et al., 2002), is in itself meaningful. The first reason

could just be the high cost, both economical and social, of reorganizing the street

pattern. The second reason could be that the need to do so does not arise. In other

words, the structure thus created could be efficient enough and satisfying to the

users (Hillier, 2006). Any other type of structure, for instance honey comb patterns

as attempted in the 70’s, might not allow this simple and efficient representation,

and thus finally are discarded by the users.

Although this deserves to be investigated in more detail in town planning

and sociology, this last remark already corresponds to previous findings on the

strategy of taxi-drivers (Pailhous, 1970). It was shown that the existence of few

very structural ways allowed them to construct rapid and efficient strategies to

find simple and short paths from any point to any other. The strategy is just to

connect from a departure point to a close well-known structural way, then move

with minimal turns, and only at the last moment go into lower structural ways up

to approach the destination. This strategy is in fact optimal in terms of simplicity,

maximizing the use of the driver’s previous knowledge, and minimizing the search

for particular solutions. The simplest path gives an efficient method to compute a

good approximation for the shortest path along the network, in a less demanding

computational time (Courtat, 2012). Simplest path is simpler than constant re-

orientation evaluation (Lee & Holme, 2012), if global knowledge of the map is

available.

Finally, we see that with only a local rule, computed at each vertex, one can

construct an elaborated and multi-scale element to analyze the deep structure of

a reticular network (Perna et al., 2011). This can be easily extended to other

geometrical networks, such as delta and mangrove water networks, leaf nervation,

ceramic cracks, etc. In the case of road networks, the use of the alignment as the

criteria to construct the hypergraph is revealed to be very powerful, allowing us to

recover both the structure of a city and its history.
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