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Small perturbation evolution in compressible Poiseuille flow is contrasted against
the incompressible case using direct simulations and non-modal linear analysis. The
onset of compressibility effects leads to a profound change in the behaviour of
pressure and its interaction with the velocity field. Linear analysis shows that the
most significant compressibility outcome is the harmonic coupling between pressure
and wall-normal velocity perturbations. Oscillations in normal perturbations can lead
to periods of negative production causing suppression of perturbation growth. The
extent of the influence of compressibility can be characterized in terms of an effective
gradient Mach number (Me

g). Analysis shows that Me
g diminishes as the angle of the

perturbation increases with respect to the shear plane. Direct numerical simulations
show that streamwise perturbations, which would lead to Tollmien–Schlichting
instability in the incompressible case, are completely suppressed in the compressible
case and experience the highest Me

g. At the other extreme, computations reveal that
spanwise perturbations, which experience negligible Me

g, are entirely unaltered from
the incompressible case. Perturbation behaviour at intermediate obliqueness angles is
established. Moreover, the underlying pressure–velocity interactions are explicated.

Key words: compressible boundary layers, compressible flows

1. Introduction
Poiseuille flow has long served as the archetypal flow for examining near-wall

instability, transition and turbulence phenomena (Landahl 1980; Thomson 1887;
Butler & Farrell 1992; Schmid & Henningson 2001). This flow embodies much of
the fundamental physical features of complex engineering boundary layers without
many of the undue complications. Poiseuille flow is ideally suited for examining the
fundamental effects of compressibility on wall-bounded shear flows at high Mach
numbers. With increasing Mach number, pressure undergoes a profound change in
character. At low Mach numbers, hydrodynamic pressure is a Lagrange multiplier
(Reddy 1984) with the only function of preserving the divergence-free velocity field.
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The resulting low Mach number velocity field is solenoidal in character. At higher
Mach numbers, pressure is a bona fide thermodynamic state variable and its evolution
is governed by energy and state equations. Pressure then exhibits wave behaviour,
leading to the emergence of a dilatational (wave-like) component of the velocity
field. This leads to profound changes in pressure–velocity interactions which affects
flow stability and turbulence. The objective of the present work is to contrast the
evolution of small perturbations in Poiseuille flow at high and low Mach numbers.
The focus is on understanding the influence of changing pressure–velocity interaction
on perturbation evolution at different speeds. The interactions are first examined by
performing linear analysis of compressible Poiseuille flow and then the inferences are
verified against temporal direct numerical simulations (DNS).

In the literature, linear stability theory employing eigenvalue analysis is generally
used to examine modal perturbation growth in fluid flows. Since the focus of this
work is on understanding the transient pressure–velocity interaction mechanism and
its influence on perturbation growth, we perform non-modal initial value analysis of
the linearized governing equations along the lines of rapid distortion theory (RDT) –
see Simone, Coleman & Cambon (1997) and Livescu & Madnia (2004).

In recent years, the present group has been developing insight into the pressure–
velocity interactions and perturbation growth in homogeneous shear flows (Bertsch,
Suman & Girimaji 2012; Lavin et al. 2012; Kumar, Bertsch & Girimaji 2014;
Kumar et al. 2015; Lee, Venugopal & Girimaji 2016). Findings from these studies
of homogeneous shear turbulence are invaluable for understanding Poiseuille flow
behaviour. The major results from previous studies are now summarized.

(i) Using RDT, Lavin et al. (2012) establishes that the evolution of turbulent kinetic
energy of an isotropically distributed ensemble of perturbation wave vectors in
high Mach number homogeneous shear flow exhibits a three-stage evolution. The
three stages are demarcated on the basis of the relative magnitude of shear and
acoustic time scales. Thus, the shear–acoustic time scale ratio is established as
an important parameter influencing perturbation growth.

(ii) In Bertsch et al. (2012), the energy exchange between potential energy (pressure)
and dilatational kinetic energy is investigated using RDT. Energy redistribution
between different Reynolds stress components is also established.

(iii) The influence of wave vector orientation on perturbation growth in compressible
homogeneous shear flow is examined using RDT and DNS in Kumar et al.
(2014).

(iv) Potential control strategies for inhibiting turbulent kinetic energy growth in shear
homogeneous flows at high Mach numbers are examined in Kumar et al. (2015).

(v) The competition between return-to-isotropy and potential–kinetic energy equiparti-
tion in anisotropic decaying dilatational turbulence is investigated in Lee et al.
(2016) using DNS.

The above studies establish the nature of interactions between pressure and velocity
fields in homogeneous turbulence. In Karimi & Girimaji (2016), linear analysis
and DNS are extended to mixing layers. It is shown that the wave-like dilatational
velocity field disrupts the Kelvin–Helmholtz rollers inhibiting roll up, instability and
thus mixing in high-speed flows. The pressure-released limit of Poiseuille flow is
examined in (Xie & Girimaji 2014).

The present work examines the effect of compressibility on perturbation growth in
compressible Poiseuille flow. One of the key objectives of this work is to investigate
the effect of the dilatational field on Tollmien–Schlichting waves which initiate
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transition to turbulence in many boundary layers of practical importance. The focus of
the work is to understand compressibility-induced physical mechanisms that influence
perturbation evolution. The principal goal is to explain the transient behaviour in
the context of changing pressure–velocity interactions with increasing Mach number.
While this insight is important for developing transition and turbulence models, such
efforts are deferred to future works. We perform the following studies.

(i) Analyse the initial value problem arising from the linearized perturbation
equations to compare and contrast the pressure–velocity interactions in incom-
pressible and compressible flows. The role of perturbation mode orientation with
respect to the shear plane is examined.

(ii) Perform temporally evolving direct numerical simulations of small perturbation
growth in compressible Poiseuille flow with a parabolic base field sustained by
suitable forcing. The base temperature and pressure fields are determined from
the requirement that the parabolic velocity field is a steady state solution of the
governing equations. Both adiabatic and isothermal wall boundary conditions are
considered. The simulations cover a wide range of Mach and Reynolds numbers.

(iii) Use linear analysis and DNS results to develop a clear physical explanation of the
pressure–velocity interactions and their effect on the transient evolution of small
perturbations in wall-bounded high-speed flows.

The governing equations and linear analysis are presented in § 2. A brief
introduction of the numerical approach is given in § 3. The DNS results are presented
in § 4. The results and the outcome of linear analysis are used to develop a physical
explanation of the underlying pressure–velocity interactions. We close in § 5 with a
summary of the salient contributions.

2. Governing equations and linear analysis
The compressible Navier–Stokes equations along with ideal-gas law form the basis

of this study:

∂ρ

∂t
+ ∂

∂xj
(ρuj)= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= 1
ρ

∂τij

∂xj
, (2.2)

ρcv

(
∂T
∂t
+ uj

∂T
∂xj

)
= ∂

∂xj

(
k
∂T
∂xj

)
+ τijeij, (2.3)

p= ρRT, (2.4)

where ρ is the fluid density, ui is velocity component, T is temperature, p is the gas
pressure, τij is the full stress tensor, eij is the rate of strain tensor, cv is the specific
heat at constant volume, k is the coefficient of thermal conductivity, R is the specific
gas constant, xi is the spatial coordinate and t is time. The rate of strain and stress
tensors are given by:

eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.5)

τij = 2µ eij +
[

2
3(λ−µ)ekk − p

]
δij, (2.6)

where µ is the coefficient of dynamic viscosity, λ is the coefficient of second viscosity
and δij is the Kronecker delta. We consider a calorically perfect gas and set the Prandtl
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number (Pr) to 0.7. The specific heat ratio γ is 1.4. The dynamic viscosity is assumed
to follow Sutherland’s law (Heiser & Pratt 1994):

µ=µ0

(
T
T0

)2/3 T0 +C
T +C

, (2.7)

where T0 is the reference temperature which is 273.15 K, µ0 is the viscosity at
reference temperature which is 1.716 × 10−5 kg m s−1 and C is the Sutherland
temperature which is 110.4 K. The DNS performed in this study solve the full set
of equations. The analysis is however restricted to linearized equations.

2.1. Linear analysis
The objective of the study is to examine small perturbation evolution in a compressible
parallel shear flow subject to the above conservation and state equations. The flow and
thermodynamic variables are decomposed into base and perturbation fields:

ρ = ρ + ρ ′; ui = Ūi + u′i; p= p̄+ p′; T = T̄ + T ′, (2.8a−d)

where ¯(·) and (·)′ represent the base/background flow and the perturbation field,
respectively. The base flow satisfies the following equations:

∂ρ̄

∂t
+ ∂ρ̄Ūi

∂xi
= 0, (2.9)

∂Ūi

∂t
+ Ūj

∂Ūi

∂xj
=− 1

ρ̄

∂ p̄
∂xi
+ 1
ρ̄

∂

∂xj

[
µ

(
∂Ūi

∂xj
+ ∂Ūj

∂xi

)]
+ 1
ρ̄

∂

∂xi

[
2
3
(λ−µ)∂Ūj

∂xj

]
, (2.10)

∂ p̄
∂t
+ Ūj

∂ p̄
∂xj
=−p̄γ

∂Ūk

∂xk
+ f̄ (k)+ ḡ(µ), (2.11)

where f̄ (k) and ḡ(µ) denote the effects of heat conduction and viscous transport on
the base field, defined as:

f̄ (k)= R
cv

∂

∂xj

(
k
∂T
∂xj

)
, (2.12)

ḡ(µ)= R
cv

[
2µ eijeij + 2

3
(λ−µ)ekkekk

]
. (2.13)

2.1.1. Simplifying assumptions for Poiseuille flows
In this work, the base flow is a planar shear flow with parallel streamlines:

Ūi = (Ū1(x2), 0, 0) leading to ∂Ūi/∂xi = 0. (2.14)

Here, x1 is defined as the streamwise direction, x2 is the wall-normal direction and
x3 is the spanwise direction. In numerical simulations, this velocity field is sustained
using appropriate forcing (Xie & Girimaji 2014). Due to body-force type of forcing,
the background density and pressure fields are nearly spatially invariant to linear order.
Thus for the purpose of analysis we assume

ρ̄(x)≈Const.; p̄(x)≈Const. (2.15a,b)
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A perturbation is introduced into the background field and its subsequent evolution is
the subject of the numerical simulations and linear analysis. The nonlinear effects and
variations in fluid properties such as viscosity and heat conductivity are neglected in
the analysis:

µ(x)≈Const.; k(x)≈Const. (2.16a,b)

In the numerical simulations, however, ρ̄, p̄, µ and k vary according to the governing
equations.

2.1.2. Perturbation equations for Poiseuille flows
By subtracting base flow equations from those of instantaneous flow, the linearized

perturbation evolution equations are derived:

∂ρ ′

∂t
+ Ū1

∂ρ ′

∂x1
=−∂ρ̄u′k

∂xk
, (2.17)

∂u′1
∂t
+ Ū1

∂u′1
∂x1
=− 1

ρ̄

∂p′

∂x1
− u′2

∂Ū1

∂x2
+ µ
ρ̄

∂

∂xj

(
∂u′1
∂xj
+ ∂u′j
∂x1

)
+ 2(λ−µ)

3ρ̄
∂

∂x1

(
∂u′j
∂xj

)
,

(2.18)
∂u′2
∂t
+ Ū1

∂u′2
∂x1
=− 1

ρ̄

∂p′

∂x2
+ µ
ρ̄

∂

∂xj

(
∂u′2
∂xj
+ ∂u′j
∂x2

)
+ 2(λ−µ)

3ρ̄
∂

∂x2

(
∂u′j
∂xj

)
, (2.19)

∂u′3
∂t
+ Ū1

∂u′3
∂x1
=− 1

ρ̄

∂p′

∂x3
+ µ
ρ̄

∂

∂xj

(
∂u′3
∂xj
+ ∂u′j
∂x3

)
+ 2(λ−µ)

3ρ̄
∂

∂x3

(
∂u′j
∂xj

)
, (2.20)

∂p′

∂t
+ Ū1

∂p′

∂x1
=−p̄γ

(
∂u′k
∂xk

)
+ f ′(k)+ g′(µ), (2.21)

where the functions f ′(k) and g′(µ) represents the linear effects of heat conduction
and viscous transport on the perturbation field. For the simplified case considered in
this analysis, these function are given by

f ′(k)= R
cv

k
∂2T ′

∂x2
j
, (2.22)

g′(k)= 2
R
cv
µ eije′ij. (2.23)

However, for the more general case that k and µ vary with temperature, the reader is
referred to Mack (1984).

The growth in the perturbation kinetic energy is due to the production term:
−u′2(∂Ū1/∂x2) on the right-hand side of (2.18). It is also important to examine
perturbation vorticity evolution. For the sake of comparison between baroclinic
and other compressibility effects, we temporarily include the background density
variation. From the velocity field, the linearized vorticity perturbation equations can
be obtained:

∂ω′1
∂t
+ Ū1

∂ω′1
∂x1
= 1
ρ̄2

∂ρ̄

∂x2

∂p′

∂x3
− ∂Ū1

∂x2

∂u′3
∂x1
− µ

ρ̄2

∂ρ̄

∂x2

(
∂2u′3
∂2xk
− 1

9
∂2u′k
∂x3∂xk

)
+ µ
ρ̄

(
∂3u′3
∂2xk∂x2

− ∂3u′2
∂2xk∂x3

)
, (2.24)
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∂ω′2
∂t
+ Ū1

∂ω′2
∂x1
= −∂Ū1

∂x2

∂u′2
∂x3
+ µ
ρ̄

(
∂3u′1
∂2xk∂x3

− ∂3u′3
∂2xk∂x1

)
, (2.25)

∂ω′3
∂t
+ Ū1

∂ω′3
∂x1
= 1
ρ̄2

∂ρ̄

∂x2

∂p′

∂x1
− ∂Ū1

∂x2

(
∂u′1
∂x1
+ ∂u′2
∂x2

)
− µ

ρ̄2

∂ρ̄

∂x2

(
∂2u′1
∂2xk
− 1

9
∂2u′k
∂x1∂xk

)
+ µ
ρ̄

(
∂3u′2
∂2xk∂x1

− ∂3u′1
∂2xk∂x2

)
+ u′2

∂2Ū1

∂2x2
. (2.26)

Among the three components, the spanwise vorticity perturbation (ω′3) is the
most relevant for shear flow instability investigation as it is central to Tollmien–
Schlichting (TS) wave formation. In spanwise vorticity perturbation equation (2.26),
multiple mechanisms can be identified. On the right-hand side of (2.26), the
first term (∂ρ̄/∂x2)(∂p′/∂x1)/ρ̄

2 represents the baroclinic effect, the second term
(∂Ū1/∂x2)

(
∂u′1/∂x1 + ∂u′2/∂x2

)
represents compressible vortex production (CVP), the

third and fourth terms denote viscous effects and finally the last term u′2(∂
2Ū1/∂

2x2)

is the second derivative effect.
Inspection of the transport equations reveals that instability of shear flows manifest

via two critical terms: u′2(∂Ū1/∂x2) in the velocity equation (2.19) and u′2(∂
2Ū1/∂

2x2)

in the vorticity equation (2.26). Clearly, the evolution of normal perturbation (u′2)
plays a major role in determining the instability growth characteristics in both
incompressible and compressible shear flows. Thus, the first key challenge is to
establish how the change in character of pressure affects the evolution of u′2.
Considering the spanwise vorticity equation, it is evident that the compressibility
effects also manifest via the baroclinic and CVP terms. Then, the second challenge is
to examine the balance between the second derivative and the compressibility effects.

2.2. Pressure–velocity interaction in compressible flows
To examine the pressure–velocity interactions in an arbitrary planar shear flow, we
temporarily suppress the viscous terms. The inviscid perturbation equations are:

∂ρ ′

∂t
+ Ū1

∂ρ ′

∂x1
=−∂ρ̄u′k

∂xk
, (2.27)

∂u′1
∂t
+ Ū1

∂u′1
∂x1
=− 1

ρ̄

∂p′

∂x1
− u′2

∂Ū1

∂x2
, (2.28)

∂u′2
∂t
+ Ū1

∂u′2
∂x1
=− 1

ρ̄

∂p′

∂x2
, (2.29)

∂u′3
∂t
+ Ū1

∂u′3
∂x1
=− 1

ρ̄

∂p′

∂x3
, (2.30)

∂p′

∂t
+ Ū1

∂p′

∂x1
=−p̄γ

(
∂u′k
∂xk

)
. (2.31)

To facilitate further analysis, we apply the Howarth–Dorodnitsyn transformation
(Howarth 1948). The flow evolution is now described in a coordinate moving with
the background convective velocity:

X1 = x1 −
∫ t

0
U1(x2) dξ, X2 = x2, X3 = x3, t= t. (2.32a−c)
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The perturbation equations (2.17)–(2.21) can be rewritten in the new frame as
follows:

dρ ′

dt
=−∂ρ̄u′1

∂X1
+ ∂ρ̄u′2
∂X2
− ∂ρ̄u′2
∂X1

∫ t

0

∂Ū1

∂x2
dξ + ∂ρ̄u′3

∂X3
, (2.33)

du′1
dt
=− 1

ρ̄

∂p′

∂X1
− u′2

∂Ū1

∂x2
, (2.34)

du′2
dt
=− 1

ρ̄

∂p′

∂X2
+ 1
ρ̄

∂p′

∂X1

∫ t

0

∂Ū1

∂x2
dξ, (2.35)

du′3
dt
=− 1

ρ̄

∂p′

∂X3
, (2.36)

dp′

dt
=−p̄γ

(
∂u′1
∂X1
+ ∂u′2
∂X2
− ∂u′2
∂X1

∫ t

0

∂Ū1

∂x2
dξ + ∂u′3

∂X3

)
. (2.37)

Without further loss of generality, we will consider perturbation modes that are
periodic in X1 and X3 with an arbitrary initial profile in the X2 direction:

u′j = ûj(X2, t)ei(κ1X1+κ3X3); p′ = p̂ (X2, t)ei(κ1X1+κ3X3), (2.38a,b)

where κ1 and κ3 are the initial perturbation wavenumbers in the streamwise and
spanwise directions, i = √−1 denotes the unit imaginary number and (·̂) denotes
the amplitude of the corresponding perturbation mode. The amplitude is a function
of time and normal coordinate. By substituting (2.38) into (2.34)–(2.37), evolution
equations of the Fourier amplitude of the perturbation field can be obtained:

dû1

dt
=−iκ1

p̂
ρ̄
− û2S, (2.39)

dû2

dt
=− 1

ρ̄

∂ p̂
∂X2
+ iκ1

p̂
ρ̄

∫ t

0
S dξ, (2.40)

dû3

dt
=−iκ3

p̂
ρ̄
, (2.41)

dp̂
dt
=−γ p̄

[
iκ1û1 + ∂ û2

∂X2
− iκ1û2

∫ t

0
S dξ + iκ3û3

]
, (2.42)

where the background shear in the normal direction, S(x2) or S, is given by

S= ∂U1

∂X2
. (2.43)

Equations (2.39)–(2.42) constitute the initial value problem of interest. It is established
in previous works on homogeneous shear flows (Livescu & Madnia 2004; Kumar et al.
2014) that dilatational velocity is generated on the shear plane. Dilatational velocity
represents a large fraction of the normal perturbation (u′2) and a small portion of the
streamwise component (u′1). Many of the compressibility effects can be understood by
examining the pressure–velocity (p′–u′2) interactions at different speed regimes.

To non-dimensionalize the perturbation equations (2.39)–(2.42), we introduce
dimensionless time and space coordinates:

t∗ = St; x∗i = κxi, (2.44a,b)
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FIGURE 1. (Colour online) Definition of an obliqueness angle based on the
initial orientation.

where κ = |κ(0)| = √κ2
1 + κ2

3 is the initial value of the wavenumber magnitude.
Equation (2.42) in the non-dimensionalized temporal and spatial coordinates defined
in (2.44) can be rewritten as

S2

ā2κ2

∂2p̂
∂t∗2 =

∂2p̂
∂x∗2
− p̂+

[
i
(κ1

κ

) ∂S∗

∂x∗2
+
(κ1

κ

)2
S∗2
]

p̂+ 2i
(κ1

κ

) ρ̄
κ

û2S, (2.45)

where ā=√γ p̄/ρ̄ is the speed of sound in the background flow and S∗ = ∫ t
0 S dξ .

To identify the role of perturbation orientation in the evolution of compressible
Poiseuille flow, we introduce two parameters. Firstly, referring to figure 1, the
obliqueness angle β is defined as the angle between wave vector κ and the streamwise
coordinate x1, given by

β ≡ cos−1
(κ1

κ

)
. (2.46)

Secondly, the effect of compressibility on flow stability is characterized by gradient
Mach number, Mg, defined by (Sarkar 1995):

Mg ≡ Sl
ā
= S

āκ
. (2.47)

Now (2.45) can be written in a form wherein the effects of Mach number and
obliqueness can be easily identified:

M2
g
∂2p̂
∂t∗2 =

∂2p̂
∂x∗2
− p̂+

[
i
∂S∗

∂x∗2
cos β + S∗2 cos2 β

]
p̂+ 2i

ρ̄

κ
û2S cos β. (2.48)

For the sake of convenience, the following normalizations for pressure and velocity
amplitude are suggested by:

û∗i = ûi/ā; p̂∗ = p̂/p̄. (2.49a,b)
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These definitions and further mathematical manipulation of equations (2.39)–(2.42)
lead to the following hyperbolic equation for pressure:

M2
g
∂2p̂∗

∂t∗2 =
∂2p̂∗

∂x∗2
− p̂∗ +

[
i
∂S∗

∂x∗2
cos β + S∗2 cos2 β

]
p̂∗ + 2iγ û∗2Mg cos β. (2.50)

Similarly, the velocity perturbation evolution can be described by an inhomogeneous
wave equation. Differentiating (2.40) twice with respect to time yields

M2
g
∂2û∗2
∂t∗2 =

∂2û∗2
∂x∗2

2 −
[
(û∗1 − û∗2S∗) cos2 β +

(
û∗3 sin β + i

∂ û∗2
∂x∗2

)
cos β

]
S∗ − i

p̂∗

γ
Mg cos β,

(2.51)
where S∗ = S∗(X2, t) = ∫ t

0 S(X2) dξ . Note that equations (2.50)–(2.51) describe the
evolution of perturbation in any general planar compressible shear flow. These
equations are not amenable to straightforward analytical solution. Instead, we seek
valuable insight based on the form of the governing equations and by examination of
the behaviour at certain asymptotic limits in a compressible Poiseuille flow.

First and foremost, based on the definition of the relevant Mach number Mg (2.47),
three distinct regions in high-speed Poiseuille flow can be identified. In general, the
shear in the near-wall regions is much higher than in the central region. In low-speed
flows, the gradient Mach numbers throughout the channel will be less than unity and
the flow field will be solenoidal in character. However, at higher speeds, the gradient
Mach numbers in the near-wall region will exceed unity. These regions will exhibit
strong pressure waves and dilatational velocity fluctuations. Clearly, the flow character
in this region will be different from that in low-speed flows. In the central region of
the channel, the gradients are low and hence Mg will be less than unity. The two
near-wall dilatational regions are separated from the central region by Mg ∼ 1 lines.
It will be shown later that the perturbation velocity and vorticity features are indeed
distinctly different in the low- and high-speed regions.

2.2.1. Interaction between pressure and u′2 velocity
To enable examination of the p′–u′2 interactions, we simplify the respective evolution

equations to only the coupling terms:

dû2

dt
≈ iκ1

p̂
ρ̄

S∗, (2.52)

dp̂
dt
≈ iκ1γ p̄û2S∗. (2.53)

It has been well-established in previous works (e.g. Livescu & Madnia 2004) that the
u′2 velocity is predominantly dilatational. From these, the kinetic and potential energy
equations can be derived:

d
dt

[
ρ̄(û2ûc

2)
]= iκ1

(
ûc

2p̂− û2p̂c
)

S∗, (2.54)

d
dt

[
p̂p̂c

γ p̄

]
=−iκ1

(
ûc

2p̂− û2p̂c
) ∫ t

0
S dξ, (2.55)

where (·)c indicates the complex conjugate operation. Clearly, the p′–u′2 coupling is
mediated by the streamwise wavenumber κ1. The right-hand sides of equations (2.54)
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and (2.55) are identical in magnitude and opposite in sign. This indicates that p′ and
u′2 are coupled as a harmonic oscillator. Thus, the potential energy incumbent in the
pressure perturbations and the dilatational kinetic energy in u′2 must be nearly equal
over an oscillation cycle at the inviscid limit:

avg(u′2
2
)≈ avg

(
p′

ρ̄ā

)2

. (2.56)

This represents a state of equipartition which will be verified later by DNS results.

2.3. Perturbation behaviour at different asymptotic limits
2.3.1. Spanwise modes (β = 90)

First we examine spanwise perturbation modes: β =π/2; κ1= 0 and κ3= 1. For all
such perturbations, equations (2.50) and (2.51) indicate a decoupling of the p′ and u′2
fields at all Mach numbers as cosβ=0. Referring to (2.39), it can be surmised that the
u′1 component is also unaffected by pressure as κ1 = 0. Clearly, both u′1 and u′2 fields
are impervious to the pressure field. Thus, spanwise perturbation behaviour can be
expected to be independent of Mach number. In the incompressible case, the pressure-
free growth of spanwise modes is referred to as the lift-up mechanism by Ellingsen &
Palm (1975), Landahl (1980) and Hanifi & Henningson (1998). Our analysis indicates
that the lift-up mechanism is preserved intact at all incompressible and compressible
Mach numbers.

2.3.2. Streamwise modes (β = 0)
Next we turn our attention to streamwise modes: β= 0; κ1= 1 and κ3= 0. It is well

established in the literature that as Mg → 0, equations (2.50)–(2.51) for streamwise
perturbations (β=0) lead to TS waves. At larger Mg, p′ assumes a wave-like character
as dictated by its evolution equation. The resulting u′2 field is not solenoidal, leading
to dilatational velocity fluctuations. The pressure-induced oscillations in u′2 can be
expected to have a profound effect on instability evolution as neither kinetic energy
production or vorticity production can be sustained. One of the objectives of this work
is to examine how the perturbation evolution is modified.

2.3.3. Uniform shear flow
To infer the behaviour of perturbation modes of intermediate degrees of obliqueness,

further simplifications of the governing equations are needed. We examine the
interactions in uniform shear flow as it is amenable to more rigorous mathematical
treatment. In other words, we propose that a reasonable characterization of obliqueness
effect on pressure–velocity interactions can be obtained by simplifying the shear as
locally constant. This simplification is similar to the WKB-based local stability
analysis of Lifschitz & Hameiri (1991). Baines, Majumdar & Mitsudera (1996) also
invoke such a simplification in analysing the TS waves in incompressible flows. It
must be reiterated that the objective here is to develop a qualitative understanding
of the pressure–velocity interactions unencumbered by the complexities introduced
by any spatial variation of shear. The utility and validity of the simplification can
be assessed later by comparing the analytical outcome against DNS results that fully
account for spatial variations of shear, viscous effects, etc.

A detailed analysis of these equations in homogeneous flows is performed by
Kumar et al. (2014) and their conclusions on the effect of perturbation obliqueness
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on pressure–velocity interactions are now summarized. For an arbitrary oblique wave
vector, we define the effective shear, the effective shear, Se, as:

Se = S cos β. (2.57)

Next, we define an effective gradient Mach number for a mode of arbitrary
obliqueness:

Me
g =

Se

ā|κ| =Mg cos β. (2.58)

The effective Mach number Me
g of a perturbation mode, rather than the planar Mach

number Mg, is the appropriate dimensionless parameter to characterize the pressure–
velocity interactions.

At high effective Mach number (Me
g > 1), there exist two distinct regimes of

pressure–inertia interaction in the momentum equation. At early times Set <
√

Me
g,

pressure perturbation evolves too slowly to affect velocity perturbation evolution. This
is called the pressure-released (PR) stage, Kumar et al. (2014). For a given planar
Mach number and obliqueness angle, the duration of the pressure-released stage, tPR

is given by
0< tPR <

√
Mg/cos β. (2.59)

During this period, perturbations at all oblique angles can be expected to exhibit lift-
up mechanism behaviour. This will be later verified using DNS results. Beyond this
time, pressure evolves rapidly enough to counter the inertial effects. At this stage, p′

and u′2 evolves as a simple harmonic oscillator.

2.4. Summary of analysis
We can now summarize the various inferences from the linear analysis.

(i) Irrespective of the gradient Mach number, spanwise (β = 90◦ or κ1 = 0) modes
are unaffected by pressure. Thus, the lift-up mechanism is preserved intact at all
Mach numbers.

(ii) For a given planar Mach number (M0), streamwise (β = 0◦ or κ3 = 0) modes
experience highest effective Mach number. Thus, streamwise modes that lead to
TS waves in incompressible flows can be expected to experience most significant
compressibility effects in high-speed flows.

(iii) Modes of increasing level of obliqueness can be expected to experience
progressively decreasing compressibility effects. Indeed, there exists a critical
obliqueness angle, βc which experiences unit effective Mach number.

Me
g(βc)= 1; βc = cos−1

(
1

M0

)
. (2.60)

βc demarcates the perturbation–orientation space into two regions. All modes with
β <βc are classified as supersonic as their effective Mach number is greater than
unity. Modes with β > βc are identified as subsonic modes. Oblique modes with
β > βc are likely to be less affected by compressibility and retain their subsonic
character. Whereas, velocity perturbations of modes with β < βc are likely to be
significantly affected by compressibility effects.
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U0 (m s−1) ρ0 (kg m−3) T (K) Re M

Case 1 705.2 0.02 61 65 700 4.5
Case 2 931.6 0.02 60 93 900 6.0
Case 3 1108.5 0.04 59 22 800 7.2

TABLE 1. Initial base flow conditions.

(iv) All perturbations experience an initial PR state. During this period, the behaviour
is similar to that of lift-up modes. The duration of the PR state increases with
Mach number and obliqueness angle. Compressibility effects manifest beyond this
period.

(v) At high Mach numbers, p′ and u′2 are coupled as a harmonic oscillator and each
variable will exhibit oscillatory behaviour. When averaged over long periods of
time, the potential energy contained in p′ and dilatation turbulent kinetic energy
in u′2 should be nearly equal – in a state of equipartition.

(vi) All of the above behaviour can be expected to manifest independent of the mode
profile shape in the stream-normal direction.

We will next examine these analytical inferences by performing DNS of small
perturbation evolution in parabolic Poiseuille flow. The DNS study incorporates both
nonlinear and viscous effects not considered in the linear analysis.

3. Numerical scheme for DNS
Numerical simulations are performed using a gas kinetic method (GKM) solver.

The GKM solves the Boltzmann equations for the single particle probability density
function f using a linear collision operator (Xu 2001). The numerical discretization
is applied to the fundamental quantity, the distribution function f , rather than the
continuum variables. The constitutive relationships are computed as moments of the
distribution function leading to consistent representations between various discretized
conservation equations and precluding additional viscous/conductive flux discretization
(May, Srinivasan & Jameson 2007). The main attribute of GKM is that it provides
a good numerical platform for considering non-equilibrium and non-continuum
effects. The current continuum-limit GKM code has been well tested in decaying and
homogeneous turbulence flows (Kerimo & Girimaji 2007; Kumar, Girimaji & Kerimo
2013; Kumar et al. 2014). In these studies, the GKM compressible homogeneous
shear turbulence DNS results are compared against RDT and previous simulations in
the literature resulting in excellent agreement. In recent work (Xie & Girimaji 2014),
the solver has been extended to wall-bounded shear flow. The background flow is
sustained using a body force. A detailed verification and convergence study of the
solver is presented in the Appendix.

Simulation parameters. In the current study, the computational domain is a rectangular
box of dimension Lx1 × Lx2 × Lx3 : 4L× L× 0.8L. Grid cells are uniformly distributed
along x1 and x3 directions. Along the wall-normal direction, x2, the grids are
distributed in geometric progression. The geometric progression coefficient is 1.0125.
The grid is symmetric about the channel centreline. For all cases, the cell resolution
is Nx1 × Nx2 × Nx3 = 160 × 200 × 32. The details of the simulation cases undertaken
in the current study are given in table 1, where U0 is the initial base flow velocity
at the centreline, ρ0 is the initial base flow density and T is the initial base flow
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temperature. The Mach number (M0 =U0/ā) is based on the centreline base velocity.
The Reynolds (Re = ρU0L/µ) number is based on unit length scale. The various
simulation parameters are chosen to be of the same order as that of Sivasubramanian
& Fasel (2014). Further, these parameters fall into the range of flows that are
investigated in the experimental facility at Texas A&M University (Tichenor, Humble
& Bowersox 2013).

Boundary conditions. Periodic boundary conditions are applied in the x1 and x3
directions. In the x2 direction, no-slip and no-penetration wall conditions are applied.
Adiabatic and isothermal conditions are examined, and both boundary conditions
yield similar perturbation evolution while the base temperature and density profiles
show minor variations. Simulations performed using the isothermal wall condition are
presented here similarly as the work of Xie & Girimaji (2014).

Initial conditions. A time-invariant parabolic base flow is first generated using a body
force (Xie & Girimaji 2014). The body force is chosen such that pressure, density
and temperature fields are initially spatially uniform (see table 1). A perturbation
velocity field is superposed on the base flow and allowed to evolve. The body force
is maintained to sustain the parabolic base flow. It is found that, even at the end of
the simulation, the mean density and temperature fields are close to spatially uniform
at all times under the given conditions. Thus, we isolate the effects of high Mach
number effects from those due to variations in the background thermodynamic state.

The magnitude of initial perturbation is set to 0.5 % of the value of the centreline
base velocity. The linear analysis of the previous section is valid for arbitrary
perturbation profiles in the wall-normal x2-direction. As mentioned before, the goal
of the study is to examine the fundamental features of pressure–velocity interactions
for any arbitrary initial perturbation. Towards that end, we focus on three different
initial perturbation profiles.

(i) The incompressible Orr–Sommerfeld (OS) perturbation mode (Davey 1973)
that leads to flow instability in low-speed flows. This is similar to the initial
condition used by Liang, Premasuthan & Jameson (2009) to study the transition
to turbulence in high-speed channel flow. In that study, it is demonstrated that
the resulting high Mach number channel flow captures the essential features
of near-wall behaviour. Further, the use of this initial condition permits direct
comparison between well-established incompressible flow behaviour and its
compressible counterpart. Such comparison serves to isolate the effect of
compressibility without the complicating influence of other features.

(ii) Next we examine an arbitrary perturbation profile that satisfies the boundary
conditions and divergence-free constraint initially:

u′1 ≈U0 sin
(

2π
x1

Lx1

)
sin
(

2π
x2

Lx2

)
, (3.1)

u′2 ≈U0

(
Lx2

Lx1

)
sin
(

2π
x1

Lx1

)
cos
(

2π
x2

Lx2

+ 1
)
, (3.2)

u′3 = 0. (3.3)

(iii) The third perturbation is taken to be a simple linear superposition of the arbitrary
and OS profiles, called the combined mode.

If all three perturbation profiles yield similar pressure–velocity interactions which
are also consistent with linear theory, then one can cautiously infer that to be the
general behaviour.
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FIGURE 2. Kinetic energy evolution of oblique modes at M0= 0.08; OSE is the solution
to the Orr–Sommerfeld equation for β = 0◦.

4. Simulation results
The objective of the study is to contrast small perturbation evolution in low and

high Mach number wall-bounded flows and explain the difference in the underlying
flow mechanisms. Our interest here is confined to linear stability considerations. Thus
only evolution of single initial perturbation mode is considered. Four investigations
are undertaken:

(i) evolution of OS mode profile at low Mach numbers and different obliqueness
angles;

(ii) evolution of OS mode profile at high Mach numbers and different obliqueness
angles;

(iii) evolution of arbitrary mode profiles at high Mach number and different
obliqueness angles;

(iv) effect of inhomogeneity on vorticity perturbation and the balance between linear
and quadratic shear effects.

4.1. OS mode evolutions at low Mach numbers
Incompressible evolution of perturbations at different obliqueness angles with initial
OS mode profile is first presented. This will serve as the baseline case for examining
the compressibility effects. The volume-averaged turbulent kinetic energy evolution for
various β values at the incompressible limit (M0 = 0.08) is given in figure 2. The
incompressible analytical OS solutions for β = 0◦ is also plotted in figure 2. Through
the rest of the paper, the behaviour β = 0◦ mode is referred to as the solution to the
Orr–Sommerfeld equation (OSE). Excellent agreement between linear theory and DNS
is evident for the TS mode.

For β = 90◦, the perturbation evolution exhibits more rapid growth. This is the lift-
up behaviour discussed earlier in this paper (Landahl 1980). Perturbation modes with
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FIGURE 3. (Colour online) Dependence of growth rate on perturbation obliqueness in
incompressible Poiseuille flow.
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FIGURE 4. Shear Reynolds stress and its time integration evolution at M0=0.08: Reynolds
stress is scaled by 10.

intermediate angles also exhibit increasing growth rate at this low-speed limit. The
growth rate of intermediate obliqueness modes fall between the limits set by TS and
lift-up modes. Overall, perturbation modes of all obliqueness angles exhibit growth.
The dependence of perturbation evolution on obliqueness angle in low-speed Poiseuille
flow is summarized in the schematic in figure 3.

Reynolds shear stress u′1u′2 plays an important role in the production of kinetic
energy. Therefore, the evolution of shear Reynolds stress is examined for β = 0◦ case
at x2/L = 0.1-plane. The Reynolds stress is obtained by plane averaging along the
streamwise and spanwise directions. The Reynolds shear stress and its time-integral
evolution are shown in figure 4. As previously stated, the normalized shear Reynolds
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FIGURE 5. Kinetic energy evolution of spanwise perturbation.

stress is always negative and its time integral shows monotonic growth in magnitude
with time. The time integral of u′1u′2 corresponds to the total production of perturbation
kinetic energy up to that point in time. This result will later be contrasted against the
time integral of Reynolds shear stress in compressible flows.

4.2. OS mode evolution at high Mach numbers
Now we turn our attention to the evolution of OS profile modes in compressible flows.
The OS perturbation is introduced at different obliqueness angles and the evolution is
examined. The results are presented according to obliqueness angles.

4.2.1. Lift-up mode (β = 90◦)
Linear analysis clearly indicates that the evolution of spanwise modes should be

nearly identical at all reference Mach numbers. The DNS results of volume-averaged
turbulent kinetic energy evolution at M0 = 0.08, 4.5 and 6 are shown in figure 5.
The spanwise mode lift-up behaviour is indeed independent of Mach number.
Furthermore, these results are in close agreement with the analytical solution of the
pressure-released equation (PRE). The results clearly confirm that lift-up mechanism
is intact at all Mach numbers.

4.2.2. Streamwise mode (β = 0◦)
We present the DNS results for volume-averaged turbulent kinetic energy as well

as volume-averaged u′21 in figure 6. The DNS results from computations at different
Mach numbers are compared against OSE and PRE analytical solutions. Initially, the
growth of all three Mach number cases are identical and follow the PRE solution,
confirming the findings of the linear analysis. As explained earlier, the pressure
perturbation effects are initially insignificant leading to a lift-up type of behaviour.
The pressure fluctuations build up with time as the perturbations enter the second
phase of their evolution. Then, the perturbation growth departs from the PRE limit as
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FIGURE 6. Evolution of streamwise perturbation in high Mach number flows:
(a) turbulent kinetic energy and (b) u′1u′1.

soon as the pressure effects become significant. The figure also shows that the higher
the Mach number, the later is the departure from PRE behaviour, once again in line
with the analysis presented in § 2. The subsequent evolution demonstrates oscillatory
behaviour as suggested by the linear analysis due to the emergence of a dilatational
velocity fluctuation. Eventually, the kinetic energy reduces to levels much lower than
the TS perturbation energy in incompressible flow. It is evident that the instability is
suppressed due to the action of the oscillatory dilatational field.

Now we seek the physical explanation underlying the stabilization of the streamwise
perturbation mode. The linear analysis of § 2 indicates that the u′2 component is
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FIGURE 7. Energy equipartition between wall-normal velocity and pressure perturbation
at M0 = 6. ξ = (u′2u′2)/(u′2u′2 + p′p′/(γρp̄)).

coupled to pressure as in a harmonic oscillator leading to equipartition of energy
between them. To verify this inference, in figure 7 we plot volume-averaged u′2

2 and
p′2 for the case of M0= 6. As anticipated, the potential energy and dilatational kinetic
energy oscillate about the equipartition level. Linear analysis further indicates that
this behaviour should lead to oscillations in the all-important Reynolds shear stress
ρu′1u′2.

The Reynolds stress component ρu′1u′2 is plotted in figure 8 as a function of time for
M0 = 6 case. The time integral of the stress is also shown as this corresponds to the
total production up to that instant in time. The contrast between the incompressible
(figure 4) and compressible (figure 8) shear stress evolution is immediately evident.
Unlike its low Mach number counterpart, the compressible Reynolds stress shows
large oscillations covering negative and positive values. As a result, the integral
stays close to zero despite large initial excursions toward negative values. Thus, the
kinetic energy does not exhibit sustained growth leading to stabilization. In summary,
the streamwise perturbation mode is suppressed in high-speed flows due to the
action of pressure which creates oscillations in ρu′1u′2 spanning both positive and
negative values.

4.2.3. Oblique modes (0◦ <β < 90◦)
For oblique modes with angles between 0◦ and 90◦, the individual perturbations

are investigated by examining the volume-averaged turbulent kinetic energy evolution
shown in figure 9 for two Mach numbers. At early times modes, all oblique modes
follow the PRE evolution for some duration. Consistent with linear analysis, the more
oblique the mode, the longer is the duration of the PR (or lift-up) behaviour. At
later times, the streamwise mode evolution exhibits the most oscillations due to the
action of pressure. The oscillations become weaker with increasing β. Moreover,
with increasing β, the perturbations become more energetic and approach the
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FIGURE 8. Shear Reynolds stress and its time integration evolution at M0 = 6.

pressure-released limit at β = 90◦. This is completely consistent with linear theory
wherein it is shown that the effective Mach number decreases with β, and the effect
of compressibility diminishes correspondingly.

Next we investigate the significance of the critical angle (βc) identified in the linear
analyses. For M0 = 4.5 and 6 cases, the βc values are approximately 77◦ and 80◦

respectively. Referring to figure 9, the following observations can be made.

(i) For β <βc, the computational results indicate asymptotic decline of kinetic energy.
Evidently, this is due to the oscillatory coupling between u′2 and p′.

(ii) The kinetic energy of β > βc modes do not display oscillations. These modes
are not discernibly suppressed by compressibility effects and their evolution is
nearly similar to their incompressible counterparts. Most importantly, the growth
continues over the duration of simulation. These findings are summarized in the
schematic in figure 10.

All discussions thus far have focused on initial perturbation profile taken from
the Orr–Sommerfeld analysis of an incompressible Poiseuille flow. The intent was to
examine how TS waves (streamwise) and lift-up (spanwise) modes are affected at
high speeds. Now we examine other perturbation profiles to ensure the validity of the
inferences summarized above.

Kinetic energy evolution of arbitrary and combined perturbation modes, defined
in § 3, is examined in figure 11 at M0 = 6. It is evident that β = 0◦ perturbation
is still suppressed. The large oscillations indicate the effect of dilatational velocity
fluctuations. The β = 90◦ modes again grow monotonically and do not exhibit any
Mach number effect. At intermediate angles, the growth rate gradually increase as
indicated by linear analysis and summarized in the schematic in figure 10.

It is important to completely reconcile the PR stage with the lift-up mechanism in
the literature. The connection can be surmised from the following observations.
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FIGURE 9. Kinetic energy evolution of oblique modes: (a) M0 = 6 and (b) M0 = 4.5.

(i) Spanwise perturbations of all supersonic Mach numbers experience a prolonged
PR state and the kinetic energy exhibits algebraic growth (see figure 5). This is
the well-established lift-up effect.

(ii) At high Mach numbers, modes of all angles experience a short duration of PR
state. As established in the linear analysis, the duration of PR state increases
with Mach number M0 and obliqueness angle β. From figure 6, it is evident that
even streamwise modes experience a lift-up type of growth at the early PR stage.
Figures 9 and 11 demonstrate the effect of obliqueness and initial mode shape.
From figure 9, it is evident that oblique modes exhibit lift-up behaviour for a
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FIGURE 10. (Colour online) Dependence of kinetic energy growth rate on obliqueness in
compressible Poiseuille flow.

longer duration as suggested by linear analysis. Figure 11 clearly demonstrates
that the obliqueness effect is independent of the initial perturbation profile. Thus
lift-up behaviour is seen at early times independent of Mach number (so long as
it is high) and obliqueness.

(iii) The deviation from lift-up behaviour occurs due to the action of pressure.
Pressure effects come into play faster at (i) lower Mach numbers; and (ii) lower
obliqueness angles.

(iv) Equipartition (over a cycle of oscillation) is observed immediately following the
PR stage.

4.3. Effect of inhomogeneity on vorticity
The results presented thus far are consistent with the linear analysis of the pressure
equation in which the spatial variation of shear is neglected. To establish the effect
of shear variation we examine the vorticity budget for β = 0 OS mode. This will
provide further insight into how the incompressible perturbation vorticity is suppressed
in compressible flows.

We focus on the spanwise vorticity equation given in (2.26). There are three
important terms on the right-hand side of the equation as the viscous effect is not
significant in the duration considered. As mentioned before, the baroclinic term
and compressible vorticity production correspond to the compressibility effects. The
second derivative term is pertinent in both the incompressible and compressible flow
regimes. In high Mach number Poiseuille flow, the three mechanisms are examined
using DNS data in figure 12. At a given time instant, a contour plot of each significant
vorticity term in the x–y plane is shown. The planar root-mean-square of each term
at that same instance is shown in figure 13. It is immediately evident that there
are three distinct regions as suggested by linear analysis in § 2.2. Adjacent to each
wall, there is a region in which CVP is completely dominant. It is in this region
that TS waves typically develop in incompressible flows. Here, the compressible
effects preclude the formation of such waves. In the central region, occupying 75 %
of the channel height, the CVP and second derivative effects are nearly equal and out
of phase. This region does not contribute much to the flow dynamics at any speed.
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FIGURE 11. Evolution of kinetic energy for other initial modes at M0 = 6: (a) arbitrary
mode and (b) combined mode.

The baroclinic term is negligible at all locations. This is to be expected as background
density variation is not considered in this study.

To examine the consequence of the CVP effect, the spanwise vorticity contours
for both low- and high-speed Poiseuille flow are given in figure 14. The vorticity
is normalized by the base flow centreline velocity U0 and length scale L. In the
incompressible case, a single vortex structure spans the entire channel height.
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FIGURE 12. (Colour online) Spanwise vorticity budget term at M0=6: (a) baroclinic term,
(b) compressible vortex production term and (c) second derivative term.

On the other hand, the high Mach number case exhibits three distinct vortical
structures across the channel height corresponding to the three regions of CVP
identified in figure 12.

The corresponding perturbation velocity vectors are plotted in figure 15 for
M0 = 0.08 and 6. The difference in the structure at the two speeds is clearly evident.
The circulation in the incompressible case covers the entire channel height resulting
in efficient momentum transfer from the centre of the flow to the walls. The flow in
the high-speed case is separated into three distinct regions across the channel height
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FIGURE 13. Root mean square of vorticity budget: baroclinic, CVP and the second
derivative. All terms are defined in (2.26).

as previously observed. Each near-wall region exhibits pulsating motion within its
domain. The circulation in the centre does not penetrate all the way to the wall.
Therefore, there is reduced momentum mixing between the centre and the walls.

5. Conclusion
The objective of this work is to examine the effect of dilatational fluctuations on

small perturbation growth in wall-bounded high-speed shear flows. The character of
pressure–velocity interactions and the consequent effect on perturbation evolution
is characterized at different flow speeds. Linear analysis of the pertinent initial
value problem highlights the importance of perturbation obliqueness and leads to
crucial inferences. The inferences are then examined using DNS of small perturbation
evolution at different Mach numbers. The main conclusions are as follows.

(i) Spanwise perturbation mode evolution is impervious to Mach number in
Poiseuille flows. Thus the lift-up mechanism is preserved intact in high-speed
wall-bounded flows.

(ii) Streamwise disturbances that lead to TS waves at low speeds are profoundly
affected by compressibility. The oscillatory nature of u′2 evolution prevents
sustained growth of turbulent kinetic energy. These oscillations also prevent the
formation of strong vortex structures in the near-wall region.

(iii) Perturbations of intermediate levels of obliqueness experience varying degrees
of suppression. Indeed, perturbations aligned close to the spanwise direction
experience subsonic Mach numbers and hence very limited suppression.

(iv) The potential energy incumbent in the pressure fluctuations and dilatational
kinetic energy in the wall-normal velocity fluctuations are in a state of
equipartition.

(v) The high-speed Poiseuille flow domain is partitioned into three different regions:
two compressibility-dominated near-wall regions and a central region. The
dilatational fluctuations in the near-wall regions isolate the wall from the central
region leading to diminished momentum exchange.
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FIGURE 14. (Colour online) Spanwise vorticity contours in low-speed and high-speed
flows: (a) M0 = 0.12 and (b) M0 = 6.

Development of closure models for predictive computations of transition and
turbulence in high-speed flows requires an intimate knowledge of pressure action at
different flow speeds. This work represents a first step in that direction. Pressure–strain
correlation closure models based on these findings have already been developed and
were found to be successful in the computation of high-speed boundary layers and
mixing layers (Gomez & Girimaji 2013, 2014). While more work is needed to
fully understand compressibility effects on transition to turbulence in high-speed
wall-bounded flow, this work explicates some of the important pressure–velocity
interactions and the consequent influence on perturbation evolution.
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FIGURE 15. Typical flow structures of both low-speed and high-speed flow: (a) M0= 0.12
and (b) M0 = 6.

Appendix. Numerical scheme validation and verification

At the low Mach number limit, the GKM results show excellent agreement with
the OS solution in figure 5 of Xie & Girimaji (2014). Calculations with three
initial perturbation levels are performed and the evolution of normalized perturbation
magnitude from each case is compared against the analytical solution of the OSE.
The numerical and analytical results are in excellent agreement, demonstrating the
validity of the code at low speeds. Next we verify the code at the limit of very high
Mach number. At the limit of high Mach number, the GKM results are compared
against analytical solutions obtained from the PRE. For a detailed description of
the pressure-released limit and PRE in wall-bounded flows, the reader is referred
to Ellingsen & Palm (1975), Hanifi & Henningson (1998) and Xie & Girimaji
(2014). It is shown that the GKM results for the three different Mach numbers
agree well with the PRE analytical solution at the early stage when pressure
effects are negligible (figure 2 of Xie & Girimaji (2014)). This is in complete
agreement with the linear analysis results presented earlier in the paper. Moreover, the
departure from the PRE solution scales according to theoretical estimate as shown by
Xie & Girimaji (2014).

A convergence study for grid resolution and time step is performed and the results
are shown in figure 16. Many different grid sizes and time steps are examined.
The results are nearly grid independent at the resolutions and time steps used in
the study.
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FIGURE 16. Convergence study at M0 = 8: (a) grid resolution study and (b) time step
study. k0 is the initial perturbation kinetic energy. The number in the notation indicates
the grid points in the wall-normal direction.
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