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Abstract. Suszko’s problem is the problem of finding the minimal number of truth values needed
to semantically characterize a syntactic consequence relation. Suszko proved that every Tarskian
consequence relation can be characterized using only two truth values. Malinowski showed that
this number can equal three if some of Tarski’s structural constraints are relaxed. By so doing,
Malinowski introduced a case of so-called mixed consequence, allowing the notion of a designated
value to vary between the premises and the conclusions of an argument. In this article we give a more
systematic perspective on Suszko’s problem and on mixed consequence. First, we prove general
representation theorems relating structural properties of a consequence relation to their semantic
interpretation, uncovering the semantic counterpart of substitution-invariance, and establishing that
(intersective) mixed consequence is fundamentally the semantic counterpart of the structural prop-
erty of monotonicity. We use those theorems to derive maximum-rank results proved recently in a
different setting by French and Ripley, as well as by Blasio, Marcos, and Wansing, for logics with
various structural properties (reflexivity, transitivity, none, or both). We strengthen these results into
exact rank results for nonpermeable logics (roughly, those which distinguish the role of premises
and conclusions). We discuss the underlying notion of rank, and the associated reduction proposed
independently by Scott and Suszko. As emphasized by Suszko, that reduction fails to preserve
compositionality in general, meaning that the resulting semantics is no longer truth-functional. We
propose a modification of that notion of reduction, allowing us to prove that over compact logics with
what we call regular connectives, rank results are maintained even if we request the preservation of
truth-functionality and additional semantic properties.

§1. Suszko’s problem. This article deals with an issue famously raised by the Polish
logician Roman Suszko concerning many-valuedness in logic. The issue, which we call
Suszko’s problem, may be presented as follows: given a language and a consequence
relation between the formulae of that language, satisfying some general structural con-
straints, what is the minimum number of truth values required to characterize the relation
semantically?

Suszko gave a precise answer to that problem for a large class of consequence relations.
He proved that every Tarskian relation, namely every reflexive, monotonic, and transitive
consequence relation, can be characterized by a class of two-valued models (Caleiro &
Marcos, 2012; Caleiro, Marcos, & Volpe, 2015; Suszko, 1977; Tsuji, 1998; Wansing &
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SUSZKO’S PROBLEM 737

Shramko, 2008). Suszko’s problem and his result are of fundamental importance to under-
stand the role and nature of truth values in logic. What Suszko had in mind is that even as a
language is semantically interpreted over more than two truth values, only two may suffice
to semantically characterize logical consequence. Based on Suszko’s result, it has become
customary to distinguish two roles for truth values: a referential role, pertaining to the
semantic status of specific formulae, and an inferential role, concerned with the logical
relations between them (see Shramko & Wansing, 2011 for an extensive review). The
referential role is encoded by what we may call algebraic truth values, those introduced
by the semantics, whereas the inferential role is encoded by what we may call logical truth
values, which may be thought of as more abstract entities (Suszko, 1975). Underpinning
Suszko’s theorem is indeed the distinction between designated and undesignated algebraic
values: Suszko’s theorem can be understood in relation to the semantic definition of logical
consequence, whereby a conclusion follows from a set of premises provided it is not the
case that the conclusion is undesignated when the premises are all designated.

Suszko extracted a bolder lesson from his result: he surmised that logical consequence
is essentially two-valued. This claim, known as Suszko’s thesis, depends for its
correctness on an assessment of what to count as a consequence relation, and in particular
on whether every bona fide consequence relation should obey the Tarskian constraints.
In response to Suszko’s thesis, Malinowski showed that if some of Tarski’s constraints
are relaxed, then logical consequence may in some cases be essentially three-valued. To
show this, Malinowski (1990) introduced the notion of q-consequence. Semantically, q-
consequence can be described as a variety of mixed consequence, allowing the notion of
a designated value to vary between the premises and the conclusion of an argument. In
three-valued terms, assuming the values 1, 0, and 1

2 , q-consequence may be defined as
follows: whenever the premises of an argument do not take the value 0, the conclusion
must take the value 1. What Malinowski’s result shows is that this notion of consequence
(aka ts-consequence, see Cobreros, Égré, Ripley, & van Rooij, 2012b) is not reducible to
fewer than three values. As it turns out, ts-consequence is monotonic and transitive, but
it is not reflexive. Other notions of mixed consequence have since been discussed in the
literature, in particular Frankowski’s p-consequence (Frankowski, 2004), whose seman-
tic counterpart is st-consequence, symmetric to ts-consequence, requiring the conclusion
to not take the value 0 when the premises all take the value 1. Unlike ts-consequence,
st is reflexive, but it is not transitive. Like ts-consequence, st-consequence is logically
three-valued.

Recently, French & Ripley (2018) and Blasio, Marcos, & Wansing (2018), have derived
a variety of Suszko-type results, providing a very systematic perspective on Suszko’s
problem.1 They prove that every monotonic logic is at most 4-valued, that every monotonic
reflexive logic is at most 3-valued, likewise that every monotonic transitive logic is at
most 3-valued, and finally that every logic satisfying all of Tarski’s constraints is at most
2-valued. In this article, we pursue a very similar goal, and in particular we derive the
same results, but within a different framework (much in line with Andréka, Németi, &
Sain, 2001; Bloom, Brown, & Suszko, 1970; Font, 2003; Jansana, 2016; Wójcicki, 1988),

1 Our work was developed independently of the work of Blasio et al. (2018), and only referred to
the work of French & Ripley (2018) at the time we submitted the first version of this article. We
are grateful to J. Marcos for bringing his joint article with C. Blasio and H. Wansing to our notice.
We do not undertake a detailed comparison of the three frameworks here: suffice it to point out
that they differ both in style and in what they assume as the basic notions.
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and coming from a different angle (see Chemla, Égré, & Spector, 2017). Like French
and Ripley, and like Blasio, Marcos, and Wansing, we will take advantage of systematic
correspondences between the structure of arguments and their semantic interpretations.
Our perspective and contribution differ in three ways.

Firstly, the notion of mixed consequence is explicitly given a central role in our in-
quiry, both as a topic of study and as a technical tool. In §3, in particular, we prove
that intersections of mixed consequence relations constitute an exact counterpart of the
structural property of monotonicity. This fact, although implicit in the precursor works of
Humberstone (1988) and indeed of French & Ripley (2018), and Blasio et al. (2018), was
not brought to the fore in exactly that form (see in particular Chemla et al., 2017 for a
closely related result, but missing the simpler characterization). Secondly, we strengthen
these results into exact rank results for nonpermeable logics, roughly, those that distinguish
the role of premises and conclusions: reflexive and transitive logics are of rank exactly 2,
logics that are either reflexive or transitive but not both are of rank exactly 3, all others are
of rank 4. Thirdly, we give a specific attention to the issue of semantic compositionality.
Suszko (1977) pointed out that his reduction technique generally ends up in a semantics
that fails compositionality, understood as truth-functionality (see Béziau, 2001; Caleiro &
Marcos, 2012; Caleiro et al., 2015; Font, 2009; Marcos, 2009 for discussions, and our
refinements of the notion of compositionality below). This failure, as stressed by Font
(2009), makes it “difficult to call it a semantics, which makes the meaningfulness of his
Reduction hard to accept”. One of our goals in this article is to clarify this limitation and go
beyond it. We will extend the notion of reduction to prove that every compact logic made
of connectives satisfying special properties (regular connectives) can be given a truth-
functional semantics of the same rank 2/3/4 depending on its structural properties.

Our work is organized as follows. In §2, we introduce our framework and natural struc-
tural constraints usually imposed on a logic (substitution-invariance, monotonicity, reflex-
ivity, and transitivity), as well as natural semantic constraints on the interpretation of a
logic (e.g., compositionality, truth-functionality). In §3, we prove representation theorems
establishing the tight mapping between structural properties and semantic properties. In
the first part of §4, we then apply the Scott-Suszko reduction technique to derive analogues
of the Suszko results obtained by French and Ripley, as well as Blasio, Marcos, and
Wansing. In the rest of §4, we turn to the problem of truth-functionality. We introduce
a novel type of reduction, namely a construction that transforms a semantics into another
semantics with fewer truth values, while preserving both the consequence relation and
truth-functionality. We call this the truth-functional Scott-Suszko reduction, allowing us
to isolate a natural class of logics—compact regular logics—over which the resulting
semantics is truth-functional. This modification is substantive: it brings further significance
to Suszko’s thesis by proving not only that the notion of logical many-valuedness can be
meaningful beyond two values, but also that reduction of many values to a minimum is
not necessarily a threat on truth-functionality. In effect, we prove that under appropriate
circumstances, the truth values needed to preserve the consequence relation are sufficient
to preserve truth-functionality as well.

§2. Framework. This section lays out the basic ingredients for the rest of this article.
We define a logic in syntactic terms, and right away highlight the main structural con-
straints on consequence relations isolated by Tarski and the Polish school (see Bloom et al.,
1970; Tarski, 1930; Wójcicki, 1973, 1988), namely: substitution-invariance, monotonicity,
reflexivity and transitivity. Those properties play a central role in Suszko’s reduction.

https://doi.org/10.1017/S1755020318000503 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000503


SUSZKO’S PROBLEM 739

We then articulate what we mean by a semantics for a logic, and state various semantic
properties which we will prove to be counterparts of those structural properties in §3.

2.1. Syntactic notions.
2.1.1. Logic. Throughout the article, we work within a multiple-premise multiple-

conclusion logic, following the tradition of Gentzen (1935), Scott (1974), and Shoesmith
& Smiley (1978). One of the reasons for doing so is simplicity in that premises and
conclusions are handled symmetrically. This choice is not neutral and some of our results
are likely to differ in a multi-premise single-conclusion setting. We leave that issue aside,
and define a logic as follows:

DEFINITION 2.1 (Logic). A logic is a triple 〈L, C, �〉, with L a language (set of formulae),
C a (possibly empty) set of connectives, and � a consequence relation, what we call a
formula-relation (i.e., a subset of P(L) × P(L), also called a set of arguments, where
each argument is a relation between sets of formulae).

DEFINITION 2.2 (Sentential language). A language is called sentential if it is obtained in
the usual way from a set A of atomic formulae (a subset of L) and a set C of connectives,
that is formula-functions of type c : Ln −→ L. A logic is called sentential if it is defined
over a sentential language.

We will only consider sentential languages and sentential logics in what follows.

DEFINITION 2.3 (Substitution). A substitution σ for a sentential language is an endo-
morphism of L, such that for every formula F(p1, . . . , pn) constructed from the atoms pi,
F[σ ] = F(σ (p1), . . . , σ (pn)).

2.1.2. Fundamental structural properties.

DEFINITION 2.4 (Substitution-invariance). A consequence relation � is substitution-
invariant iff for every substitution σ :

If � � �, then �[σ ] � �[σ ].

DEFINITION 2.5 (Monotonicity). A consequence relation � is monotonic if:

∀�1 ⊆ �2, �1 ⊆ �2 : �1 � �1 implies �2 � �2.

DEFINITION 2.6 (Reflexivity). A consequence relation � is reflexive if for every
formula F:

F � F.

DEFINITION 2.7 (Transitivity). A consequence relation � is transitive iff:

if � 	� �, then there are �′ ⊇ �, �′ ⊇ � such that �′ 	� �′ and �′ ∪ �′ = L.

There are numerous ways of defining transitivity, in particular in multi-conclusion settings.
They are extensively reviewed in Ripley (2017). The definition proposed above is the
strongest definition from this survey, this is the one that will prove relevant in the next
section.2

2 Let us show why the usual notion of transitivity follows. Consider that A 	� C. The above
notion entails that there are �,� such that B is in one of them and A, � 	� C,�. It follows
by monotonicity that either B 	� C (B ∈ �) or that A 	� B (B ∈ �). By contraposition we obtain
that A � B and B � C entail A � C.
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DEFINITION 2.8. We say that a logic is substitution-invariant / monotonic / reflexive /
transitive if it has a substitution-invariant / monotonic / reflexive / transitive consequence
relation, respectively.

2.1.3. A further structural constraint: Nonpermeability. We have introduced structural
properties from the Tarskian tradition, which are supposed to delineate what an appropriate
consequence relation may be. These properties, however, do not exclude pathological
consequence relations, such as the null and the universal consequence relations, or relations
for which there would be no nonempty � and � such that � 	� �. We introduce here a
formal property that a consequence relation should not have:

DEFINITION 2.9 (Permeability). A consequence relation is permeable if it is left-to-right
or right-to-left permeable, in the following sense:

Left-to-right permeability: ∀�, �, � : �, � � � ⇒ � � �, �
Right-to-left permeability: ∀�, �, � : � � �, � ⇒ �, � � �.

By extension, a logic is called permeable if its consequence relation is permeable.

If a logic is not permeable, then its consequence relation is neither universal nor trivial
(when negated, either constraint implies nontriviality as per the antecedent and nonuniver-
sality as per the denied consequent). We may describe a permeable consequence relation
as one that would confuse the role of premises with the role of conclusions, or the reverse.
But we need to introduce more semantic machinery before we describe the full virtue of
this constraint (see Theorem 2.28).

2.2. Semantic notions.
2.2.1. Semantics. We call a semantics a structure that interprets each of the compo-

nents of a logic, namely formulae, connectives, and the consequence relation. The natural
semantic counterpart for formulae are propositions, understood as functions from worlds to
truth values. The semantic counterpart of a connective is therefore a function from propo-
sitions to propositions, and the semantic counterpart of a consequence relation is a relation
between sets of propositions. But functions and relations over sets of propositions may be
obtained from functions and relations over sets of truth values: just like connectives may be
interpreted through truth-functions, we show that consequence relations may be interpreted
algebraically through what we call truth-relations. An overview of the definitions to be
introduced is given in Table 1.

Semantics with propositions.

DEFINITION 2.10 (Semantics). A semantics for a logic is a triple 〈V,W, �_�〉, with

• V a set of truth values,
• W a set of worlds,
• �_� an interpretation function, which associates to every formula F in L a proposi-

tion �F�, defined as a function from worlds to truth values, to every n-ary connective
c in C a function �c� from n-tuples of propositions to propositions, and to � it
associates a relation ��� between sets of propositions (henceforth |�).

Semantics can parallel syntax to a variable extent. Below are two main properties which
pertain both to the connectives and to the consequence relation:

DEFINITION 2.11 (Compositionality, soundness-and-completeness, adequacy). Given a
logic and a semantics:
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• The interpretation of an n-ary connective c is compositional if for all formulae
F1, . . . , Fn

�c(F1, . . . , Fn)� = �c�(�F1�, . . . , �Fn�).

• The interpretation of the consequence relation � is sound and complete if for all
sets of formulae �, �

� � � iff ��� |� ���.

• A semantics for a logic is called compositional if it interprets every connective in a
compositional way, sound and complete if it interprets the consequence relation in
a sound and complete way, and adequate if it has both properties.

Semantics from truth values. So far, the consequence relation and the connectives have
been interpreted at the level of propositions. But a semantics may intrinsically follow
from a definition of connectives and consequence relations at the level of truth values,
and uniformly so world by world:

DEFINITION 2.12 (Truth-functionality, truth-relationality, truth-interpretability). Given a
logic and a semantics:

• The interpretation of an n-ary connective c is truth-functional if there is a truth-
function [[[c]]], that is a function from n truth values to truth values (of type Vn →
V), such that:

for all propositions P1, . . . , Pn : ∀v ∈ W : �c�(P1, . . . , Pn)(v) = [[[c]]](P1(v), . . . , Pn(v)).

• The interpretation of the consequence relation � is truth-relational if there is a
truth-relation [[[�]]], also noted |≡, that is a relation between sets of truth values (of
type P(V) × P(V)) such that:

for all sets of propositions S,P : S |� P iff ∀v ∈ W : S(v) |≡ P(v).

• A semantics for a logic is called truth-functional if it interprets every connective
in a truth-functional way, truth-relational if it interprets the relation � in a truth-
relational way, truth-interpretable if it has both properties.

THEOREM 2.13. To validate the previous definition, and in particular the notations [[[C]]]
and [[[�]]]/|≡, we state that (for W 	= ∅, which is what we are interested in):

• The truth-function [[[C]]] associated to a truth-functional connective C is uniquely
determined by �C�.

• The truth-relation |≡ associated to a truth-relational consequence relation � is
uniquely determined by |�.

Proof. Truth-functionality and truth-relationality alike are about the fact that [[[_]]] is
uniform across worlds. The relevant truth-functions and truth-relation are simply that con-
stant function (value) or relation taken in each of the worlds. To put it differently, a truth-
functional connective associates a constant proposition as the output of its application to
constant propositions; the truth-function ought to preserve this and therefore is determined
by: [[[c]]](α1, . . . , αn) is the value taken by the constant proposition �c�(α1, . . . , αn), where
α1, . . . , αn are truth values and α1, . . . , αn constant propositions taking these values. Sim-
ilarly, the truth-relation of a truth-relational consequence relation is determined by γ |≡ δ
iff γ |� δ, with γ, δ sets of truth values and γ , δ the corresponding sets of constant
propositions. �
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Table 1 summarizes the semantic definitions introduced so far, in parallel for connectives
and relations, first at the level of propositions (Definition 2.11) and then at the level of
truth values (Definition 2.11). In this Table we also introduce names for conjunctions of
properties:

DEFINITION 2.14. A compositional and truth-functional semantics is called truth-
compositional; a sound and complete and truth-relational semantics is called truth-(sound
and complete); an adequate and truth-interpretable semantics is called truth-adequate.

Note that according to our definitions, it would be possible for a semantics to be truth-
functional without being compositional proper (for example, it could happen that for all
v, (�¬��F�)(v) = [[[¬]]](�F�(v)), but �¬��F� 	= �¬F�, simply note that the first truth-
functional equality does not involve ¬F). When the semantics is defined directly at the
truth-value level, however, truth-functionality directly implies compositionality (and there-
fore coincides with truth-compositionality), as the following shows.

FACT 2.15. An efficient, and customary way to determine a truth-functional semantics is to
define the interpretation function for formulae only on atoms and extend it to all formulae
by defining directly the truth-functions [[[C]]] for all connectives:

�C(F1, . . . , Fn)� is defined as ∀v : �C(F1, . . . , Fn)�(v) := [[[C]]](�F1�(v), . . . , �Fn�(v)).

Similarly, a truth-relational semantics may be obtained by choosing a truth-relation |≡
and then deriving the interpretation of the consequence relation |� as:

��� |� ��� iff (def) ∀v : ���(v) |≡ ���(v).

Truth-relationality. We pause on the notion of truth-relationality, which is the least
standard introduced so far (see Chemla et al., 2017). First, we note that in the absence
of other constraints, the truth-relationality of some sound and complete semantics for a
logic is always guaranteed. In fact, the conjunction of all properties above can always be
achieved:

FACT 2.16. Every sentential logic has a truth-adequate semantics.

Proof. Given a logic, let V := L, W := {v0}, �F�(v0) := F, and let [[[c]]] be c itself for
every connective and |≡ be � itself. By construction, 〈V,W, �_�〉 is a truth-interpretable
semantics, compositional (�C�(�F1�, . . . , �Fn�) = C(F1, . . . , Fn) = �C(F1, . . . , Fn)�) and
sound and complete (� � � iff for all v ∈ W , ���(v) |≡ ���(v)). �

Despite that result, truth-relationality is not unsubstantial, and it certainly does not fol-
low from the other properties a semantics may have.

Table 1. Summary of the properties introduced in parallel for connectives and consequence
relations (or both, when combined at the level of their logic). These properties belong to
the level of propositions, or of truth values (or both, if we consider the conjunction of the
properties at the proposition level and its associate at the truth-value level).

Proposition level Truth-value level Conjunctively
Connectives compositional truth-functional truth-compositional
Consequence sound and complete truth-relational truth-(sound and complete)
Conjunctively adequate truth-interpretable truth-adequate
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FACT 2.17. Not every adequate semantics that is truth-functional is truth-relational.

Proof. Many degenerated examples could be used to demonstrate the result, but let
us consider the richer case of so-called supervaluationism (viz. Cobreros, Égré, Ripley,
& van Rooij, 2012a). Consider the language L of standard propositional logic over a
denumerable set of atoms A with set of connectives C = {¬, ∨, ∧}. We can define the so-
called supervaluationist semantics on L, which is exactly like the classical bivalent strong
semantics over L, with W as the set of all valuations (see Definition 2.18), except that the
relation is interpreted as:

� |�SV � iff (def)

∀I ⊆ W : (∀Fp ∈ � : ∀v ∈ I : �Fp�(v) = 1) ⇒ (∃Fc ∈ � : ∀v ∈ I : �Fc�(v) = 1).

Supervaluationist consequence induces a supervaluationist �SV syntactic consequence
relation over L (� �SV � iff (def) ��� |�SV ���). The supervaluationist semantics is sound
and complete by construction, it is compositional and truth-functional just like classical
logic. But there could be no truth-relation. The reason is as follows:

• 	|�SV �p�, �¬p�. To prove this, call the (empty) premise set � and the conclusion
set �. Even though ∀Fp ∈ � : ∀v ∈ W : �Fp�(v) = 1 (trivially satisfied because
� = ∅), it is not the case that ∃Fc ∈ � : ∀v ∈ W : �Fc�(v) = 1.

• |�SV �p ∨ ¬p�, �p ∧ ¬p�, this is because �p ∨ ¬p� is the constant proposition with
value 1.

• For all valuations, {�p�(v), �¬p�(v)} = {0, 1} = {�p ∧ ¬p�(v), �p ∨ ¬p�(v)}.
The three facts above are incompatible with the possibility of a truth-relation, which would
sometimes have to hold for {0, 1} in its second argument and sometimes not. �
The semantics we proposed for supervaluationism is therefore compositional and truth-
functional, but not truth-relational. The logic it corresponds to may have a truth-relational
semantics, but this may require another set of truth values and another set of worlds. A
similar example can be found in Chemla et al. (2017), with a discussion of a logic and a
natural semantics for it that is adequate, truth-functional but not truth-relational, namely
the trivalent semantics ss ∪ tt for a propositional language (the union of strong Kleene
consequence and LP consequence).

2.2.2. Fundamental semantic properties. We now state several fundamental properties
of a semantics. We will refer to these properties as semantic properties for short. In the next
section, we will prove that they are parallel to the structural constraints we stated for a logic
(an overview of the parallelism is given in Table 2).

DEFINITION 2.18. A semantics for a sentential logic is called valuational if its set of worlds
is the set of valuations, functions from atoms to truth values, and if for all atoms p and all
valuations v, �p�(v) = v(p).

FACT 2.19. For a truth-compositional semantics it is also appropriate (and will be useful)
to interpret worlds as valuations: the truth value assigned to a formula in a given world is
entirely determined by the truth values assigned to the atoms (involved in the formula) in
that world, by way of the successive application of the truth-functions of the connectives
that make up the formula. As a consequence, one may drop redundant worlds/valuations
that would assign the same values to all atoms. Truth-compositionality does not entail
valuationality, however, because W may not cover the whole set of possible valuations.
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NOTATION 2.20. For a valuational semantics 〈V,VA, �_�〉, we may drop from the notation
the set of worlds W = VA and refer to it as 〈V, �_�〉. Furthermore, we may refer to �F�(v)
as v(F), by extension of the notation for atomic formulae, whenever the interpretation
of worlds as valuations is warranted (for valuational semantics or truth-compositional
semantics as in Fact 2.19).

DEFINITION 2.21 (Strong semantics). We say that a semantics is strong if it is truth-
adequate and valuational (all the properties above).

DEFINITION 2.22 (Mixed truth relation). A truth-relation |≡ over a set of truth values V is
called mixed if there are two sets Dp and Dc included in V such that for all sets of values
γ and δ:

γ |≡ δ iff γ ⊆ Dp entails δ ∩ Dc 	= ∅.

When those two sets exist, the relation is written |≡Dp,Dc .

DEFINITION 2.23. A mixed truth-relation |≡Dp,Dc is called p-mixed iff Dp ⊆ Dc.

DEFINITION 2.24. A mixed truth-relation |≡Dp,Dc is called q-mixed iff Dc ⊆ Dp.

DEFINITION 2.25. A truth-relation |≡ is called pure if it is a mixed relation such that
Dp = Dc, hence if it is both p-mixed and q-mixed.

DEFINITION 2.26. A semantics is called intersective mixed (respectively intersective p-
mixed / intersective q-mixed / intersective pure) if it is truth-relational and its truth-
relation is an intersection of mixed relations (respectively of p-mixed / q-mixed / pure
relations).

A mixed semantics is trivially intersective mixed, but the converse is not true: an inter-
section of mixed semantics is not in general expressible as a mixed semantics, see Chemla
et al. (2017) Theorem 2.15, with ss ∩ tt as a representative case in 3-valued semantics.

2.2.3. A further semantic property: Polarization. Our definitions so far put no structure
on the set of truth values. On an inferentialist perspective, however, it is often desirable to
single out two special truth values, True and False, matching propositions with specific
inferential roles. The value False is attached to the principle that from a contradictory
proposition anything follows (ex falso quodlibet), but also to the principle that if an argu-
ment is not valid, then the addition of a contradiction to the conclusions won’t make it valid.
The roles for the True are dual: a tautology should follow from any premise whatsoever,
but if an argument is not valid, adding it among the premises will not make it valid either.
Using 1 and 0 to represent the True and the False, those principles correspond to:

(T1) ∀γ, δ : γ |≡ δ, 1 (T2) ∀γ, δ : γ, 1 |≡ δ implies γ |≡ δ
(F1) ∀γ, δ : γ, 0 |≡ δ (F2) ∀γ, δ : γ |≡ δ, 0 implies γ |≡ δ.

However, none of the semantic properties we have introduced so far for truth-relations
guarantees that there will be truth values playing the roles of the True and the False.
Consider for instance a relation of the form |≡{α},{β}, requiring that when all premises
take the value α, some conclusion must take the distinct value β. The value β is the only
one that could follow from any set of values (|≡ β), but it is not the case that adding it as
a premise has no effect on validity (e.g., α 	|≡ ∅, but α, β |≡ ∅). One can construct other
odd truth-relations in which there is no room for special values such as True and False. The
following property blocks some of these possibilities:
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DEFINITION 2.27 (Polarization, True and False). A mixed truth-relation |≡Dp,Dc is polar-
ized iff it is T-polarized and F-polarized, in the following sense:

T-polarization: Dp ∩ Dc 	= ∅ F-polarization: V \ (Dp ∪ Dc) 	= ∅.

The elements of Dp ∩Dc are all candidates for True; the elements of V \ (Dp ∪Dc) are
all candidates for False. An intersective mixed truth-relation is called polarized if one of
the mixed relations of which it is the intersection is T-polarized and one is F-polarized.3

The virtues of polarization become especially apparent when put in parallel with the
structural property introduced in Definition 2.9. There, we argued that permeable logics
were odd, even if the standard Tarskian constraints on consequence relations do not rule
them out. The following result shows that ruling out permeability at the structural level
involves the admission of values playing the role of True and False at the semantic level.

THEOREM 2.28. A sound and complete intersective mixed semantics for a nonpermeable
logic is polarized.

Proof. Consider a sound and complete intersective mixed semantics for a nonpermeable
logic, such that |≡= ⋂

λ∈� |≡Dλ
p ,Dλ

c
. The failure of left-to-right permeability corresponds

to F-polarization, and the failure of right-to-left permeability corresponds to T-polarization.
Choose �, �, � such that �, � � � and � 	� �, �. Hence, there is some world w such
that: ���(w) 	|≡ ��, ��(w) and ��, ��(w) |≡ ���(w). It follows that there is some member
|≡Dλ

p ,Dλ
c

of |≡ such that: ���(w) ∩ Dλ
c = ∅ and ���(w) 	⊆ Dλ

p , i.e., there is a truth value,

in fact any of those in ���(w), which is not in Dλ
p , and not in Dλ

c either. This proves F-
polarization. Similarly, choose �, �, � such that � � �, � and �, � 	� �. Hence, there
is some world w such that: ��, ��(w) 	|≡ ���(w) and ���(w) |≡ ��, ��(w). It follows
that there is some member |≡Dλ

p ,Dλ
c

of |≡ such that: ���(w) ⊆ Dλ
p and ���(w) ∩ Dλ

c 	= ∅,

i.e., Dλ
p ∩ Dλ

c 	= ∅, which proves T-polarization. �
This result is the first connection we establish between a structural property and a semantic

property. In the next section, we proceed to flesh out more systematic parallelisms between
semantic properties and structural properties, a summary of which is given in Table 2.

§3. Correspondence between structural and semantic properties. In this section
we state and prove representation theorems establishing a systematic correspondence be-
tween structural properties of a logic and fundamental properties of a semantics it may
be associated with. We start with a semantic characterization of substitution-invariance.
We find antecedent characterizations, in particular in the work of Wójcicki (see Bloom
et al., 1970; Wójcicki, 1973, 1988), but in the context of Tarskian consequence rela-
tions (using logical matrices). Our result, on the other hand, offers a semantic counterpart
of substitution-invariance, singled out from other Tarksian properties. The next result,
Theorem 3.2, may be viewed as the cornerstone, for it shows that monotonicity, among
all of Tarski’s constraints, corresponds tightly to mixed consequence. We then inspect
further Tarskian properties, reflexivity, transitivity and their conjunction, which show up as
particular types of mixed consequence. We give a summary of the main correspondences
in Table 2.

3 This is a weak requirement given the discussion above. It will be sufficient for all relevant
purposes because most of the time we will be able to replace all intersective mixed consequence
relations with mixed consequence relations.
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Table 2. Correspondence between structural properties of a logic and characteristic
properties of a semantics for it. The properties should be read cumulatively from top to
bottom, and existentially from left to right: substitution-invariant logic = existence of a
strong semantics; (substitution-invariant + monotonic) logic = existence of a (strong +
intersective mixed) semantics; etc.

Logic Semantics
Substitution-invariant Strong

Monotonic Intersective Mixed
Reflexive | Transitive Intersective p-Mixed | Intersective q-Mixed

Tarskian Intersective Pure

Closely related results were stated independently by French & Ripley (2018) (Theo-
rem 2), and by Blasio et al. (2018) (Theorems 10 and 11), see also Humberstone (1988)
for a precursor. Even though formulated and proved differently, some of these results are
exactly equivalent insofar as substitution-invariance is dropped (an exception is Blasio
et al., 2018) and, correspondingly, insofar as its semantic counterpart valuationality is
dropped (replace strong semantics with truth-adequate semantics in our formulations; we
thus give two versions of those results in what follows, versions marked with a prime drop
the substitution-invariance assumption). Overall, they establish a similar correspondence
between structural properties of consequence relations and semantic properties.

3.1. Substitution-invariance = Strong semantics.

THEOREM 3.1. A logic is substitution-invariant iff it has a strong semantics.

Proof.

(⇐) Assume that a logic 〈L, C, �〉 has a strong semantics 〈V, �_�〉. Suppose � � �,
and σ is a substitution. Then:
∀v : v(�) |≡ v(�) (by truth-relationality and adequacy), hence
∀v : v ◦ σ(�) |≡ v ◦ σ(�) (by valuationality: if v is a valuation, then v ◦ σ is a
valuation); moreover
∀v : v(�[σ ]) |≡ v(�[σ ]) (v ◦σ(A) = v(A[σ ]) for all formulae A, by valuationality
for A an atom, and by truth-functionality for the induction for more complex
formulae),
so �[σ ] � �[σ ] (by truth-relationality and adequacy).

(⇒) Assume that a logic 〈L, C, �〉 is subtitution-invariant. We define a strong semantics
〈V, �_�〉 with V = L, [[[�]]] = �, [[[c]]] = c. Valuationality, truth-interpretability
and compositionality are built in (see Fact 2.15) by completing the semantics:
we consider all valuations and assign an interpretation inductively for complex
formulae. Let us prove soundness and completeness: � � � iff ∀σ : �[σ ] � �[σ ]
(by substitution-invariance), iff ∀σ : σ(�) |≡ σ(�) (by construction for all F:
σ(F) = F[σ ] here), and substitutions are worlds/valuations (worlds here are all
functions from A to the set of truth values, which is L here). �

3.2. Monotonic relations = intersection of mixed relations.

THEOREM 3.2. A logic is substitution-invariant and monotonic iff it has a strong intersec-
tive mixed semantics.

THEOREM 3.2′ . A logic is monotonic iff it has a truth-adequate intersective mixed seman-
tics.
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Proof.
(⇐) Assume that we have a strong intersective mixed semantics. Substitution-invariance

follows from Theorem 3.1. The monotonicity of the truth-relation and therefore of
the consequence relation is straightforward based on Definition 2.22.

(⇒) Consider a substitution-invariant and monotonic logic. We will construct a strong
and intersective mixed semantics. For this, we use a method that closely follows
methods attributed to Adolph Lindenbaum, used by, e.g., Tarski and Wójcicki and
described in, e.g., Bloom et al. (1970), Surma (1982).
Take V = L and let the interpretation function �_� on formulae and connectives
be as in Theorem 3.1 under (⇒).
Note λ = (�, �) such that � 	� �. Then define |≡λ as the mixed consequence
truth-relation on the sets: Dλ

p = � and Dλ
c = V \ �. Define |≡ as the intersection

of these mixed consequence relations (to account for the universal consequence
relation, i.e., with no � 	� �: we will consider that it is indeed the intersection of
an empty set of mixed consequence relations, alternatively any semantics with an
empty set of worlds W would be appropriate). The resulting semantics is valua-
tional, compositional, truth-interpretable and intersective mixed, by construction.
We can show that it is sound and complete for the logic, in the sense that � � �
iff ∀v, ∀λ : v(�) |≡λ v(�).

• Assume � 	� �. Then take λ = (�, �), v the identity valuation, it is
clear that v(�) 	|≡λ v(�) and therefore that it’s not the case that ∀λ : ∀v :
v(�) |≡λ v(�).

• Assume � � �. Then suppose it’s not the case that ∀λ′, ∀v : v(�) |≡λ′
v(�). That is, there is λ′ = (�′, �′) such that �′ 	� �′ and v such that
v(�) ⊆ �′ and v(�) ⊆ �′. But v(�) and v(�) are simply obtained
by atomic substitutions in � and �, and therefore v(�) � v(�) holds
by substitution-invariance. By monotonicity we would then obtain that
�′ � �′, which was excluded. �

The proof of the primed version is obtained similarly, by considering the same construction
but reduced to a single valuation, the identity valuation, as in Fact 2.16. �

3.3. Monotonic + reflexive relations = intersection of p-mixed relations.

THEOREM 3.3. A logic is substitution-invariant, monotonic and reflexive iff it has a strong
intersective p-mixed semantics.

THEOREM 3.3′. A logic is monotonic and reflexive iff it has a truth-adequate intersective
p-mixed semantics.

Proof. (⇐) Clearly every p-mixed consequence relation is reflexive, and so is an inter-
section of p-mixed relations. (⇒) That is because in the previous proof, we take |≡(�,V\�)

for � 	� �, but if the relation is reflexive the latter requires that � ∩ � = ∅, therefore
� ⊆ V \ �, hence Dλ

p ⊆ Dλ
c , making the relation p-mixed for every λ. �

The proof of the primed version is obtained similarly, by considering the same construction
but reduced to a single valuation, the identity valuation, as in Fact 2.16. �

3.4. Monotonic + transitive relations = intersection of q-mixed relations.

THEOREM 3.4. A logic is substitution-invariant, monotonic and transitive iff it has a strong
intersective q-mixed semantics.
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THEOREM 3.4′. A logic is monotonic and transitive iff it has a truth-adequate intersective
q-mixed semantics.

Proof.

(⇐) Consider a strong intersective q-mixed semantics, and � 	� �. Hence, there is λ
and v such that v(�) ⊆ Dλ

p and v(�) ∩ Dλ
c = ∅. Let �′ = {P|v(P) ∈ Dλ

p }. Then
�, �′ 	� �,L \ (�′), which proves transitivity. The reason is that (i) v(�, �′) ⊆
Dλ

p , by construction and (ii) v(�,L \ (�′)) ∩ Dλ
c = ∅ because on the one hand,

v(�) ∩ Dλ
c = ∅ (see above), and on the other hand, v(L \ (�′)) ∩ Dλ

c ⊆ v(L \
(�′)) ∩ Dλ

p = ∅, since Dλ
c ⊆ Dλ

p .

(⇒) Now consider a substitution-invariant, monotonic and transitive logic. We can
construct a valuational and intersective q-mixed truth semantics. We will use the
same type of ‘Lindenbaum’ construction as used in the proof of Theorem 3.2, but
we will only consider a subset of the truth-relations for the intersection. Consider
the λ̃ = (�̃, �̃) such that �̃ 	� �̃ but now also �̃ ∪ �̃ = V . We will consider
|≡�̃, the intersection of the |≡λ̃s defined as the mixed relation with Dλ̃

p = �̃ and

Dλ̃
c = V \ �̃ (as before). The rest of the proof amounts to showing soundness and

completeness, it relies on three results:

1. The |≡λ̃s are q-mixed: since �̃ ∪ �̃ = V , (V \ �̃) ⊆ �̃, i.e., Dλ̃
c ⊆ Dλ̃

p .

2. If � � � then ∀v : v(�) � v(�): this holds for |≡� (see above) and
therefore also for |≡�̃ which is weaker since it is an intersection of fewer
truth-relations.

3. If � 	� �, then by transitivity we can find λ̃ = (�̃, �̃) such that �̃ 	� �̃ and
�̃∪�̃ = V . � 	|≡(�̃,V\�̃) �: this is so because by construction �̃ 	|≡(�̃,V\�̃) �̃

and � ⊆ �̃ and � ⊆ �̃. �
The proof of the primed version is obtained similarly, by considering the same construction
but reduced to a single valuation, the identity valuation, as in Fact 2.16. �

3.5. Monotonic + reflexive + transitive = intersection of pure relations.

THEOREM 3.5. A logic is substitution-invariant, monotonic, reflexive and transitive iff it
has a strong intersective pure semantics.

THEOREM 3.5′. A logic is monotonic, reflexive and transitive iff it has a truth-adequate
intersective pure semantics.

Proof. (⇐) follows from the previous two theorems. (⇒) Consider the construction
from the proof of Theorem 3.4. The λ̃ must be compatible with reflexivity, that is �̃ ∩ �̃ =
∅. Hence we obtain not only that �̃ ⊆ (V \ �̃) as in Theorem 3.4, but also necessarily that
�̃ ⊇ (V \ �̃) as in Theorem 3.3. �
The proof of the primed version is obtained similarly, by considering the same construction
but reduced to a single valuation, the identity valuation, as in Fact 2.16. �

§4. Ranks and truth-functional reduction. What is the least number of values needed
to semantically represent a logic? Suszko’s response to the question was two. Malinowski
answered three, but relaxing some of the structural constraints that Suszko took for granted
for a consequence relation. On our approach, the answer to this question depends not just
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on the structural desiderata that are put on a consequence relation, but also on the desider-
ata that are placed on the semantics. In this section, we start out by reviewing Suszko’s
proposal: we basically explain the sort of reduction that both Scott and Suszko used in
order to reduce truth values to a minimum ‘logical’ rank (Scott, 1974; Suszko, 1977). As
observed by several authors and first by Suszko himself (Béziau, 2001; Caleiro, Carnielli,
Coniglio, & Marcos, 2003; Caleiro & Marcos, 2012; Font, 2009; Marcos, 2009; Shramko
& Wansing, 2011; Suszko, 1977), this kind of reduction on the number of algebraic truth
values meets weak demands, in particular regarding compositionality (see Appendix A
for a more nuanced view). Although the reduction does not respect truth-compositionality
in general, we show that a modification of it does so for compact logics operating with
what we call regular connectives. In Appendix C (§8), we investigate another notion of
reduction, namely grouping reduction, which does preserve many of the relevant structural
properties we are interested in in all cases, but also incurs limitations. Importantly, in what
follows we focus mostly on notions of rank, namely the minimum number of truth values
needed to represent a logic. We do not present actual Suszko reductions of specific logics
for that matter, but mostly use the notion toward irreducibility arguments. In that regard, our
perspective differs from the important work of Caleiro & Marcos (2012) and Caleiro et al.
(2015), who propose a constructive method to compute Suszko reductions from arbitrary
semantics. Their approach is in a sense more general, because it is not restricted to logics
for which the reduction preserves truth-functionality, and it is output-oriented. Our goal is
different, however, and input-oriented: it is to identify constraints on the connectives of the
base logic that will deliver a truth-functional reduction. This is what leads us to isolate the
notion of a regular logic.

4.1. The Suszko rank and the Scott-Suszko reduction.

DEFINITION 4.1 (Suszko rank). The Suszko rank of a logic is the least cardinal of truth
values needed to get a sound and complete intersective mixed semantics for that logic.

The restriction to intersective mixed semantics was not explicitly part of the issue in
some past descriptions. But it is unproblematic given the results above for monotonic
logics. Furthermore, previous results were always stated through mixed semantics, and
we therefore propose immediately a stronger notion of rank, which will prove not to be
very different:

DEFINITION 4.2 (Mixed Suszko rank). The mixed Suszko rank of a logic is the least
cardinal of truth values needed to get a sound and complete mixed semantics for that
logic.

Scott and Suszko came up with a method which outputs ranks 2, 3 or 4, depending on the
structural constraints assumed to begin with. In their original approach, restricted to rank
2, this method consists in defining what Suszko calls logical valuations (and Scott truth
valuations). Logical valuations are functions from formulae to the values {1, 0}, defined
on the basis of standard algebraic valuations, namely functions from formulae to algebraic
truth values. A logical valuation is derived from an algebraic valuation h and a pure truth-
relation, that is a set of designated algebraic values: it assigns a formula F the value 1 if
h assigns F a designated value, and 0 otherwise. In our framework, the reduction can be
described as follows:

DEFINITION 4.3 (Scott-Suszko reduction). Consider some intersective mixed semantics
〈V,W, �_�〉 for a logic, assuming that the truth-relation is given by the intersection of the
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|≡Dλ
p ,Dλ

c
for λ = (Dλ

p ,Dλ
c ) in �. Its associated Scott-Suszko reduction is the semantics

defined as follows, where we leave aside the interpretation of the connectives (which may
be interpreted arbitrarily for now).
V∗ := {1, #p, #c, 0}, W∗ := � × W , |≡∗:=|≡{1,#p},{1,#c},
�F�∗(λ, v) := tλ(�F�(v)), with tλ :V −→ V∗

α �−→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if α ∈ Dλ
p ∩ Dλ

c
0 if α 	∈ Dλ

p ∪ Dλ
c

#p if α ∈ Dλ
p \ Dλ

c
#c if α ∈ Dλ

c \ Dλ
p

THEOREM 4.4. The Scott-Suszko reduction of a sound and complete, intersective mixed
semantics is a sound and complete, mixed semantics.

Proof. This follows from the examination of the two ends in the following chain of
equivalence:

∀(λ, v) ∈ W∗ : ���∗(λ, v) |≡{1,#p},{1,#c} ���∗(λ, v)
⇔: ∀(λ, v) ∈ W∗ : tλ(���(v)) |≡{1,#p},{1,#c} tλ(���(v))
⇔: ∀(λ, v) ∈ W∗ : if tλ(���(v)) ⊆ {1, #p}, then tλ(���(v)) ∩ {1, #c} 	= ∅

⇔: ∀(λ, v) ∈ W∗ : if ���(v) ⊆ Dλ
p then ���(v) ∩ Dλ

c 	= ∅

⇔: ∀v : ���(v)(
⋂

� |≡Dλ
p ,Dλ

c
)���(v)

⇔: � � � (in virtue of the truth-relationality and soundness and completeness of the
input semantics). �

The following corollary puts upper bounds on Suszko rank for monotonic consequence
relations with various syntactic properties. This is the exact analog of Corollary 1 in French
& Ripley (2018), and of statements (M1) and (M2) in Blasio et al. (2018):

COROLLARY 4.5 (Maximum Suszko rank theorems). A monotonic consequence relation
is of Suszko rank:

• at most 2 if it is reflexive and transitive,
• at most 3 if it is transitive or reflexive,
• at most 4 in general.

Proof. The tλs from the Scott-Suszko reduction may yield at most 4 values. In fact, 3
values are sufficient if the relation is reflexive (one can choose an intersective semantics
with, for all λs, Dλ

p \Dλ
c = ∅, by Theorem 3.3′) or transitive (one can choose Dλ

c \Dλ
p = ∅,

by Theorem 3.4′). Finally, 2 values are sufficient if the relation is transitive and reflexive
because we can then choose a representation such that Dλ

p = Dλ
c (Theorem 3.5′). �

We can further show that these upper bounds are reached. Malinowski famously did it
for rank 3 and transitive relations. The following gives an example of a 4-valued logic
which is not further reducible.

FACT 4.6. There exist substitution-invariant monotonic logics of Suszko rank exactly 4.

Proof. Consider the language of propositional logic, with the valuational semantics
〈{0, 1, #p, #c}, �_�〉 such that |≡=|≡{1,#p},{1,#c}. We may give an interpretation to the con-
nectives (e.g., conjunction and disjunction interpreted as min and max with 0 being lower
than any other value, 1 being higher, and by definition min(#p, #c) = 0, max(#p, #c) = 1,
negation could be defined as, e.g., ¬#p = ¬#c = 0). But more importantly, we add to
the language four 0-ary connectives, which will receive constant truth-functions in this
semantics. This semantics can be used to complement the language with a consequence
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relation. The resulting logic cannot be given a truth-relational semantics with fewer than 4
semantic values.

Pick an intersective semantics. Given the syntactic properties of the formulae �, ⊥,
#p, and #c, there are constraints on the truth values they may receive. For instance, � �
requires that all the truth values received by � be in all of the Dλ

c s, and the fact that � 	�
requires that at least one truth value received by � be outside of at least one Dλ0

c . Further
similar constraints are given in the table below; each line corresponds to the constraints
imposed on the truth values of the formula given in the first column, as derived from each
of the statements between parentheses.

� (∅ � �) : all values in all Dc (� 	� ∅) : some value outside some Dp

⊥ (⊥ �) : all values outside all Dp ( 	� ⊥) : some value in some Dc

#c (#c �) : all values outside all Dp (� #c) : all values in all Dc

#p (#p 	� #p): some value in a given Dp but not in its Dc counterpart

It follows that the semantics has at least four values. First, it has a value x1 in all Dcs but
outside some Dp (first line). Second, it has a value x2 outside all Dps but in some Dc, this
cannot be x1 which is in some Dp. Third, it has a value x3 outside all Dps (hence it is not
x1) and outside all Dcs (hence it is not x2). Finally, it has a value x4 in a given Dp but not in
its Dc counterpart. This cannot be x1 because x1 is in all Dcs, it cannot be x2 or x3 because
they are both outside all Dps. �

More generally, we can obtain an exact correspondence between mixed Suszko rank and
structural properties for nonpermeable logics:

COROLLARY 4.7 (Exact Suszko rank theorems). A monotonic, nonpermeable consequence
relation is of mixed Suszko rank:

• exactly 2 if and only if it is reflexive and transitive,
• exactly 3 if and only if it is transitive or reflexive but not both,
• exactly 4 if and only if it is neither transitive nor reflexive.

Proof. Consider a truth-adequate mixed semantics of minimal rank for such a logic, we
note its truth-relation |≡Dp,Dc . In virtue of Theorem 2.28, some truth value is in both Dp

and Dc (call one of them 1), and some value is in neither (call one of them 0).

• The rank for all logics we are concerned with here is at least 2 (the set of truth
values contains 0 and 1), and hence it is exactly 2 for reflexive and transitive logics
(for which the rank is at most 2, by Corollary 4.5).

• If the semantics is two-valued, then the truth-relation is essentially of the form
|≡{1},{1}. Hence, the truth-relation is pure and by Theorem 3.5′, the logic is reflexive
and transitive.

• If the semantics is 3-valued, call # the third truth value. In virtue of Theorem 2.28,
the truth-relation will be either: |≡{1},{1}, |≡{1,#},{1}, |≡{1},{1,#} or |≡{1,#},{1,#}. It
follows (Theorems 3.3′ and 3.4′) that the logic is reflexive or transitive (or both).
Hence, logics which are neither transitive nor reflexive will be of rank at least 4,
and given Corollary 4.5, of rank exactly 4. �

4.2. Stronger notions of rank: The problem of truth-functionality. Suszko’s focus
was on the notion of a logical truth value, and only concerns the existence of a sound
and complete semantics for a logic. However, one may demand more from a semantics,
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such as valuationality, compositionality and truth-functionality (see Font, 2009; Marcos,
2009). Such properties may be seen as irrelevant in relation to logical truth values, insofar
as they concern connectives more than consequence relations, but they surely are relevant
in relation to the notion of an algebraic truth value. The Suzsko problem is about finding
the rank of a logic, for more or less stringent notions of rank, depending on the demands
of the semantics.

DEFINITION 4.8 (Notions of rank). We introduce a sample of possible definitions of logi-
cal/algebraic rank, i.e., possible alternatives to Suszko rank from Definition 4.1:

• The compositional rank of a logic is the least cardinal of truth values needed to
construct an adequate intersective mixed semantics for it.

• The truth-functional rank of a logic is the least cardinal of truth values needed to
construct a truth-adequate intersective mixed semantics for it.

• The strong rank of a logic is the least cardinal of truth values needed to construct
a strong intersective mixed semantics for it.

As we did for the Suszko rank and the mixed Suszko rank, we can define parallel and in fact
very similar notions of mixed compositional rank, mixed truth-functional rank and mixed
strong rank, by requiring in each of the above definitions that the semantics be mixed (and
not only intersective mixed).

Compositionality in our general sense is a very weak demand and a very minor modifica-
tion of Scott and Suszko’s reduction guarantees it, in a trivial sense. We make this explicit
in Appendix A (§6), where the reader can also find a more direct construction to obtain a
Scott-Suszko-like semantics for a logic, without going through the trouble of the reduction
of some pre-existing semantics (this is to be compared to French & Ripley’s approach).

Hence, in the remainder of this article, we will be interested in truth-functionality, and
therefore in the truth-functional rank, not in the compositional rank. In general, the truth-
functional rank is strictly more demanding than the Suszko rank for monotonic logics:
even though the Suszko rank is at most 2 for monotonic, reflexive and transitive logics
(Corollary 4.5), for a variety of such logics the truth-functional rank is higher than 2, as
Suszko (1977) emphasized, a point we illustrate with the following Fact:

FACT 4.9. Some monotonic, reflexive and transitive logic has no bivalent, truth-adequate
intersective mixed semantics.

Proof. Consider the language of propositional logic, with a trivalent semantics for the
connectives and formulae (over the set {1, 1

2 , 0}), and the order-theoretic consequence
relation, which here is simply based on the truth-relation |≡{1},{1} ∩ |≡{1, 1

2 },{1, 1
2 }. Also

assume that it has a formula � for the tautology (constant proposition of value 1) and
one formula ⊥ for the contradiction (constant proposition of value 0). It is substitution-
invariant, monotonic, reflexive and transitive, since it has a valuational, intersective pure
semantics. Consider, for reductio, a bivalent truth-adequate semantics.

We first need to show that the truth-relation necessarily is the classical bivalent con-
sequence truth-relation. The truth-relation |≡ is intersective: it is the intersection of all
|≡Dλ

p ,Dλ
c

such that Dλ
p 	|≡ (V \ Dλ

c ) (the reasoning is similar to the one in the proof of

Theorem 3.2). One of the two values in V , call it 1, has to be in all Dλ
c s, for otherwise there

could be no validity (� �) and in some Dλ
p (otherwise it cannot be that � 	�). One value,

call it 0, has to be in no Dλ
p , for otherwise there could be no proposition that validates

the empty set of conclusions (⊥ �) and outside of some Dλ
c (⊥ �). The truth-relation is
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therefore the intersection of some of the following: |≡∅,{1,0}, |≡∅,{1}, |≡{1},{1,0}, |≡{1},{1}.
The last one is more stringent than any of the others, and it is the only one that allows
for � 	� ⊥ (the other relations hold as soon as the premises and the conclusions are not
empty). Hence, |≡ is |≡{1},{1}.

Then let us consider what the truth-function for negation would be. For an atom p:
p 	� ¬p. Hence, there is a valuation in which p takes the value 1 and ¬p the value 0, i.e.,
[[[¬]]](1) = 0. Similarly, ¬p 	� p, from which it follows that [[[¬]]](0) = 1. But under those
assumptions, we should have � p, ¬p, which does not hold. Hence, no such semantics can
be truth-functional. �

In fact, the discrepancy is more extreme, since even though the Suszko rank is at most 4
for any monotonic logics (Corollary 4.5), the strong rank is unbounded:

THEOREM 4.10. For any n, there is some monotonic logic of truth-functional rank n,
i.e., with no truth-adequate semantics with fewer than n truth values.

Proof. Consider the language of propositional logic over a fixed set of connectives, with
a semantics over n totally ordered truth values {α1, . . . , αn}, some truth-functions for the
connectives, and the associated order-theoretic consequence relation, defined as γ |≡ δ
iff min(γ ) ≤ max(δ). This truth-relation is also the intersection of all pure |≡Di,Di , with
Di = {αk : k ≥ i}, for i ∈ {2, . . . , n}. Also extend the language (and the semantics) with
n 0-ary truth-functional connectives C1, . . . , Cn, with values corresponding to each of the
n truth values. This yields a logic which is substitution-invariant, monotonic, reflexive
and transitive, since it has a valuational, intersective pure semantics. In any truth-adequate
semantics, the 0-ary connectives correspond to a truth value (a constant truth-function), and
they all have to be different truth values because the formulae Cis have pairwise different
behaviors (Ci � Cj iff i ≤ j). Hence, any truth-adequate semantics has at least n truth
values. �

Fact 4.9 and Theorem 4.10 may be related to Gödel (1932)’s result showing that there
is no finite-valued characterization of intuitionist logic. Intuitionist consequence is mono-
tonic, reflexive, transitive, and nonpermeable.4 From Corollary 4.7, it follows that it must
have a two-valued semantic characterization. There is no contradiction with Gödel’s result,
however, for what Gödel’s result really establishes is that there is no truth-functional
characterization of intuitionistic logic with finitely many values.

4.3. A solution for ‘regular’ connectives and compact logics: The truth-functional
Scott-Suszko reduction. The counterexample given in the previous section to the
truth-functionality of Scott-Suszko reductions involved connectives with particular prop-
erties: a negation for which it could happen that �, P � � without � � ¬P, � (Theo-
rem 4.9) or 0-ary connectives specifically targeting algebraic truth-values, so to speak (The-
orem 4.10). Here we show that under certain conditions, the truth-functional rank is not
higher than the Suszko rank. We exhibit a modification of the Scott-Suszko reduction that
preserves truth-relationality and soundness and completeness, but also truth-functionality.

4 For the intuitionistic calculus, Gentzen (1935) allows only one formula to appear as conclusion
in a sequent. This may appear to restrict monotonicity to premises only. However, Gentzen’s
restriction is primarily concerned with the application of operational rules, namely the rules for
the connectives. In other words, an intuitionistically valid sequent can be augmented with more
conclusions and remain valid under the intuitionistic reading of the comma as a disjunction on
the conclusion side.
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But this happens only for compact logics and certain types of connectives that we will call
regular.

4.3.1. Compact and regular logics. Compactness is a standard structural notion from
the Tarskian tradition:

DEFINITION 4.11 (Compactness). A logic is compact if � � � entails that there are �′
and �′ finite subsets of � and �, such that �′ � �′.

As for regular connectives, a formal definition is given in 4.13. In essence, they are
connectives such that their structural behavior can be read off from the consequence rela-
tion. The formulation of the definition is a bit complicated, but the spirit is simple and a
couple of examples will help clarify. Whether a relation holds when the premise contains a
formula headed by negation can, in well-behaved cases, be deduced from whether related
relations without that negation hold. And similarly when the formula headed by negation
is in conclusion. More generally, whether �, C(F1, . . . , Fn) � � is often dictated by a
conjunction of statements of the form “�, F1 � F2, �”, “�, F2, F3 � F1, �”, etc.

EXAMPLE 4.12. Examples of typical relations that make connectives regular:

Negation �, ¬P � � iff � � P,� � � ¬P ,� iff �, P � �

Conjunction �, P ∧ Q � � iff �, P, Q � � � � P ∧ Q ,� iff � � P,� and � � Q,�

Disjunction �, P ∨ Q � � iff �, P � � and �, Q � � � � P ∨ Q ,� iff � � P, Q, �

Conditional �, P→Q � � iff �, Q � � and � � P, � � � P→Q ,� iff �, P � Q,�

All of those correspond to invertible sequent calculus rules for classical propositional logic
(viz. Scott, 1974). The general definition of regular connectives is as follows.

DEFINITION 4.13 (Regular connectives, regular logics). A connective C is regular if there
exist Bp ⊆ P({1, . . . , n}) × P({1, . . . , n}) and Bc ⊆ P({1, . . . , n}) × P({1, . . . , n}) such
that ∀�, � :

�, C(F1, . . . , Fn) � � iff
∧

(Bp,Bc)∈Bp
�, {Fi : i ∈ Bp} � {Fi : i ∈ Bc}, �

� � C(F1, . . . , Fn), � iff
∧

(Bp,Bc)∈Bc
�, {Fi : i ∈ Bp} � {Fi : i ∈ Bc}, �.

A logic is called regular if all its connectives are regular. For a regular connective C, we
may refer to rules as above as its regularity rules, and note the corresponding sets Bp and
Bc, leaving C implicit. We do so without implying that these are uniquely determined.

Regular logics include not only classical logic, but also some substructural logics, such
as the logics ST and TS of Cobreros et al. (2012b).5 Nonregular logics include for example
intuitionistic logic or Łukasiewicz’s three-valued logic Ł3: in particular, in both systems the
negation is not regular.6 Intuitively, the notion of regularity is tied to the proof-theoretical
notion of analyticity, namely for a logic to enjoy the subformula property (all formulas
occurring in a derivation of a provable sequent are subformulae of formulae in the end-
sequent). We may conjecture that regularity is a sufficient condition for a logic to enjoy the

5 We refer to Chemla & Égré (2019) for a detailed investigation of regular connectives in such
logics.

6 To be clear, no regularity rule at all applies to this connective: neither the classic rule of Example
4.12 for a negation (�, ¬P � � iff � � P,�); nor any of the other two possible regularity rules
for a unary connective (�, ¬P � � iff �, P � � and �,¬P � � iff � � �).
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subformula property. We leave a further exploration of that issue for another occasion (see
Lahav & Zohar, 2018 for a recent study).

4.3.2. The truth-functional Scott-Suszko reduction and the truth-functional rank. We
can exploit the regularity of a logic to propose a version of the Scott-Suszko reduction
designed to preserve truth-functionality, modifying the construction from Definition 4.3.
In this reduction, we now say explicitly how to treat (regular) connectives.

DEFINITION 4.14 (Truth-functional Scott-Suszko reduction). Consider some intersective
mixed semantics 〈V,W, �_�〉 for a logic, assuming that the truth-relation is given by the
intersection of the |≡Dλ

p ,Dλ
c

for λ = (Dλ
p ,Dλ

c ) in �. Its truth-functional Scott-Suszko
reduction is the semantics defined as follows:

V∗ := {1, #p, #c, 0},
W∗ := � × W ,
|≡∗ := |≡{1,#p},{1,#c},
�p�∗(λ, v) := tλ(�p�(v)) for all atoms p, and we extend the interpretation function

inductively through the definition of a truth-function for all (regular) connectives:

[[[C]]](x1, . . . , xn) 	∈ {1, #p} iff
∧

(Bp,Bc)∈Bp
({xi : i ∈ Bp} ⊆ {1, #p} ⇒ {xi : i ∈ Bc} ∩ {1, #c} 	= ∅)

[[[C]]](x1, . . . , xn) ∈ {1, #c} iff
∧

(Bp,Bc)∈Bc
({xi : i ∈ Bp} ⊆ {1, #p} ⇒ {xi : i ∈ Bc} ∩ {1, #c} 	= ∅).

This reduction relies on a canonical way of associating a truth-function to a regular con-
nective. In Appendix B (§7), we provide reasons to compare the resulting truth-functions
with Strong Kleene truth-tables. For current purposes, we want to ensure that these truth-
functions deliver truth-functionality:

THEOREM 4.15. The truth-functional Scott-Suszko reduction of a sound and complete, in-
tersective semantics for a regular and compact logic is a truth-adequate, mixed semantics.

Proof. By construction, the truth-functional Scott-Suszko reduction is
truth-compositional and mixed, see Fact 2.15. We will now prove that it is sound and com-
plete in three steps: the induced syntactic consequence relation (i) is sound and complete
on sets of premises and conclusions only made of atoms, (ii) respects the regularity of the
connectives, (iii) is inductively sound and complete everywhere since by compactness and
regularity all relations can be inferred from relations between atomic formulae only.

(i) On atoms, the semantics is clearly sound and complete: it coincides with the tradi-
tional Scott-Suszko reduction.

(ii) This semantics respects the regularity of the connectives. We first show this for
cases where the connective is in the premise set: the first member of the chain
of equivalence below corresponds to �, C(F1, . . . , Fn) � � and the last member
corresponds to its regular representation

∧
(Bp,Bc)∈Bp �, {Fi : i ∈ Bp} � {Fi : i ∈ Bc}, �.

∀v∗ = (λ, v) :
[v∗(�) ⊆ {1, #p} ∧ v∗(C(F1, . . . , Fn)) ∈ {1, #p}] ⇒ v∗(�) ∩ {1, #c} 	= ∅
iff v∗(�) 	⊆ {1, #p} ∨ v∗(C(F1, . . . , Fn)) 	∈ {1, #p} ∨ v∗(�) ∩ {1, #c} 	= ∅
iff v∗(�) 	⊆ {1, #p} ∨ v∗(�) ∩ {1, #c} 	= ∅ ∨ ∧

(Bp,Bc)∈Bp {v∗(Fi) : i ∈ Bp} ⊆ {1, #p}
⇒ {v∗(Fi) : i ∈ Bc} ∩ {1, #c} 	= ∅
iff

∧
(Bp,Bc)

[{v∗(Fi) : i ∈ Bp} 	⊆ {1, #p} ∨ {v∗(Fi) : i ∈ Bc} ∩ {1, #c} 	= ∅∨v∗(�) 	⊆ {1, #p}∨v∗(�)∩
{1, #c} 	= ∅]
iff

∧
(Bp,Bc)

[{v∗(Fi) : i ∈ Bp} ⊆ {1, #p} ∧ v∗(�) ⊆ {1, #p}] ⇒ [{v∗(Fi) : i ∈ Bc} ∩ {1, #c} 	= ∅ or

v∗(�) ∩ {1, #c} 	= ∅]
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Similarly, for cases where the connective is in the conclusion set: the first member
of the chain of equivalence below corresponds to � � C(F1, . . . , Fn), � and the
last one to its regular representation

∧
(Bp,Bc)∈Bc �, {Fi : i ∈ Bp} � {Fi : i ∈ Bc}, �.

∀v∗ = (λ, v) :
v∗(�) ⊆ {1, #p} ⇒ [v∗(�) ∩ {1, #c} 	= ∅ ∨ v∗(C(F1, . . . , Fn)) ∈ {1, #c}]
iff v∗(�) 	⊆ {1, #p} ∨ v∗(�) ∩ {1, #c} 	= ∅ ∨ v∗(C(F1, . . . , Fn)) ∈ {1, #c}
iff v∗(�) 	⊆ {1, #p} ∨ v∗(�) ∩ {1, #c} 	= ∅ ∨ ∧

(Bp,Bc)∈Bc {v∗(Fi) : i ∈ Bp} ⊆ {1, #p}
⇒ {v∗(Fi) : i ∈ Bc} ∩ {1, #c} 	= ∅
iff

∧
(Bp,Bc)

[{v∗(Fi) : i ∈ Bp} 	⊆ {1, #p} ∨ {v∗(Fi) : i ∈ Bc} ∩ {1, #c} 	= ∅∨v∗(�) 	⊆ {1, #p}∨v∗(�)∩
{1, #c} 	= ∅]

iff
∧

(Bp,Bc)
[{v∗(Fi) : i ∈ Bp} ⊆ {1, #p} ∧ v∗(�) ⊆ {1, #p}] ⇒ [{v∗(Fi) : i ∈ Bc} ∩ {1, #c} 	= ∅∨v∗(�)∩

{1, #c} 	= ∅]

(iii) From the two items above, using compactness and induction on the complexity of
the (finite number of) formulae involved, we complete the proof that this semantics
is sound and complete. �

For regular and compact logics, Corollary 4.5 about Suszko rank can now be subsumed
by parallel results about the more stringent notion of truth-functional rank:

THEOREM 4.16 (Maximum truth-functional rank theorems). A monotonic, regular and
compact logic is of truth-functional rank:

• at most 2 if it is reflexive and transitive,
• at most 3 if it is transitive or reflexive,
• at most 4 in general.

Proof.

with reflexivity To a monotonic reflexive logic, we apply Theorem 3.3′, obtain a truth-
adequate p-mixed semantics for it, and apply the truth-functional Scott-Suszko reduc-
tion. We can be sure that no formula is assigned in any valuation v the value #p. Oth-
erwise, such a formula Fp would violate reflexivity: Fp 	� Fp because in the relevant
valuation vp: vp(Fp) ⊆ {1, #p} and vp(Fp) ∩ {1, #c} = ∅. Hence, the truth-functional
Scott-Suszko reduction is adequate, truth-interpretable and at most trivalent, over (some
subset of) the set of truth values {1, #c, 0}, which shows that monotonic, reflexive logics
are of truth-functional rank at most 3.

with transitivity If the logic is transitive, we can associate to it a truth-adequate q-mixed
semantics by Theorem 3.4′, and take the truth-functional Scott-Suszko reduction of it.
This semantics does not make use of #c, neither for the atoms, nor for more complex
formulae: no #c shows up in the atoms, that is in what we called V∗

v above, because
Dλ

c \ Dλ
p = ∅; furthermore, if a #c is generated for some formula Fc in some valuation

vc, then that valuation can safely be dropped. If it could not be dropped, there would be
� 	� � such that ∀v 	= vc, v(�) |≡∗ v(�). But then � 	� � while both �, Fc � � and
� � Fc, � would hold. This would violate transitivity. Hence, we can obtain a truth-
adequate mixed semantics over (a subset of) {1, #p, 0}: the truth-compositional rank is
at most 3.

with reflexivity and transitivity The previous construction for a transitive logic yields
reflexivity if and only if #p does not appear in any formula (a formula involving #p

would violate reflexivity, as explained above). The truth-functional rank is therefore at
most 2.
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without reflexivity nor transitivity We apply the truth-functional Scott-Suszko reduc-
tion to a semantics given by Theorems 3.2 to obtain a truth-adequate, mixed semantics
over (a subset of) {1, #p, #c, 0}. �
As before in Corollary 4.7, we can also obtain exact rank theorems for nonpermeable

logics:

THEOREM 4.17 (Exact truth-functional rank theorems). A nonpermeable, monotonic, reg-
ular and compact logic is of mixed truth-functional rank:

• exactly 2 if and only if it is reflexive and transitive,
• exactly 3 if and only if it is transitive or reflexive but not both.
• exactly 4 if and only if it is neither transitive nor reflexive.

Proof. The proof is exactly the same as the proof for Corollary 4.7, except that the
reference for the upper bounds is not Corollary 4.5 but Theorem 4.16, of course. �

Hence, we obtained complete analogs of Corollaries 4.5/4.7 for regular and compact
logics in Theorems 4.16/4.17. We find that the Suszko rank is essentially the same as the
a priori more stringent truth-functional rank. Under these circumstances, then, logical and
algebraic truth values are fundamentally the same, given appropriate reductions.7 These
results obtain only for compact and regular logics. If these restrictions are unsatisfying to
some readers, Appendix C (§8) explores a way to study more general logics, through what
we call grouping reductions, but we exhibit limitations of this other approach.

§5. Conclusions. Let us summarize our progression in this article. We have defined
a logic syntactically, as consisting of a set of formulae, a set of connectives, and a con-
sequence relation definable as a set of arguments over that language. In parallel, we have
defined a semantics as a structure allowing us to map formulae, connectives, and the conse-
quence relation to their interpretations. The rest of the article has dealt with representation
theorems, relating structural properties of a logic with general constraints on their semantic
interpretation.

Firstly, we have addressed Suszko’s problem in its general form: what is the least number
of truth values needed to characterize a logic semantically? We showed that if one is only
interested in finding a sound and complete semantics, the least number of truth values
needed to characterize a monotonic logic lies between 2 and 4, and the precise number is
tied to whether the consequence relation is reflexive, transitive or neither of those. Similar
results were first obtained by French and Ripley, using different techniques, and by Blasio,
Marcos, and Wansing. As the former emphasize, only partial correspondence results were
obtained earlier (in particular by Humberstone, 1988; Malinowski, 1990; Tsuji, 1998;
Frankowski, 2004).

Secondly, we have pointed out that the rank theorems obtained no longer hold in full
generality if we require the semantics of the connectives to be truth-functional. However,
truth-functionality is a natural desideratum, and Suszko’s problem can be extended as

7 As an example of nontrivial truth-functional reduction, we may give the case of Smith (2008)’s
fuzzy logic. Smith proposes an infinite-valued semantics for the language of first-order logic and
gives a definition of logical consequence which he shows to coincide with classical consequence.
His proof is an instance of a Scott-Suszko reduction, which preserves truth-functionality. See
Cobreros, Égré, Ripley, & van Rooij (2018) for discussion and further comparisons with Smith’s
logic.
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follows: what is the least number of truth values needed to represent a logic by means of
a truth-functional semantics? About this, we showed that for a natural class of logics, this
generalization is not more demanding than Suszko’s original question: the least number
of truth values needed to truth-functionally characterize a monotonic, compact and regular
logic is, again, exactly 2 if the logic is reflexive and transitive, exactly 3 if it is only one
of those, exactly 4 if it is neither reflexive nor transitive. This result is of significance for
the understanding of what ought to count as a truth value. Suszko pointed out that, given
a logic, the number of algebraic truth values for a truth-functional semantics is in general
arbitrary. On the other hand, he defended a notion of logical truth values, whose number is
not arbitrary, but at the risk of losing truth-functionality. Our approach shows that we can
have a notion of truth value that is tailored for truth-functionality and that may coincide
with the logical notion.

Nevertheless, this result depends on the restriction to a special class of connectives and
logics. To gain more generality, in Appendix C (§8) we investigate whether more radical
departures from the notion of reduction employed by Scott and Suszko could preserve
truth-functionality including for noncompact nonregular logics. We introduce one possible
candidate, the notion of grouping reduction. The notion is plausible from a semantic point
of view in that it proposes to assimilate truth values that may be intersubstituted salva
consequentia. As we show there, however, it also leaves us with problems calling for
further work. Because both the Scott-Suszko types of reduction and grouping reductions
have limitations, more candidates may need to be considered to define an adequate notion
of reduction, not only preserving consequence and truth-functionality, but ensuring that the
reduction always helps reach an optimal number of truth values so as to reveal the rank of
any logic and, with it, a canonically associated semantic.

§6. Appendix A: Simple compositionality in a Scott-Suszko reduction. Composi-
tionality in our sense, without truth-functionality, is a very weak demand. In particular,
compositionality is met as soon as no two formulae are interpreted by the same propo-
sition: there is then no real constraint on the interpretation of connectives at the level of
propositions. This suggests two ways to artificially achieve compositionality. First, one
may multiply the number of truth-values, even if they play roughly the same inferential
role, just so that the truth values of formulae can differ in at least one world, even if in fact
the truth values they are assigned are essentially the same. If one is looking for semantics
with a minimal number of truth values, this is not the way to go, however. Another option
is to distinguish semantically between formulae by multiplying the number of worlds: idle
worlds may be added so that different formulae are assigned different truth values in these
worlds, even if these worlds play no real inferential role. We pursue this second option in
this appendix.

To do so, we present a slightly different method to arrive at what is essentially the output
of the original Scott-Suszko reduction. This construction is to be compared directly to the
approach in French & Ripley (2018). Interestingly, this construction is not a reduction
per se: it does in one step what was done in several steps in the core of the text (and in
earlier discussions on the topic), that is, it exhibits a semantics with few truth values, not
by reducing an existing semantics (typically obtained by the Lindenbaum method), but
by extracting this semantics directly from the syntactic consequence relation. More to the
point of this appendix, this method delivers a semantics in which each formula will most
commonly be assigned to a unique proposition, because the semantics uses many worlds,
and hence is compositional (albeit not necessarily truth-functional).
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DEFINITION 6.1. The direct Scott-Suszko semantics of a logic is defined as follows:
V := {1, #p, #c, 0}, W := {w(�,�) : � 	� �}, |≡:=|≡{1,#p},{1,#c},

�F�(w(�,�)) :=
⎧⎪⎨
⎪⎩

1 if F ∈ � and F 	∈ �
0 if F 	∈ � and F ∈ �
#p if F ∈ � and F ∈ �
#c if F 	∈ � and F 	∈ �.

THEOREM 6.2. The direct Scott-Suszko semantics of a monotonic logic is sound and
complete.

Proof. If � 	� �, then it is easily shown that ���(w(�,�)) ⊆ {1, #p} and ���(w(�,�)) ⊆
{0, #p}. Conversely, if there is some world w(�′,�′) such that ���(w(�′,�′)) 	|≡ ���(w(�′,�′)),
then � ⊆ �′ and � ⊆ �′. Hence, by monotonicity, � 	� �. �

THEOREM 6.3. If there is at most one formula F such that ∀�, � : �, F � � and � �
F, �, then the direct Scott-Suszko semantics of a monotonic logic assigns a different propo-
sition to all formulae.

Proof. Let F be a formula such that it is not the case that ∀�, � : �, F � � and � �
F, �. By monotonicity, this amounts to F 	� or 	� F. If the former is the case, then F is the
only formula such that �F�(w({F},∅)) ⊆ {1, #p}; if the latter is the case, then F is the only
formula such that �F�(w(∅,{F})) ⊆ {0, #p}. �

Compositionality is a very weak demand, it holds in particular if all formulae are as-
signed a different proposition. Thus, compositionality of the direct Scott-Suszko semantics
is an immediate corollary:

COROLLARY 6.4. If every formula F is involved in at least one relation that does not hold
(∃�, � : F ∈ (� ∪ �) and � 	� �), the direct Scott-Suszko semantics of a monotonic logic
is compositional.

The reader can see why from this construction we obtain (mixed) compositional rank
results similar to the (mixed) Suszko rank results: certainly compositional rank is at most
4, and reflexivity would lead to drop #p and transitivity can help drop #c as a truth value
(although it is a little more complicated for transitivity, which requires to take a subset of
W and therefore lose some of the leverage to assign a unique proposition to each formula).

§7. Appendix B: The canonical truth-functions of classical connectives. The truth-
functional version of the Scott-Suzsko reduction (Definition 4.14) introduces a canonical
way of associating truth-functions to regular connectives, given their regularity rules. For
usual connectives from, say, bivalent logic, which come with regularity rules, these truth-
functions offer a canonical 4-valued extension of their bivalent truth-function. Below we
show the truth-tables associated in this way to the connectives mentioned in Example 4.12,
see the regularity rules reported up there. More connectives are shown with their regularity
rules and canonical truth-tables in the semi-automatic Excel file linked with this article as
an ancillary document (https://arxiv.org/src/1707.08017v1/anc/truth-table.xlsx).

Negation
¬

1 0
#p #p

#c #c

0 1

Conjunction
1 #p #c 0

1 1 #p #c 0
#p #p #p 0 0
#c #c 0 #c 0
0 0 0 0 0

Disjunction
1 #p #c 0

1 1 1 1 1
#p 1 #p 1 #p

#c 1 1 #c #c

0 1 #p #c 0

Conditional
1 #p #c 0

1 1 #p #c 0
#p 1 #p 1 #p

#c 1 1 #c #c

0 1 1 1 1
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How do the above truth-tables compare with other truth-tables proposed for many-valued
negation, conjunction, conditionals, . . . ? Below we highlight two properties of such truth-
tables.

DEFINITION 7.1 (Closure). A set of truth values V ⊆ V is closed under a truth-function
[[[C]]] iff

∀α1, . . . , αn ∈ V : C(α1, . . . , αn) ∈ V
DEFINITION 7.2. A regular connective C is called bivalent-closed if {0, 1} is closed under
its canonically associated truth-function [[[C]]].

THEOREM 7.3. For a bivalent-closed connective C, {0, 1, #p} and {0, 1, #c} are closed
under [[[C]]].

Proof. Assume that {0, 1} is closed and that α1, . . . , αn ⊆ {0, 1, #p}. Assume that
C(α1, . . . , αn) = #c, then

[[[C]]](α1, . . . , αn) 	∈ {1, #p} so
∧

(Bp,Bc)∈Bp

({αi : i ∈ Bp} ⊆ {1, #p} ⇒ {αi : i ∈ Bc} ∩ {1, #c} 	= ∅)

[[[C]]](α1, . . . , αn) ∈ {1, #c} so
∧

(Bp,Bc)∈Bc

({αi : i ∈ Bp} ⊆ {1, #p} ⇒ {αi : i ∈ Bc} ∩ {1, #c} 	= ∅).

Neither of these two statements would become false if some αi was changed from #p to
1. Hence, we would have C(π(α1), . . . , π(αn)) = #c, with π(0) := 0, π(1) := 1 and
π(#p) := 1. And this would violate the stability of {0, 1}. This proves the closure of
{1, 0, #p}. The proof for the closure of {1, 0, #c} is similar: no conjunct in the statement
above can become true if some αi is changed from #c to 0. �

As a result, if we ignore one of the nonclassical truth values as an argument, #p or #c, we
are left with a trivalent connective in its output too. For instance, removing the #p row and
the #p column in the truth-table above leaves us with a truth-table which does not contain
#p anymore. On these three-valued spaces then, either {1, #c, 0} or {1, #p, 0}, we recognize
the usual trivalent Strong Kleene tables, in the following sense:

DEFINITION 7.4 (Strong Kleene). A truth-function is Strong Kleene if for α1, . . . , αk−1,
αk+1, . . . , αn ⊆ {0, 1}, whenever [[[C]]](α1, . . . , αk−1, 0, αk+1, . . . , αn) and [[[C]]](α1, . . . ,
αk−1, 1, αk+1, . . . , αn) take the same value, then [[[C]]](α1, . . . , αk−1, α, αk+1, . . . , αn)
takes this same value for all truth values α.

Interestingly, the canonical truth-functions of the 16 classical bivalent binary connectives
are Strong Kleene, as can be seen from the computations of all these truth-functions in the
auxiliary file:

FACT 7.5. The truth-functions canonically associated to the 16 classical binary connec-
tives are Strong Kleene.

It would be useful to investigate a structural characterization of bivalent-stable con-
nectives, of Strong Kleene connectives and, in connection to this, to ask when several
regularity rules may coexist for a connective (it certainly is so for ‘xor’) because they
could lead to different ‘canonical’ truth-functions (although there is a canonical way to
decide between several regularity rules, by picking the conjunction of them all, which
remains a regularity rule). We leave such a systematic investigation of connectives for
another occasion.
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§8. Appendix C: Grouping reductions. This section presents a notion of reduction
which is natural from an algebraic perspective, but in fact less efficient than the Suszko
reduction, for reasons explained hereafter.8

8.1. Definition of grouping reductions. Can we study more stringent notions of rank
for noncompact and nonregular logics? To do so, one may like to exhibit a reduction that
preserves truth-adequacy, and reaches the truth-compositional rank—just like Scott-Suszko
reductions preserve truth-relationality and reach their associated rank under appropriate
circumstances (see Corollary 4.7 and Theorem 4.17). With this in hand, we would have a
canonical way to construct an optimized (algebraic) semantics for any logic: start from any
semantics that can be obtained for a logic, e.g., the Lindenbaum construction we described,
and apply the reduction.

A natural way to reduce the number of truth values is to group functionally similar truth
values together. In other words, one could form new truth values as equivalence classes of
old truth values. Formally, we may project the set of truth values into a smaller set of truth
values, essentially collapsing truth values with the same image in this new set. We propose
a formal description of this process, exhibiting constraints to preserve the soundness and
completeness of the relation on the one hand, and compositionality for connectives on the
other hand.

DEFINITION 8.1 (Grouping reductions and associated properties). Consider a logic and
an intersective semantics for it over the set of truth values V1, with truth-relation |≡1, and
connectives generically called C interpreted as [[[C]]]1. A surjection ρ : V1 � V2 is called
a grouping-reduction (abbreviated g-reduction) and can be qualified as follows:

• ρ is a relation-g-reduction if ∀γ, δ : ∀γ ′, δ′ :

if (ρ(γ ) = ρ(γ ′) and ρ(δ) = ρ(δ′)), then (γ |≡1 δ iff γ ′ |≡1 δ′)

• ρ is a C-g-reduction for some connective C if ∀x1, . . . , xn : ∀x′
1, . . . , x′

n:

if (ρ(x1) = ρ(x′
1), . . . , ρ(xn) = ρ(x′

n)), then (ρ([[[C]]]1(x1, . . . , xn)) = ρ([[[C]]]1(x
′
1, . . . , x′

n)))

• ρ is a strong g-reduction if it is both a relation-g-reduction and a C-g-reduction for
all connectives.

The above definition articulates a constraint concerning the truth-relation and a con-
straint for the connectives. The former is in line with Scott and Suszko’s approach (al-
though the constraint here is more stringent, as we will see). The latter however builds into
the enterprise the hope that compositionality will be maintained. The following theorem,
indeed, shows how a strong g-reduction provides a way to define a truth-relational seman-
tics with |V2|-many truth values. We will also call a semantics defined in this way a strong
g-reduction:

THEOREM 8.2. Consider a logic, with a strong intersective mixed semantics for it (over
the set of truth values V1) and a strong g-reduction of it ρ : V1 � V2. A strong, intersective
mixed semantics for the logic can be defined over V2.

8 Some of the results below may be derived in a more abstract setting. We are indebted to a referee
for pointing out that Theorem 8.6 in particular is an instance of a more general result on Leibniz
congruences, see in particular Blok & Pigozzi (1989), Font (1991).
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Proof. We exhibit a valuational, compositional, truth-relational and truth-functional
semantics over V2 by defining its interpretation function inductively (see Fact 2.15). Pick
an inverse function ρ〈−1〉 for the surjective function ρ (i.e., ρ ◦ ρ〈−1〉 = Id). Then define
|≡2:= ⋂ |≡ρ(Dλ

p ), ρ(Dλ
c ) and [[[C]]]2 := ρ ◦ [[[C]]]1 ◦ ρ〈−1〉.

The core of the proof is to show that this semantics is adequate. This holds because of the
equivalence between 1 and 8 below. In fact, we can prove that all the following statements
are equivalent:

1. � � �

2. ∀v1 : (A → V1) v1(�) |≡1 v1(�)

3. ∀v1 : (A → V1) ∀γ, δ[ρ(γ ) = ρ(v1(�)) and ρ(δ) = ρ(v1(�))] : γ |≡1 δ

4. ∀v1 : (A → V1) ρ−1(ρ(v1(�))) |≡1 ρ−1(ρ(v1(�)))

5. ∀v1 : (A → V1) ∀λ : ρ−1(ρ(v1(�))) ⊆ Dλ
p ⇒ ρ−1(ρ(v1(�))) ∩ Dλ

c 	= ∅

6. ∀v1 : (A → V1) ∀γ, δ[ρ(γ ) = v1(�) and ρ(δ) = v1(�)] : γ ⊆ Dλ
p ⇒ δ ∩ γ ⊆

Dλ
c 	= ∅

7. ∀v1 : (A → V1) ∀λ : ρ(v1(�)) ⊆ ρ(Dλ
p ) ⇒ ρ(v1(�)) ∩ ρ(Dλ

c ) 	= ∅

8. ∀v2 : (A → V2) ∀λ : v2(�) ⊆ ρ(Dλ
p ) ⇒ v2(�) ∩ ρ(Dλ

c ) 	= ∅

9. ∀v2 : (A → V2) v2(�) |≡2 v2(�)

1⇔2 is the adequacy of semantics 1. 2⇔3 is because ρ is a relation-reduction. 2⇔4 is
because ρ is a relation-reduction and ρ(ρ−1(X)) = X for all X since ρ surjective. 4⇔5
is the definition of |≡1 as an intersection of mixed consequence relations. 3⇔6 is the
definition of |≡1 as an intersection of mixed consequence relations. 8⇔9 is the definition
of |≡2 as an intersection of mixed consequence relations.

7⇔8 is because v2(F) = ρ(v1(F)), for all v1 such that ∀p : v2(p) = ρ(v1(p)) (note this
v1 ∼ρ/A v2). This is shown by induction. It is clear if F is an atom. And then:
v2(C(F1, . . . , Fn) = ρ ◦ [[[C]]]1 ◦ ρ〈−1〉(v2(F1), . . . , v2(Fn))

= ρ ◦ [[[C]]]1 ◦ ρ〈−1〉[ρ(v1(F1)), . . . , ρ(v1(Fn))] for all v1 ∼ρ/A v2 (by induction)
= ρ ◦ [[[C]]]1[v1(F1), . . . , v1(Fn)] for all v1 ∼ρ/A v2 (by C-reduction)
= ρ(v1(C(F1, . . . , Fn))) for all v1 ∼ρ/A v2 (by truth-functionality)

6⇒7 Suppose 7 does not hold, then pick some v1, λ such that ρ(v1(�)) ⊆ ρ(Dλ
p )

and ρ(v1(�)) ∩ ρ(Dλ
c ) = ∅. Then define γ := ρ−1(ρ(v1(�))) ∩ Dλ

p and

δ := ρ−1(ρ(v1(�))) \ Dλ
c . We obtain a violation of 6 because:

γ ⊆ Dλ
p and δ ∩ Dλ

c = ∅: by construction.

ρ(γ ) = ρ(v1(�)): ρ(γ ) = {ρ(x) : x ∈ γ } = {ρ(x) : x ∈ ρ−1(ρ(v1(�))) and x ∈
Dλ

p } = {ρ(x) : ρ(x) ∈ ρ(v1(�)) and x ∈ Dλ
p } = ρ(v1(�)) ∩ ρ(Dλ

p ) = ρ(v1(�))

ρ(δ) = ρ(v1(�)): ρ(δ) = {ρ(x) : x ∈ δ} = {ρ(x) : x ∈ ρ−1(ρ(v1(�))) and x 	∈ Dλ
c } =

{ρ(x) : ρ(x) ∈ ρ(v1(�)) and x ∈ (V1 \Dλ
c )} = ρ(v1(�))∩ (ρ(V1 \Dλ

c )) = ρ(v1(�))

7⇒5 Assume that 5 does not hold: for some λ, v1: (i) ρ−1(ρ(v1(�))) ⊆ Dλ
p and

(ii) ρ−1(ρ(v1(�))) ∩ Dλ
c = ∅. Applying ρ to both sides of (i), using ρ(ρ−1(X)) = X,

we obtain ρ(v1(�))) ⊆ ρ(Dλ
p ). Assume that there is y in ρ(v1(�))∩ρ(Dλ

c ). Then, there

is x ∈ Dλ
c such that ρ(x) ∈ ρ(v1(�)), that is x ∈ ρ−1(ρ(v1(�)) ∩ Dλ

c . This would
contradict (ii). �
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8.2. Reduction and equivalence classes of truth values. G-reductions group together
truth values that play the same role. The truth values after reduction are classes of truth
values, grouped together based on their image by ρ. Here we show that under certain
circumstances, the optimal equivalence relation can be inferred from the truth-relation.

DEFINITION 8.3. Given a semantics, we define an equivalence relation over truth values
as

x ∼ y iff (∀γ, δ : γ, x |≡1 δ iff γ, y |≡1 δ) and (∀γ, δ : γ |≡1 x, δ iff γ |≡1 y, δ)

The surjection from truth values to their equivalence class is called the canonical g-
reduction, noted ρ̃.

The following theorem shows that relation-g-reductions can only collapse truth values
that the canonical g-reduction collapses. The canonical g-reduction therefore imposes a
lower bound on the number of truth values a relation-g-reduction may involve.

THEOREM 8.4. For any relation-g-reduction ρ, if ρ(x) = ρ(y) then ρ̃(x) = ρ̃(y).

Proof. Suppose ρ(x) = ρ(y). Then ∀γ, δ : ρ(γ, x) = ρ(γ, y) and ρ(δ, x) = ρ(δ, y).
Since ρ is a relation-reduction, it follows that: (γ, x |≡ δ iff γ, y |≡ δ) and (γ |≡ x, δ iff
γ |≡ y, δ), i.e., x ∼ y, i.e., ρ̃(x) = ρ̃(y). �

But this lower bound is not necessarily reached, because the canonical g-reduction is
not in general a relation-g-reduction (Example 8.5). Theorem 8.6, however, shows that
with some finiteness assumptions it is a relation-g-reduction (Theorem 8.6).

EXAMPLE 8.5. The canonical g-reduction is not in general a relation-g-reduction.

Proof. Consider V = {0, 1} ∪ {#n : n ∈ N}, and |≡= ⋂
D finite subset of V\{0} |≡D,{1}.

For all i, j, #i ∼ #j. But the following shows that this does not yield a reduction: for
˜{#n : n ∈ N} = {̃#1}, and {#n : n ∈ N} |≡ 0, but #1 	|≡ 0. In other words, one cannot

collapse all the #ns into finitely many values. �

THEOREM 8.6. When a semantics has a relation-g-reduction with a finite number of truth
values, the canonical g-reduction is a relation-g-reduction, one using the fewest possible
truth values given Theorem 8.4.

Proof. Consider γ, δ, γ ′, δ′ such that ρ̃(γ ) = ρ̃(γ ′), ρ̃(δ) = ρ̃(δ′). We will show that
γ |≡1 δ ⇔ γ ′ |≡1 δ′ by assuming one of them arbitrarily, say γ |≡1 δ and show that the
other follows.

• Assume first that γ, δ, γ ′, δ′ are finite. By monotonicity, we note that γ, γ ′ |≡1
δ, δ′. From there, we can replace elements of γ and δ one by one with equivalent
elements in γ ′ and δ′ respectively, until γ ∪γ ′ is reduced to γ ′ and δ∪δ′ is reduced
to δ′. The equivalence relation guarantees that the relation is preserved at each step
and since there are finitely many replacements, we obtain γ ′ |≡1 δ′.

• Consider a g-reduction ρ : V1 � V2 with V2 finite, and an ‘inverse’ function for the
surjection: ρ〈−1〉 such that ρ◦ρ〈−1〉 = Id. For γ, δ ⊆ V1, consider γ := ρ〈−1〉◦ρ(γ )
and δ := ρ〈−1〉 ◦ ρ(δ). We obtain that:

— γ and δ are finite, since V2 is finite.
— (γ |≡1 δ iff γ |≡1 δ), because γ and δ and γ and δ have the same images

by ρ, which is a relation g-reduction.
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— ρ̃(γ ) = ρ̃(γ ) and ρ̃(δ) = ρ̃(δ) (by Theorem 8.4).

For all γ, γ ′, δ, δ′ we can thus reason with their γ , γ ′, δ, δ′ finite counterparts and
apply the argument from the previous step. �

8.3. Properties of grouping reductions. Strong g-reductions are defined by constrain-
ing how truth values are grouped together depending on the role they play for the truth-
relation (relation-g-reduction) and for each connective C (C-g-reduction). We can provide
an example showing how strong g-reductions differ from the original Scott-Suszko re-
duction. In Theorem 4.10, we showed that the Scott-Suszko reduction can fail to provide
a truth-adequate semantics when we start from an order-theoretic semantics, that is a
semantics for which the truth-relation is essentially obtained by a total order on the set
of truth values and the rule γ |≡ δ iff Inf(γ ) ≤ Sup(δ). A strong g-reduction would not fall
into this problem, simply because there is no strict strong g-reduction of an order-theoretic
semantics.

THEOREM 8.7. A strong order-theoretic semantics has no strong g-reduction.

Proof. Consider a strong order-theoretic semantics, that is a strong semantics of which
the truth-relation is derived from a well-order ≤ on truth values as γ |≡ δ iff (def) Inf(γ ) ≤
Sup(δ). Then for any two distinct truth values, x |≡ x but either x 	|≡ y or y 	|≡ x. Hence,
x 	∼ y, and Theorem 8.4 guarantees that no g-reduction would collapse x and y. �

Hence, strong g-reductions do not reduce a semantics to the point of destroying composi-
tionality. But g-reductions may be too weak: one may like to ensure that strong g-reductions
reach the strong rank. This further desideratum is not satisfied:

THEOREM 8.8. Some strong semantics may not be g-reducible to a semantics for which
the cardinal of the set of truth values is the strong rank of the logic.

Proof. Consider propositional logic and its classical semantics. Now consider the prod-
uct semantics: V∗ = V × V , �F�∗ := (�F�, �F�), (γ1, γ2) |≡∗ (δ1, δ2) iff (def) (γ1 |≡BIV δ1
and γ2 |≡BIV δ2), with |≡BIV the classical bivalent truth-relation |≡{1},{1}. We show that
(i) this semantics is strong (the main issue is whether it is adequate), (ii) this semantics
cannot be g-reduced.

(i) ∀v∗ : v∗(�) |≡∗ v∗(�)
iff ∀v1, v2 : (v1(�), v2(�)) |≡∗ (v1(�), v2(�))
iff ∀v1, v2 : (v1(�) |≡1 v1(�) and v2(�) |≡2 v2(�))
iff (∀v1 : v1(�) |≡1 v1(�) and ∀v2 : v2(�) |≡2 v2(�))
iff � � �.

(ii) None of the values (0, 0), (0, 1), (1, 0), (1, 1) are equivalent (see Theorem 8.6),
hence there is no strict relation-g-reduction of this semantics.

It is important to note that over V × V , one could also define the truth-relation as γ |≡ δ
iff (def) π1(γ ) |≡ π2(δ), ignoring the second member of each pair, and yet obtain an
adequate semantics. The semantics with this truth-relation could be g-reduced, however,
even though it is essentially the same. The theorem obtains because some semantics cannot
be g-reduced, but it suggests an extension of our notion of reduction, starting by a reduction
of the representation as intersection of mixed consequence relations, but first dropping any
member of the intersection that can be dropped, and then applying a g-reduction. �
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Hence, the constraint is too stringent in that g-reductions do not always allow us to reach
the rank (Theorem 8.8). If we give up the Suszko rank in favor of the truth-compositional
rank or strong rank, and want to study not only compact and regular logics but all logics,
future research is needed to find a constructive reduction that can reveal the minimal
number of truth values for a truth-relational and (truth-)compositional semantics. This
appendix shows that it will involve a deeper reorganization of truth values than simply
grouping them together.

§9. Acknowledgments. We are grateful to Johan van Benthem, Denis Bonnay, Pablo
Cobreros, Andreas Fjellstad, Ole Hjortland, João Marcos, Francesco Paoli, David Ripley,
Robert van Rooij, Lorenzo Rossi, Philippe Schlenker, Benjamin Spector, Shane Steinert-
Threlkeld, Heinrich Wansing for various exchanges and helpful suggestions. We are partic-
ularly grateful to David Ripley and João Marcos for their encouragements and for enlight-
ening discussions regarding each of their respective works on this topic. We thank Andrew
Arana and two anonymous referees for valuable comments that helped improve the article.
We also thank audiences in workshops held in Pamplona, Munich, Paris, and Amsterdam.
This research was partially supported by the program “Logic and Substructurality”, grant
number FFI2017-84805-P, from the Ministerio de Economía, Industria y Competitividad,
Government of Spain, by the French ANR program TRILOGMEAN (ANR-14-CE30-
0010), by the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement No. 313610, and by grant ANR-10-
IDEX-0001-02 for research carried out at the DEC-ENS in Paris.

BIBLIOGRAPHY

Andréka, H., Németi, I., & Sain, I. (2001). Algebraic logic. In Gabbay, D. M., and
Guenthner, F., editors. Handbook of Philosophical Logic, Vol. 2. Dordrecht: Springer,
pp. 133–247.

Béziau, J.-Y. (2001). Sequents and bivaluations. Logique et Analyse, 44(176), 373–394.
Blasio, C., Marcos, J., & Wansing, H. (2018). An inferentially many-valued two-

dimensional notion of entailment. Bulletin of the Section of Logic, 46, 233–262.
Blok, W. J. & Pigozzi, D. (1989). Algebraizable Logics, Vol. 77, Number 396. Providence,

RI: American Mathematical Society.
Bloom, S. L., Brown, D. J., & Suszko, R. (1970). Some theorems on abstract logics.

Algebra and Logic, 9(3), 165–168.
Caleiro, C., Carnielli, W. A., Coniglio, M. E., & Marcos, J. (2003). Dyadic semantics

for many-valued logics. Preprint. Available at: http://wslc.math.ist.utl.pt/ftp/pub/
CaleiroC/03-CCCM-dyadic2.pdf.

Caleiro, C. & Marcos, J. (2012). Many-valuedness meets bivalence: Using logical values
in an effective way. Multiple-Valued Logic and Soft Computing, 19(1–3), 51–70.

Caleiro, C., Marcos, J., & Volpe, M. (2015). Bivalent semantics, generalized
compositionality and analytic classic-like tableaux for finite-valued logics. Theoretical
Computer Science, 603, 84–110.

Chemla, E. & Égré, P. (2019). From many-valued consequence to many-valued
connectives. Synthese, to appear.

Chemla, E., Égré, P., & Spector, B. (2017). Characterizing logical consequence in many-
valued logic. Journal of Logic and Computation, 27(7), 2193–2226.

Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2012a). Tolerance and mixed
consequence in the s’valuationist setting. Studia Logica, 100(4), 855–877.

https://doi.org/10.1017/S1755020318000503 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000503


766 EMMANUEL CHEMLA AND PAUL ÉGRÉ

Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2012b). Tolerant, classical, strict.
Journal of Philosophical Logic, 41(2), 347–385.

Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2018). Tolerance and degrees of truth.
Manuscript.

Font, J. M. (1991). On the Leibniz congruences. Algebraic Methods in Logic and Computer
Science, Vol. 28. Banach Center Publications, pp. 17–34.

Font, J. M. (2003). Generalized matrices in abstract algebraic logic. In Hendricks, V. and
Malinowski, J., editors. Trends in Logic, Vol. 21. Dordrecht: Springer, pp. 57–86.

Font, J. M. (2009). Taking degrees of truth seriously. Studia Logica, 91(3), 383–406.
Frankowski, S. (2004). Formalization of a plausible inference. Bulletin of the Section of

Logic, 33(1), 41–52.
French, R. & Ripley, D. (2018). Valuations: bi, tri, and tetra. Studia Logica,

https://doi.org/10.1007/s11225-018-9837-1.
Gentzen, G. (1964 (1935)). Investigations into logical deduction. American Philosophical

Quarterly, 1(4), 288–306. Original Publication in Mathematische Zeitschrift, 39(1),
176–210.

Gödel, K. (1932). On the intuitionistic propositional calculus. In Feferman, S., Dawson, J.,
Kleene, S., Moore, G., Solovay, R., and van Heijenoort, J., editors. Kurt Gödel, Collected
Works, Vol. 1. Oxford: Clarendon Press, pp. 223–225.

Humberstone, L. (1988). Heterogeneous logic. Erkenntnis, 29(3), 395–435.
Jansana, R. (2016). Algebraic propositional logic. In Zalta, E. N., editor. The Stanford En-

cyclopedia of Philosophy (Winter 2016 Edition). https://plato.stanford.edu/entries/logic-
algebraic-propositional/.

Lahav, O. & Zohar, Y. (2018). From the subformula property to cut-admissibility in
propositional sequent calculi. Journal of Logic and Computation, 28(6), 1341–1366.

Malinowski, G. (1990). Q-consequence operation. Reports on Mathematical Logic, 24,
49–54.

Marcos, J. (2009). What is a nontruth-functional logic? Studia Logica, 92(2), 215.
Ripley, D. (2017). On the ‘transitivity’ of consequence relations. Journal of Logic and

Computation, 28(2), 433–450.
Scott, D. (1974). Completeness and axiomatizability in many-valued logic. Proceedings

of the Tarski Symposium, Vol. 25. Providence, RI: American Mathematical Society, pp.
411–436.

Shoesmith, D. J. & Smiley, T. J. (1978). Multiple-Conclusion Logic. Cambridge:
Cambridge University Press.

Shramko, Y. & Wansing, H. (2011). Truth and Falsehood: An Inquiry into Generalized
Logical Values, Trends in Logic, Vol. 36. Dordrecht: Springer.

Smith, N. J. J. (2008). Vagueness and Degrees of Truth. Oxford: Oxford University Press.
Surma, S. J. (1982). On the origin and subsequent applications of the concept of the

Lindenbaum algebra. Studies in Logic and the Foundations of Mathematics, 104,
719–734.

Suszko, R. (1975). Remarks on Łukasiewicz’s three-valued logic. Bulletin of the Section
of Logic, 3–4, 87–89.

Suszko, R. (1977). The Fregean axiom and Polish mathematical logic in the 1920s. Studia
Logica, 36(4), 377–380.

Tarski, A. (1930). On some fundamental concepts of metamathematics. In Corcoran, J.,
editor. Logic, Semantics, Metamathematics. Indianapolis, IN: Hackett Publishing, pp.
30–37.

https://doi.org/10.1017/S1755020318000503 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000503


SUSZKO’S PROBLEM 767

Tsuji, M. (1998). Many-valued logics and Suszko’s thesis revisited. Studia Logica, 60(2),
299–309.

Wansing, H. & Shramko, Y. (2008). Suszko’s thesis, inferential many-valuedness, and the
notion of a logical system. Studia Logica, 88(3), 405–429.

Wójcicki, R. (1973). Matrix approach in methodology of sentential calculi. Studia Logica,
32(1), 7–37.

Wójcicki, R. (1988). Theory of Logical Calculi: Basic Theory of Consequence Operations,
Synthese Library, Vol. 199. Dordrecht: Kluwer.

LABORATOIRE DE SCIENCES COGNITIVES ET PSYCHOLINGUISTIQUE
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