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This paper considers a Bayesian analysis of the linear regression model under in-
dependent sampling from general scale mixtures of norrsisig a common ref-
erence prigrwe investigate the validity of Bayesian inference and the existence of
posterior moments of the regression and scale param&¥eréind that whereas
existence of the posterior distribution does not depend on the choice of the design
matrix or the mixing distributionboth of them can crucially intervene in the exis-
tence of posterior momenté/e identify some useful characteristics that allow for

an easy verification of the existence of a wide range of momémiddition we
provide full characterizations under sampling from finite mixtures of noryRaar-

son VII, or certain modulated normal distributiarfSor empirical applicationsa
numerical implementation based on the Gibbs sampler is recommended

1. INTRODUCTION

The present paper focuses on Bayesian inference in the context of the linear
regression model with independent errors distributed as scale mixtures of nor-
mals to allow for flexible tails More explicitly, we shall analyze the existence of

the posterior distribution and of its moments under a commonly used improper

prior and comment on numerical techniques for evaluating posterior quantities of
interest Whereas a growing number of Bayesian studies have used this model

the theoretical foundations haw® far not been established@his paper aims to

fill that gap.

It has long been recognized that the usually convenient assumption of normal
sampling might be overly restrictive for many practical modeling situatibns
particularthe thin tails of a normal distribution are often not a natural chdice
early contribution to this literature was Jeffrg1961), whereas Maronn@ 976
and LangelLittle, and Taylor(1989 discussed maximum likelihood estimation
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for models with heavier-tailed StudetdiisturbancesBayesian results for outlier
problems are provided in We&1984) for the wider class of scale mixtures of
normals however he did not address the issue of existence of the posterior dis-
tribution and its moments under an improper prior distributi@aweke(1993
considered the same Bayesian model as treated here for the case of $tudent-
sampling but an unfortunate error in his main proof invalidates his results on
posterior propriety and the existence of momeiitse present analysis is thus
required to validate the interesting numerical results obtained in Ge(18d
on the basis of the Gibbs sampler amibre generallyto establish a basis for
feasible Bayesian inferenckn addition we cover the entire class of scale mix-
tures of normals

The class of scale mixtures of normals is generated by allocating to the distur-
bance of theth observationsay &;, the following distribution

& £ 7, /AV2, (1.1)

wherez; is a normal0,1) random variable andl; an independent random variable
on (0,c0). By assuming different probability distributio’, for A;, we map the
entire class of scale mixtures of normalable 1 groups some known distribu-
tions ofg; implied by (1.1) together with the corresponding distributions fgr
It is clear from this table that quite a rich class of continuous symmetric and
unimodal distributions can be described by scale mixtures of normalthat
processes with thicker-than-normal tails will often be adequately modeled by
choosing a distribution from this clagsformal characterization of the extent of
this class is given ine.g., Kelker (197Q Theorem 10 or Fang Kotz, and Ng
(199Q Theorem 221). Viewed in a multivariate spherical contestale mixtures
of normals are the only spherical distributions that can coherently be extended in
dimension indefinitelyln other wordsthey can always be interpreted as the
marginals of higher-dimensional spherical distributions

We can cite a number of examples that testify to the growing impact of scale
mixtures of normals in applied statistical practidtodeling distributions of high-
frequency financial data with the help of scale mixtures of normals is recently
becoming more and more popullr the context of stochastic volatility models
Harvey Ruiz, and Shephar(l1994) and JacquiePolson and Ross{1995 used
a Student; and in Shephar{1994g 19940 we find an exponential power dis-
tribution and a finite mixture of normal8auwens and Lubran@ 998 consid-
ered GARCH models with Studettlisturbanced ange et al(1989 reported a
number of examples from statistical practice where Stutdemidels provide a
better fit to the data than their normal counterpaRsr modeling macroeco-
nomic time seriesGewekg 1993 found relatively high posterior odds in favor of
Studentt sampling as opposed to normal sampling

We shall use a linear regression model under independent sampling from a
scale mixture of normals with known mixing distributi®. . We complete the
Bayesian model with a commonly used improper Jeffreys’ prior on the param-
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TABLE 1. Classes of scale mixtures of normals

Distribution of g; Mixing distribution onA; Reference
1. Finite mixture of normals Discrete with finite support
a. Normal Dirac
b. Contaminated normal Most mass in one point Johnson and {60
2. Generalized hyperbolic Generalized inverse Gaussian Barndorff-Nielser( £982
a. Hyperbolic h o /\i‘zexp{—% <)\£ + A >}, 6=0,k>0 Barndorff-Nielsen et a1982
(i) Laplace §=0,k=1 Andrews and Mallow$1974
b. Pearson type VII Gamnta/2,u/2) v,u>0 Johnson and KotZ1970
(i) Studentt V=4
1. Cauchy v=u=1
o e <_25> 5+k { (5+k)2} _
3. Symmetricz-distribution h=A72>,0 K expy — ,6>0 Barndorff-Nielsen et a(1982
B(6,6) 2
a. Generalized logistic 5=12,... Barndorff-Nielsen et al(1982
(i) Logistic 6=1 Andrews and Mallow$1974
b. Hyperbolic cosine 5=13 Barndorff-Nielsen et al(1982
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4. Symmetric stabléw), 0 < a < 2
a. Cauchy
5. Exp. powera), l=a <2

a Laplace
6. Modulated normal type |
7. Modulated normal type Il
a. Slash
b. Q-distribution

o
Ai tis positive stabl€5>
a=1
.y a

h oc A7¥2 X p.d.f. of positive stabla{E)
a=1

Paretyv/2) on(1,00), v > 0

Beta/2,1) on(0,1),» >0

v=1
v=2

Feller(1972)

West(1987)

Romanowski{1979

Rogers and Tuke{1972
Rogers and Tuke{1972
Rogers and Tuke{1972

*h indicates the pl.f. of A;.
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eters(under “independenc&’The latter prior was shown by Fernandez and Steel
(19994 to also have the interpretation of the “reference ptibased on formal
information theory argumentsee Berger and Bernardt992. Under indepen-
dent samplingJeffreys’ prior is a popular choice in the absence of compelling
prior information For time series modelghe application of Jeffreys’ principle is
more contentiousas is evidenced by the discussion in Phill{z991).

The explicit aim of this paper is the study of existence of the posterior distri-
bution and the posterior moments of the parametespecially in view of the
added complexity of sampling from scale mixtures of normalsnerical meth-
ods will typically be requiregand usually the Gibbs samplgroposed by Geweke
1993 for Studentt sampling provides an attractive approads illustrated in
Section 52. This carries some inherent dangdiewevey quite beyond numer-
ical accuracyThe Gibbs sampler essentially approximates drawings from a joint
distribution by a Markov chain of drawings from the full conditional distributions
(seee.g., Gelfand and Smithl99Q Tierney 1994). As, e.g., Casella and George
(1992 have illustrated in an examplall the full conditionals may well be proper
distributionswithout existence of the joint distributiorlobert and Caselld 996
pointed out the pitfalls of careless use of Markov chain Monte Carlo methods in
cases where no posterior distribution exisese also Fernandg2siewalskj and
Stee) 1997). Thus under an improper prior distributioit becomes crucial to
verify propriety of the posterior to validate Bayesian infereridas argument
also carries over to the existence of posterior moments of the parantéeers
mere fact that the full conditional posterior distribution of a parameter allows for
a finite moment of a certain order does not guarantee existence of this momentin
the marginal posterior distributiohe problem of higher-order moments can
even be more severe as it does not disappear by using a proper prior disttibution
Our explicit focus on the existence of the posterior distribution and its moments
is, thus meant to indicate whether Bayesian inference is at all possiblefau
which moments we can meaningfully try to calculatée do not deal here with
the issue of how precise this inference will be in particular empirical contexts

This paper will be concerned withiindependent and identically distributed
(i.i.d.) univariate disturbances,i = 1,...,n, as in(1.1), in contrast to the lit-
erature on multivariate scale mixtures of normaldiere we only obtain one
n-dimensional vector observatideeg e.g., Osiewalskj1991 and for the spe-
cial case of multivariate StudentZellner, 1976. In the latter casdeq,..., &)
is distributed as a standardvariate normal(z,...,z,)" divided by a single
scalay say A; with some distributiorP, . As this multivariate scale mixture of
normals is in the class ofvariate spherical distributionsie know from Kelker
(197Q Lemma 5 that the only intersection between ouird. sampling case
and this multivariate case is that of normality the course of the papewe
shall briefly compare both sampling schemes with respect to the existence of
posterior moments

The next section of the paper introduces the Bayesian model and treats propri-
ety of the posteriorConditions for the existence of moments of the regression
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coefficients are analyzed in Sectionshereas Section 4 focuses on the moments
of the scale parametefhe following section deals with some practical ap-
proaches to conducting Bayesian inference in the context of scale mixtures of
normals Section 6 groups some concluding remarfksroughout the papgthe
notation for distributions and probability density functions follows DeGroot
(1970. All proofs are referred to the Appendiwithout explicit mention in the
main text

2. THE BAYESIAN MODEL

In this section we shall examine the linear regression model corresponding to
(1.1). In particular we assume the observatiops= N (i = 1,...,n) to be gen-
erated from

Vi :Xil,B‘f'O'Si, (21)

whereegs, ..., g, are ii.d. random variables distributed as a scale mixture of nor-
mals Thus &, = z /AY2 wherez is a standard normal random variable anén
independent random variable with some known probability distribufigron
(0,00). Thek-dimensional vectax; groups the explanatory variablege interpret
(2.1) as modelingy; givenx;, but we shall not make explicit the fact that we
condition onx; in the sequelThe parameters introduced (2.1) are the regres-
sion coefficientss € N* and the scaler > 0.

The sampling model is thus characterized by the density function

o) /\Z_I./ 2

p(yilB,o) = 2m Vg

exp{—%(yi —xi’,B)z} dp,,. (2.2)
g
Independent replications frof@.2) will constitute the sampling information re-
garding the common regression and scale paramétetrsis now group the ex-
planatory variables into amXx k matrix X = (X,..., X,)’ that is assumed to be of
full column rank(and thush = k). In addition we definey = (yy,...,Y,)’ asthe
vector of observations

A common choice for a noninformative prior distribution is the “indepen-
dence” Jeffreys’ prior given by

p(B,o) cco ™, (2.3)

The prior in(2.3) is also the reference prior in the sense of Berger and Bernardo
(1992 for any regular distribution os as shown in Fernandez and Stele€1993.
Because the prior distribution {2.3) is not properthe existence of the poste-
rior distribution(defined as the conditional distribution of the parameters given the
observabless not guaranteed he results in Mouchafl976 and FlorensMou-
chart and Rolin(1990 imply that such a conditional distribution exists only when
the predictive distribution is-finite, i.e., p(y) = [ p(y|B,0)p(B,0) dB do < oo
except possibly on a set gfs of Lebesgue measure zeroitf. In the context of
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the model2.2) and(2.3), we can obtain the following result concerning the fea-
sibility of Bayesian inference

THEOREM 1 (Propriety of posterigr Under the prior in(2.3) and with n
independent obseations from(2.2), the conditional distribution of 3,0) given
y exists if and only if = k + 1, for any choice of the mixing distribution,P

Note that the condition = k + 1 is both necessary and sufficient and does not
involve any properties of the mixing distributio®urprisingly the wide range of
tails accommodated within the class of scale mixtures of normals has no influ-
ence whatsoever on the existence of the posterior

Before proceeding with the remainder of the papeemark is in ordeiNote
that Theorem 1 is concerned with establishing the existence of the conditional
distribution of the parameters given the observabiddgch puts us on equal foot-
ing with the case where a proper prior is ustlis, howeveydoes not rule out the
possibility thatp(y), the denominator in the usual Bayes’ formut@comes in-
finite in a set ofy’s that has Lebesgue measure zerdiih Whereas any such
sample hasy definition zero probability of being observed under our assumed
sampling modelthe rounding implicit in any data set means thatpractice
there could be a positive probability of observing an “offending” valug dihe
same type of comment applies to the existence of posterior monsxatsined
in the following two sections\Ve stresshoweverthat these problems are inher-
ent to any statistical analysis using continuous sampling distributions and are by
no means restricted to the use of improper priors or Bayesian methddtailed
discussion of these issues together with a general solution within a Bayesian
framework can be found in Fernandez and St&@b9b.

In the sequelwe assumeé = k + 1 so that Theorem 1 applies and turn to the
guestion of existence of moment® facilitate the discussion in the remainder of
the paperwe shall introduce the following definitions of characteristics of the
design matrixX and the mixing distributiof®, .

DEFINITION 1. (Singularity index for columf) Given an nx k full column
rank matrix X we define the singularity index for column1,...,k as the
largest number psuch that there exists@& — 1 + p;) X k submatrix of X of rank
k — 1 that retains rank k- 1 after remaing its jth column

From the definitionk — 1 + p; gives the largest number of observations in the
sample for whiclg;, thejth component oB, is not identified Clearly 0 = p; =
n — k becauseX is of full column rank A simple way of computingy, is as
follows: consider all sets df — 1 rows ofX such that the rank of the correspond-
ing submatrix without column is k — 1. Thenp; is the maximum number of
rows that can be added to any such set without increasing thelfaxikontains
rows of zerosthenp; is at least equal to the number of such zero rows for-all
1...,k Furthermoremax{p;:j = 1,...,k} = 0 if and only if everyk X k sub-
matrix of X is nonsingular
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DEFINITION 2. (Moment set and moment indesLet P, be the probability
distribution of a randomvariable A; in .. We define

(i) Moment set of P:M = {s € N:E(AY?) = [ AY?dP,, < co}.
(i) Moment index of R:m=sup{s=0:s€ M and—s & M}.

Clearly, 0 € M becauseP,, is a probability distributionand thusm = 0 is
always defined

3. POSTERIOR MOMENTS OF REGRESSION COEFFICIENTS

Inthis sectionwe denote byr,, ..., r,) the order of the moment @= (B4,..., By’
and defing = 3|, r;. Our most general result is stated in the following thearem

THEOREM 2 (Posterior moments @f) Consider the Bayesian model(x2)
and(2.3) and any choice of;= 0forj =1,..,k such that > 0. We obtain that

(i) necessityif r = n — k, then EII;_,| ;" |y) = oo;

(i) sufficiencyif r < min{n — k,n — k — p(ry,...,ry) + m}, where m is the moment
index of the mixing distribution Pand p(r,...,r) = max{p;: r; > 0} with p the
singularity index for column j of the design matrixtken E(HJ-":1|B,- [fi]y) < co.

Theorem 2 only addresses the situation of nonnegative mornigsitsg the
fact that the first negative moment of a normally distributed random variable does
not exist it is straightforward to prove that the moment in Theorem 2 is always
infinite if any r; = —1. Theorem 2i) tells us that there is never any hope for the
existence of moments for whier= n — k, regardless of the characteristics of the
design matrix or the mixing distributioBuch lack of existence of moments is
thereforedue to the uncertainty abo@tando rather than to the scale mixin@n
the other handboth X and P, intervene(throughp(ry,...,r,) andm, respec-
tively) in the sufficient condition for existence of moments witht n — k.

Theorem 2 fully characterizes the existence of positive posterior momegits of
wheneveiX andP,. fulfill the following property.

COROLLARY 1 If, in the context of Theore®) the design matrix X and the
mixing distribution R are such thatmax{p;:j = 1,...,k} = m, then

k
E<H |B; " |y> <oo ifandonlyifr<n-—k.
j=1
Thus under the condition of Corollary 1 the same posterior moments exist as
under normal samplingVe mention two important special cases where Corol-

lary 1 applies

(i) Everyk X k submatrix ofX is nonsingular
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In this case makp;:j =1,...,k} = 0=m, and all posterior moments gfwith
r <n-—kexistforanyP, . Thereforethe mixing distribution is entirely irrelevant
for the issue of existence of posterior momeAsexamples of this situatiowe
can mention the location-scale modebrresponding t&k = 1 andx; = 1, i =
1,...,n) and models with thg’s independently drawn from continuoksariate
distributions We wish to remind the reader that the finite posterior momengs of
can(and typically will) take different values for different mixing distributians
The order up to which moments gBfare finite howeveyis robust with respect to
the choice oP, , i.e., in the entire class of scale mixtures of normals

(i) The moment index oP,, verifiesm=n — k.

Again, Corollary 1 appliesregardless of the form of the matr¥(of rankk).
The design matrixhowevey will typically influence the actual values of such
moments Sampling from finite mixtures of normals leadsro= oo, thus pro-
viding an example of this situation

In many situations not covered by CorollaryTheorem 2 can still provide an
answerlf, given a particular ordeir4, ..., ), the inequalityp(r,,...,ry) = mis
verified, then Theorem 2 shows that such a posterior momepgtefists if and
only if r < n— k. Howeverwhenp(r,...,r,) > m, the necessary conditidn <
n — k) and the sufficient conditior < n—k—p(ry,...,ry) +m) do not coincide
and Theorem 2 remains inconclusive € [n —k — p(rq,...,r) +mn— k). By
further specifyingP,,, we can refine Theorem, 2s evidenced by the following
theorem concerning marginal posterior moments of the componepts of

THEOREM 3 (Finite mixtures of normalsPearson VIl and modulated nor-
mal sampling For the Bayesian model i{2.2) and(2.3), we obtain for anyalue
ofr>0

E(B;|"ly) < oo ifand only if

(i) r<n—kforadiscrete mixing distribution with finite suppdgampling from finite
mixtures of normalsor a Paretd 1, »/2) mixing distribution withv =1 (modulated
normal type | sampling

(i) r<min{n—kn—k—p +v(n—k—p + 1)} for a gammdr/2, x/2) mixing
distribution (Pearson VII samplingor a beta»/2,1) mixing distribution(modu
lated normal type Il sampling

Whereas the characterization for finite mixtures of normals is a direct conse-
guence of Theorem @ecausen = o), for the cases of Pearson VIl and modu-
lated normal type | and Il sampling we have improved upon Theorgwhizh
leads tar < n— kandr < min{n—k,n—k— p; + v} as necessary and sufficient
conditions respectivelytaking the added information on the mixing distribution
into account allows us to characterize the range of positive orders for which
posterior moments g8; exist Thus the sufficient condition in Theorem 2 is too
conservative if and only i# < p; under modulated normal type | sampling with
v=1landifand only iv < p; <n—kfor Pearson VIl and modulated normal type
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Il models In the former caseTheorem 3i) states the existence pf — » addi-
tional moments over those guaranteed by Theorgnh2reasby Theorem 8ii ),
the gain in the latter cases— » moments ifv = p;/(n—k—p; + 1) andv(n —
k — p;) moments otherwiselheorem 3 also illustrates the fact that general
both the design matrix and the mixing distribution intervene in the issue of exis-
tence of momenidecause neither can be neglected in the full characterization
provided in(ii). In addition Theorem 3ii) shows that different components@f
can possess marginal posterior moments up to different orders

Observe that under Pearson VII sampling the parametdithe gamma mix-
ing distribution does not intervene in the issue of existence of marginal posterior
momentsObviously whenu = » it specializes to the important case of Student-
sampling Furthermoreasy tends to infinity for this Student sampling and for
both types of modulated normal distributigrtie sampling distribution con-
verges to normalityfwhich is also a special case of finite mixtures of normals
with P, a Dirac distribution.

Finally, we can compare theiid. sampling case treated in this paper with
sampling one single vectgifrom ann-dimensional distributionf we specialize
the results obtained by Osiewalski and Std892) to the class of scale mixtures
of multivariate normalswe note that the posterior distribution 8f and there-
fore, its existence of moments entirely unaffected by departures from normal-
ity within this clasgsee also Zellne 976 for the special case of the multivariate
Studentt model and for analogous results in a maximum likelihood frameyvork
Thus in this multivariate contexposterior moments @8 always exist as long as
r < n—k, irrespective of théfull column-rank matrix X or the mixing distribu-
tion. We conclude that the present case of independent samplkmgrally re-
quires stronger conditions for the existence of posterior momergsasfshown
by Theorem 3ii).

4. POSTERIOR MOMENTS OF SCALE PARAMETER

In this sectionwe shall focus on the existence of moments of the seaéany
orderr € N.

THEOREM 4 (Posterior moments of scalérhe Bayesian model i{2.2) and
(2.3) leads to

(i) necessityif r =n—k,then Ho'|y) = oo;
(ii) sufficiencyif r € (—oo,n — k) N M, where M is the moment set of R then
E(o"|y) < co.

As was the case with the regression coefficigptssterior moments aof of
orderr = n — k never existwhatever the choice of the design matkor the
mixing distributionP,, . For values of < n—k, Theorem 4ii) provides a suffi-
cient condition for existence of theh moment that relies on the existence of
moments oP, , namely thatr € M. Thus for r = 0 we can deduce Theorem 1
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for propriety of the posterior distributiomising that 0= M, as remarked after
Definition 2

The necessary and sufficient conditions presented in Theorem 4 do not co-
incide in generalThe following theorem provides a full characterization of the
existence of posterior moments@ffor some distributions of practical interest

THEOREM 5 (Finite mixtures of normalsPearson VIJ and modulated nor-
mal sampling For the sampling model it2.2) and the prior in(2.3) we obtain
that

E(o"|y) <o ifand only if

(i) r < n —k for a discrete mixing distribution with finite suppdisampling from
finite mixtures of normalsor a Paretd1,»/2) mixing distribution withy = 1
(modulated normal type | sampling

(i) —(n—k)v <r <n-k foragammav/2, n/2) mixing distribution(Pearson VII
sampling or a betgv/2,1) mixing distribution(modulated normal type Il sampling

Clearly sampling from finite mixtures of normals leads to the moment set
M =N, from which we can immediately concludérough Theorem 4hat in
this case theth posterior moment of is finite if and only ifr < n — k. On the
other handthe characterizations for the cases of Pearson VIl and both types of
modulated normal sampling do not follow from Theorem 4 but are obtained
through exploiting the properties of the corresponding mixing distributions

Under modulated normal type | sampling with= 1 all moments of order
smaller tham — k exist from Theorem 5The theorem also shows that when
sampling within the Pearson VII or the modulated normal type Il clagsses
ments of order € [0,n — k) are always assured whereas existence of negative
order moments is entirely determined by the parametdrthe mixing distribu-
tion. Under Pearson VII samplinghe value of the parameter in the gamma
mixing distribution does not intervene as was the case in Theorem 3 for marginal
posterior moments @8. Choosingu = » we obtain the important special case of
Studentt sampling and asv then tends to infinitywe converge to the normal
case where theth moment ofo is finite if and only ifr < n— k.

The case of sampling one single vector observation from a scale mixture of
multivariate normals was shown in Osiewalski and St&896 to lead to a nec-
essary and sufficient condition for existence of moments tfat corresponds to
(ii) in Theorem 4wheren now represents the dimension of the vector observa-
tion instead of sample siz&hus the latter casewhich only intersects with the
model analyzed here under normalignerally requires a more stringent condi-
tion. This is clearly shown by Theorem Where e.g., under Pearson VIl or
modulated normal type Il sampling the condition of Theorgin)4s not satisfied
forr € (—(n — k)v,—v], but therth posterior moment ofr is, nevertheless
finite.

As afinal remarkwe note that the results in Theorems 4 and 5 can alternatively
be used to assess the propriety of the posterior distribution under the more general
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prior

p(B,0) x o' L (4.2)

Although the independence Jeffreys’ prior(h3) is widely used in a noninfor-
mative contextthe more general prior i(#.1) could be of interest in some cases
Existence of thgth-order posterior moment of under the prior ir{4.1) can also

be examined by means of Theorems 4 anceplacingr by r + g. On the other
hand existence of posterior moments of the regression coefficients is much more
difficult to establish Note that this problem is equivalent to analyzing the exis-
tence of cross moments fBrando with our present prior iri2.3), for which we
have been unable to find simple and useful resiltés, howeverdoes not pre-
clude posterior inference ghunder the prior if4.1). Once the propriety of the
posterior distribution has been established could simply report quantities that
are always known to exissuch as quantiles or highest posterior density regions
instead of posterior moments gBf

5. NUMERICAL ASPECTS

Once we have made sure that a Bayesian analysis can meaningfully be conducted
(Section 2 and the moments we are interested in actually éSisttions 3 and$

we will generally need numerical tools to conduct the necessary analysss
section gives a generic description of two distinct numerical strategies that could
be employedBoth start from the simple observation that givgrthe sampling

model in(2.2) is merely the normal linear regression madéius the posterior
analysis ofB ando, using the reference prior if2.3) and conditioning on\ =
(Ag,...,A,), is entirely standard and described by the following normal-gamma
density function or{g8,o ~2):

(5.1)

n—k s(/\)>
272 )
where A = Diag(};), b(A) = (X’AX)"IX'Ay, and s(A) = y'{A —
AX(X'AX)™IX'A}y.

The treatment of th&;’s will constitute the nonstandard part of the analysis of
our Bayesian modeWe distinguish the following two approaches

p(B,o2[Ay) = f{(BIb(A), o 2(X'AX) ) e (02

5.1. Independent Monte Carlo

Here we generate independent drawings from the distributiop,af, A) giveny
by drawing consecutively frorts.1) and from the distribution of giveny, which
is proportional to

g(d) l:IlP/\,7 (5.2)
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where we have defineg( A) = {Det(X'AX)}~Y2s(1)~("W/2T] A¥2 The im-
plicit assumption underlying the notation(®.2) is that the probability distribu-
tion of A giveny is absolutely continuous with respectlig_; P, with Radon—
Nikodym derivative proportional tg(A). Note thatg(A) in (5.2) is simply the
result of integrating the data density gives, o, A) with the prior of(3,0) and
can be found immediately frorfA.2) in the Appendix withr; = 0,j = 1,... k.
Thus g(A) corresponds to the integrand (A.6) with | = 0 or, equivalently to
that in(A.16) withr = Q.

As a result of integrating o8 ando, the components.,...,A,, of A do not
preserve independence conditionally ugowhich seriously complicates draw-
ing from (5.2). From the proof of Theorem &ee(A.8) in the Appendiy, we
know thatg(A) is a bounded function of. Thus in generalwe can use rejection
sampling(seee.g., Devroye 1986 to draw from(5.2), generating drawings from
I, P,, and accepting with a probability proportional §6A). Especially for
large sample siz@, this canhoweveyprove to be very inefficienfn alternative
procedure for generating drawings frai2) is importance samplings de-
scribed ine.g., Gewekg1989. We then need to choose a convenient probability
distribution (importance functionon R} from which to drawA that, ideally,
closely resemble&b.2) and dominates it in the tail&gain, numerical problems
could occur for moderate or high valuesrof

In the special case wheRy, is a discrete distribution with support osay q
points(sampling from a finite mixture of normalswve can usé5.2) to evaluate
the probability mass attached to each ofgA@ossible values fok = (A4,...,A,)
giveny. If g"is not prohibitively largewe can immediately evaluate quantities of
interest from(5.1), without recourse to numerical metho@early, if g =1, we
have the standard normal regression model

Generally drawing from then-variate distribution in(5.2) will be cumber-
some and therefore the following alternative strategy is outlined

5.2. Gibbs Sampling

This Markov chain Monte Carlo method is based on the full conditional distri-
butions(seg e.g., Gelfand and Smith199Q Tierney 1994). For (B3,0) given A

the posterior distribution is described {8/1). To complete the Gibbs sampler we
need the distribution of given(g,o,y), which is proportional to

3 (yi— Xi,,8)2>

5.3
> 252 (5-3)

n

I1 Gi(A))Py,, wheregi(A;) = fg </\i‘
i=1

Each pass through the sampler thus requires only two :steysdrawing from
(5.1) and one from the probability distribution proportional @3). Conver-
gence of the induced Markov chain to the posterior distribution is ensbhesd
cause the parameter space has a Cartesian product str(sger&oberts and
Smith 1994).
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As opposed to the situation in Sectioi3he\;’'s are independent givgrand
(B,0), which greatly facilitates drawing the vectox,,...,A,,). Ageneral rejec-
tion sampling strategy can be used where eadd drawn fromP, and accepted
with probability{A;o ~2(y; — x{ 8)2}2 exp[2{1 — Aio 2(y; — X/ B)?}], which
corresponds tg; (\;) divided by its maximum valuéf required more carefully
tailored rejection samplers caof course be designedAlternatively we could
use e.g., the Metropolis—Hastings algorithiisee e.g., Tierney 1994 to draw
from (5.3) within the Gibbs sampleMost importantlythe overall performance
of the rejection or Metropolis step is not adversely affected by the necessity to
draw inn dimensionswe just requiren one-dimensional sampling schemés
most practical situationshis will more than offset the inherent efficiency loss
(with respect to independent Monte Caréue to the serial correlation between
Gibbs drawings

The Gibbs sampler simplifies considerably in a number of special cases

If P, is a gammér/2,u/2) distribution giving rise to a Pearson type VII
sampling distribution ir2.2), we retain a gamma distribution for the full condi-
tional of eachh;, i.e., each of then factors in(5.3) is described by the density
function

> > (5.4)

DA Booy) = f ()\ v+1 M+Uz(yi_xi'l3)2>
i »sUs i) — 16 i )

which we can draw from easilyror the Student-case Geweke(1993 uses a
similar Gibbs samplerand Lange et al1989 also mention the conditional dis-
tribution in (5.4).

In the modulated normal type Il classtroduced by Rogers and Tuké&l972),
where the mixing distributio®,, is a betar/2,1) distribution we obtain

+1 (yi —x{B)?
. 2 ’ (y 2:23) )I[O,l](/\i)’ (55)

p(/\l |B’0-’ yl) & fG <)\I

i.e.,, a truncated gamma distribution

Sampling from a generalized hyperbolic distribution corresponds to a gener-
alized inverse Gaussian mixing distributigsee Barndorff-Nielsgrkent, and
Sarenseil982. Then the factors in(5.3) will still be generalized inverse Gauss-
ian distributions with density function

1 i — Xi, 2
P(Ai|B,a, i) oc AT YD) exp— 5[)\5 + A {3 + (y—zﬁ)H, (5.6)
; o

wherey € i andd andk take strictly positive valuesn addition for negativey,

k can be Qand for positive values of the same holds fas. As can be verified
from Table 1 choosingy = 1 corresponds to sampling from a hyperbolic distri-
bution whereas the sampling distribution becomes Laplace if we alsotak@
andx = 1. Drawing from(5.6) can be implemented in quite an efficient manner
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as explained in Devroy€ 986 pp. 479—480. In addition the Pearson type VII
family, discussed earligis also a subclass of the class of generalized hyperbolic
distributions In particulay when we takey = —v/2, 6 = u, andx = 0 we obtain

the gammar/2, u/2) mixing distribution and(5.6) reduces td5.4).

Finally, for finite mixtures of normals witly possible values for each, the
Gibbs sampler provides an alternative in those cases where direct evaluation
(using(5.1) and(5.2)) proves very difficult as a result of a large value &gt In
contrast to the situation using independent Monte C&@éxtion 51), it will now
typically be feasible to draw values fareven whem" is too large for a direct
analysisAll we need is to draw from tha independent discrete distributions in
(5.3), which is often straightforward even for relatively largandn.

6. CONCLUDING REMARKS

In this paperwe have treated the linear regression model under independent
sampling from scale mixtures of normalkrom Table 1 which groups some
members of this class of sampling distributipings clear that this covers a rather
wide variety of behavioitCompleting this sampling model with a common non-
informative (“reference’) prior, we have investigated conditions for the validity
of Bayesian inference and the existence of the posterior moments of the regres-
sion coefficients and the scale parameter

There are three characteristics that can influence this existence of moments

(1) the quantityn— Kk, i.e., the sample size minus the number of regressors in the model
(2) the structure of the design mati always of full column rank
(3) the mixing distributiorP, .

Throughoutexistence of moments will be influenced &y, whereag2) and(3)
do not always interven®©ur main theoretical results are presented in Theorems
1-5

To implement a Bayesian analysis of the models treated harkto actually
evaluate the moments that can be shown to be finigetypically require numer-
ical methodsWe mention two distinct strategies in Section 5 and conclude that
especially for moderate or large sample siz&ibbs sampling seems preferable
to independent Monte Carlo

The assumption ofiid. error terms was made here as it corresponds to many
empirical modeling situation®ut it is by no means crucial for our resyltsost
of the techniques used in our proofs can be used and the analysis can be extended
straightforwardly to the case whelPg varies across the observatiansl,...,n.
In addition we could even handle the case wherexfigare notindependent but
A = (Aq,...,A,) follows some joint distribution omi".. This situation would
arise naturally if eacR), depended on a common unknown paramétemhich
a prior distribution was assumgdarkov chain Monte Carlo methods can easily
be adapted to handle such extensjasdemonstrated in Fernandez and Steel
(1998 for the case ofskewed Student sampling with unknown degrees of free-
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dom Of course as we allow for more flexibility on the distribution of, our
theoretical results will inevitably become less conclusivimally, an issue of
importance that arises in this more general context of an unknown mixing distri-
bution is how much we can expect to learn about it from the.dataitively, one
would expect that a large number of observations is requaethe parameters of

the mixing density are often largely determined by more extreme observations
and not by the bulk of the dat&#/hereas this topic falls outside the scope of the
present papewhich deals exclusively with the case of known mixing distribu-
tion, it is quite relevant for empirical work and certainly deserves further inves-
tigation
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APPENDIX: PROOFS

We first introduce some definitions and lemmas that will facilitate the proofs of the theo-
rems The notation used in the Appendix is consistent with that used in the body of the
paper thus y = (y4,...,¥n) is the vector of observationX = (Xy,...,X,)" is then X k
design matrix of rank, A = Diag(A4,...,An), andA = (Aq,...,A,)"
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DEFINITION 3. For A € 7, we definer(;) = --- = Ay to be the ordered;’s.

DEFINITION 4. For A € )%, we defing{A, ,...,Ay } as the set ofA;’s thatveri-
fies My A = Max{Iliy Ag:1l = 8 < -+ < § = n andDet(Xs,, ..., Xs) # O}, where
Det(Xs,,...,Xs) denotes the determinant of the submatrix of X corresponding to the
obsevations y , ..., Ys,.

The following lemmas provide bounds on functions\ahat will repeatedly appear in
the proofs of the theorem$hese bounds are given up to proportionality constavitsch
can depend on the fixed values Xfandy (see also the remark after Lemmavithich
follows).

LEMMA 1. Det(X’AX) has upper and lower bounds that are both proportional to
Mg Ay

Remark. Lemma 1 means that there exist positive finite constabits: C;(X) =
Cy(X) < oo, such thatCl(X)Hik:l/\mi = Det(X'AX) = C2(X)H!‘:1/\mi. The remaining
lemmas should be interpreted similasyith constants possibly depending ¥mand/ory.

Proof of Lemma 1. Direct application of the Binet—Cauchy formuaantmachei 959
p.9) leads to DetX'AX) = Elss_l<-~-<sk£n(nik:1 /\S)Detz(xsl,...,xsk). For any functions
a;(A) > 0, and constant; > 0, it is immediate thaBma(A)min{b;} = > a(A)b =
Amax(A) 2i bi, whereaa(A) = max{a;(A)}. Thus X a;(A)b; has upper and lower bounds
proportional toamax(A). Applying this idea to DetX’AX), in combination with Defini-
tion 4, Lemma 1 follows u

LEMMA 2. The Euclidean norm of () = (X’AX)™1X’Ay is bounded ahee by a
finite constant €X,y).

Proof. Direct application of Cramer’s rule to the linear systefiA X)b = X’Ay leads
to the following expression for the elementshgft): b(A); = Det(X"AX) *Det(M;), j =
1,...,k where the matrixM; is obtained fromX’'A X substituting thgth column by the
vectorX’Ay. Applying the Binet—Cauchy formula to both determinants leads to

k
> <H AS>Det(xsl,...,xsk)Det(Xsl,...,Xsk)

l=g<..-<g=n \i=1
b(/\)J = K ’
> ( )\S>~{Det(x51,...,x5k)}2
l=g<---<g=n \i=1
wheregg, i = 1,...,k denotes the vectog with its jth component replaced by . The

result follows from a similar reasoning to the proof of Lemmaafplied to both the
numerator and denominator ((A);|, after use of the boun®; a;| = X |a;| for the
numerator |

LEMMA 3. For ally € R" barring a set of Lebesgue measure zehe expression

S(A) = y'Ay — YAX(X'AX)"X’Ay has upper and lower bounds proportional xg =
max{Ai:i #my,...,mg.
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Proof. Defining then X (k + 1) matrix L = (X:y), and subsequently applying the
Binet—Cauchy formulawve obtain

, k+1 X e X
oy = DeAL 1 s <H AS>Det2<ys1 sk>
-

© Det(X'AX)  Det(X'AX) joq e =n\ =1 Vs

which, in combination with Lemma,Jproves Lemma 3 u

LEMMA 4. The jth diagonal element @fX’AX)~* has upper and lower bounds pro
portional to1/A, , whereh, = min{Ay: 6 € {my,...,m} and Det(IXpy, : m; # 0) # 0}, Ix;
denotes theector x without its jth element and'x,, : m; # 6) is the(k — 1) X (k — 1)
matrix obtained from{!Xy, ,..., x, ) after remaing Ix,.

Proof. The term(X’AX); %, the jth diagonal element ofX'AX) ™% is computed as
(X"AX);t = Det(M;;)/Det(X'AX), whereMj is the matrix obtained frorX’AX by re-
moving both thgth row and columnApplying the Binet—Cauchy formuldet(M;) is
seen to be equal tElSSl<.._<sk71§n(H!:f/\Si)Detz(J'xSl,...,ixSH), which, in combina-
tion with Lemma 1leads to Lemma 4 |

Proof of Theorem 1. This follows from either of the proofs of Theorems 2 and®

Proof of Theorem 2. Existence of thdr,,...,r)th order posterior moment @ =
(B1,...,Bx) is equivalent to the following integral being finite

k n
L‘me < I1 Bi’l){_l_[l p(yiB,a)} p(B,0) dB do, (A.1)

=1

wherep(y;|8,0) is the sampling density it2.2) andp(3,0) the prior in(2.3). Straight-
forward calculations and the use of Fubini’'s theorem show () is proportional to

K s(A)
f f f IT18i17 ) f5(BIb(A),o2(X'AX) 1) dB o~ " * PV expl ———, | do
o Jor, Jore\ j=1 202

X ( A%/2>{Det(X’AX)}1/2 dP,,...dP, , (A.2)
i=1

whereb(A) = (X’AX)"IX’Ayands(A) =y’ Ay — Y’ AX(X’AX)"1X’Ay. Observe thas(A)

is strictly positive unlesyg s in the column space of, which is an event of measure zero
providedn > k. To first solve the integral o8, which we denote by;, we make a variable
transformation fronB to g = 8 — b(A); thus

k
1= ﬁ k( [T 1g + b Iri>fn‘f(q0,02(X’AX)‘1) da. (A.3)
gk \ j=1
We now find a lower and an upper bound feriwhich, of course lead to bounds on the
integral in(A.2)). We shall use the lower bound to prove Theorgim &nd the upper bound
to prove Theorem @i).
Part(i):r =n—k. We consider the lower bound; + b(A);|"i = | ¢ ["il (0,0 (G B(A);),

wherel(v) takes the value one if € A and zero otherwisé\pplying this bound to the
integral in(A.3) and defining the variable= o ~'q, we see that
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=1

k
I, = O'rj\“k{]:[ |tJ |r1|(0,oo)(tj b()\)])} f,\',‘(t|0,(X’AX)*1) dt, (A4)

wherer = 3/ ;. Next, we look at the integral with respect ¢oin (A.2):

s(A s(A)h
J o (ke exp<—¥> da'ocf h[("’k’”/z]’lexp<— W )dh,
%, o %R 2

which requires — k — r > 0 for being finite Thus Theorem @) follows.

Part (ii)):r <n—k  Because

k k r:
TT1q + b 1" =TT + b)) = 3 g +b(l"
j=1 j=1

jir>0

where the last inequality follows directly from the theorem of arithmetic and geometric
meanswe shall focus on marginal moments @rof orderr, for thosej such that; > 0.
From Lemma 2 we know thab(A);| = C(X,y), j = 1,...,k, for some positive quantity
C(X,y). We then obtain

g + b(A)[" = (Ig| + [b(A) D" ={lg| + CIX y)}" = 24C(X y)}" + 2[4,

and thus if the integral

s(A
f J J|q,-\'f,\}(q,-\o,oz(X’AX),-jl)dq o~ (nTk+D) exp(——( 2>da
sin Joi, I 20

X (1‘[ A%/2>{Det(X’AX)}‘1/2dPAl...dPA" (A.5)

i=1

is finite for| = 0 andl = r for all j corresponding to; > 0, the integral in(A.2) will also
be finitg and the(ry, ..., r)th posterior moment g8 will exist. Note that propriety of the
posterior distribution is equivalent to a finite integral (i8.5) for | = 0, and thusthe
present proof also covers the proof of Theorem 1

After integrating outy; ando, we are left with the integral

g

{(X"AX); 1172 <ﬁ A}/2>{Det(X’AX)}1/25(/\)(““')/2 dP,,...dP, . (A.6)
i=1

We decompose the domain of integratih into then! possible orderings dfA4,..., A}

In each of these regions we identify, ,..., A, (Definition 4), A, (Lemma 3, and/\gj
(Lemma 4. Given one of these orderings and applying the previous lemmas we obtain
upper and lower bounds of the integrandAn6) proportional to

(A7)
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The definition of singularity index tells us that the largest possible submatdobfank
k — 1 that keeps the same rank after removing coljimonsists ok — 1 + p; vectorsx;.
As a consequenctor each possible ordering af, ..., A,, there are at mo&t— 1+ p; A;’s
that are larger thar’n,,J (and this includes thie— 1 A, s different from/\ej). Equivalently
there are at least— k — p; A;’s outside the sefA,, ,..., A, }, Which are smaller than(,j.
This implies thatfol =0 andl =r =n—k—pj,

)‘Iéz A(t?*kfl)/Z

Fi(d) = 1 (A.8)

1/2 y(n—k=1)/2 -
PVAINS

which is integrable with respect B, . On the other handf | =r > n—k — p;, we use the
bound

AGTTRIZNRZ ) \ (ko2
( ) . (A9)

F)s ——— = —
. )\Ie/;z)\(t?_k_l)/z Ap

Clearly, if both E(A{" * P~"/2) andE(A{ "P**""?) are finite F1(A) will be integrable
Using Definition 2if r — (n— k — pj) < m, both expectations are finit€husr <n—k—
p(r,...,rd +mwherep(ry,...,r, = max{p;: r; > 0}, leads to integrability for ajl such
thatr; > 0 and Theorem @i) follows. u

Proof of Theorem 3.

Pareto(1y/2) Mixing Distribution withr = 1. The existence of theth order mar-
ginal posterior moment o8; is equivalent to the integral ifA.6) being finite forl =
r. Following the same reasoning as in the proof of Theordiin),2we need to inte-
grate F1(A) in (A.7) (with | = r) over all possible orderings offA4,...,A,}. Be-
cause a Parett,»/2) distribution has support or(l,c0), we obtain Fi(A) =
A" m A2 and thus the integral ofFy(A) over any ordering of the;’s
is bounded above by

n—k
f U < I1 77i1/2> P(11) ... P(n—i) dny... Ay, (A.10)
1< <+ <Mp_y<0o i=1

wherep(n;) oc /@ L fori =1,...,n— k. Using Fubini’s theorem to computé..10) in
an iterative fashion in the ordey,_y,...,n1 leads to a finite value for any<< n — k.

Gammadwv/2,u/2) and Betdr/2,1) Mixing. As is clear from the comments follow-
ing (A.7), the largest value d,(A) corresponds to any ordering of thgs for which A, =
An—k—py+1)- Thus itis enough to establish the integrability(@.7) for any such ordering
We again compute the integral iterativelising Fubini's theorem

For gamméw/2, u/2) mixing, which corresponds tp(A;) oc Y2~ exp(—uA; /2) for
A; > 0, we use the following bounds in each of theteps of the integration process

n n

A A A

= exp(—uAr /2) = f N texp(—pAi /2) dA; = —g, for anyn, u > 0. (A.11)
n 0 n

Itis easy to see that after the first- k — p; steps we are left with

An—k—p;+2)
f A{B(infkfpj+l)u+nfkfpjfr}/27l eXp(_/Jv/\ei /2) d)‘ﬁj, (A.12)
]
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which is finite if and only ifr < n—k—pj + »(n — k— p; + 1). Once this condition is
imposed the remaining steps always lead to finite integrals

The proof for beta mixing is similar throughgutow using that

A
J A7 tdA e A, foranyn >0, (A.13)
0]

instead of the bounds ifA.11). u

Proof of Theorem 4. Ther th posterior moment af is finite if and only if the integral
n
f 0’{1_[ p(yilﬁ,a)}p(ﬁ,o) dgdo (A.14)
REXNR i=1

is finite, wherep(y;| 8,0) andp(B,o) are given in(2.2) and (2.3), respectivelyAfter
integrating oujB, using the fact that its conditional distribution given, A) is ak-variate
normal we are left with the following integral proportional {é\..14):

n
22
f 'Hl—lf g~ (nkorkD exp<—ﬂ> dodP,,...dP, (A.15)
g {Det(X'AX)}2 Jgy, 202 A '
wheres(A) = y'Ay — y'AX(X’AX)"IX’Ay > 0 for all y in " barring ak-dimensional
subspace

Part (i): r = n— k. To integrate out in (A.15) we requiren — k — r > 0. Hence
Theorem 4i).

Part (ii): r <n—k. Inthis case we can integrate agtand the integral iA.15) is
proportional to

j,‘n (]‘[ ,\il/2>{Det(X/AX)}1/Zs(/\)<"k'>/2 dP,,...dP, . (A.16)

i=1

We now decompos®i'} into all possible orderings df,,...,A,}. For each of these re-
gions the previous lemmas lead to upper and lower bounds for the integrad 16)
proportional to

M

_ iFmy,..., my /2
Fo(A) = —A<bn—k—r>/z = A¥?, (A.17)
whereAp, = max{A;,i # my,...,mc}. Theorem 4ii) now follows immediately u

Proof of Theorem 5. The proof is entirely parallel to that of TheoremsRibstituting
F1(A) in (A.7) by F>(A) in (A.17). The result is immediate for Pareto mixingecause
F.(A) exactly corresponds to the upper boundFefA) used in the proof of Theorem 3
For gamma and beta mixing/e respectively applyA.11) and(A.13) to integrate=>(A).

|
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