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This paper considers a Bayesian analysis of the linear regression model under in-
dependent sampling from general scale mixtures of normals+ Using a common ref-
erence prior, we investigate the validity of Bayesian inference and the existence of
posterior moments of the regression and scale parameters+ We find that whereas
existence of the posterior distribution does not depend on the choice of the design
matrix or the mixing distribution, both of them can crucially intervene in the exis-
tence of posterior moments+We identify some useful characteristics that allow for
an easy verification of the existence of a wide range of moments+ In addition, we
provide full characterizations under sampling from finite mixtures of normals,Pear-
son VII, or certain modulated normal distributions+ For empirical applications, a
numerical implementation based on the Gibbs sampler is recommended+

1. INTRODUCTION

The present paper focuses on Bayesian inference in the context of the linear
regression model with independent errors distributed as scale mixtures of nor-
mals, to allow for flexible tails+More explicitly,we shall analyze the existence of
the posterior distribution and of its moments under a commonly used improper
prior and comment on numerical techniques for evaluating posterior quantities of
interest+Whereas a growing number of Bayesian studies have used this model,
the theoretical foundations have, so far, not been established+ This paper aims to
fill that gap+

It has long been recognized that the usually convenient assumption of normal
sampling might be overly restrictive for many practical modeling situations+ In
particular, the thin tails of a normal distribution are often not a natural choice+An
early contribution to this literature was Jeffreys~1961!,whereas Maronna~1976!
and Lange, Little, and Taylor~1989! discussed maximum likelihood estimation
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for models with heavier-tailed Student-t disturbances+Bayesian results for outlier
problems are provided in West~1984! for the wider class of scale mixtures of
normals; however, he did not address the issue of existence of the posterior dis-
tribution and its moments under an improper prior distribution+ Geweke~1993!
considered the same Bayesian model as treated here for the case of Student-t
sampling, but an unfortunate error in his main proof invalidates his results on
posterior propriety and the existence of moments+ The present analysis is thus
required to validate the interesting numerical results obtained in Geweke~1993!
on the basis of the Gibbs sampler and, more generally, to establish a basis for
feasible Bayesian inference+ In addition, we cover the entire class of scale mix-
tures of normals+

The class of scale mixtures of normals is generated by allocating to the distur-
bance of theith observation, say, «i , the following distribution:

«i 5
d

zi 0l i
102, (1.1)

wherezi is a normal~0,1! random variable andl i an independent random variable
on ~0,`!+ By assuming different probability distributionsPl i

for l i , we map the
entire class of scale mixtures of normals+ Table 1 groups some known distribu-
tions of«i implied by~1+1! together with the corresponding distributions forl i +
It is clear from this table that quite a rich class of continuous symmetric and
unimodal distributions can be described by scale mixtures of normals, so that
processes with thicker-than-normal tails will often be adequately modeled by
choosing a distribution from this class+A formal characterization of the extent of
this class is given in, e+g+, Kelker ~1970, Theorem 10! or Fang, Kotz, and Ng
~1990, Theorem 2+21!+Viewed in a multivariate spherical context, scale mixtures
of normals are the only spherical distributions that can coherently be extended in
dimension indefinitely+ In other words, they can always be interpreted as the
marginals of higher-dimensional spherical distributions+

We can cite a number of examples that testify to the growing impact of scale
mixtures of normals in applied statistical practice+Modeling distributions of high-
frequency financial data with the help of scale mixtures of normals is recently
becoming more and more popular+ In the context of stochastic volatility models,
Harvey, Ruiz, and Shephard~1994! and Jacquier, Polson, and Rossi~1995! used
a Student-t, and in Shephard~1994a, 1994b! we find an exponential power dis-
tribution and a finite mixture of normals+ Bauwens and Lubrano~1998! consid-
ered GARCH models with Student-t disturbances+ Lange et al+ ~1989! reported a
number of examples from statistical practice where Student-t models provide a
better fit to the data than their normal counterparts+ For modeling macroeco-
nomic time series,Geweke~1993! found relatively high posterior odds in favor of
Student-t sampling as opposed to normal sampling+

We shall use a linear regression model under independent sampling from a
scale mixture of normals with known mixing distributionPl i

+ We complete the
Bayesian model with a commonly used improper Jeffreys’ prior on the param-
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Table 1. Classes of scale mixtures of normals

Distribution of«i Mixing distribution onl i Reference

1+ Finite mixture of normals Discrete with finite support
a+ Normal Dirac
b+ Contaminated normal Most mass in one point Johnson and Kotz~1970!

2+ Generalized hyperbolic Generalized inverse Gaussian Barndorff-Nielsen et al+ ~1982!

a+ Hyperbolic h@ l i
22 expH2

1

2S k

l i

1 dl iDJ , d $ 0,k . 0 Barndorff-Nielsen et al+ ~1982!

~i! Laplace d 5 0,k 5 1 Andrews and Mallows~1974!
b+ Pearson type VII Gamma~n02,m02! n,m . 0 Johnson and Kotz~1970!

~i! Student-t n 5 m
1+ Cauchy n 5 m 5 1

3+ Symmetricz-distribution h 5 li
22 (k50

` S22d
k D d1k

B~d,d!
expH2

~d1k!2

2l i
J , d . 0 Barndorff-Nielsen et al+ ~1982!

a+ Generalized logistic d 5 1,2, + + + Barndorff-Nielsen et al+ ~1982!
~i! Logistic d 5 1 Andrews and Mallows~1974!

b+ Hyperbolic cosine d 5 1
2
_ Barndorff-Nielsen et al+ ~1982!

8
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4+ Symmetric stable~a!, 0 , a , 2 l i
21 is positive stableSa

2D Feller~1971!

a+ Cauchy a 5 1

5+ Exp+ power~a!, 1 # a , 2 h@ l i
2102 3 p+d+f+ of positive stableSa

2D West~1987!

a+ Laplace a 5 1
6+ Modulated normal type I Pareto~1,n02! on ~1,`!, n . 0 Romanowski~1979!
7+ Modulated normal type II Beta~n02,1! on ~0,1!, n . 0 Rogers and Tukey~1972!

a+ Slash n 5 1 Rogers and Tukey~1972!
b+ Q-distribution n 5 2 Rogers and Tukey~1972!

*h indicates the p+d+f+ of l i +

8
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eters~under “independence”!+The latter prior was shown by Fernández and Steel
~1999a! to also have the interpretation of the “reference prior,” based on formal
information theory arguments~see Berger and Bernardo, 1992!+ Under indepen-
dent sampling, Jeffreys’ prior is a popular choice in the absence of compelling
prior information+ For time series models, the application of Jeffreys’principle is
more contentious, as is evidenced by the discussion in Phillips~1991!+

The explicit aim of this paper is the study of existence of the posterior distri-
bution and the posterior moments of the parameters+ Especially in view of the
added complexity of sampling from scale mixtures of normals, numerical meth-
ods will typically be required,and usually the Gibbs sampler~proposed by Geweke,
1993, for Student-t sampling! provides an attractive approach, as illustrated in
Section 5+2+ This carries some inherent dangers, however, quite beyond numer-
ical accuracy+ The Gibbs sampler essentially approximates drawings from a joint
distribution by a Markov chain of drawings from the full conditional distributions
~see, e+g+,Gelfand and Smith, 1990; Tierney, 1994!+As, e+g+, Casella and George
~1992! have illustrated in an example, all the full conditionals may well be proper
distributions,without existence of the joint distribution+Hobert and Casella~1996!
pointed out the pitfalls of careless use of Markov chain Monte Carlo methods in
cases where no posterior distribution exists~see also Fernández,Osiewalski, and
Steel, 1997!+ Thus, under an improper prior distribution, it becomes crucial to
verify propriety of the posterior to validate Bayesian inference+ This argument
also carries over to the existence of posterior moments of the parameters: the
mere fact that the full conditional posterior distribution of a parameter allows for
a finite moment of a certain order does not guarantee existence of this moment in
the marginal posterior distribution+ The problem of higher-order moments can
even be more severe as it does not disappear by using a proper prior distribution+
Our explicit focus on the existence of the posterior distribution and its moments
is, thus,meant to indicate whether Bayesian inference is at all possible and, if so,
which moments we can meaningfully try to calculate+We do not deal here with
the issue of how precise this inference will be in particular empirical contexts+

This paper will be concerned withn independent and identically distributed
~i+i+d+! univariate disturbances«i , i 5 1, + + + ,n, as in ~1+1!, in contrast to the lit-
erature on multivariate scale mixtures of normals, where we only obtain one
n-dimensional vector observation~see, e+g+, Osiewalski,1991; and, for the spe-
cial case of multivariate Student-t, Zellner, 1976!+ In the latter case, ~«1, + + + ,«n!'

is distributed as a standardn-variate normal~z1, + + + ,zn!' divided by a single
scalar, say, l1 with some distributionPl1

+ As this multivariate scale mixture of
normals is in the class ofn-variate spherical distributions, we know from Kelker
~1970, Lemma 5! that the only intersection between our i+i+d+ sampling case
and this multivariate case is that of normality+ In the course of the paper, we
shall briefly compare both sampling schemes with respect to the existence of
posterior moments+

The next section of the paper introduces the Bayesian model and treats propri-
ety of the posterior+ Conditions for the existence of moments of the regression
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coefficients are analyzed in Section 3,whereas Section 4 focuses on the moments
of the scale parameter+ The following section deals with some practical ap-
proaches to conducting Bayesian inference in the context of scale mixtures of
normals+ Section 6 groups some concluding remarks+ Throughout the paper, the
notation for distributions and probability density functions follows DeGroot
~1970!+ All proofs are referred to the Appendix, without explicit mention in the
main text+

2. THE BAYESIAN MODEL

In this section we shall examine the linear regression model corresponding to
~1+1!+ In particular, we assume the observationsyi [ R ~i 5 1, + + + ,n! to be gen-
erated from

yi 5 xi
'b 1 s«i , (2.1)

where«1, + + + ,«n are i+i+d+ random variables distributed as a scale mixture of nor-
mals+ Thus, «i 5

d
zi 0l i

102 wherezi is a standard normal random variable andl i an
independent random variable with some known probability distributionPl i

on
~0,`!+Thek-dimensional vectorxi groups the explanatory variables;we interpret
~2+1! as modelingyi given xi , but we shall not make explicit the fact that we
condition onxi in the sequel+ The parameters introduced in~2+1! are the regres-
sion coefficientsb [ Rk and the scales . 0+

The sampling model is thus characterized by the density function

p~ yi 6b,s! 5E
0

` l i
102

~2p!102s
expH2 l i

2s2 ~ yi 2 xi
'b!2J dPl i

+ (2.2)

Independent replications from~2+2! will constitute the sampling information re-
garding the common regression and scale parameters+ Let us now group the ex-
planatory variables into ann3 k matrixX5 ~x1, + + + , xn!' that is assumed to be of
full column rank~and thusn $ k!+ In addition, we definey 5 ~ y1, + + + , yn!' as the
vector of observations+

A common choice for a noninformative prior distribution is the “indepen-
dence” Jeffreys’ prior given by

p~b,s! @ s21+ (2.3)

The prior in~2+3! is also the reference prior in the sense of Berger and Bernardo
~1992! for any regular distribution on«i as shown in Fernández and Steel~1999a!+

Because the prior distribution in~2+3! is not proper, the existence of the poste-
rior distribution~defined as the conditional distribution of the parameters given the
observables! is not guaranteed+The results in Mouchart~1976! and Florens,Mou-
chart,and Rolin~1990! imply that such a conditional distribution exists only when
the predictive distribution iss-finite, i+e+, p~ y![*p~ y6b,s!p~b,s! db ds ,`
except possibly on a set ofy’s of Lebesgue measure zero inRn+ In the context of
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the model~2+2! and~2+3!, we can obtain the following result concerning the fea-
sibility of Bayesian inference+

THEOREM 1+ ~Propriety of posterior! Under the prior in~2+3! and with n
independent observations from~2+2!, the conditional distribution of~b,s! given
y exists if and only if n$ k 1 1, for any choice of the mixing distribution Pl i

+

Note that the conditionn $ k11 is both necessary and sufficient and does not
involve any properties of the mixing distribution+ Surprisingly, the wide range of
tails accommodated within the class of scale mixtures of normals has no influ-
ence whatsoever on the existence of the posterior+

Before proceeding with the remainder of the paper, a remark is in order+ Note
that Theorem 1 is concerned with establishing the existence of the conditional
distribution of the parameters given the observables,which puts us on equal foot-
ing with the case where a proper prior is used+This, however, does not rule out the
possibility thatp~ y!, the denominator in the usual Bayes’ formula, becomes in-
finite in a set ofy’s that has Lebesgue measure zero inRn+ Whereas any such
sample has, by definition, zero probability of being observed under our assumed
sampling model, the rounding implicit in any data set means that, in practice,
there could be a positive probability of observing an “offending” value ofy+ The
same type of comment applies to the existence of posterior moments, examined
in the following two sections+We stress, however, that these problems are inher-
ent to any statistical analysis using continuous sampling distributions and are by
no means restricted to the use of improper priors or Bayesian methods+A detailed
discussion of these issues together with a general solution within a Bayesian
framework can be found in Fernández and Steel~1999b!+

In the sequel, we assumen $ k 1 1 so that Theorem 1 applies and turn to the
question of existence of moments+ To facilitate the discussion in the remainder of
the paper, we shall introduce the following definitions of characteristics of the
design matrixX and the mixing distributionPl i

+

DEFINITION 1+ ~Singularity index for columnj ! Given an n3 k full column-
rank matrix X, we define the singularity index for column j5 1, + + + ,k as the
largest number pj such that there exists a~k211 pj ! 3 k submatrix of X of rank
k 2 1 that retains rank k2 1 after removing its jth column+

From the definition, k211 pj gives the largest number of observations in the
sample for whichbj , the jth component ofb, is not identified+ Clearly, 0 # pj #
n 2 k becauseX is of full column rank+ A simple way of computingpj is as
follows: consider all sets ofk21 rows ofX such that the rank of the correspond-
ing submatrix without columnj is k 2 1+ Thenpj is the maximum number of
rows that can be added to any such set without increasing the rank+ If X contains
rows of zeros, thenpj is at least equal to the number of such zero rows for allj 5
1, + + + ,k+ Furthermore, max$ pj : j 5 1, + + + ,k% 5 0 if and only if everyk 3 k sub-
matrix of X is nonsingular+
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DEFINITION 2+ ~Moment set and moment index! Let Pl i
be the probability

distribution of a randomvariable l i in R1+We define:

~i! Moment set of Pl i
:M 5 $s [ R:E~l i

s02! [ *0
` l i

s02 dPl i
, `%+

~ii ! Moment index of Pl i
:m5 sup$s$ 0 : s [ M and2s [ M%+

Clearly, 0 [ M becausePl i
is a probability distribution, and thusm $ 0 is

always defined+

3. POSTERIOR MOMENTS OF REGRESSION COEFFICIENTS

In this section,we denote by~r1, + + + , rk! the order of the moment ofb5 ~b1, + + + ,bk!
'

and definer 5(j51
k rj +Our most general result is stated in the following theorem+

THEOREM 2+ ~Posterior moments ofb! Consider the Bayesian model in~2+2!
and~2+3! and any choice of rj $ 0 for j 51, + + ,k such that r. 0+We obtain that

~i! necessity: if r $ n 2 k, then E~) j51
k 6bj 6rj 6y! 5`;

~ii ! sufficiency: if r , min$n 2 k,n 2 k 2 p~r1, + + + , rk! 1 m%, where m is the moment
index of the mixing distribution Pl i

and p~r1, + + + , rk! 5 max$ pj : rj . 0% with pj the
singularity index for column j of the design matrix X, then E~) j51

k 6bj 6rj 6y! , `+

Theorem 2 only addresses the situation of nonnegative moments+ Using the
fact that the first negative moment of a normally distributed random variable does
not exist, it is straightforward to prove that the moment in Theorem 2 is always
infinite if any rj # 21+ Theorem 2~i! tells us that there is never any hope for the
existence of moments for whichr $ n2 k, regardless of the characteristics of the
design matrix or the mixing distribution+ Such lack of existence of moments is,
therefore, due to the uncertainty aboutb ands rather than to the scale mixing+On
the other hand, both X andPl i

intervene~throughp~r1, + + + , rk! andm, respec-
tively! in the sufficient condition for existence of moments withr , n 2 k+

Theorem 2 fully characterizes the existence of positive posterior moments ofb
wheneverX andPl i

fulfill the following property+

COROLLARY 1+ If, in the context of Theorem2, the design matrix X and the
mixing distribution Pl i

are such thatmax$ pj : j 5 1, + + + ,k% # m, then

ES)
j51

k

6bj 6rj 6yD , ` if and only if r , n 2 k+

Thus, under the condition of Corollary 1 the same posterior moments exist as
under normal sampling+ We mention two important special cases where Corol-
lary 1 applies:

~i! Everyk 3 k submatrix ofX is nonsingular+
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In this case max$ pj : j 51, + + + ,k% 5 0 # m, and all posterior moments ofb with
r , n2kexist for anyPl i

+Therefore, the mixing distribution is entirely irrelevant
for the issue of existence of posterior moments+As examples of this situation,we
can mention the location-scale model~corresponding tok 5 1 andxi 5 1, i 5
1, + + + ,n! and models with thexi ’s independently drawn from continuousk-variate
distributions+We wish to remind the reader that the finite posterior moments ofb
can~and typically will! take different values for different mixing distributions+
The order up to which moments ofb are finite, however, is robust with respect to
the choice ofPl i

, i+e+, in the entire class of scale mixtures of normals+

~ii ! The moment index ofPl i
verifiesm$ n 2 k+

Again, Corollary 1 applies, regardless of the form of the matrixX ~of rankk!+
The design matrix, however, will typically influence the actual values of such
moments+ Sampling from finite mixtures of normals leads tom5`, thus pro-
viding an example of this situation+

In many situations not covered by Corollary 1, Theorem 2 can still provide an
answer+ If , given a particular order~r1, + + + , rk!, the inequalityp~r1, + + + , rk! # m is
verified, then Theorem 2 shows that such a posterior moment ofb exists if and
only if r , n2 k+ However, whenp~r1, + + + , rk! . m, the necessary condition~r ,
n2k! and the sufficient condition~r , n2k2p~r1, + + + , rk!1m! do not coincide,
and Theorem 2 remains inconclusive ifr [ @n2 k2 p~r1, + + + , rk! 1 m,n2 k!+ By
further specifyingPl i

, we can refine Theorem 2, as evidenced by the following
theorem concerning marginal posterior moments of the components ofb+

THEOREM 3+ ~Finite mixtures of normals, Pearson VII, and modulated nor-
mal sampling! For the Bayesian model in~2+2! and~2+3!,we obtain for anyvalue
of r . 0

E~6bj 6r 6y! , ` if and only if

~i! r , n2k for a discrete mixing distribution with finite support~sampling from finite
mixtures of normals! or a Pareto~1,n02! mixing distribution withn $1 ~modulated
normal type I sampling!,

~ii ! r , min$n 2 k,n 2 k 2 pj 1 n~n 2 k 2 pj 1 1!% for a gamma~n02,m02! mixing
distribution ~Pearson VII sampling! or a beta~n02,1! mixing distribution~modu-
lated normal type II sampling!+

Whereas the characterization for finite mixtures of normals is a direct conse-
quence of Theorem 2~becausem5`!, for the cases of Pearson VII and modu-
lated normal type I and II sampling we have improved upon Theorem 2, which
leads tor , n2 k andr , min$n2 k,n2 k2 pj 1 n% as necessary and sufficient
conditions, respectively; taking the added information on the mixing distribution
into account allows us to characterize the range of positive orders for which
posterior moments ofbj exist+ Thus, the sufficient condition in Theorem 2 is too
conservative if and only ifn , pj under modulated normal type I sampling with
n $1 and if and only ifn , pj , n2k for Pearson VII and modulated normal type
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II models+ In the former case, Theorem 3~i! states the existence ofpj 2 n addi-
tional moments over those guaranteed by Theorem 2,whereas, by Theorem 3~ii !,
the gain in the latter case ispj 2 n moments ifn $ pj 0~n2 k2 pj 11! andn~n2
k 2 pj ! moments otherwise+ Theorem 3 also illustrates the fact that, in general,
both the design matrix and the mixing distribution intervene in the issue of exis-
tence of moments, because neither can be neglected in the full characterization
provided in~ii !+ In addition, Theorem 3~ii ! shows that different components ofb
can possess marginal posterior moments up to different orders+

Observe that under Pearson VII sampling the parameterm of the gamma mix-
ing distribution does not intervene in the issue of existence of marginal posterior
moments+Obviously,whenm5n it specializes to the important case of Student-t
sampling+ Furthermore, asn tends to infinity for this Student sampling and for
both types of modulated normal distributions, the sampling distribution con-
verges to normality~which is also a special case of finite mixtures of normals
with Pl i

a Dirac distribution!+
Finally, we can compare the i+i+d+ sampling case treated in this paper with

sampling one single vectory from ann-dimensional distribution+ If we specialize
the results obtained by Osiewalski and Steel~1992! to the class of scale mixtures
of multivariate normals, we note that the posterior distribution ofb, and, there-
fore, its existence of moments, is entirely unaffected by departures from normal-
ity within this class~see also Zellner, 1976, for the special case of the multivariate
Student-t model and for analogous results in a maximum likelihood framework!+
Thus, in this multivariate context, posterior moments ofb always exist as long as
r , n2 k, irrespective of the~full column-rank! matrixX or the mixing distribu-
tion+We conclude that the present case of independent sampling, generally, re-
quires stronger conditions for the existence of posterior moments ofb as shown
by Theorem 3~ii !+

4. POSTERIOR MOMENTS OF SCALE PARAMETER

In this section, we shall focus on the existence of moments of the scales of any
orderr [ R+

THEOREM 4+ ~Posterior moments of scale! The Bayesian model in~2+2! and
~2+3! leads to

~i! necessity: if r $ n 2 k, then E~s r 6y! 5`;
~ii ! sufficiency: if r [ ~2`,n 2 k! ù M, whereM is the moment set of Pl i

, then
E~s r 6y! , `+

As was the case with the regression coefficients, posterior moments ofs of
orderr $ n 2 k never exist, whatever the choice of the design matrixX or the
mixing distributionPl i

+ For values ofr , n2 k, Theorem 4~ii ! provides a suffi-
cient condition for existence of ther th moment that relies on the existence of
moments ofPl i

, namely, thatr [ M+ Thus, for r 5 0 we can deduce Theorem 1
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for propriety of the posterior distribution, using that 0[ M, as remarked after
Definition 2+

The necessary and sufficient conditions presented in Theorem 4 do not co-
incide in general+ The following theorem provides a full characterization of the
existence of posterior moments ofs for some distributions of practical interest+

THEOREM 5+ ~Finite mixtures of normals, Pearson VII, and modulated nor-
mal sampling! For the sampling model in~2+2! and the prior in~2+3! we obtain
that

E~s r 6y! , ` if and only if

~i! r , n 2 k for a discrete mixing distribution with finite support~sampling from
finite mixtures of normals! or a Pareto~1,n02! mixing distribution withn $ 1
~modulated normal type I sampling!,

~ii ! 2~n2 k!n , r , n2 k for a gamma~n02,m02! mixing distribution~Pearson VII
sampling! or a beta~n02,1! mixing distribution~modulated normal type II sampling!+

Clearly, sampling from finite mixtures of normals leads to the moment set
M 5 R, from which we can immediately conclude, through Theorem 4, that in
this case ther th posterior moment ofs is finite if and only if r , n 2 k+ On the
other hand, the characterizations for the cases of Pearson VII and both types of
modulated normal sampling do not follow from Theorem 4 but are obtained
through exploiting the properties of the corresponding mixing distributions+

Under modulated normal type I sampling withn $ 1 all moments of order
smaller thann 2 k exist from Theorem 5+ The theorem also shows that when
sampling within the Pearson VII or the modulated normal type II classes, mo-
ments of orderr [ @0,n 2 k! are always assured whereas existence of negative
order moments is entirely determined by the parametern of the mixing distribu-
tion+ Under Pearson VII sampling, the value of the parameterm in the gamma
mixing distribution does not intervene as was the case in Theorem 3 for marginal
posterior moments ofb+ Choosingm 5 n we obtain the important special case of
Student-t sampling, and asn then tends to infinity, we converge to the normal
case where ther th moment ofs is finite if and only if r , n 2 k+

The case of sampling one single vector observation from a scale mixture of
multivariate normals was shown in Osiewalski and Steel~1996! to lead to a nec-
essary and sufficient condition for existence of moments ofs that corresponds to
~ii ! in Theorem 4, wheren now represents the dimension of the vector observa-
tion instead of sample size+ Thus, the latter case, which only intersects with the
model analyzed here under normality, generally requires a more stringent condi-
tion+ This is clearly shown by Theorem 5, where, e+g+, under Pearson VII or
modulated normal type II sampling the condition of Theorem 4~ii ! is not satisfied
for r [ ~2~n 2 k!n,2n# , but ther th posterior moment ofs is, nevertheless,
finite+

As a final remark,we note that the results in Theorems 4 and 5 can alternatively
be used to assess the propriety of the posterior distribution under the more general
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prior

p~b,s! @ s r21+ (4.1)

Although the independence Jeffreys’ prior in~2+3! is widely used in a noninfor-
mative context, the more general prior in~4+1! could be of interest in some cases+
Existence of thegth-order posterior moment ofs under the prior in~4+1! can also
be examined by means of Theorems 4 and 5, replacingr by r 1 g+ On the other
hand, existence of posterior moments of the regression coefficients is much more
difficult to establish+ Note that this problem is equivalent to analyzing the exis-
tence of cross moments forb ands with our present prior in~2+3!, for which we
have been unable to find simple and useful results+ This, however, does not pre-
clude posterior inference onb under the prior in~4+1!+ Once the propriety of the
posterior distribution has been established,we could simply report quantities that
are always known to exist, such as quantiles or highest posterior density regions,
instead of posterior moments ofb+

5. NUMERICAL ASPECTS

Once we have made sure that a Bayesian analysis can meaningfully be conducted
~Section 2! and the moments we are interested in actually exist~Sections 3 and 4!,
we will generally need numerical tools to conduct the necessary analysis+ This
section gives a generic description of two distinct numerical strategies that could
be employed+ Both start from the simple observation that givenl i the sampling
model in~2+2! is merely the normal linear regression model+ Thus, the posterior
analysis ofb ands, using the reference prior in~2+3! and conditioning onl 5
~l1, + + + ,ln!', is entirely standard and described by the following normal-gamma
density function on~b,s22!:

p~b,s22 6l, y! 5 fN
k~b6b~l!,s2~X 'LX !21 ! fGSs22* n 2 k

2
,
s~l!

2 D, (5.1)

where L 5 Diag~l i !, b~l! 5 ~X 'LX !21X 'Ly, and s~l! 5 y '$L 2
LX~X 'LX !21X 'L%y+

The treatment of thel i ’s will constitute the nonstandard part of the analysis of
our Bayesian model+We distinguish the following two approaches+

5.1. Independent Monte Carlo

Here we generate independent drawings from the distribution of~b,s,l! giveny
by drawing consecutively from~5+1! and from the distribution ofl giveny,which
is proportional to

g~l! )
i51

n

Pl i
, (5.2)
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where we have definedg~l! 5 $Det~X 'LX !%2102s~l!2~n2k!02 ) i51
n l i

102+ The im-
plicit assumption underlying the notation in~5+2! is that the probability distribu-
tion of l giveny is absolutely continuous with respect to) i51

n Pl i
with Radon–

Nikodym derivative proportional tog~l!+ Note thatg~l! in ~5+2! is simply the
result of integrating the data density given~b,s,l! with the prior of~b,s! and
can be found immediately from~A+2! in the Appendix withrj 5 0, j 5 1, + + + ,k+
Thus, g~l! corresponds to the integrand in~A+6! with l 5 0 or, equivalently, to
that in~A+16! with r 5 0+

As a result of integrating outb ands, the componentsl1, + + + ,ln of l do not
preserve independence conditionally upony, which seriously complicates draw-
ing from ~5+2!+ From the proof of Theorem 2~see~A+8! in the Appendix!, we
know thatg~l! is a bounded function ofl+ Thus, in general, we can use rejection
sampling~see, e+g+,Devroye, 1986! to draw from~5+2!, generating drawings from
) i51

n Pl i
and accepting with a probability proportional tog~l!+ Especially for

large sample size, n, this can, however, prove to be very inefficient+An alternative
procedure for generating drawings from~5+2! is importance sampling, as de-
scribed in, e+g+,Geweke~1989!+We then need to choose a convenient probability
distribution ~importance function! on R1

n from which to drawl that, ideally,
closely resembles~5+2! and dominates it in the tails+ Again, numerical problems
could occur for moderate or high values ofn+

In the special case wherePl i
is a discrete distribution with support on, say, q

points~sampling from a finite mixture of normals!, we can use~5+2! to evaluate
the probability mass attached to each of theqn possible values forl5 ~l1, + + + ,ln!
giveny+ If qn is not prohibitively large,we can immediately evaluate quantities of
interest from~5+1!, without recourse to numerical methods+ Clearly, if q51, we
have the standard normal regression model+

Generally, drawing from then-variate distribution in~5+2! will be cumber-
some, and, therefore, the following alternative strategy is outlined+

5.2. Gibbs Sampling

This Markov chain Monte Carlo method is based on the full conditional distri-
butions~see, e+g+, Gelfand and Smith, 1990; Tierney, 1994!+ For ~b,s! givenl
the posterior distribution is described by~5+1!+To complete the Gibbs sampler we
need the distribution ofl given~b,s, y!, which is proportional to

)
i51

n

gi ~l i !Pl i
, wheregi ~l i ! 5 fGSl i * 3

2
,
~ yi 2 xi

'b!2

2s2 D+ (5.3)

Each pass through the sampler thus requires only two steps: one drawing from
~5+1! and one from the probability distribution proportional to~5+3!+ Conver-
gence of the induced Markov chain to the posterior distribution is ensured, be-
cause the parameter space has a Cartesian product structure~see Roberts and
Smith, 1994!+
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As opposed to the situation in Section 5+1, thel i ’s are independent giveny and
~b,s!, which greatly facilitates drawing the vector~l1, + + + ,ln!+ A general rejec-
tion sampling strategy can be used where eachl i is drawn fromPl i

and accepted

with probability$l i s
22~ yi 2 xi

'b!2 %102 exp@ 1
2
_$1 2 l i s

22~ yi 2 xi
'b!2 %# , which

corresponds togi ~l i ! divided by its maximum value+ If required,more carefully
tailored rejection samplers can, of course, be designed+ Alternatively, we could
use, e+g+, the Metropolis–Hastings algorithm~see, e+g+, Tierney, 1994! to draw
from ~5+3! within the Gibbs sampler+ Most importantly, the overall performance
of the rejection or Metropolis step is not adversely affected by the necessity to
draw inn dimensions: we just requiren one-dimensional sampling schemes+ In
most practical situations, this will more than offset the inherent efficiency loss
~with respect to independent Monte Carlo! due to the serial correlation between
Gibbs drawings+

The Gibbs sampler simplifies considerably in a number of special cases+
If Pl i

is a gamma~n02,m02! distribution, giving rise to a Pearson type VII
sampling distribution in~2+2!, we retain a gamma distribution for the full condi-
tional of eachl i , i+e+, each of then factors in~5+3! is described by the density
function

p~l i 6b,s, yi ! 5 fGSl i * n 1 1

2
,
m 1 s22~ yi 2 xi

'b!2

2
D, (5.4)

which we can draw from easily+ For the Student-t case, Geweke~1993! uses a
similar Gibbs sampler, and Lange et al+ ~1989! also mention the conditional dis-
tribution in ~5+4!+

In the modulated normal type II class, introduced by Rogers and Tukey~1972!,
where the mixing distributionPl i

is a beta~n02,1! distribution, we obtain

p~l i 6b,s, yi ! @ fGSl i * n 1 1

2
,
~ yi 2 xi

'b!2

2s2 D I@0,1#~l i !, (5.5)

i+e+, a truncated gamma distribution+
Sampling from a generalized hyperbolic distribution corresponds to a gener-

alized inverse Gaussian mixing distribution~see Barndorff-Nielsen, Kent, and
Sørensen, 1982!+Then, the factors in~5+3! will still be generalized inverse Gauss-
ian distributions with density function

p~l i 6b,s, yi ! @ l i
2~g1~102!! exp2

1

2F k

l i
1 l i Hd 1

~ yi 2 xi
'b!2

s2 JG , (5.6)

whereg [ R andd andk take strictly positive values+ In addition, for negativeg,
k can be 0, and for positive values ofg the same holds ford+ As can be verified
from Table 1, choosingg 5 1 corresponds to sampling from a hyperbolic distri-
bution, whereas the sampling distribution becomes Laplace if we also taked 5 0
andk 51+ Drawing from~5+6! can be implemented in quite an efficient manner,
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as explained in Devroye~1986, pp+ 479–480!+ In addition, the Pearson type VII
family, discussed earlier, is also a subclass of the class of generalized hyperbolic
distributions+ In particular, when we takeg 5 2n02, d 5 m, andk 5 0 we obtain
the gamma~n02,m02! mixing distribution, and~5+6! reduces to~5+4!+

Finally, for finite mixtures of normals withq possible values for eachl i , the
Gibbs sampler provides an alternative in those cases where direct evaluation
~using~5+1! and~5+2!! proves very difficult as a result of a large value forqn+ In
contrast to the situation using independent Monte Carlo~Section 5+1!, it will now
typically be feasible to draw values forl even whenqn is too large for a direct
analysis+ All we need is to draw from then independent discrete distributions in
~5+3!, which is often straightforward even for relatively largeq andn+

6. CONCLUDING REMARKS

In this paper, we have treated the linear regression model under independent
sampling from scale mixtures of normals+ From Table 1, which groups some
members of this class of sampling distributions, it is clear that this covers a rather
wide variety of behavior+ Completing this sampling model with a common non-
informative~“reference”! prior, we have investigated conditions for the validity
of Bayesian inference and the existence of the posterior moments of the regres-
sion coefficients and the scale parameter+

There are three characteristics that can influence this existence of moments:

~1! the quantityn2k, i+e+, the sample size minus the number of regressors in the model,
~2! the structure of the design matrixX, always of full column rank,
~3! the mixing distributionPl i

+

Throughout, existence of moments will be influenced by~1!,whereas~2! and~3!
do not always intervene+ Our main theoretical results are presented in Theorems
1–5+

To implement a Bayesian analysis of the models treated here, and to actually
evaluate the moments that can be shown to be finite, we typically require numer-
ical methods+We mention two distinct strategies in Section 5 and conclude that,
especially for moderate or large sample sizen,Gibbs sampling seems preferable
to independent Monte Carlo+

The assumption of i+i+d+ error terms was made here as it corresponds to many
empirical modeling situations, but it is by no means crucial for our results;most
of the techniques used in our proofs can be used and the analysis can be extended
straightforwardly to the case wherePl i

varies across the observationsi 51, + + + ,n+
In addition,we could even handle the case where thel i ’s are not independent but
l 5 ~l1, + + + ,ln!' follows some joint distribution onR1

n + This situation would
arise naturally if eachPl i

depended on a common unknown parameter, for which
a prior distribution was assumed+Markov chain Monte Carlo methods can easily
be adapted to handle such extensions, as demonstrated in Fernández and Steel
~1998! for the case of~skewed! Student sampling with unknown degrees of free-
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dom+ Of course, as we allow for more flexibility on the distribution ofl, our
theoretical results will inevitably become less conclusive+ Finally, an issue of
importance that arises in this more general context of an unknown mixing distri-
bution is how much we can expect to learn about it from the data+ Intuitively, one
would expect that a large number of observations is required, as the parameters of
the mixing density are often largely determined by more extreme observations
and not by the bulk of the data+Whereas this topic falls outside the scope of the
present paper, which deals exclusively with the case of known mixing distribu-
tion, it is quite relevant for empirical work and certainly deserves further inves-
tigation+
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APPENDIX: PROOFS

We first introduce some definitions and lemmas that will facilitate the proofs of the theo-
rems+ The notation used in the Appendix is consistent with that used in the body of the
paper; thus, y 5 ~ y1, + + + , yn!' is the vector of observations, X 5 ~x1, + + + , xn!' is then 3 k
design matrix of rankk, L 5 Diag~l1, + + + ,ln!, andl 5 ~l1, + + + ,ln!'+
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DEFINITION 3+ For l [ R1
n , we definel~1! # {{{ # l~n! to be the orderedl i ’s+

DEFINITION 4+ For l [ R1
n , we define$lm1

, + + + ,lmk
% as the set ofl i ’s thatveri-

fies ) i51
k lmi

5 max$) i51
k lsi

:1 # s1 , {{{ , sk # n andDet~xs1
, + + + , xsk

! Þ 0%, where
Det~xs1

, + + + , xsk
! denotes the determinant of the submatrix of X corresponding to the

observations ys1
, + + + , ysk

+

The following lemmas provide bounds on functions ofl that will repeatedly appear in
the proofs of the theorems+ These bounds are given up to proportionality constants, which
can depend on the fixed values ofX andy ~see also the remark after Lemma 1, which
follows!+

LEMMA 1 + Det~X 'LX ! has upper and lower bounds that are both proportional to
) i51

k lmi
+

Remark. Lemma 1 means that there exist positive finite constants, 0 , C1~X ! #
C2~X ! , `, such thatC1~X !) i51

k lmi
# Det~X 'LX ! # C2~X !) i51

k lmi
+ The remaining

lemmas should be interpreted similarly, with constants possibly depending onX and0or y+

Proof of Lemma 1. Direct application of the Binet–Cauchy formula~Gantmacher,1959,
p+ 9! leads to Det~X 'LX ! 5 (1#s1,{{{,sk#n~) i51

k lsi
!Det2~xs1

, + + + , xsk
!+ For any functions

ai ~l! . 0, and constantsbi . 0, it is immediate thatamax~l!mini $bi % # (i ai ~l!bi #
amax~l!(i bi ,whereamax~l!5maxi $ai ~l!%+Thus,(i ai ~l!bi has upper and lower bounds
proportional toamax~l!+ Applying this idea to Det~X 'LX !, in combination with Defini-
tion 4, Lemma 1 follows+ n

LEMMA 2 + The Euclidean norm of b~l! 5 ~X 'LX !21X 'Ly is bounded above by a
finite constant C~X, y!+

Proof. Direct application of Cramer’s rule to the linear system~X 'LX !b5 X 'Ly leads
to the following expression for the elements ofb~l!: b~l!j 5 Det~X 'LX !21Det~Mj !, j 5
1, + + + ,k, where the matrixMj is obtained fromX 'LX substituting thejth column by the
vectorX 'Ly+ Applying the Binet–Cauchy formula to both determinants leads to

b~l!j 5

(
1#s1,{{{,sk#n

S)
i51

k

lsiDDet~xs1
, + + + , xsk

!Det~ Ixs1
, + + + , Ixsk

!

(
1#s1,{{{,sk#n

S)
i51

k

lsiD $Det~xs1
, + + + , xsk

!%2

,

where Ixsi
, i 5 1, + + + ,k denotes the vectorxsi

with its jth component replaced byysi
+ The

result follows from a similar reasoning to the proof of Lemma 1, applied to both the
numerator and denominator of6b~l!j 6, after use of the bound6(i ai 6 # (i 6ai 6 for the
numerator+ n

LEMMA 3 + For all y [ Rn barring a set of Lebesgue measure zero, the expression
s~l! 5 y'Ly 2 y'LX~X 'LX !21X 'Ly has upper and lower bounds proportional tolb 5
max$l i : i Þ m1, + + + ,mk%+
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Proof. Defining then 3 ~k 1 1! matrix L 5 ~X : y!, and subsequently applying the
Binet–Cauchy formula, we obtain

s~l! 5
Det~L'LL!

Det~X 'LX !
5

1

Det~X 'LX ! (
1#s1,{{{,sk11#n

S)
i51

k11

lsiDDet2Sxs1
J xsk11

ys1
J ysk11

D,
which, in combination with Lemma 1, proves Lemma 3+ n

LEMMA 4 + The jth diagonal element of~X 'LX !21 has upper and lower bounds pro-
portional to10luj

, whereluj
5 min$lu : u [ $m1, + + + ,mk% andDet~ jxmi

:mi Þ u! Þ 0%, jxi

denotes thevector xi without its jth element and~ jxmi
:mi Þ u! is the~k 2 1! 3 ~k 2 1!

matrix obtained from~ jxm1
, + + + , jxmk

! after removing jxu +

Proof. The term~X 'LX !jj
21, the jth diagonal element of~X 'LX !21, is computed as

~X 'LX !jj
21 5 Det~Mjj !0Det~X 'LX !, whereMjj is the matrix obtained fromX 'LX by re-

moving both thejth row and column+ Applying the Binet–Cauchy formula, Det~Mjj ! is
seen to be equal to(1#s1,{{{,sk21#n~) i51

k21 lsi
!Det2~ jxs1

, + + + , jxsk21
!, which, in combina-

tion with Lemma 1, leads to Lemma 4+ n

Proof of Theorem 1. This follows from either of the proofs of Theorems 2 and 4+ n

Proof of Theorem 2. Existence of the~r1, + + + , rk!th order posterior moment ofb 5
~b1, + + + ,bk!

' is equivalent to the following integral being finite:

E
Rk3R1

S)
j51

k

6bj 6rjDH)
i51

n

p~ yi 6b,s!J p~b,s! db ds, (A.1)

wherep~ yi 6b,s! is the sampling density in~2+2! andp~b,s! the prior in~2+3!+ Straight-
forward calculations and the use of Fubini’s theorem show that~A+1! is proportional to

E
R1

n
E

R1

E
Rk
S)

j51

k

6bj 6rjD fN
k~b6b~l!,s2~X 'LX !21 ! db s2~n2k11! expS2

s~l!

2s2D ds

3 S)
i51

n

l i
102D$Det~X 'LX !%2102 dPl1

+ + +dPln
, (A.2)

whereb~l! 5 ~X 'LX !21X 'Ly ands~l! 5 y'Ly2 y'LX~X 'LX !21X 'Ly+Observe thats~l!
is strictly positive unlessy is in the column space ofX, which is an event of measure zero
providedn . k+ To first solve the integral onb,which we denote byI1,we make a variable
transformation fromb to q 5 b 2 b~l!; thus

I1 5E
Rk
S)

j51

k

6qj 1 b~l!j 6rjD fN
k~q60,s2~X 'LX !21 ! dq+ (A.3)

We now find a lower and an upper bound forI1 ~which, of course, lead to bounds on the
integral in~A+2!!+We shall use the lower bound to prove Theorem 2~i! and the upper bound
to prove Theorem 2~ii !+

Part (i): r $ n2 k+ We consider the lower bound6qj 1 b~l!j 6rj $ 6qj 6rj I~0,`!~qj b~l!j !,
whereIA~v! takes the value one ifv [ A and zero otherwise+ Applying this bound to the
integral in~A+3! and defining the variablet 5 s21q, we see that
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I1 $ s rE
Rk
H)

j51

k

6 tj 6rj I~0,`!~tj b~l!j !J fN
k~t 60,~X 'LX !21 ! dt, (A.4)

wherer 5 (j51
k rj + Next, we look at the integral with respect tos in ~A+2!:

E
R1

s2~n2k2r11! expS2
s~l!

2s2D ds @ E
R1

h@~n2k2r!02#21 expS2
s~l!h

2 D dh,

which requiresn 2 k 2 r . 0 for being finite+ Thus Theorem 2~i! follows+

Part (ii): r , n 2 k+ Because

)
j51

k

6qj 1 b~l!j 6rj 5 )
j51

k

~6qj 1 b~l!j 6r ! rj 0r # (
j :rj.0

rj

r
6qj 1 b~l!j 6r,

where the last inequality follows directly from the theorem of arithmetic and geometric
means, we shall focus on marginal moments forbj of orderr, for thosej such thatrj . 0+
From Lemma 2 we know that6b~l!j 6 # C~X, y!, j 5 1, + + + ,k, for some positive quantity
C~X, y!+We then obtain

6qj 1 b~l!j 6r # ~6qj 61 6b~l!j 6! r # $6qj 61 C~X, y!% r # 2r $C~X, y!% r 1 2r 6qj 6r,

and, thus, if the integral

E
R1

n
E

R1

E
R

6qj 6 l fN1~qj 60,s2~X 'LX !jj
21! dqj s2~n2k11! expS2

s~l!

2s2D ds

3 S)
i51

n

l i
102D$Det~X 'LX !%2102 dPl1

+ + +dPln
(A.5)

is finite for l 5 0 andl 5 r for all j corresponding torj . 0, the integral in~A+2! will also
be finite, and the~r1, + + + , rk!th posterior moment ofb will exist+ Note that propriety of the
posterior distribution is equivalent to a finite integral in~A+5! for l 5 0, and thus, the
present proof also covers the proof of Theorem 1+

After integrating outqj ands, we are left with the integral

E
R1

n
$~X 'LX !jj

21% l02S)
i51

n

l i
102D$Det~X 'LX !%2102s~l!2~n2k2l !02 dPl1

+ + +dPln
+ (A.6)

We decompose the domain of integrationR1
n into then! possible orderings of$l1, + + + ,ln%+

In each of these regions we identifylm1
, + + + ,lmk

~Definition 4!, lb ~Lemma 3!, andluj

~Lemma 4!+ Given one of these orderings and applying the previous lemmas we obtain
upper and lower bounds of the integrand in~A+6! proportional to

F1~l! 5

)
iÞm1, + + + ,mk

l i
102

luj

l02lb
~n2k2l !02

+ (A.7)

BAYESIAN SCALE MIXTURES OF NORMALS 99

https://doi.org/10.1017/S0266466600161043 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466600161043


The definition of singularity index tells us that the largest possible submatrix ofX of rank
k 2 1 that keeps the same rank after removing columnj consists ofk 2 1 1 pj vectorsxi +
As a consequence, for each possible ordering ofl1, + + + ,ln, there are at mostk211pj l i ’s
that are larger thanluj

~and this includes thek21 lmi
’s different fromluj

!+ Equivalently,
there are at leastn2 k2 pj l i ’s outside the set$lm1

, + + + ,lmk
%, which are smaller thanluj

+
This implies that forl 5 0 andl 5 r # n 2 k 2 pj ,

F1~l! #
luj

l02lb
~n2k2l !02

luj

l02lb
~n2k2l !02

5 1, (A.8)

which is integrable with respect toPl i
+On the other hand, if l 5 r . n2 k2 pj , we use the

bound

F1~l! #
luj

~n2k2pj !02lb
pj 02

luj

l02lb
~n2k2l !02

5Sluj

lb
D~n2k2pj2l !02

+ (A.9)

Clearly, if both E~l i
~n2k2pj2r !02! andE~l i

~r1pj1k2n!02! are finite, F1~l! will be integrable+
Using Definition 2, if r 2 ~n2 k2 pj ! , m, both expectations are finite+ Thus, r , n2 k2
p~r1, + + + , rk! 1 m,wherep~r1, + + + , rk! 5 max$ pj : rj . 0%, leads to integrability for allj such
thatrj . 0 and Theorem 2~ii ! follows+ n

Proof of Theorem 3.

Pareto(1,n02! Mixing Distribution withn $ 1+ The existence of ther th order mar-
ginal posterior moment ofbj is equivalent to the integral in~A+6! being finite for l 5
r+ Following the same reasoning as in the proof of Theorem 2~ii !, we need to inte-
grate F1~l! in ~A +7! ~with l 5 r ! over all possible orderings of$l1, + + + ,ln%+ Be-
cause a Pareto~1,n02! distribution has support on~1,`!, we obtain F1~l! #
lb

2~n2k2r !02)iÞm1, + + + ,mk
l i

102 and, thus, the integral ofF1~l! over any ordering of thel i ’s
is bounded above by

E
1,h1,{{{,hn2k,`

hn2k
2~n2k2r !02S)

i51

n2k

hi
102Dp~h1! + + +p~hn2k! dh1 + + +dhn2k, (A.10)

wherep~hi ! @ hi
2~n02!21 for i 51, + + + ,n2 k+ Using Fubini’s theorem to compute~A+10! in

an iterative fashion in the orderhn2k, + + + ,h1 leads to a finite value for anyr , n 2 k+

Gamma~n02,m02! and Beta~n02,1! Mixing. As is clear from the comments follow-
ing ~A+7!, the largest value ofF1~l! corresponds to any ordering of thel i ’s for whichluj

5
l~n2k2pj11! + Thus, it is enough to establish the integrability of~A+7! for any such ordering+
We again compute the integral iteratively, using Fubini’s theorem+

For gamma~n02,m02! mixing,which corresponds top~l i !@ l i
~n02!21 exp~2ml i 02! for

l i . 0, we use the following bounds in each of then steps of the integration process:

lz
h

h
exp~2mlz 02! # E

0

lz

l i
h21 exp~2ml i 02! dl i #

lz
h

h
, for anyh,m . 0+ (A.11)

It is easy to see that after the firstn 2 k 2 pj steps, we are left with

E
0

l~n2k2pj12!

luj

$~n2k2pj11!n1n2k2pj2r %0221 exp~2mluj
02! dluj

, (A.12)
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which is finite if and only ifr , n 2 k 2 pj 1 n~n 2 k 2 pj 1 1!+ Once this condition is
imposed, the remaining steps always lead to finite integrals+

The proof for beta mixing is similar throughout, now using that

E
0

lz

l i
h21 dl i @ lz

h , for anyh . 0, (A.13)

instead of the bounds in~A+11!+ n

Proof of Theorem 4. Ther th posterior moment ofs is finite if and only if the integral

E
Rk3R1

s r H)
i51

n

p~ yi 6b,s!J p~b,s! db ds (A.14)

is finite, wherep~ yi 6b,s! andp~b,s! are given in~2+2! and ~2+3!, respectively+ After
integrating outb, using the fact that its conditional distribution given~s,l! is ak-variate
normal, we are left with the following integral proportional to~A+14!:

E
R1

n

)
i51

n

l i
102

$Det~X 'LX !%102 E
R1

s2~n2k2r11! expS2
s~l!

2s2D ds dPl1
+ + +dPln

, (A.15)

wheres~l! 5 y'Ly 2 y'LX~X 'LX !21X 'Ly . 0 for all y in Rn barring ak-dimensional
subspace+

Part (i): r $ n 2 k+ To integrate outs in ~A+15! we requiren 2 k 2 r . 0+ Hence
Theorem 4~i!+

Part (ii): r , n 2 k+ In this case we can integrate outs, and the integral in~A+15! is
proportional to

E
R1

n
S)

i51

n

l i
102D$Det~X 'LX !%2102s~l!2~n2k2r !02 dPl1

+ + +dPln
+ (A.16)

We now decomposeR1
n into all possible orderings of$l1, + + + ,ln%+ For each of these re-

gions, the previous lemmas lead to upper and lower bounds for the integrand in~A+16!
proportional to

F2~l! 5

)
iÞm1, + + + ,mk

l i
102

lb
~n2k2r !02

# lb
r02, (A.17)

wherelb 5 max$l i , i Þ m1, + + + ,mk%+ Theorem 4~ii ! now follows immediately+ n

Proof of Theorem 5. The proof is entirely parallel to that of Theorem 3, substituting
F1~l! in ~A+7! by F2~l! in ~A+17!+ The result is immediate for Pareto mixing, because
F2~l! exactly corresponds to the upper bound forF1~l! used in the proof of Theorem 3+
For gamma and beta mixing, we respectively apply~A+11! and~A+13! to integrateF2~l!+

n
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