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The onset of transient turbulence in minimal plane Couette flow has been identified
theoretically as homoclinic tangency with respect to a simple edge state for the
Navier–Stokes equation, i.e., the gentle periodic orbit (the lower branch of a
saddle-node pair) found by Kawahara & Kida (J. Fluid Mech., vol. 449, 2001,
pp. 291–300). The first tangency of a pair of distinct homoclinic orbits to this periodic
edge state has been discovered at Reynolds number Re≡Uh/ν =ReT ≈ 240.88 (U, h,
and ν being half the difference of the two wall velocities, half the wall separation,
and the kinematic viscosity of fluid, respectively). At Re > ReT a Smale horseshoe
appears on the Poincaré section through transversal homoclinic points to generate a
transient chaos that eventually relaminarises. In numerical experiments a sustaining
chaos, which is a consequence of period-doubling cascade stemming from the upper
branch of another saddle-node pair of periodic orbits, is observed in a narrow range
of the Reynolds number, Re ≈ 240.40–240.46. At the upper edge of this Re range
it is found that the chaotic set touches the lower branch of this pair, i.e., another
edge state. The corresponding chaotic attractor is replaced by a chaotic saddle at
Re ≈ 240.46, and subsequently this saddle touches the gentle periodic edge state on
the boundary of the laminar basin at the tangency Reynolds number Re= ReT . After
this crisis on the boundary of the laminar basin, for Re> ReT , chaotic transients that
eventually relaminarise can be observed.
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1. Introduction

One of the long-standing problems in fluid mechanics is the phenomenon of
transition to turbulence (Reynolds 1883). Specifically, in flows at the Reynolds
number below its critical value of linear stability, experiments and numerical studies
have demonstrated that a finite-amplitude disturbance can trigger the transition. In
this case of subcritical transition, turbulence first appears as local patches bounded
by laminar flow when a threshold perturbation is crossed. Such localised turbulence
is transient in nature and is commonly observed in wall-bounded shear flows, such
as boundary layer, plane Poiseuille flow, plane Couette flow, circular-pipe flow and
square-duct flow.

In the last two decades researchers have found success in applying dynamical
systems theory in elucidating subcritical transition to turbulence (Kerswell 2005;
Eckhardt et al. 2007, 2008; Kawahara, Uhlmann & van Veen 2012). The dynamical
systems approach interprets the transitional flow as a system being regulated by
invariant sets in phase space. Invariant sets or solutions have the property that
any state point within them will have its trajectory remain within the set forwards
and backwards in time. In this context, the transition to turbulence in shear flows
corresponds to the coexistence of two invariant sets. One is stable and corresponds
to laminar flow. The other may be stable or marginally unstable and corresponds
to chaotic motion. Each of these sets has a basin of attraction, i.e., a set of initial
conditions that it attracts. These laminar and chaotic basins meet along a border called
the ‘edge of chaos’ (Skufca, Yorke & Eckhardt 2006; Schneider et al. 2008; Vollmer,
Schneider & Eckhardt 2009; Muñoz et al. 2012; Chian, Muñoz & Rempel 2013).
A particularly interesting situation occurs if this edge is formed, at least locally, by
the stable manifold of a saddle-type invariant solution, which is then called an ‘edge
state’ (Skufca et al. 2006; Schneider et al. 2008). Edge states have been computed
in various shear flows, and it has been demonstrated that they can be ingredients in
flow control (see Kawahara 2005).

We focus on the invariant time-periodic solution in minimal plane Couette flow
(Kawahara & Kida 2001; Kawahara 2005). This so-called gentle periodic orbit
(GPO), which arises as the lower branch from a saddle-node bifurcation, has only
one unstable direction and is an edge state in this system. A previous work on this
system, which is the motivation of our study, identified homoclinic orbits to this
GPO at a relatively high Reynolds number Re = 400 (van Veen & Kawahara 2011).
These homoclinic orbits are sets of points that converge to the GPO both forward and
backward in time. Such presence of homoclinic orbits to the GPO suggests transversal
intersections of unstable and stable manifolds (see figure 1), which then implies the
existence of a Smale horseshoe generating chaos (Guckenheimer & Holmes 1983;
Palis & Takens 1993; Ott 2002). Thus, we would like to stress that the computation
of orbits homoclinic to the GPO in this study provides a connection between the
theoretical determination of transient turbulence and a classical result from chaos
theory. Here, we explore the first appearance of homoclinic orbits at what is called
a homoclinic tangency, i.e., tangent homoclinic orbits (see figure 2 for a schematic
illustration), at a much smaller Reynolds number and show that this tangency marks
the onset of transient turbulence that eventually relaminarises.

For identifying the tangency, we use a method inspired by the work of Itano &
Toh (2001), which is related to the edge-tracking algorithm described by Skufca
et al. (2006) and Schneider et al. (2008). This method relies on the fact that the
GPO has only a single unstable direction, so that homoclinic points in its unstable
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Unstable manifold

Stable manifold
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Laminar basin

p
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FIGURE 1. The unstable and stable manifolds of the GPO and the homoclinic points
h and f n(h) (n = 1, 2, . . .) on the Poincaré section Σ . The Poincaré section has an
intersection at p with the GPO. The boundary of the shaded chaotic basin is formed by the
GPO and its stable manifold. A homoclinic point h is supposed to be close to p. The nth
iterate of the Poincaré map is denoted by f n. The unstable and stable manifolds are shown,
respectively, by the grey and black curves, and the homoclinic points are represented by
black dots. The unstable eigenvector r is tangent to the unstable manifold of the GPO at p.
The squares stand for the sequence of mapped points f n( p+ εr) (n= 1, 2, . . .), where ε
is a positive small parameter. For the case of ε just below (or above) ‖h − p‖/‖r‖ the
mapped points are represented by white (or grey) symbols.

Re > ReT

Re = ReT

Re < ReT

FIGURE 2. Schematic illustration of homoclinic tangency in the Poincaré section. Grey
and black lines represent unstable and stable manifolds of the GPO, respectively. Open
and closed circles represent two distinct series of homoclinic points, i.e., intersections
of two distinct homoclinic orbits. For Re> ReT , transversal homoclinic points appear on
the transversal intersections of unstable and stable manifolds of the GPO. At Re = ReT ,
homoclinic points start to appear due to tangency of unstable and stable manifolds of the
GPO. For Re < ReT , homoclinic points do not exist because there is no intersection of
unstable and stable manifolds of the GPO.
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manifold can be selected by tuning a single parameter. In the more general case
of multiple unstable directions, a more computationally demanding boundary value
problem, which includes the adjoint linear equations, must be solved (Doedel et al.
2009).

In this study, we provide a theoretical description of the onset of transient
turbulence in minimal plane Couette flow through the identification of the first
homoclinic tangency to the edge state GPO. In incompressible Keplerian shear flow,
Riols et al. (2013) have reported the possible role of homoclinic and heteroclinic
tangles in their numerical experiments leading to chaotic dynamics, but to the
authors’ knowledge, the onset of such transient turbulence has yet to be described
theoretically. We numerically compute homoclinic orbits to the GPO and track them
down with decreasing Reynolds number to identify their onset as tangency. The
search leads to a few pairs of distinct homoclinic orbits in which the two homoclinic
orbits move closer to each other as the Reynolds number decreases, and eventually
collide and disappear at a tangency Reynolds number (see figure 2). Grebogi, Ott &
Yorke (1983) first identified homoclinic tangency in the Hénon map as a mechanism
that causes boundary crisis, i.e., the sudden disappearance of a sustaining chaotic set
as it touches a periodic edge state at the critical parameter. In this work we also
confirm the relevance of the theoretical determination of the onset Reynolds number
of transient turbulence to the numerically observed boundary crisis Reynolds number.

2. Flow configuration and numerical computations

We consider plane Couette flow, i.e., the viscous flow between two moving
parallel plates which have a no-slip and impermeable surface and are separated
by a distance 2h. Let x, y and z denote the streamwise, the wall-normal and the
spanwise coordinates, respectively, and let their origin be on the midplane. The upper
(or lower) plate at y/h=+1 (or −1) moves in the positive (or negative) x-direction
at a constant speed U. The Reynolds number is defined as Re=Uh/ν, where ν is the
kinematic viscosity of fluid. Spatial periodicity is imposed on the flow in the x- and
z-directions. The streamwise and spanwise periods are set to the minimal dimensions
(Lx/h, Lz/h)= (1.755π, 1.2π) for sustaining turbulence (Kawahara & Kida 2001), i.e.,
the minimal flow unit first introduced by Jiménez & Moin (1991) and Hamilton, Kim
& Waleffe (1995). Although plane Couette flow in a larger periodic domain is closer
to real flow in an experiment or to ideal flow in a theory, such an extended system
is far beyond a dynamical systems approach to be taken in this paper. Therefore, as
the first step to understanding the onset of transient turbulence, we investigate the
minimal flow to characterise its onset in terms of a dynamical systems theory. Note
that in the minimal flow unit, the Nagata (1990) steady solution, i.e., an edge state,
does not exist, at least at a low Reynolds number (see Jiménez et al. 2005). Instead,
the edge state in this flow is a time-periodic variation, which shows weak, meandering
streamwise streaks (Kawahara & Kida 2001; Kawahara 2005). This GPO has a single
unstable Floquet multiplier and thus its unstable manifold is two-dimensional and
its stable manifold has codimension one in phase space (Kawahara 2005). Both
the GPO and its unstable manifold are contained in a subspace invariant under the
spatial symmetries given by reflection in the midplane, followed by a streamwise
shift over Lx/2, and reflection in the streamwise and spanwise directions, followed
by a spanwise shift over Lz/2 (Kawahara & Kida 2001).

The incompressible Navier–Stokes equation is numerically solved by using a
spectral method. The scheme for the numerical solution is essentially the same as
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that used by Kim, Moin & Moser (1987), i.e., Crank–Nicolson for the viscous terms
and Adams–Bashforth for the nonlinear terms. The streamwise volume flux and
the spanwise mean pressure gradient are respectively set to zero. Dealiased Fourier
expansions are employed in the x- and z-directions, and Chebyshev-polynomial
expansion in the y-direction. In the representation of a GPO and an eigensolution
thereof in phase space, modified Chebyshev polynomials are used instead of the
original Chebyshev polynomial to satisfy boundary conditions on the walls (see
McFadden, Murray & Boisvert 1990). Numerical computations are carried out on
33 792 (= 32× 33× 32 in x, y and z) grid points for the Reynolds number Re 6 520.
It is confirmed that the behaviour of the numerical solution is qualitatively the same
as that for the lower resolution (16× 33× 16).

We compute the GPO using the Newton–GMRES (generalised minimal residual)
method and examine stability of the computed GPO to infinitesimal disturbances with
the same periodicities by using the Arnoldi iteration. These numerical procedures
employ the above-mentioned time-stepping computation, and are basically the same as
that proposed by Sánchez et al. (2004) and Viswanath (2007). In the Newton–GMRES
computation a GPO and its period T are numerically obtained for a fixed phase
of the periodic orbit. The eigenvalues (Floquet multipliers) and the corresponding
eigenvectors of the monodromy matrix with respect to the GPO are then computed
numerically.

Homoclinic orbits are tracked down by use of ordinary time-marching of an initial
point for Re 6 260. Take note that the arclength continuation method (van Veen,
Kawahara & Matsumura 2011) which was used by van Veen & Kawahara (2011) to
extract homoclinic orbits at Re = 400 is not used at much lower Re in this study.
Instead, a bisection method, which is similar to the one used by Itano & Toh (2001),
Skufca et al. (2006) and Schneider et al. (2008) for simple invariant solutions, is used
for the numerical computation of a homoclinic orbit. Let us introduce the Poincaré
section Σ such that it can have an intersection at p with the GPO and the (only one)
unstable eigenvector r of the Poincaré map can be on it, as shown schematically in
figure 1. We anticipate that on the Poincaré section there are transversal intersections,
i.e., transversal homoclinic points, between the unstable and the stable manifolds of
the GPO at p. We suppose that one homoclinic point h is close to p. The nth iterate
of Poincaré mapping of h yields other homoclinic points f n(h) (n= 1, 2, . . .). Let us
now consider the initial point on the one-dimensional unstable eigensubspace, which
is approximated by p+ εr for a positive small parameter ε that is to be determined.
This initial point is fed to the time-marching code for the numerical computation of
homoclinic orbits. If ε is taken to be ‖h − p‖/‖r‖ such that p + εr = h, this initial
point is mapped in time on the sequence of homoclinic points f n(h) (n=1,2, . . .). If ε
is just below or above ‖h− p‖/‖r‖, the mapped points deviate from the corresponding
homoclinic points along the unstable manifold, as shown in figure 1. An example of
the bisection leading to one homoclinic orbit is shown in figure 3 for Re= 260, which
is not far from the first tangency to be discussed later. In this figure the normalised
energy input rate per unit time,

I ≡
1

2LxLz(U/h)

∫ Lx

0

∫ Lz

0

(
∂u
∂y

∣∣∣∣
y=−h

+
∂u
∂y

∣∣∣∣
y=+h

)
dx dz, (2.1)

is depicted as a function of dimensionless time tU/h, where u is the streamwise
component of the velocity. I is also regarded as the normalised wall shear rate, and
it takes a value of unity in a laminar state. In the case of ε just below ‖h− p‖/‖r‖,

862 R2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

97
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.971


J. R. T. Lustro, G. Kawahara, L. van Veen, M. Shimizu and H. Kokubu

0 200 400 600

2

3

tU/h

I

FIGURE 3. The energy input rate I of the three different orbits in the course of bisection
as a function of time tU/h at Re=260. Different lines denote initial conditions of different
values of ε. The solid curve represents a homoclinic orbit, the early and late stages of
which exhibit almost-periodic motion. The dotted and dashed curves eventually deviate
from the homoclinic orbit to approach a laminar and transiently chaotic state, respectively.

the mapped points are in the laminar basin instead of being on the stable manifold,
i.e., the edge of chaos, so that the state point will approach the laminar flow as
time goes on (dotted curve in figure 3). On the other hand, in the case of ε just
above ‖h − p‖/‖r‖, the mapped points will exhibit (transiently) chaotic behaviour
(dashed curve in figure 3). This critically different consequence is a key indicator for
one-dimensional bisection as method in searching for a homoclinic orbit with respect
to a GPO between laminarisation and transient turbulence. We run a number of initial
conditions for different values of ε and look for pairs of ε that are very close to each
other where one goes to laminarisation and the other goes to transient turbulence
(dotted and dashed curves, respectively, in figure 3). We expect the ε that leads to
homoclinic orbit should be in between such pairs since the homoclinic trajectory goes
back to the GPO as in the work by van Veen & Kawahara (2011). We use bisection
repeatedly on these pairs of ε to extract a homoclinic orbit with at least three cycles
long of almost-periodic oscillations at the end of the orbit (solid curve in figure 3).

3. Periodic edge states and bifurcation structure

Figure 4 displays a bifurcation diagram of the minimal plane Couette flow showing
a value of the local maximum in a time series of I as a function of the Re. This
bifurcation diagram closely resembles the one reported by Shimizu et al. (2014) for
a different physical quantity. The periodic orbit referred to as P1 appears from a
saddle-node bifurcation at Re ≈ 236.1. The lower branch of P1, which is closer to
a laminar state for I = 1 than the upper branch, is the GPO and is always linearly
unstable. Meanwhile, the upper branch is stable to infinitesimal disturbances with the
same periodicities as the periodic orbit in the range of 236.1 < Re < 246.2. In this
range, however, the upper branch might become unstable to subharmonic disturbances
for a longer streamwise or spanwise period. It is confirmed that the lower branch
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Re Re
240.0 240.5

Recr1 Recr2

FIGURE 4. The local maximum Imax in a time series of energy input at each Reynolds
number Re. The right figure shows the magnification of the P2 solution branches and
subsequent chaos. The lower (or upper) branch of P1 is coloured red (or blue). The
lower branch of P2 (or upper branch of P2 and subsequent period-doubling cascade) is
coloured green (or black). The chaotic saddle after the first boundary crisis at Re= Recr1
is coloured violet. In both figures, stable solution branches are represented by solid lines
while unstable solution branches are represented by dashed lines. Vertical grey short
dashed lines in (b) denote the critical Reynolds numbers for the two boundary crises at
Recr1≈ 240.46 and Recr2≈ 240.88. At Re=Recr1, the chaotic attractor (black) touches the
lower branch of P2 (green). At Re= Recr2, the chaotic saddle (violet) touches the lower
branch of P1 (red), i.e., the GPO. It is important to note that these two boundary crises
are related to the homoclinic tangencies at the same Re.

has only one real unstable eigenvalue (Floquet multiplier) for the Reynolds number
236.1<Re6 520, as already observed at Re= 400 (Kawahara 2005). This implies that
in this range of Re the GPO is always an edge state in the minimal flow unit. The
upper branch is found to exhibit an oscillatory instability for Re> 246.2. A complex
conjugate pair of the marginal eigenvalues exp(±i θ) at Re≈ 246.2 has an argument
of θ ≈ 1.85. Therefore, a torus turns out to arise from this non-resonant bifurcation
on the upper branch at Re≈ 246.2.

Another periodic orbit referred to as P2 also appears from a saddle-node bifurcation
at Re ≈ 239.8. This orbit (whose I has four local maxima in time) has an unstable
lower branch (which is another edge state) and an upper branch that is initially stable.
The upper branch of P2 undergoes period-doubling cascade which leads to a chaotic
attractor. A boundary crisis between the chaotic attractor and the upper branch of P1
occurs at Re = Recr1 ≈ 240.46, as observed in an edge state for a laminar basin by
Kreilos & Eckhardt (2012) in symmetric plane Couette flow and by Avila et al. (2013)
in symmetric pipe flow. At this value of Re, the chaotic attractor can touch the lower
branch of P2 (see the approaches of the black dots to the green dashed curves in
figure 4). As a result, points on the chaotic set can ‘leak’ to the stable upper branch
of P1. The resulting transiently chaotic set is sometimes called a leaky basin. At the
Reynolds number above Recr1, the chaotic attractor is converted to a chaotic saddle and
all of the trajectories near it are attracted to the upper branch of P1. Another boundary
crisis occurs at Re = Recr2 ≈ 240.88 (see the approach of the violet dots to the red
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FIGURE 5. A pair of distinct homoclinic orbits to the GPO that exhibit tangency in
the (I, D)-projection. The light green line represents the GPO. The blue and red lines
correspond to the families of homoclinic orbits referred to as A and B, respectively.
Starting from (a) the pair move closer to each other with decreasing Reynolds number
until they merge to tangency at (d). The values of Reynolds number from (a) to (d) are:
(a) Re= 245, (b) Re= 242.5, (c) Re= 241.4 and (d) Re≈ 240.88. The I of the two orbits
as a function of time at Re= 245 is shown in (e). The blue line is slightly thicker than the
red line in order to differentiate one homoclinic orbit from the other, especially during the
tangency. A thicker light green line is used to differentiate the GPO from the homoclinic
orbits.

dashed curve in figure 4). At this value of the Reynolds number the chaotic saddle
touches the GPO. This second crisis creates a leak for state points eventually going
to the laminar attractor. Shimizu et al. (2014) reported that this chaotic saddle forms
a fractal basin boundary between the laminar attractor and P1 (upper branch). The
numerically observed formation of the latter leaky basin suggests the first homoclinic
tangency to the GPO which can lead to transient turbulence eventually relaminarising
and thus will be discussed in the next section.

4. Onset of transient turbulence as homoclinic tangency

In this section we present the discovered orbits homoclinic to the GPO. We search
for homoclinic orbits at Re = 260 using the method described in § 2 and then track
them to the lower Reynolds number. Two-dimensional visualisation of homoclinic
orbits is used for simplicity’s sake. We encounter several distinct homoclinic orbits
during the search and for Re 6 245 we confirm the presence of a few pairs in which
the two homoclinic orbits move closer to each other with decreasing Reynolds number
until they eventually disappear. Figure 5 shows the projection of the two orbits, which
have been observed to exist down to the lowest (tangency) Reynolds number, onto
a two-dimensional plane of normalised energy input rate I and normalised energy
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FIGURE 6. The same as figure 5 but for the (Ωy/D,D)-projection.

dissipation rate per unit time,

D≡
1

2LxLz(U2/h)

∫ Lx

0

∫
+h

−h

∫ Lz

0
|ω|2 dx dy dz, (4.1)

ω being the vorticity vector. Similar to that of I, the value of D in a laminar state
is unity. The homoclinic orbits and their tangency are confirmed by projecting them
onto another plane, (Ωy/D,D), as in figure 6. Here Ωy is given as

Ωy ≡
1

2LxLz(U2/h)

∫ Lx

0

∫
+h

−h

∫ Lz

0
ωy

2 dx dy dz, (4.2)

where ωy is the wall-normal component of the vorticity. As seen in figures 5 and 6,
even at the highest Reynolds number Re= 245 the former of the two large-amplitude
oscillations (i.e., escape out of the light green GPO) are almost consistent between
the two homoclinic orbits while the latter are significantly distinct (see figures 5e
and 6e). As Re is decreased these two homoclinic orbits get closer to each other and
eventually merge to disappear in tangency at Re = ReT ≈ 240.88. Such merging and
subsequent disappearance of the homoclinic orbits suggest the presence of homoclinic
tangency, i.e., the origin of a pair of homoclinic orbits, where below the tangency
Reynolds number these two orbits cannot exist (see figure 2). The tangency is verified
quantitatively by computing the difference of I and D in the close vicinity of Re=ReT
such as

dI =

√√√√√√√
∫ T

0
[IA(t+ τ)− IB(t)]2 dt∫ T

0
[IA(t)]2 dt

, dD =

√√√√√√√
∫ T

0
[DA(t+ τ)−DB(t)]2 dt∫ T

0
[DA(t)]2 dt

, (4.3a,b)
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Re - ReT
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10-2

10-3dD

10-4

FIGURE 7. Log–log plot of the difference in (a) I and (b) D between the two homoclinic
orbits to the GPO as a function of the increment of the Reynolds number. The lines
represent least squares fitting by the function d = K(Re − ReT)

α in the close vicinity of
the tangency Reynolds number ReT . ReT ≈ 240.88 and α ≈ 0.50 in both fittings, while K
takes a value of 0.011 and 0.013 for (a) and (b), respectively.

where the subscripts A and B correspond to the pair of homoclinic orbits and τ
denotes the time period shift optimised so that dI or dD may be minimal at each Re.
Least squares fitting is performed using the equation d=K(Re−ReT)

α, where K and
α are constants (see figure 7). For both the differences the tangency Reynolds number
has been determined as ReT ≈ 240.88, and the constant α takes a value almost equal
to 1/2, confirming the multiplicity of the two solutions.

No homoclinic orbits to the GPO have been found below the first tangency
Reynolds number ReT . Dynamical systems theory tells us that the presence of
transversal homoclinic orbits (and so transversal homoclinic points on Poincaré
section) implies the existence of a Smale horseshoe. The classical Smale–Birkhoff
theorem states that transversal crossings of the stable and unstable manifolds in such
a Smale horseshoe lead to an intricate tangle of the two manifolds, forming chaotic
trajectories in the process (Guckenheimer & Holmes 1983; Palis & Takens 1993;
Ott 2002). The transient chaos eventually relaminarising seen in the previous section
is observed just above this first homoclinic tangency. Hence, the onset of transient
turbulence eventually relaminarising in this system can be explained theoretically
in terms of the creation of chaotic orbits as a consequence of this first homoclinic
tangency with respect to the GPO for the laminar flow.

5. Relevance of homoclinic tangency to boundary crisis

It is important to emphasise that ReT =Recr2≈ 240.88, such that the first homoclinic
tangency creates the boundary crisis between the upper branch of P1 and the laminar
attractor, leading to relaminarisation. Such crisis, which is due to tangency of stable
and unstable manifolds, has been demonstrated by Grebogi et al. (1983) in the
Hénon map. The observed boundary crisis at lower Re, Recr1 ≈ 240.46, between the
upper branch of P1 and the chaotic attractor also implies the existence of homoclinic
orbits and their tangency with respect to the lower branch of P2. In reality the first
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0

0.01

0.02
(a)

0

0.01

0.02
(b)

dI

FIGURE 8. (a) The difference dI of the lower branch of P2 from a segment on the chaotic
attractor which come closest to the lower branch of P2 just before the first boundary
crisis. (b) The difference dI of the GPO from a segment on the chaotic saddle which
come closest to the GPO just before the second boundary crisis. Dashed lines represent
the corresponding tangency Reynolds numbers.

homoclinic tangency with respect to the lower branch of P2 has also been confirmed
at Re ≈ 240.46 (figure not shown), which is consistent with the crisis Reynolds
number Recr1. We can say that as with the second boundary crisis at Recr2 ≈ 240.88,
the first boundary crisis at Recr1 ≈ 240.46 is due to the first homoclinic tangency to
the lower branch of P2. The approach of the chaotic attractor/saddle to the lower
branch of P2/GPO just before the crisis is verified quantitatively by computing dI
introduced in § 4 for a segment of the same period as the lower branch of P2/GPO
on the chaotic attractor/saddle which comes closest to the lower branch of P2/GPO.
Figure 8 shows the differences of the chaotic segments from the lower branches as a
function of the Reynolds number. Although a small discrepancy is still seen because
of finite-time numerical observation, significant decreases in the difference dI can be
confirmed just below the tangency Reynolds numbers, as shown in the figures.

For homoclinic orbits to the lower branch of P2 another tangency has also been
observed at Re≈ 240.56. For homoclinic orbits to the GPO two other tangencies have
also been found at Re ≈ 240.89 and 241.3. One homoclinic orbit in the pair which
has tangency at Re≈ 241.3 belongs to the family of the homoclinic orbits discovered
by van Veen & Kawahara (2011) while the other belongs to a new family found in
this study. The two pairs, one of which has the first tangency at Re = ReT and the
other of which has the tangency at Re≈ 240.89, all belong to new families. Projection
onto both the (I, D) and (Ωy/D, D) planes confirms these homoclinic orbits to the
lower branch of P2 and GPO as well as their tangency. These homoclinic orbits are
paired based on which of them becomes tangent with another one, then the pairs are
tracked for increasing Reynolds number. Time evolution of the flow structures along
these homoclinic orbits shows a qualitatively similar scenario to the one reported by
van Veen & Kawahara (2011), with the streak becoming less deformed during the
bursting event because the homoclinic orbit gets closer to the GPO as the Reynolds
number is decreased.

The existence of above-mentioned homoclinic orbits to the GPO and the lower
branch of P2 suggests presence of heteroclinic orbits. A pair of heteroclinic orbits
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FIGURE 9. A pair of distinct heteroclinic orbits from the lower branch of P2 to the
GPO that exhibit tangency in the (I,D)-projection. The light violet and light green lines
represent the lower branch of P2 and the GPO, respectively. The green and orange lines
correspond to the families of heteroclinic orbits. Starting from (a) the pair move closer
to each other with decreasing Reynolds number until they merge to tangency at (d). The
values of Reynolds number from (a) to (d) are: (a) Re= 245, (b) Re= 242.5, (c) Re=
241.4 and (d) Re≈ 240.89. The I of the two orbits as a function of time at Re= 245 is
shown in (e). The green line is slightly thicker than the orange line in order to differentiate
one heteroclinic orbit from the other, especially during the tangency. Thicker light green
and light violet lines are used to differentiate the periodic orbits from the heteroclinic
orbits.

from the lower branch of P2 to the GPO has actually been found to arise from
the first heteroclinic tangency, i.e., tangent heteroclinic orbits, at Re ≈ 240.89 (see
figures 9 and 10).

6. Conclusion

We have reported the homoclinic tangency at ReT ≈ 240.88 with respect to the
periodic edge state found by Kawahara & Kida (2001) in minimal plane Couette
flow. To our knowledge, the identification of the first homoclinic tangency in this
study is the earliest theoretical evidence of a boundary crisis leading to transient
turbulence that eventually relaminarises. Although Riols et al. (2013) reported the
presence of homoclinic tangle at the onset of chaotic dynamics in a Keplerian shear
flow, they did not identify the onset as the tangency. We have confirmed that, as with
the report by Grebogi et al. (1983) on the Hénon map, both the boundary crises at
Recr1 ≈ 240.46 and Recr2 ≈ 240.88 are attributed to homoclinic tangencies at the two
corresponding critical Reynolds numbers, which is probably the first such result for
fluid flow systems. Even though the results here are for a minimal flow unit, the
striking similarity of the boundary crisis on the periodic edge state found in this study
to that on a streamwise-localised periodic edge state (Avila et al. 2013) as well as
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FIGURE 10. The same as figure 9 but for the (Ωy/D,D)-projection.

the recent investigation on the unstable manifold of the localised relative period orbit
(Budanur & Hof 2017) in pipe flow encourage us to identify homoclinic tangency
in pipe flow, if any, for the theoretical explanation of the onset of spatially localised
transient turbulence – that is, a turbulent puff – in experiments.
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