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A numerical investigation of vortex-induced rotations (VIRs) of a rigid square cylinder,
which is free to rotate in the azimuthal direction in a two-dimensional uniform
cross-flow, is presented. Two-dimensional simulations are performed in a range of
Reynolds numbers between 45 and 150 with a fixed mass and moment of inertia of the
cylinder. The parametric investigation reveals six different dynamic responses of the
square cylinder (expanding on those reported by Zaki et al. (J. Fluids Struct., vol. 8,
1994, pp. 555–582)) and their coupled vortex patterns at low Reynolds numbers.
In each characteristic regime, moment generating mechanisms are elucidated with
investigations of instantaneous flow fields and surface pressure distributions at chosen
time instants in a period of rotation response. Our simulation results also elucidate
that VIRs significantly influence the statistics of drag and lift force coefficients:
(i) the onset of a rapid increases of the two coefficients at Re= 80 and (ii) their step
increases in the autorotation regime.

Key words: aerodynamics, flow–structure interactions

1. Introduction
In engineering applications, fluid–structure interactions (FSIs) are common but

complex to understand. In low Reynolds number vehicles, flow induced forces and
moments can result in negative effects for maintaining operation stability while
operating along a predetermined path under remote control.

Vortex-induced vibrations (VIVs) of an elastically mounted square cylinder have
been studied experimentally and numerically at low and high Reynolds numbers. As
reviewed by Griffin (1985), Sarpkaya (2004) and Williamson & Govardhan (2004), the
characteristic vibration frequencies are classified into three different regions called the
‘lock-in’, ‘lock-on’ and ‘synchronization’ regions when an elastically mounted cylinder
is oscillated in a transverse direction with large amplitudes. Obasaju, Ermshaus &
Naudascher (1990) undertook experiments to investigate the streamwise vibrations
of an elastically mounted square cylinder and the associated vortex dynamics at
3.2 × 103 < Re < 1.4 × 104 and 0 < α < 45 with 3 < Ured < 13 (where Re is
the Reynolds number, α is the angle of incidence and Ured is the reduced speed),

† Email address for correspondence: sungminryu@inu.ac.kr
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systematically. Minewitsch, Franke & Rodi (1994) performed numerical simulations
for a square cylinder oscillating only in the streamwise direction at Re= 200 to study
the resulting vortex shedding in the wake region. Taylor & Vezza (1999) numerically
investigated the forced transverse oscillations of a square cylinder at Re = 20 000.
Cheng, Zhou & Zhang (2003) experimentally studied the flow-induced vibration
control in a square cylinder at Re = 3500 using piezoelectric ceramic actuators.
Amandolese & Hemon (2010) experimentally studied the transverse vibrations of an
elastically mounted square cylinder at 2000<Re< 8000 in the reduced velocity range,
5<Ured < 20 and showed initial and lower branches within the limit cycle oscillation
in the plots of the reduced frequency versus the reduced velocity. The vortex shedding
modes coupled with the characteristic vibration dynamics were characterized with the
number of vortices and their pattern by Williamson & Roshko (1988), as below:

(i) 2S mode: positive and negative vortices are shed per cycle, alternately;
(ii) 2P mode: two pairs of vortices (a pair of vortices comprising a positive and a

negative one) are shed per cycle;
(iii) P+S mode: mixture of 2S and 2P modes in a half-cycle.

In fact, the cross-sections of most micro aerial vehicles (MAVs) are not circular but
non-axisymmetric with corners. A net pressure force induced by vortex shedding can
result in translational vibrations. However, while pressure force vectors on the surface
of an ideally circular structure are toward its barycentre, those on an angular structure
are not exactly aligned and therefore non-zero moments can be exerted on that of
an angular object. Hence, it is fair to say that most freely rotatable vehicles are
exposed to the pressure-force-induced moment. In spite of such a physical relevance,
vortex-induced rotations (VIRs) have been rarely studied as compared with VIVs.
Tatsuno et al. (1990) experimentally studied a freely rotatable square cylinder in a
uniform flow at Re = 3.5 × 104. Zaki, Sen & Gad-El-Hak (1994) recognized four
distinct responses of a freely rotatable square cylinder to vortex shedding frequencies
in a range of Reynolds numbers from 1000 to 10 000: (i) a rest stable position, (ii)
oscillation, (iii) reverse rotation and (iv) autorotation. Recently, Park, Min & Ha
(2015) numerically performed parametric investigations of VIR of a freely rotatable
square cylinder with respect to three Reynolds numbers (Re= 50, 100, 150) and five
aspect ratios. Although they mapped the characteristic rotation responses (oscillation
and autorotation) with respect to the two variables with a fixed moment of inertia,
rotation responses for other Reynolds numbers have not been characterized. Moreover,
moment generating mechanisms, relevant rotation dynamics and flow patterns are not
well understood. Hence, the objective of this paper is to characterize the rotation
response of the cylinder to a uniform cross-flow and to investigate the associated
moment generating mechanisms in a range of low Reynolds numbers 45 6 Re 6 150.
It should be noticed that VIRs of a rigid square cylinder also depend on the moment
of inertia. However, our objective is targeted at studying only Reynolds number
effects on VIRs.

The so-called ‘autorotation’ is the regime that has received the most attention;
here, autorotation is defined as continuous rotation of a freely rotatable object in
an azimuthal direction in a uniform cross-free-stream flow. Lugt (1983) reviewed
this distinct phenomenon. Maxwell (1854) investigated the autorotation of a freely
falling card. Riabouchinsky (1935) studied the autorotation behaviour of a four-bladed
rotor. Smith (1971) experimentally identified three characteristic regions of a freely
falling wing in a range of Reynolds number and moment of inertia: (i) stable motion,
(ii) rocking motion and (iii) autorotation. Iversen (1979) studied the correlation of
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autorotation characteristics of a flat plate with respect to Reynolds number, moment
of inertia and wing configuration experimentally. Lugt (1980) studied the reason for
autorotation by means of numerical solutions of the Navier–Stokes equations in a
flat plate and elliptical cylinder and established that autorotation occurred due to
the synchronization between vortex shedding and the rate of rotation. Skews (1991)
experimentally investigated the autorotations of cylinders (which have polygonal
cross-sections) and found that an angular cylinder can autorotate only if the cylinder
has less than eight edges. Recently, Greenwell & Garcia (2014) reported two aspects
of the autorotation dynamics of a rectangular prism by means of experiments: the
‘lock-in’ region and static hysteresis in the autorotation rate. Further, Greenwell (2014)
investigated aspect ratio effects on the autorotation dynamics of the prism. In this
paper we investigate the inception of the autorotation regime and study the detailed
vortex shedding dynamics occurring during the transition between stable oscillatory
rotation and autorotation.

This paper is structured as follows. In § 2 the governing equations for a flow and
rotatable, rigid object are given. In addition, a description of the numerical method
is included together with details about the computational domain and boundary
conditions in the section. In § 3 two-dimensional FSI simulation results are detailed
and discussed. Finally, the findings are summarized in § 4.

2. Governing equations, numerical method and computational domain
2.1. Governing equations

We consider the two-dimensional fluid problem of a freely rotatable, rigid square
cylinder in a uniform cross-flow. The governing equations for the fluid flow are
the time-dependent three-dimensional Navier–Stokes equations for an incompressible
fluid. The set of equations for mass and momentum conservation of the fluid are as
follows:

∂uk

∂xk
= q, (2.1)

∂ui

∂t
+ uk

∂ui

∂xk
=− ∂p

∂xi
+ 1

Re
∂2ui

∂xk∂xk
+ f , (2.2)

where ui is the velocity vector; xi are the spatial coordinates; q is the mass source/sink;
t is the time; ρ is the density of fluid; p is the pressure; and Re is the Reynolds
number based on the side of the square cylinder h, the approach flow velocity U and
the kinematic viscosity of the fluid ν (Re= Uh/ν); f is the moment forcing; all the
physical variables are non-dimensionalized by the free-stream velocity U and the side
length h of the square cylinder.

The problem is governed by Newton’s second law of motion and the governing
equation for a rigid body free to rotate only in the azimuthal direction (i.e. one degree
of freedom), is as follows:

I
d2θ

dt2
= τ , (2.3)

where I is the mass moment of inertia, θ is the rotation angle and τ is the torque
defined as the tangential force ft times a moment arm R. A fixed reduced mass of the
square cylinder Mred = 2 (defined as m/ρh2 where m is the mass of the cylinder) is
used for two-dimensional FSI simulations.
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FIGURE 1. Schematic of (a) computational domain and (b) Eulerian grid in full size.

2.2. Computational domain, grid and boundary conditions
The integration domain and its size are described in figure 1(a). Two kinds of grid,
a Eulerian grid for the flow variable integration and a Lagrangian grid for the rigid
body rotation of a square cylinder, are used for our FSI simulations. As shown in
figure 1(b), the background integration domain is discretized with 760 × 602 nodes
and the Eulerian grid is locally fine near the initial position of the square cylinder
and the wake region. The Lagrangian grid is composed of 952 triangle faces which
are uniform in size. The grid resolution is determined by the grid refinement study
to ensure a low sensitivity of our obtained solutions to the grid resolution. The
computational domain is initialized by the free-stream flow velocity (u = U, v = 0)
and the square cylinder is initially in a rest position with zero rotation angle so that
the initial conditions are symmetric in the integration domain. No explicit asymmetric
disturbances are introduced to induce rotational motion of the square cylinder for
initial transient states, i.e. small floating point representation errors eventually grow.
At the inlet of the computational domain a constant inflow condition (u= U, v = 0)
is imposed. A free-slip boundary condition (∂u/∂y, ∂v/∂y= 0) is employed at the top
and bottom boundaries. A convective boundary condition is imposed on the outlet.

2.3. Numerical method
Numerical solutions to the incompressible Navier–Stokes equations are time integrated
by hybrid low-storage third-order Runge–Kutta time stepping. The spatial discretization
is constructed with the central second-order accurate finite-difference scheme on a
Cartesian staggered mesh. Further details of the numerical method are described
in Verzicco & Orlandi (1996). The equation of motion (3.2) is integrated by the
fourth-order Hamming predictor–corrector implicit approach. The moving boundary
of an object and embedded boundary conditions are reconstructed every time step by
using the moving-least-squares (MLS) immersed boundary method (IBM) (Vanella &
Balaras 2009).

2.4. Code validation
The fluid–structure interaction problems studied in this paper are solved using an
immersed-boundary Navier–Stokes solver coupled with a simple one degree of
freedom structural solver. Only two modes of structural motion are considered:
rotation and translation. In this section, we analyse and assess the accuracy of the
fluid solver in the absence of structural motion, and fluid–structure interactions for
problems involving translations of the solid. In the remaining of the paper we will
focus on fluid–structure interactions involving rotation.
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FIGURE 2. (Colour online) Time history of transverse oscillation amplitude (y/D) of
two one degree of freedom (1-DOF) cylinders in tandem for different reduced velocities.
(a) Ured = 4; (b) Ured = 8.

Re= 100 CD CL,rms St

Arnal, Goering & Humphrey (1991) 1.39 — 0.14
Sohankar, Norberg & Davidson (1997) 1.47 0.156 0.146
Cheng, Whyte & Lou (2007) 1.44 0.152 0.144
Yoon, Yang & Choi (2010) 1.4385 0.1774 —
Sen, Mittal & Biswas (2011) 1.5287 0.1928 0.1452
Park et al. (2015) 1.378 0.161 0.141
Present 1.5642 0.1932 0.1506

TABLE 1. Comparison of mean drag coefficient (CD), lift coefficient fluctuations (CL,rms)
and the Strouhal number (St) with reference results.

First, we numerically solve flows around a fixed, rigid square cylinder for Re= 100
to assess the accuracy of the flow solver. The calculated mean drag coefficient, root-
mean-square lift coefficient and Strouhal number are compared with reference results
in table 1 and our result shows satisfactory quantitative agreement.

In the next step, we validate the coupled flow and structure solvers focusing on
interactions between translational motions of rigid objects and flows. Adopting the
benchmark case of Borazjani & Sotiropoulos (2009), we investigate vortex-induced
oscillations of two identical, circular cylinders in tandem at Re= 200. The system has
only transverse vibrations, i.e. 1-DOF. Figure 2 displays the time history of vibration
amplitudes of the front and rear cylinders with respect to Ured = 4, 8 (defined as
Ured = U/fD where f is the natural frequency of the cylinder and D is the diameter
of the cylinder) at Mred = 2 (defined as Mred = m/ρD2). For Ured = 4 the dynamic
responses of front and rear cylinders are comparable during the early transient time
but beyond a certain time the oscillation amplitude of the front cylinder is larger.
This trend is in good agreement with Borazjani & Sotiropoulos (2009) (see their
figure 6b) but in our simulation results the time to attain the statistically stable state
is approximately two times longer than their result. For Ured= 8 the reported transition
between the amplitudes of the front and rear cylinders (see figure 6d in Borazjani &
Sotiropoulos 2009) is qualitatively well predicted in our simulation results, as shown
in figure 2(b). Moreover, the maximum amplitudes of the front and rear cylinders
in cases Ured = 4 and 8 are in quantitative agreement with the reference results, as
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FIGURE 3. (Colour online) Phase portrait of displacement relative to lift coefficient at two
different values of Ured for the 1-DOF tandem system. (a) Ured = 4; (b) Ured = 8.

Ured = 4 1ymax,f 1ymax,r

Borazjani & Sotiropoulos (2009) 0.4884 0.4093
Present 0.5434 0.4094

Ured = 8 1ymax,f 1ymax,r

Borazjani & Sotiropoulos (2009) 0.5256 1.0170
Present 0.5950 1.0450

TABLE 2. Comparisons of maximum vibration amplitudes (1ymax) with the results of
Borazjani & Sotiropoulos (2009) at Ured = 4 and 8. The subscripts f and r refer to the
front and rear cylinders, respectively.

displayed in table 2. Dynamic relations between lift force coefficient and oscillation
amplitude are also assessed. Figure 3 shows the phase portraits of the two physical
variables at the reduced velocities. The transverse force coefficients and oscillation
amplitudes at Ured = 4 and 8 are in- and out-of-phase, respectively, and they are
consistent with those of Borazjani & Sotiropoulos (2009) (see their figure 8b, f ).

In the next sections we will focus on flow-induced rotations, however as an
additional validation case we mention the results of de Tullio, Pascazio & Napolitano
(2012). They validated the present code by numerically solving a flow past an elliptic
particle sedimenting in a channel and compared their calculated cross-wise and
angular positions with experimental results. Their study is helpful to establish the
accuracy of the code in prediction of interactions between angular motions of an
object and flows.

3. Results
3.1. Characteristic rotation behaviours

As represented in figure 4, the dynamic response of a square cylinder to a
two-dimensional (2-D) uniform cross-flow depends on the Reynolds number at
45 6 Re 6 150 and shows, globally, four characteristic regimes: a rest position,
time-periodic rotational oscillation, random rotation and autorotation. Considering the
different ranges of Reynolds number, the four characteristic regimes are qualitatively

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

77
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.774


488 S. Ryu and G. Iaccarino

0

0

0

0

0

0

2

0

–2

–4

2

0

–2

–4

0

20

40

60

100 200 300 4000

100 200 300 4000

100 200 300 4000

100 200 300 4000

100 200 300 4000

t

(a)

(b)

(c)

(d)

(e)

FIGURE 4. Time history of rotation angle θ (θ is accumulated in clockwise direction) of
a freely rotating square cylinder for twelve different Reynolds numbers.
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140

Re

FIGURE 5. Maximum amount of rotation (1θmax) in an azimuthal direction with respect
to Reynolds numbers (except for Re = 100, 110). Dashed lines denote asymptotic limits
of 1θmax (π/2, π, 2π).

consistent with those reported by Zaki et al. (1994) (1000 6 Re 6 10 000). It is
not surprising that the four regimes are recognized in the two different ranges of
Reynolds number because the rotational motion also depends on the moment of
inertia (as shown in (2.3)). It is notable that our simulation results exhibit two
different time-periodic oscillations with asymptotic limits π/2 and π. Moreover, it
is also distinguishable that random rotations are observed between the two different
oscillation regimes.

As displayed in figure 4(a), the square cylinder keeps an initial position at Re= 45
because no vortex shedding occurs and the rotational response of the cylinder is not
initiated (relevant flow patterns and moment generating mechanisms will be dealt with
in § 3.2.1). Considering steady and symmetric vortex patterns emerge past a fixed
square cylinder at Re< 50 (Zaki et al. 1994; Sen et al. 2011), a stable rest position
at Re= 45 is expected.

At 506Re6 70, the rotation responses show monoharmonic oscillations with small
amplitudes around θ = 0◦, as shown in figure 4(a). However, the rotation response in
the three conditions considered indicate a delay in reaching their dynamic equilibrium
states which increases with the Reynolds number. More precisely, it is found that
increasing the Reynolds number in this regime leads to an increase in the time
required for a rotation response to attain its dynamic equilibrium state. In addition,
the maximum amount of rotation monotonically increases up to Re = 70, as shown
in figure 5. We shall refer to this regime as ‘small-amplitude oscillation’, hereinafter.

At Re = 80 and 90, the cylinder oscillates in the azimuthal direction with an
elevated amplitude and it is confined within ±1/4π. Whereas rotation responses at
506 Re6 70 are monoharmonic, multi-frequency components are seen in this regime
(as displayed in figure 4b). Specifically, a bi-harmonic oscillation is found at Re= 80
and multi-harmonic oscillation is pronounced at Re= 90. The generation mechanisms
of the rotational instability emerging in this regime will be discussed in § 3.2.3. We
refer to this regime as ‘π/2-limit oscillation’.
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FIGURE 6. (a) Contours of instantaneous vorticity and (b) profile of pressure coefficient
Cp along the surface of the square cylinder for Re= 45.

At Re= 100 and 110, our simulations exhibit intermittent oscillations and rotations
in a temporally random fashion. Zaki et al. (1994) also found such rotational
behaviour at 4100 < Re < 4700, experimentally. It is notable that random rotation
occurs in both the laminar and turbulent flow regimes. We refer to this regime as
‘random rotation’.

At Re= 120 and 130, the rotation response of the cylinder recovers time-periodic
oscillation from the random rotations but it has two different characteristics from that
of previous regimes. First, the rotation response oscillates within a larger rotation
limit π. Second, while the curves in the ‘small-amplitude’ and ‘π/2-limit oscillation’
regimes are sinusoidal, here they have a bell-like shape. We refer to this regime as
‘π-limit oscillation’.

At Re= 140 and 150, the cylinder autorotates in the clockwise direction. Park et al.
(2015) also reported autorotation at Re = 150 but without describing the physical
properties (mass or moment of inertia), and therefore only qualitative comparisons
are possible. Because the dynamic response of the cylinder does not transition
directly from oscillatory to autorotation but undergoes a transient state at t < 100
where random rotations are observed, the direction of autorotation could depend on
the path from the transient state to the dynamic equilibrium one. In our simulation
results, only clockwise autorotations are observed, as shown in figure 4(e).

3.2. Moment generating mechanisms
In this section, the moment generating mechanisms for the characteristic regimes
(represented in § 3.1) are elucidated by investigating the flow structures around the
square cylinder and the associated pressure distributions.

3.2.1. Stable position (Re= 45)
As mentioned in § 3.1, the square cylinder keeps the initial rest position with a

symmetric flow pattern around the cylinder. Figure 6 confirms the symmetric pattern
with no vortex shedding. Net pressure force vectors on the windward and leeward
surfaces are toward the barycentre of the cylinder and those on the upper and lower
surfaces are symmetrically located. Hence, VIR is not initiated at Re = 45 due to
the absence of a pressure-induced moment. The kept initial cylinder position confirms
that small numerical oscillations induced by the immersed boundary method do not
significantly influence the rotation response.
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Vorticity: –0.6–1.2 0 0.6 1.3

(a)

(b)

Vorticity: –0.6–1.2 0 0.6 1.3

A

B

FIGURE 7. (Colour online) Contours of instantaneous spanwise vorticity with streamlines
for Re= 60 at (a) t= 300.5 and (b) 304 when the amplitudes of the rotation angle θ are
maximum and minimum in a period, respectively. Arrows depict deviations of net pressure
force vectors on the four sides of the cylinder. Blue and red colours of arrows denote
that the corresponding net pressure force vector generates clockwise and counter-clockwise
moments, respectively.

3.2.2. Small-amplitude oscillation (Re= 60)
Driving moments for small-amplitude oscillations (represented in § 3.1) are resulting

from the emergence of vortex shedding. As displayed in figure 7(a), at a time instant
A (when θ is maximum in a period), the flow passing over the upper side separates
at the right upper corner and reattaches on the lower part of the leeward surface.
The recirculation bubble (where the pressure is locally low) is hence located near
the upper part of the wake region. This asymmetric location of the bubble results
in the deviation of the associated net pressure force vector from the centreline on
the leeward surface. Moreover, the maximum rotation in the clockwise direction leads
to asymmetric pressure distributions on the resultant pressure and suction sides. The
asymmetric net pressure force vectors on the three sides generate clockwise moments,
as described by the blue arrows in figure 7(a). On the other hand, the stagnation
pressure pocket on the windward surface is located diagonally with the location of
the recirculation bubble as a result of the small clockwise rotation of the cylinder.
The resulting asymmetric location of the stagnation pressure pocket on the windward
surface hence generates a counter-clockwise moment, as shown in figure 7(a).

In B, as the cylinder rotates in the counter-clockwise direction and the angle of
rotation reaches its minimum, the recirculation bubble is now located in the lower
part of the wake region (as displayed in figure 7b). This opposite location of the
recirculation bubble with that in A determines a moment of opposite sign. In spite of
the time-periodic oscillations, instantaneous flow patterns seen in figure 7 are still in
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FIGURE 8. Time history of rotation angle θ , non-dimensionalized angular velocity ωh/U
and moment coefficient Cm (defined as 2M/ρU2Ah where A is the cross-section area of
cylinder) in a time interval for Re= 80.

the ‘main separation’ regime of the map where flow patterns of a fixed square cylinder
are characterized with respect to the Reynolds number and the angle of incidence by
Yoon et al. (2010) (see their figure 4). In other words, a regular von Kármán vortex
street observed in the fixed cylinder case is not significantly distorted by VIR in this
regime due to the small amplitude of rotation.

The depicted recirculation zone in the wake region changes its location in an
alternating manner and accordingly, the relevant pressure distribution along the
surface of the cylinder also varies in the same manner. The resulting total net moment
remains out-of-phase with the angle of rotation. Driven by the out-of-phase moment,
the dynamic response of the cylinder is suppressed at the maximum or minimum
angle of rotation. As a result, the cylinder maintains time-periodic oscillations with a
small level of amplitude without further amplifications (as shown in § 3.1).

3.2.3. π/2-limit oscillation (Re= 80)
In this section, the moment generating mechanism for the ‘π/2-limit oscillation’

regime is investigated. As mentioned in § 3.1, there are two distinct characteristics in
this: (i) the steep rise of magnitude of the rotation angle and (ii) the interference of
multi-frequency component(s) to the fundamental sinusoidal oscillation. To elucidate
these characteristics, we analyse the flow in five time instants in a period of the
fundamental oscillation for Re= 80.

First, the rotation dynamics for Re = 80 is explained in a period of fundamental
oscillation. Figure 8 represents the time history of the rotation angle (θ ), non-
dimensionalized angular velocity (ωh/U) and moment coefficient Cm with the five
time instants highlighted (A–E). In figure 8 small wiggles in the history of the
moment coefficients are observed, however the angular rotation is not directly affected
and the cylinder response remains smooth. As shown in figure 8, the angle of rotation
is minimum (−28.5◦) and maximum (+31.5◦) at A and C, respectively. As mentioned
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in § 3.1, the response curve for Re= 80 shows a weak bi-harmonic oscillation. Due
to the effect of a low frequency component on the rotation response, the amplitude
of the local maximum is slightly larger than that of the minimum. At A and C,
out-of-phase synchronized moments (observed in the ‘small-amplitude oscillation’
regime) are also seen in figure 8. Driven by the out-of-phase synchronized moments
at A through C, the cylinder is azimuthally accelerated (when the cylinder is rotating
around θ = 0) and then decelerated (when the angle of rotation is close to its
maximum). This trend is repeated but with an opposite sign when the cylinder is
rotating in the counter-clockwise direction. After half a cycle, A and C, the cylinder
is instantaneously stopped. The angular velocity hence has a phase difference π/2
with the angle of rotation.

For Re= 80 figure 9 displays instantaneous pressure and vorticity distributions with
streamlines at each time instant indicated in figure 8.

At A, the stagnation pressure pocket is located close to the vertex ‘q’. The
recirculation bubble is located near the upper right corner ‘r’ when the angle of
rotation is locally minimum (see the flow pattern at B in figure 7 and that at A in
figure 9). As a result, the net pressure force vectors on the windward and leeward
surfaces are in phase and generate moments in the same direction (as described
with the blue and red arrows in figure 9) as opposed to the situation at Re = 60.
Boosted by the in-phase synchronization between net pressure force vectors on
the windward and leeward surfaces, the magnitude of the clockwise moment is
dramatically amplified at A. Hence, the amplitude of the rotation angle steeply rises.
On the other hand, asymmetric pressure distributions on the suction and pressure sides
lead to counter-clockwise moments. Interestingly, the pressure on the upper pressure
side is overall lower than that on the suction side. The location of the stagnation
pressure pocket is asymmetrically located on the windward side so that pressure
recovery at the corner ‘p’ is higher than that at ‘q’. The described asymmetric
pressure distributions on the four sides of the cylinder are confirmed in figure 10(a).
The stagnation pressure pocket dominantly contributes to generate moments so that
the sign of the total net moment at A is clockwise.

At B, the angle of rotation has the same magnitude but opposite sign to that of
A. The ‘alleyway flow’ with a single secondary vortex observed at A is now flipped
in the y-direction. Hence, the flow behaviour and moment generating mechanism are
opposite to those described for A.

At C, the cylinder rotates further in the clockwise direction from B and the angle
of rotation reaches a local maximum (+31.5◦). As displayed in figure 9, the flow
pattern around the cylinder becomes totally different from that of B in spite of the
small further rotation (approximately 3◦) in the clockwise direction. Specifically, a
flow pattern with two large recirculation zones appears near the two leeward sides.
This abrupt change was confirmed in Yoon et al. (2010) who reported that the flow
pattern around a fixed square cylinder is very sensitive to the angle of incidence (see
their figure 4). The sudden emergence of two recirculation zones means that the total
net moment at C is slightly increased (as shown in figure 8). The sudden transition
of flow pattern occurs only towards the end of the half-cycle of the fundamental
oscillation. Such a phase lag suddenly introduced near the asymptotic limit +π/4
propagates into the rotation response of the cylinder and distorts the fundamental
oscillation.

At D, as the position of the cylinder is close to the initial one, moments generated
by the asymmetric locations of the stagnation pressure pocket and recirculation
zone are not as significant as those of the first three time instants (as displayed in
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FIGURE 9. (Colour online) Pressure contours (left column) and streamlines with spanwise
vorticity contours (right) for Re = 80 at five time instants (A, B, C, D, E) indicated in
figure 8.
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FIGURE 10. Profiles of pressure coefficient Cp on four sides of the square cylinder at
the first four time instants (indicated in figure 8) for Re = 80. The denotations for four
vertices are indicated in figure 9.

figure 10d). The total net moment is hence close to zero. However, the cylinder is
rotating with maximum magnitude of the angular velocity but with a negative sign
due to the late response of the cylinder to the moment generated at C.

At E, a flow field close to that in A is restored as the angle of rotation recovers
a local minimum. The sudden transition of flow pattern observed at C is not seen at
this time instant.

Adopting the classical terminology introduced by Williamson & Roshko (1988),
flow patterns in the downstream wake region in A through E fall into the 2S mode.
A regular von Kármán vortex street with uniform intensity of the shed vortices is
observed in the case Re= 60 (as displayed in figure 7), the intensity is not uniform
at Re= 80 due to the weak bi-harmonic oscillation (as displayed with red circles in
figure 9).

Based on the generating mechanism of the rotational instability at Re = 80, the
multi-harmonic oscillation observed in case Re= 90 can be explained. As displayed in
figures 4(b) and 5, the angle of rotation reaches the limit (+π/4 or π/4) impulsively
so that the position of the cylinder becomes closer to a symmetric diamond shape.
Correspondingly, two recirculation bubbles on the leeward sides (in fact, the pressure
side can be regarded as a leeward one in this case) are located more symmetrically
at the local minimum or maximum angle of rotation. The deviations from the phase
difference between the moment and rotation angle is hence more significant and
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FIGURE 11. (Colour online) Instantaneous vorticity contours for Re= 110 at (a) t= 300
and (b) 355.

further, this can cause rotational instability to be increased and multi-frequency
components can also be introduced into the fundamental oscillation.

Spurious force oscillations (SFOs) can be observed in the results reported in
figure 8 and thus it is required to investigate if they significantly influence the
rotation responses. Comparing the simulation results for cases Re = 80 and 90, we
find that the magnitude of the SFOs for case Re = 80 is larger than that of case
Re = 90 and the corresponding rotation response is seemingly more random, as
mentioned in § 3.1. Thus, correlation between the force oscillations and the rotation
responses is low in our study. Lee et al. (2011) found that SFOs can be remedied by
increasing grid resolution and/or increasing time step size, but the force oscillations
are more dependent on the former. Our grid convergence study (mentioned in § 2.2)
therefore also confirms that the rotation responses are not significantly distorted by
the SFOs.

3.2.4. Random rotation (Re= 110)
As we mentioned in § 3.2.3, rotational instabilities are generated close to the

asymptotic limit of the angle of rotation (±π/4) at which the cylinder is positioned
at the symmetric initial position. However, as displayed in figure 4(c), rotational
instabilities are also observed over the limit at Re = 110 and no fundamental
oscillation is observed. Coupled with the chaotic behaviour of the rotation response,
vortex shedding does not occur with a fixed frequency so that flow patterns observed
behind the cylinder cannot be described, deterministically. Vortex sheddings are
temporally coupled with instantaneous oscillations and rotations of the cylinder. For
instance, two kinds of flow pattern (P+S and 2S modes) are observed at t= 300 and
355, respectively, as displayed in figure 11.
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FIGURE 12. Same as figure 8 but for Re= 130.

3.2.5. π-limit oscillation (Re= 130)
As mentioned in § 3.1, the rotation response of the cylinder shows time-periodic

oscillations with the asymptotic limit π at Re= 120 and 130, and the response curve
is not sinusoidal but has a bell-like shape. Moreover, in contrast to case Re = 80,
the cylinder is oscillated between two diagonally facing corners and overcomes the
asymptotic limit of the ‘π/2-limit oscillation’ regime.

Figure 12 displays the time history of the rotation angle (θ ), non-dimensionalized
angular velocity (ωh/U) and moment coefficient Cm at six time instants (A–F). As
shown in figure 12, the time evolution of the three variables is more complicated that
of the ‘π/2-limit oscillation’ regime. While the moment is maximum or minimum at
the ends of a period of the fundamental oscillation in cases Re = 60 and 80, it is
maximized or minimized in the middle of the period in case Re= 130 (as shown at
t= 277 and 295 in figure 12). Corresponding to the variation of moment, the angular
velocity curve also has inflection points close to the two time instants. Analogous to
cases Re=60 and Re=80, the angular velocity is instantaneously zero when the angle
of rotation is minimized or maximized but close to twice the asymptotic limit ±π/2.

Figure 13 displays the instantaneous pressure and vorticity distributions with
streamlines in the chosen six time instants and figure 14 shows surface pressure
distributions on the cylinder at the first five time instants.

When the angle of rotation is minimum at A, the stagnation pressure pocket is
located slightly below the corner ‘q’ so that the moment generated by the pocket
is almost maximized, as shown in figure 14(a). As mentioned in § 3.2.3, the late
pressure recovery of flows turning around the corner ‘q’ leads to a higher pressure
distribution on the upper suction side. The asymmetric pressure distribution on the
side is comparable with that on the windward side but favourable to generation of
a counter-clockwise moment. This is significantly offset by the counter-clockwise
moment exerted on the suction side. On the other hand, net pressure force vectors
on the two leeward surfaces (where two recirculation zones are observed) are not
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FIGURE 13. (Colour online) Same as figure 9 but for Re= 130 at the six time instants
denoted in figure 12.
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FIGURE 14. Same as figure 10 but for Re= 130 at the first five time instants denoted in
figure 12.

significant due to the symmetric position of the cylinder, as displayed in figure 14(a).
Flow patterns behind the cylinder show the P+S mode, as denoted with two red
circles in figure 13.

At B, the cylinder rotates about 45◦ in the clockwise direction from A. The
stagnation pressure pocket is now located favourably for generation of a counter-
clockwise moment near the corner ‘p’ so that the moment and angular velocity
rapidly decrease from A. However, it should be noticed that the angular velocity at B
is still positive so that the cylinder is able to smoothly transition over the asymptotic
limit of case Re= 80 in the clockwise direction.

As the cylinder just overcomes the limit π/4 and keeps rotating at C, the direction
of the moment generated by the stagnation pressure pocket sharply changes to the
clockwise direction from the counter-clockwise one. As a result, the angular velocity
and moment rapidly increases. In this time instant, the P+S mode is also observed in
the wake region but the intensity of the paired vorticities is not as even as that of A.
Specifically, the angular velocity is zero at A so that the two recirculation zones are
located almost symmetrically and the intensities of negative and positive vorticities
are comparable with each other. On the other hand, the negative vorticity region is
now thinner than the positive one because the cylinder passes over the limit π/4 with
non-zero angular velocity, as shown in figure 13.

At D through F, the flow patterns and moment generating mechanisms in the last
half-period of the rotation angle are in an opposite sense than the previous ones (A–C).
The moment coefficient and angular velocity curves for the first half-period are now
flipped in the vertical direction. Correspondingly, the location of the uneven and even
P+S modes seen for the first half-period are also flipped in the vertical direction
at D and E.
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FIGURE 15. Same as figure 8 but for Re= 150.

3.2.6. Re= 150
Figure 15 shows the time history of the three variables (θ , ωh/U, Cm) for a

period of rotation with the denotations of four time instants. Figure 16 displays
pressure and vorticity distributions with streamlines at each time instant. Overall,
the angle of rotation monotonically increases in the clockwise direction but two
bumps are apparent when the cylinder is instantaneously positioned in a symmetric
diamond shape. These regions are analogous with that observed in the bell-like
curve of the rotation angle for Re = 130. The moment is minimized when the
cylinder passes through the position of a symmetric diamond shape. In contrast,
the generated moment is maximized when the position of the cylinder is close
to the initial symmetric one. The angular velocity correspondingly varies with the
moment with the phase difference 0.38 rad. Compared with the ‘π-limit oscillation’
regime, the angular velocity is larger and remains positive. This implies that there
exists a critical angular momentum for which the cylinder is able to overcome the
instantaneous threshold (appearing every π/2 rad at the position of a diamond shape),
and maintains continuous rotations in an azimuthal direction.

At A, the stagnation pressure pocket is located slightly below the corner ‘q’ so
that the counter-clockwise moment is generated on the associated side, as displayed
in figures 16 and 17(a). On the other hand, the asymmetric pressure distributions on
the other three sides generate clockwise moments in figure 17(a).

At B, as the rotation angle reaches the asymptotic limit 1/4π, the net moment
decreases due to the emergence of recirculation zones on the leeward sides and
the symmetric location of the stagnation pressure pocket. Nonetheless, the angular
momentum at Re= 150 is sufficient to maintain the rotation in an azimuthal direction
in contrast with other regimes.

At C, the cylinder keeps rotating in the clockwise direction and is positioned close
to the initial rest position. In spite of the almost symmetric locations of the pressure
pockets and recirculation zones on the windward and leeward surfaces, respectively,
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FIGURE 16. (Colour online) Same as figure 9 but for Re = 150 at four time instants
denoted in figure 15.

the net moment approaches its maximum. Considering that the positions of the
cylinder are almost identical in the two cases Re = 80 and 150 (see figures 10d
and 17c), the pressure difference at the two corners ‘s’ and ‘p’ in case Re= 150 is
much more distinct. In other words, as the angular motion is accelerated, the pressure
difference between corners ‘s’ and ‘p’ becomes significant, as displayed in figure 17(c)
and confirmed by comparing the surface pressure distribution at D for Re = 80 and
that at C for Re= 150. Subsequently, for case Re= 150 the pressure difference near
the two corners of the windward edge leads to the imbalance of counter-clockwise
and clockwise moments exerted on the lower and upper sides, respectively. Hence,
the moment is now maximized even in the absence of asymmetry effects.

At D, the flow pattern is restored to that of A. The described flow cycle at
A through D is repeated as the cylinder autorotates in the clockwise direction.
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FIGURE 17. Same as figure 10 but for Re= 150 at the first three time instants denoted
in figure 15.

At A through D, the flow pattern in the downstream wake regions falls into P+S
mode. Compared with the flow pattern of the ‘π-limit oscillation’ regime, it is
similar with the asymmetric P+S mode observed in the middle of a period of the
rotation response at Re = 130. Considering that rotations in the clockwise direction
are observed commonly in cases Re= 130 and 150 over the limit π/4, a similar flow
pattern is expected at Re= 150. The sign of the shed vorticity alternately changes at
Re= 130 depending on the angular velocity; on the other hand, it remains positive at
Re= 150 owing to the maintained clockwise rotation.

3.3. Comparison of force coefficient
In this section, the statistics of force coefficients are compared between fixed
and freely rotating cylinder (FC and FRC, respectively) cases. The drag and lift
coefficients are defined as

CD = 2Fx/ρU2A, (3.1)
CL = 2Fy/ρU2A, (3.2)

where Fx and Fy are net forces in the streamwise and vertical directions, respectively,
and A is the area projected in the streamwise direction at the initial rest position.
Figure 18 displays the variations of time-averaged drag coefficient and root-mean-
square (r.m.s.) lift coefficient with the Reynolds number for the two cases. Figure 19
displays the profiles of those two quantities in a time interval for the cases.

3.3.1. Drag coefficient
As shown in figure 18(a), the time-averaged drag coefficient of case FCR shows

a monotonic decrease between 45 6 Re 6 70 (seen also in case FC) and steeply
rises at Re= 80. Then, the time-averaged drag coefficient shows a plateau region at
100 6 Re 6 130 and undergoes another step increase of small amplitudes.

As represented in §§ 3.2.1 and 3.2.2, VIRs are insignificant at 456Re6 70 so that
the dynamic behaviour of the recirculation zone is almost identical to that of the fixed
cylinder.

The asymmetric position of the cylinder is responsible for the steep rise of the
time-averaged drag coefficient at Re = 80. As displayed in figure 19(a), the drag
coefficient of case FCR is close to that of FC when the position of the cylinder is
close to the initial one. On the other hand, as the position of the cylinder deviates, the
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FIGURE 18. Profiles of (a) time-averaged drag coefficient (CD) and (b) r.m.s. lift
coefficient (CL,rms) with respect to twelve Reynolds numbers.

drag coefficient significantly increases. Asymmetric positions result in two physical
changes: (i) an increase of effective area of the cylinder and (ii) a difference of
pressure force between pressure and suction sides. As displayed in figure 10(a), when
the cylinder is positioned with the maximum angle of rotation, while the streamwise
direction components of the pressure forces on the windward and upper suction sides
are positive, those on the lower pressure and leeward sides are negative. It is notable
that the effective areas, where the streamwise direction components of pressure forces
are exerted, are increased due to the angle of rotation. In addition, the asymmetric
location of the stagnation pressure pocket leads to the different pressure recovery
locations (between the two corners of the windward edge) and significant pressure
differences. Specifically, as shown in figure 10(a), the pressure on the upper suction
side is overall higher than that on the lower pressure side and accordingly, this leads
to an increase of drag force. Such an increase is also recognized at other time instants
(see figure 10b,c).

As the angle of rotation gets closer to the asymptotic limit π/4, the increase of
the time-averaged drag coefficient is sustained up to Re = 100 and subsequently, a
plateau between 100 6 Re 6 130 is present. Considering that the position of a square
cylinder is repeated every π rad and that it is symmetric to π/2, the asymmetry effects
mentioned above could be bounded.
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FIGURE 19. Profiles of (a) drag and (b) lift coefficients (CD, CL) of the fixed and freely
rotating cylinder cases for Re= 80.

The time-averaged drag coefficient undergoes the second step increase with small
magnitude in the autorotation regime (Re= 140 150). It is found in figure 16 that flow
separations are overall delayed on the associated sides, compared with case Re= 130.
However, as shown in figure 18(a), the Magnus effect on the drag forces is seemingly
insignificant in our simulation results.

3.3.2. Lift coefficient
In the stable and ‘small-amplitude oscillation’ regimes, the r.m.s. of the lift

coefficient of case FRC monotonically increases, as does that of case FC case
(as displayed in figure 18b). As the angle of rotation becomes significant, the r.m.s.
of the lift coefficient deviates from the monotonic trend of case FC and dramatically
rises at Re = 80. At 80 6 Re 6 130, the r.m.s. of lift coefficient again shows a
monotonic increase and once again undergoes a step increase in the autorotation
regime. Such an increase of CL,rms between oscillation and autorotation regimes is
also observed in Park et al. (2015) (see their figure 10).

The monotonic increase of r.m.s. of the lift coefficient at 45 6 Re 6 70 is
comprehensible, in a manner similar to that of the time-averaged drag coefficient
(explained in § 3.3.1).

The rotation effect on the fluctuation of lift force is considerable because the angular
velocity gradually increases as the Reynolds number increases. The lift coefficient of
case FC oscillates sinusoidally depending on the vortex shedding frequency. In FRC,
as mentioned in § 3.2.3, the angular velocity is maximized or minimized when the
position of the cylinder is close to its initial symmetric one. Correspondingly, the
lift coefficient is also maximized and minimized (although relevant force coefficients
are not displayed in figure 8). It should be noticed that the lift coefficient deviates
significantly from its mean value in spite of the absence of the asymmetry effect, as
seen in figure 19(b). The correlation between the deviations of the lift coefficient and
magnitude of the angular velocity explains the first step increases of r.m.s. of the lift
coefficient.
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Despite that the direction of rotation alternately changes in a time-periodic or
random fashion at 80 6 Re 6 130, the second monotonic increase of CL,rms can be
also attributed to the gradually increasing rotation effect in the range of Reynolds
number.

For Re = 150, the rotation effect is seemingly more clear as the square cylinder
rotates continuously in the clockwise direction. Owing to autorotations, upper
and lower flows are accelerated and counteract incoming flows, respectively, (as
demonstrated by streamlines shown at C in figure 16) and flow separations are
delayed on the upper side. In the autorotation regime, the direction of rotation is
maintained as clockwise and the maximum angular velocity is larger than that of
case Re= 130. Accordingly, it is expected that the pressure difference between upper
and lower flows is boosted by the continuous rotation. The second step increase
of r.m.s. of the lift coefficient can hence be explained as a consequence of the
Magnus effect.

4. Summary and concluding remarks

Simulations of the flow around a rigid square, which is free to rotate only around
its axis, have been reported and analysed. Physical insights for the six characteristic
rotational regimes of the square cylinder are gained through a parametric investigation
with respect to the Reynolds number.

Vortex-induced rotations have been characterized in a low Reynolds number regime
(45 6 Re 6 150). Below Re= 50, the net forces remain symmetrical and the cylinder
keeps the initial rest position.

In the ‘small-amplitude oscillation’ regime (506 Re6 70) the cylinder oscillates as
vortex shedding ensues. It is revealed that the time-periodic oscillations are driven by
out-of-phase synchronization between the moment and the angle of rotation. Coupled
with the rotation response, a regular von Kármán vortex street is formed behind the
cylinder.

In the ‘π/2-limit oscillation’ regime (Re= 80, 90) in-phase synchronization between
the locations of stagnation pressure pocket and recirculation zone elevates the
oscillation amplitude. The simulations reveal that multi-frequency oscillations are
present driven by the phase lag between the generated moments and angle of rotation.
This results in an irregular 2S mode behind the cylinder.

In the ‘random rotation’ regime (Re = 100, 110) the cylinder exhibits oscillation
and rotation in a chaotic trend. Coupled with the random motion, the resulting vortex
patterns cannot be described, deterministically.

In the ‘π-limit oscillation’ regime (Re = 120, 130) the cylinder time-periodically
oscillates again with an asymptotic limit ±π/2. The simulations show that when the
cylinder is rotating over the limit ±π/4 (when the cylinder is positioned close to a
diamond shape), the variation of net moment undergoes an inflection point. Hence, the
curve of the rotation angle is not sinusoidal but has a bell-like shape. Coupled with
the variations of the angular velocity, uneven and even ‘P+S’ modes appear.

In the autorotation regime (Re = 140, 150), as fluid inertial forces become more
significant, continuous rotation occurs in the clockwise direction. In this regime the
rotation angle smoothly passes over the asymptotic limit π/4 where the net moment
instantaneously increases in the opposite direction. Compared with the other regimes,
the angular momentum is sufficient to maintain the initiated continuous rotation.
Coupled with the sinusoidal variation of the angular velocity, the flow pattern shows
an uneven ‘P+S’ mode.
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Our simulation results show that amplified rotations also significantly influence the
statistics of the drag and lift force coefficients. Specifically, as the rotation amplitude
increases, the onset of a step increase of the two force coefficients is observed at
Re = 80. While the time-averaged drag coefficient remains fairly constant up to
Re=130, the r.m.s. of lift coefficient shows a monotonic increase. The two coefficients
then undergo a second step increase in the autorotation regime that we have associated
with the Magnus effect.

The appearance of the six characteristic regimes could depend on the moment
of inertia. Thus, further parametric investigations with respect to the moment of
inertia as well as the Reynolds number are required to map the characteristic regimes,
completely.
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