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Abstract
We give a fully polynomial-time randomized approximation scheme (FPRAS) for the number of bases in
bicircular matroids. This is a natural class of matroids for which counting bases exactly is #P-hard and yet
approximate counting can be done efficiently.
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discrete state spaces); Secondary 05C31 Graph polynomials

1. Introduction
We introduce a new application of the ‘popping’ paradigm that has been used to design efficient
perfect samplers for a number of combinatorial structures. Existing examples are cycle popping
[25, 28], sink popping [3] and cluster popping [9, 10, 11], which, respectively, produce uniformly
distributed spanning trees, sink-free orientations in undirected graphs, and root-connected sub-
graphs in directed graphs (and, as a consequence, connected subgraphs of an undirected graph).
In doing so we provide an example of a natural class of matroids for which the basis-counting
problem is hard (#P-complete) to solve exactly, but which is polynomial-time to solve approxi-
mately in the sense of fully polynomial-time randomized approximation schemes (or FPRAS). For
basic definitions connected with the complexity of counting problems refer to [23] or [14].

Towards this end, we introduce ‘bicycle popping’ as a means to sample, uniformly at random,
bases of a bicircular matroid.1 Bicircular matroids are associated with undirected graphs and will
be defined in the next section. Note that the main result and its proof can be understood in graph-
theoretic terms, and no knowledge of matroid theory is needed beyond the exchange axiom. Our
perfect sampling approach can be implemented to run in O(n2) time, where n is the number of
vertices in the instance graph (refer to Section 4). Using a standard reduction, such a sampler
can be used to construct an efficient randomized algorithm, indeed an FPRAS, for estimating the
number of bases within a specified relative error (Theorems 5.1 and 6.1).

The computational complexity of counting bases of a matroid exactly is still only partially
understood. According to the class of matroids under consideration, the exact counting problem
may be polynomial-time, #P-complete or unresolved. Counting bases of a graphic matroid (i.e.
counting spanning trees of a graph) is a classical problem and is well solved by Kirchhoff ’s matrix

†The work described here was supported by the EPSRC research grant EP/N004221/1 ‘Algorithms that Count’.
1‘Bicycle popping’ has the advantage of being easy to remember, but it is important to note that the term is unconnected

with the concept of bicycle space of a graph.
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tree theorem. This method extends fairly directly to the wider class of regular matroids [22]. The
basis-counting problem for bicircular matroids, a restriction of the class of transversal matroids,
was shown to be #P-complete by Giménez and Noy [8]. The status of the important case of binary
matroids appears to be open [26].

Jerrum [15] showed that it is #P-hard to exactly count bases of certain sparse paving matroids.
Combined with the approximation algorithm of Chávez Lomelí and Welsh [2], this result high-
lights a (presumably) exponential gap between exact and approximate counting. However, it could
be said that this example is not particularly natural. Piff and Welsh [24] demonstrated that the
number of paving matroids on a ground set of n elements is doubly exponential in n, so even rep-
resenting the problem instance raises significant issues. Combined with the completeness result
of Giménez and Noy [8], our FPRAS provides a more convincing and natural demonstration of
the gap between exact and approximate counting for matroid bases.

After posting our paper on arXiv, we were made aware of independent work by Kassel and
Kenyon [18], who have proposed essentially the same algorithm2 for sampling from a weighted
distribution on cycle-rooted spanning trees. Their interest in the algorithm is as a component
in their proofs, for which correctness of the algorithm is obviously important and is proved
in detail. The time complexity of their algorithm is not analysed in detail, though Kassel and
Kenyon offer some brief remarks about the run-time of the algorithm on a square grid. Kassel
[17] also observes the connection to sampling bases of a bicircular matroid, and notes that the
corresponding counting problem is #P-complete.

Evenmore recently, Anari, Liu, Oveis Gharan andVinzant [1] have shown that the expansion of
the so-called ‘basis exchange graph’ for any matroid is at least 1. This result implies that a random
walk on the basis exchange graph is rapidly mixing, and provides a Markov chain Monte Carlo
(MCMC) approach to sampling bases of any matroid. The mixing time has subsequently been
sharpened by Cryan, Guo and Mousa [4]. The only requirement for the Markov chain approach
is that there exists an efficient independence oracle to verify whether a given set is a basis. Since
this requirement certainly holds for bicircular matroids, these works yield an alternative approach
to sampling bases of a bicircular matroid. The Markov chain method is very different to ours and
does not give a perfect sampler (though the deviation of the output distribution from uniformity
decays exponentially fast in the run-time). Also, the analysis of the expansion factor of the basis
exchange graph is technically challenging, while the analysis of our popping algorithm is relatively
elementary. Before the work of Anari, Liu, Oveis Gharan andVinzant [1], the basis exchange graph
was known to be an expander only in special cases. Most notably, Feder and Mihail [6] showed
that the class of so-called ‘balanced matroids’, a strict superset of the class of regular matroids, has
expansion factor at least 1. (See also [16] for improvements and simplifications.) Furthermore, all
paving matroids admit an FPRAS for the number of their bases, as shown by Chávez Lomelí and
Welsh [2], through the straightforward Monte Carlo method.

2. Bicycle popping
For a graph G= (V , E), let n= |V| and m= |E|. When m� n and G is connected, we associate a
bicircular matroid B(G) with G. The ground set is E, and a subset R⊆ E is independent if every
connected component of (V , R) has at most one cycle. Thus the set of bases of B(G) is

B= {R | every connected component of (V , R) is unicyclic}.
In particular, if R ∈ B, then |R| = n. Let πB( · ), or simply π( · ), denote the uniform distribution
over B. We refer the reader to [21] for more details of bicircular matroids. Giménez and Noy [8]

2There are a couple of fine differences, such as not rejecting 2-cycles, and popping cycles randomly instead of determinis-
tically. These differences do not change the nature of the algorithm.
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Algorithm 1 Bicycle popping
Let S be a subset of arcs obtained by assigning each arc av independently and uniformly among all
neighbours of v;

while a bad event Be or BC is present do
Let Bad be the set of vertices that are contained in any edge e or cycle C such that Be or BC
occurs;

Re-randomize {av | v ∈ Bad} to get a new S;
end
return the undirected version of S

have shown that counting the number of bases for bicircular matroids is #P-complete. See also [7]
for extremal bounds on this number.

We now associate a random arc av = (v,w) to each vertex v ∈V , which is uniform over all
neighbours w of v. Given an arbitrary assignment σ = (av)v∈V , consider the directed graph (V , σ )
with exactly those |V| arcs. It is easy to see that each (weakly) connected component of this graph
has the same number of arcs as vertices. Thus there is exactly one (directed) cycle per connected
component. Let U(σ )⊆ E be the subset of edges of G obtained by dropping the direction of arcs
in σ . Consider the distribution τ ( · ) on subsets of E induced by σ via the mapping U(σ ). There
are two reasons why τ ( · ) is not quite the same as π( · ).

(1) It is possible to have 2-cycles in σ , in which case at least one connected component ofU(σ )
will be a tree rather than a unicyclic graph.

(2) Every cycle in σ of length greater than 2 may be reversed without changing U(σ ). Thus,
in τ ( · ), each subgraph with k connected components arises in 2k ways, skewing the
distribution towards configurations with more connected components.

For each edge e ∈ E, let Be denote the event that a 2-cycle is present at e, that is, both orientations
of e appear in σ . For each cycle C in G, we fix an arbitrary orientation and let BC denote the event
that C is oriented this way in σ . If we further condition on neither Be nor BC happening, the
resulting distribution τ induced by U(σ ) is exactly π( · ).

Partial rejection sampling [12] provides a useful framework to sample from a product distri-
bution conditioned on a number of bad events not happening. In particular, we call a collection
of bad events extremal if any two bad events are either probabilistically independent or disjoint
(i.e. they cannot both occur). It is straightforward to verify that the collection of bad events
{Be | e ∈ E} ∪ {BC | C is a cycle in G} is extremal. (The reason is similar to the cycle popping algo-
rithm. See [12, Section 4.2]. In fact, the bad events here are either identical to or more restrictive
than those for cycle popping.) For an extremal instance, to draw from the desired distribution,
we only need to randomly initialize all variables, and then repeatedly re-randomize variables
responsible for occurring bad events. This is Algorithm 1, which we call ‘bicycle popping’.

We need to be a little bit careful about bad events (BC), since there are potentially exponentially
many cycles in G. We cannot afford to dictate the unfavourable orientation a priori, but rather
need to figure it out as the algorithm executes. This is not difficult to get around, since we only
need an arbitrary (but deterministic) orientation of each cycle. For example, we may arbitrarily
order all vertices, and give a sign ± to each direction of an edge according to the ordering. The
sign of an odd-length cycle is the product over all its edges, and the sign of an even-length cycle is
the product over all but the least indexed edge. Then we can simply declare all orientations with a
+ sign ‘bad’. An alternative is to reject cycles randomly, which is considered in [18] and described
in Section 6.

Since the extremal condition is satisfied, applying [12, Theorem 8] we get the correctness of
Algorithm 1.
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Proposition 2.1. Conditioned on terminating, the output of Algorithm 1 is exactly π( · ).

We remark that bicircular popping, Algorithm 1, differs from cycle popping [25] by associating
random variables to all vertices, and differs from cluster popping [9, 11] by associating random
variables to vertices rather than edges.

3. Run-time analysis
An advantage of adopting the partial rejection sampling framework is that we have a closed-form
formula for the expected run-time of these algorithms on extremal instances.

In the general setting of partial rejection sampling, the target distribution to be sampled from
is a product distribution over variables, conditioned on a set of ‘bad’ events (Ai)i∈I not happening
for some index set I . Let Ti be the number of resamplings of event Ai. Let qi be the probability
such that exactly Ai occurs, and let q∅ be the probability such that none of (Ai)i∈I occurs, both
under the product distribution. Suppose q∅ > 0 as otherwise the support of π( · ) is empty. For
extremal instances, [12, Lemma 12] and the first part of the proof of [12, Theorem 13] yield

E Ti = qi
q∅

. (3.1)

Let T be the number of resampled variables. By linearity of expectation and (3.1),

E T =
∑
i∈I

qi · |var(Ai)|
q∅

. (3.2)

(See also [10, equation (2)].) We note that an upper bound similar to the right-hand side of (3.2)
was first shown by Kolipaka and Szegedy [19] in a much more general setting but counting only
the number of resampled events.

Specializing to Algorithm 1, let qe and qC be the corresponding quantity for bad events Be and
BC, respectively. Let�0 be the set of assignments so that no bad event happens, and let�e (or�C)
be the set of assignments of (av)v∈V so that exactly Be (or BC) happens and none of the other bad
events happen. Then |�0| = |B|. For a bad event B, let var(B) be the set of variables defining B,
namely var(Be)= {au, av} if e= (u, v) ∈ E and var(BC)= {av | v ∈ C} if C is a cycle in G. Define

�varE := {(σ , av) | ∃e ∈ E, σ ∈�e, av ∈ var(Be)}
and

�varcycle := {(σ , av) | ∃a cycle C, σ ∈�C, av ∈ var(BC)}.
Then ∑

e∈E

qe · |var(Ai)|
q∅

= |�
var
E |
|�0| and

∑
C is a cycle

qC · |var(Ai)|
q∅

=
|�varcycle|
|�0| .

Proposition 3.1. Let T be the number of resampled variables of Algorithm 1. Then

E T = |�
var
E |
|�0| +

|�varcycle|
|�0| .

We bound these ratios using a combinatorial encoding idea. Namely, we want to design an
injective mapping from �varE or �varcycle to �0. To make the mapping injective, we in fact have to
record some extra information. We first deal with�varcycle.
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Lemma 3.2. For a connected graph G= (V , E) with m� n, where m= |E| and n= |V|,

|�varcycle|� n|�0|.

Proof. We define a ‘repairing’ mapping ϕ : �varcycle→�0 ×V , as follows. For σ ∈�C, we define
σfix to be the same as σ except that the orientation of C is reversed. Clearly σfix ∈�0. Let

ϕ(σ , av)= (σfix, v) if σ ∈�C and v ∈ C.

We claim that ϕ is injective. To see this, given σfix and v, we simply flip the orientations of the
cycle containing v to recover σ . Since ϕ is injective, we have that |�varcycle|� n|�0|. �

For �varE , the proof is slightly more involved. For σ ∈�e, if we contract e, this component is a
directed tree rooted at e, where all edges are directed toward e.

Lemma 3.3. For a connected graph G= (V , E) with m� n, where m= |E| and n= |V|,

|�varE |� 2n(n− 1)|�0|.

Proof. Let�E :=⋃
e∈E �e. Then |�varE | = 2|�E|.

Fix an arbitrary ordering of all vertices and edges. Our goal is to define an injective ‘repairing’
mapping ϕ : �E→�0 ×V × E. For σ ∈�e, find the connected component of U(σ ) containing
the edge e= (v1, v2), and let its vertex set be S. Depending on whether S=V , there are two cases.

(1) If S 	=V , then, since the graph G is connected, there must be at least one edge joining the
component to the rest of the graph. Pick the first such edge (u, u′) where u is in S and u′ is
not.

(2) Otherwise S=V . Then, since the graph has at least n edges, there must be at least one edge
not in U(σ ). Let e′ = (u, u′) be the first such edge, and let C be the cycle resulting from
adding e′ to U(σ ). Suppose the correct orientation on C induces the orientation u→ u′
on e′.

Let u= u1, u2, . . . , u� = v1 be the unique path between u and v1 in U(σ ). (The vertex v1 is chosen
arbitrarily from the two endpoints of e.) Let σfix be the assignment so that aui points to ui−1, where
u0 = u′, and all other variables are unchanged from σ . It is easy to verify that σfix ∈�0. Also, σfix
does not depend on the choice of v1 from the edge e. Define ϕ(σ )= (σfix, u, e), where e= (v1, v2).

We claim that ϕ is injective. We just need to recover σ given (σfix, u, e). We first figure out
whether S=V . Notice that u′ can be recovered as u→ u′ is in σfix. If S 	=V , then the edge (u, u′)
is a bridge under σfix, whereas if S=V , (u, u′) is not.

In the first case, simply find the path between u and v1, and reverse the ‘repairing’ to yield the
original σ . In the second case, we remove (u, u′) first, and then recover the unique path between
u and v1. The rest is the same as the first case.

Note that |σfix| = n, u→ u′ ∈ σfix, and e ∈U(σfix), but (v1, v2) 	= (u, u′). Thus, fixing σfix, there
are n choices for u, and (n− 1) choices for e= (v1, v2). Since ϕ is injective, we have that |�varE | =
2|�E|� 2n(n− 1)|�0|. �

Combining Lemma 3.2, Lemma 3.3 and Proposition 3.1, we have the following theorem.

Theorem 3.1. Let G= (V , E) be a connected graph, n= |V|, m= |E| and m� n. The expected
number of random variables sampled in Algorithm 1 on G is at most 2n2 − n.
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Algorithm 2 A random walk implementation of bicycle popping
Vu←V ;
S←∅;
while Vu 	= ∅ do

v← an arbitrary vertex in Vu;
Start a random walk from v, where in each step we move uniformly at random to a neighbour
of the current vertex. Erase any cycle C having length 2 or a wrong orientation, until some
vertex in V \Vu is reached, or a good cycle C is formed;

Remove all vertices of the walk from Vu;
Add all (undirected) edges along the walk to S;

end
return S

The bound in Theorem 3.1 is tight. Consider a cycle of length n. Clearly |�0| = 1 and |�varcycle| =
n as there is only one cycle containing n edges. Moreover, |�e| = n− 1 for there are n− 1 choices
of the missing edge. Thus |�varE | = 2|�E| = 2n(n− 1) and the upper bound is achieved.

4. An implementation based on a loop-erasing randomwalk
In the execution of Algorithm 1, during each iteration, one needs to find all bad events, and a naive
implementation may take up to O(n) time for this task, giving another factor on top of the bound
in Theorem 3.1. Here we provide an implementation that has expected run-time O(n2), similar to
the loop-erasing random walk of Wilson [28]. A formal description is given in Algorithm 2.

Observe that, in Algorithm 2, once a cycle is orientated correctly, none of its associated arcs
will be resampled ever again, and the same holds for any arc attached to it. We will call such arcs
‘fixed’. Starting from an arbitrary vertex v, we assign a random arc from v to u, and continue this
for u. So far this is just the normal random walk with memory. The difference is that whenever a
cycle appears, we check whether it has length> 2 and the correct orientation. If not, then we erase
it, and continue the random walk. Otherwise, we keep all random arcs leading towards this cycle,
and mark them as fixed. Thus Algorithm 2 amounts to a loop-erasing random walk with a special
erasing rule.

Once the first random walk stops with a correctly oriented cycle, we do the same for the next
vertex that has not been fixed yet. Now the new walk has two possible terminating conditions.
Namely it is fixed if it has reached some fixed vertex, or a correctly oriented cycle of length > 2 is
formed. This process is repeated until all vertices are fixed.

Algorithm 1 specifies a particular order of resampling bad events, modulo the ordering of bad
events within each iteration of the while-loop. However, bad events can be sampled in any order,
without affecting correctness or the expected number of resampled variables. Although the proof
of this key fact has appeared in the context of specific instances of partial rejection sampling, such
as cycle popping [25] and sink popping [3], we are not aware that the argument has been presented
in generality, so we do so presently. As a consequence of this key fact, Algorithm 2, which is
sequential, has the same resulting distribution and expected number of resampled variables as
Algorithm 1, which is parallel. In particular, the expected run-time of Algorithm 2 has the same
order as the number of resampled variables, which is at most O(n2) by Theorem 3.1.

The correctness of Algorithm 2 is due to the aforementioned fact that the ordering of resam-
plings does not matter for extremal instances. We now formalize and verify this fact. Consider a
generic partial rejection sampling algorithm that repeatedly locates an occurring bad event and
resamples the variables on which it depends. A specific implementation will choose a particular
order for resampling the bad events. We can represent the choices made as a path in a count-
ably infinite, directed ‘game graph’ � = (	,A). The vertex set	 of � contains all multisets of bad
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events. We refer to these vertices as states. The arc set A is defined relative to a resampling table,
as used in [12], following Moser and Tardos. As the algorithm proceeds, the ‘frontier’ in the table
between used and fresh random variables advances; in the notation of [12], the frontier at time t
is specified by the indices (ji,t : 1� i� n). At time t, the implementation will have sampled a cer-
tain multisetM ∈	 of bad events: an event B∗ that has been resampled k times will occur k times
in M. Note that M determines the number of times each variable has been resampled, and hence
the frontier of the table. So, even though we do not know the order in which those bad events
were resampled, we do know the occurring bad events at time t. For eachM ∈	 and each possi-
ble occurring bad event B∗, we add an arc in � fromM toM′ =M+ B∗. A state with outdegree 0
is a terminating state. Given a fixed resampling table, an implementation of partial rejection sam-
pling will generate a directed path in � starting at the state ∅. With probability 1 (over the choice
of resampling table), this path will be finite, that is, end in a terminating state.

We now apply a lemma of Eriksson [5], which is similar in spirit to Newman’s lemma, but
which is both more elementary and better suited to our needs. Observe that if two bad events
occur at time t then they can be resampled in either order without altering the result; this is a
consequence of the fact that the events are on disjoint sets of variables. In the terminology of
Eriksson [5], the game graph � has the polygon property. It follows from his Theorem 2.1 that �
has the strong convergence property: if there exists a path starting at ∅ and terminating atM, then
every path starting at ∅ will terminate atM in the same number of steps. Since a terminating path
exists with probability 1, we see that both the output and the number of resampled variables is
independent of the order in which the implementation decides to resample bad events. In other
words, the correctness of Algorithm 2 follows from that of Algorithm 1, and the distribution of
the number of resampled variables is identical in the two algorithms.

5. Approximating the number of bases
For completeness, we include a standard self-reduction to count the number of bases of a
bicircular matroid, utilizing Algorithm 1.

Theorem 5.1. There is an FPRAS for counting bases of a bicircular matroid, with time complexity
O(n3m2ε−2).

Proof. Let 0< ε < 1 be a parameter expressing the desired accuracy. Also, letN(G) be the number
of bases of B(G), the bicircular matroid associated with G.

The technique for reducing approximate counting to sampling is entirely standard [14,
Chapter 3], but we include the details here for completeness. Fix any sequence of graphs G=
Gm,Gm−1, . . . ,Gn+1,Gn, where each graph Gi−1 is obtained from the previous one Gi by remov-
ing a single edge ei, and Gn is a disjoint union of unicyclic components. (Thus the edge set of Gn
is a basis of B(G).) Then, noting N(Gn)= 1,

N(G)−1 =N(Gm)−1 = N(Gm−1)
N(Gm)

× N(Gm−2)
N(Gm−1)

× · · · × N(Gn+1)
N(Gn+2)

× N(Gn)
N(Gn+1)

. (5.1)

Let Xi be the random variable resulting from the following trial: select, uniformly at random, a
basis R from B(Gi) and set

Xi =
{
1 if ei /∈ R,
0 otherwise.

Here we use Algorithm 2 to generate the uniform random basis R. For different i, we use fresh
random sources so that all Xi are mutually independent. Note that μi =E Xi =N(Gi−1)/N(Gi),
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so that
N(G)−1 =E (XmXm−1 . . . Xn+2Xn+1)=μmμm−1 . . . μn+2μn+1.

Now let Xi be obtained by taking the mean of t independent copies of the random variable Xi.
Since E Xi =μi, we have N(G)−1 =E Z, where Z= XmXm−2 · · · Xn+1. Also, Var Xi = t−1 Var Xi,
so if t is large enough the variance of Z will be small, and Z−1 will be a good estimate for N(G).
For this approach to yield a polynomial-time algorithm, we need that all the fractions appearing
in the product (5.1) are not too small. In fact we will show that they are all bounded below by
1/2n, which is sufficient.

For the moment, assume this claim, that is, 1/2n�μi � 1, for all n< i�m. Note that E X2
i =

E Xi =μi since Xi is a 0,1-variable. Standard manipulations give

E X2
i =Var Xi + (E Xi)2 = t−1 Var Xi +μ2

i = t−1(E X2
i −μ2

i )+μ2
i �μ2

i

(
1+ 1

tμi

)
,

whence

E Z2 =E X2
m . . .E X2

n+1 �μ2
m . . . μ

2
n+1

(
1+ 2n

t

)m
= (E Z)2

(
1+ 2n

t

)m
.

Setting t= 40nmε−2, we obtain
E Z2 = exp (ε2/20)(E Z)2 � (1+ ε2/16)(E Z)2,

which implies Var Z� (ε2/16)(E Z)2. Thus, by Chebyshev’s inequality,

P

[
|Z−N(G)−1|� 1

2
εN(G)−1

]
= P

[
|Z−E Z|� 1

2
ε E Z

]
� 3

4
.

It follows that

P [|Z−1 −N(G)|� εN(G)]� 3
4
.

In other words, the algorithm that returns the estimate Z−1 satisfies the conditions for an FPRAS.
To complete the proof we just need to bound the ratio μi =N(Gi−1)/N(Gi). Let R be a basis

of B(Gi) that contains the edge ei, i.e. that is not a basis of B(Gi−1). Let R0 be the unique basis
in B(Gn) and note that ei /∈ R0. Since R0 is also a basis of B(Gi), the exchange axiom for matroids
asserts that there is an edge f ∈ R0 \ R such that R+ f − ei is a basis of B(Gi) and hence of B(Gi−1).
This exchange operation associates a basis in B(Gi−1) with each basis in B(Gi) that is not a basis in
B(Gi−1); furthermore, every basis in B(Gi−1) arises at most |R0| = n times in this way. It follows
that N(Gi)� (n+ 1)N(Gi−1)� 2nN(Gi−1), as required.

Overall we need O(nmε−2) samples for m− n estimators each. For each sample we use
Algorithm 2, which has expected run-time O(n2) by Theorem 3.1, yielding the claimed time
complexity. �

6. Faster approximate counting
Similar to [18], let � be the set of configurations consisting of directed edges so that every vertex
is the tail of exactly one arc. Consider the following Gibbs distribution:

ργ2,γ (S)∝ γ C2(S)
2 γ C(S), (6.1)

where S ∈�, γ2, γ � 0 are two parameters, and C(S) (or C2(S)) is the number of cycles of
length greater than 2 (or 2-cycles) present in (V , S). We adopt the convention that 00 = 1.
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Algorithm 3 Sample ργ2,γ in (6.1)
Vu←V ;
S←∅;
while Vu 	= ∅ do

v← an arbitrary vertex in Vu;
Start a random walk from v, and erase any cycle C formed with probability 1− γ2 if the length
is 2 or with probability 1− γ otherwise, until some vertex in V \Vu is reached, or a cycle C
is accepted;

Remove all vertices of the walk from Vu;
Add all arcs along the walk to S;

end
return S

Then Algorithms 1 and 2 sample from the distribution μ0,0.5. We also define the corresponding
partition function

Zγ2,γ (G)=
∑
S∈�

γ
C2(S)
2 γ C(S). (6.2)

Then Z0,0.5(G)= |B|. Another interesting special case is ρ1,1, with the corresponding parti-
tion function Z1,1(G)=∏

v∈V deg (v). This is because ρ1,1 corresponds to choosing a random
neighbour of v for each v ∈V . Note that each cycle longer than 2 has two potential orientations.

In order to sample from ργ2,γ in (6.1) where γ2, γ ∈ [0, 1], we introduce the following variant
of Algorithm 2. Again, this is very similar to the sampling algorithm of Kassel and Kenyon [18].

The correctness of Algorithm 3 also follows from [12, Theorem 8] and the argument in
Section 4. We introduce an auxiliary variable for each cycle, which is false with probability 1− γ2
if the cycle has length 2, or with probability 1− γ if the cycle is longer. A cycle is ‘bad’ if and
only if it is present and the auxiliary variable is false. Although there are exponentially many such
auxiliary variables, we only reveal them when necessary. Every time a cycle is popped, the auxil-
iary variable is reset. By the same reason as for Algorithm 1, such an instance is extremal and the
correctness follows.

Since the extremal condition holds, the run-time of Algorithm 3 can be analysed analogously to
that of Algorithms 1 and 2. Let T be the number of resampled variables of Algorithm 3. We apply
(3.2). First consider the case of γ2 = 0. To bound

∑
e∈E qe|e|/q∅, we use the injective mapping

in Lemma 3.3, and to bound
∑

C is a cycle qC|C|/q∅, we use an injective mapping similar to the
one in Lemma 3.2 by simply flipping the auxiliary variable. Observe that both mappings preserve
all cycles other than the one repaired, and as a consequence, preserve all weights up to a factor
(1− γ )/γ in the latter case. It implies that when γ2 = 0, the run-time can be bounded as follows:

E T � 2n(n− 1)+ 1− γ
γ
· n. (6.3)

Otherwise γ2 > 0. To bound
∑

e∈E qe|e|/q∅, again, we need to resort to the injective mapping in
Lemma 3.3. However, now the ‘perfect’ configurations and ‘one-flaw’ configurations allow more
than one 2-cycles. Let�(k) ⊂� be the set of configurations with k 2-cycles, for any k� n/2.

Lemma 6.1. There is an injective mapping ψk : �(k)→�(k−1) for any k� 1, where

�(k−1) := {(σ , v, e) | σ ∈�(k−1), v ∈V , e ∈U(σ )}.
Moreover, ψk preserves all cycles except one with length 2.
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Proof. The mapping is similar to the one in Lemma 3.3. Given S ∈�(k), we choose an arbitrary
2-cycle, and apply the ‘fix’ of the injective mapping in Lemma 3.3. It is straightforward to check
that this operation will only destroy the chosen 2-cycle, and it is reversible given the auxiliary
information. �

A consequence of Lemma 6.1 is that
∑

e∈E qe|e|/q∅ � 2n2, similar to Lemma 3.3. This is because
for any configuration with exactly one ‘bad’ 2-cycle, applying the mapping in Lemma 6.1 yields a
configuration without the presence of the bad 2-cycle, and other cycle structures are all preserved.
The overhead is to remember one vertex and one edge from the undirected version of the image.

To bound
∑

C is a cycle qC|C|/q∅, consider again the injective mapping similar to the one in
Lemma 3.2, by simply flipping the value of the auxiliary variable. It implies that∑

C is a cycle

qC|C|
q∅

� 1− γ
γ
· n.

Thus we have that for γ2 > 0, the following also holds:

E T � 2n2 + 1− γ
γ
· n. (6.4)

Combining the two cases (6.3) and (6.4), we have the following corollary.

Corollary 6.2. The run-time of Algorithm 3, in expectation, is O(n2) if γ2 ∈ [0, 1] and γ ∈ [1/2, 1].

The Gibbs formulation (6.1) allows us to utilize faster annealing algorithms to reduce
approximate counting to sampling. See [27] and [13]; the current best algorithm is due to
Kolmogorov [20].

In fact, we will need a slight generalization from [10] as follows. Let � be a finite set, and the
generalized Gibbs distribution ρβ( · ) over� takes the following form:

ρβ(X)= 1
Z(β)

exp (− βH(X)) · F(X), (6.5)

where β is the temperature, H(X)� 0 is an integer function called the Hamiltonian, F : �→R
+

is a non-negative function and, with a little abuse of notation,

Z(β)=
∑
X∈�

exp (− βH(X)) · F(X)

is the normalizing factor. We would like to turn the sampling algorithm into an approximation
algorithm to Z(β). Typically this involves calling the sampling oracle in a range of temperatures,
which we denote by [βmin, βmax]. (This process is usually called simulated annealing.) Let

Q := Z(βmin)
Z(βmax)

, q= logQ and N =max
X∈� H(X).

The following result is due to Kolmogorov [20, Theorem 8], as extended in [10, Lemma 8].

Proposition 6.3. Suppose we have a sampling oracle from the distribution ρβ for any β ∈
[βmin, βmax]. There is an algorithm to approximate Q within 1± ε multiplicative errors using
O(q logN/ε2) oracle calls on average.

Theorem 6.1. There is an FPRAS for counting bases of a bicircular matroid, with time complexity
O(n3( log n)2ε−2).
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Proof. We will do a two-stage annealing. Our starting point is Z1,1(G)=∏
v∈V deg (v). We first

apply the annealing algorithm in Proposition 6.3 between γ2 = 1 and γ2 = 0. We only treat γ2
as the temperature in this stage but not γ .3 Clearly H(S)= C2(S)�m in this case, and logN =
O( log n). The more complicated estimate is

Q= Z1,1(G)
Z0,1(G)

.

For any S ∈�, we apply the mapping in Lemma 6.1 at most C2(S)� n times to get S′ where
no 2-cycle is present. Given S′, and a sequence of vertex-edge pair generated by this repairing
sequence, we may uniquely recover S since the mapping in Lemma 6.1 is injective. Moreover, the
longer cycles in S are all preserved in S′. It implies that

Q= Z1,1(G)
Z0,1(G)

� (mn)n and q= logQ=O(n log n).

Hence the number of samples required in this step is O(n( log n)2ε−2).
In the second stage, we apply Proposition 6.3 between γ = 1 and γ = 0.5, while γ2 = 0 is fixed.

Then H(S)= C(S)� n in this case, and logN =O( log n). Moreover

Q= Z0,1(G)
Z0,0.5(G)

� 2maxS C(S) � 2n.

Thus q= logQ=O(n). The number of samples required in this step is O(n log nε−2).
Overall, the number of samples required is O(n( log n)2ε−2). Together with Corollary 6.2, this

implies the claimed run-time. �
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