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Abstract

The relativistic motion of a charged particle is studied in an inhomogeneous field of finite duration laser pulse. An
inhomogeneity in a laser field is due to the spatial variation of laser intensity. Such a variation in laser intensity is
characteristic of focused and de-focused laser beams. In the presence of an inhomogeneity, the problem becomes non-
integrable and hence particle dynamics can not be derived exactly. In the present work considering a slow variation in
the laser intensity, it is shown that the particle dynamics is associated with an adiabatic invariant. It is further found
that the adiabatic invariant itself evolves and in a typical example changes such that the adiabaticity parameter attains a
value of order unity. Thus higher orders of invariance are required for specifying the particle dynamics in terms of an
adiabatic invariant. An adiabatic formalism is derived using the Lie transform perturbation method for calculating the
higher orders of invariance and to obtain the evolution of the adiabatic invariant. The estimates of energy gained by a
particle considering focused laser field are obtained by solving the equation of motion numerically. On comparing the
results of a numerical experiment with theoretical predictions, it is found that the energy estimates improve on taking
into account higher orders of invariance predicted by the present theory.
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1. INTRODUCTION

The interaction of a charged particle with an electromagnetic
wave is one of the extensively investigated research topics in
plasma physics. The wave-particle interaction forms the basis
for understanding a wide variety of phenomena such as
particle motion in Van Allen radiation belts (Parker, 1961),
wave particle resonances (Rax, 1992), particle scattering by
waves (Kroll et al., 1973), Thomson scattering (Sarachick
& Schappert, 1970; Sanderson, 1965; Vaschapati, 1962),
free electron lasers (Louisell et al., 1979), stochastic accelera-
tion (Bourdier & Drouin, 2009; Meyer-ter-vehn & Sheng,
1999; Tanimoto et al., 2003), stochastic heating (Patin
et al., 2005), microwave generation, laser-matter interaction
(Umstadter, 2001; 2003), etc. The emergence and develop-
ment of chirped pulse amplification (CPA) (Perry &
Mourou, 1994; Strickland & Mourou, 1985) technique
has led to the generation of laser pulses with focused inten-
sities far above 1018 Wcm−2. The fields produced by these

focused optical beams can reach levels greater than
1012 Vm−1, which is orders of magnitude larger than that
produced by conventional accelerators. At such a large
field value, the particle attains a relativistic velocity within
a laser cycle. Such enormous laser fields have revived the in-
terest in theoretical (Bulanov et al., 2006; Esarey & Liu,
1996; Rosenbluth & Liu, 1972; Tajima et al., 1979) and
experimental studies of laser driven particle acceleration in
plasmas (Umstadter, 2001; Sprangle et al., 1996) as well as
in vacuum (Angus et al., 2009; Bulanov et al., 2006; Esarey
et al., 1995; Feng et al., 2003; Hartemann et al., 1995;
Hauser et al., 1994; Kaw et al., 1973; Quensal & Mora,
1998; Scully & Zubairy, 1991; Singh et al., 2009; Singh,
2005). Electrons accelerated to relativistic energies have
been observed experimentally (Malka et al., 1997; 2002;
Mora & Quesnel, 1998; Modena et al., 1995; Umstadter
et al., 1995). These accelerated particles find numerous appli-
cations (Umstadter, 2001) in science such as a compact source
of X-rays and gamma-rays for laser-driven radiography,
nuclear processes driven by lasers (Gahn et al., 1998; Giulietti
et al., 2005; Norreys et al., 1999), laser wakefield accelerators,
and in medical science such as in the treatment of cancer.
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In the present work, the charged particle dynamics has
been studied in an inhomogeneous relativistically intense
field of laser. The inhomogeneity in the laser field is due
to the spatial variation of the laser intensity along the direc-
tion of propagation, which is characteristic of focused and
de-focused laser beams. The acceleration of a charged par-
ticle by the focused field of a laser pulse has been studied
previously (Kaw et al., 1973; Xiaoshan et al., 2012; Singh
et al., 2009). Singh et al. (2009) have numerically studied
the effect of polarization of the laser pulse on the particle dy-
namics, and have concluded that the maximum energy gain
of a particle gets enhanced for a circularly polarized as com-
pared to a linearly polarized laser pulse due to axial sym-
metry of the electromagnetic fields of a circularly polarized
laser pulse. Xiaoshan et al. (2012) instead of taking a
single pulse, have numerically studied particle motion in
the overlapping field of two focused linearly polarized
finite duration laser pulses. Based on numerical simulation,
Xiaoshan et al. (2012) have concluded that energy gained
by the particle can be enhanced considerably by suitable
choice of pulse lengths. In the above mentioned studies,
the conclusions on particle energy gain have been based on
numerical work. In our study, in addition to numerical simu-
lation of particle energy gain in the focused field of linearly
polarized finite duration laser pulse, we have given an
analytical understanding of our numerical results based on
a higher order adiabatic theory developed using Lie trans-
form perturbation method. Earlier analytical work in this
area by Kaw et al. (1973) corresponds to zeroth order of
the present work. In all the above works including ours, radi-
ation reaction effects on particle dynamics have been neg-
lected, as has been shown to be true for laser intensities as
large as 1022 Wcm−2 (a0∼ 500) (Mao et al., 2010).
In the absence of an inhomogeneity, the particle dynamics

has been derived earlier either by solving the relativistic
equation of motion directly (Acharya et al., 1993; Angus
et al., 2009; Gibbon, 2005; Hartemann et al., 1995; Kaw
et al., 1973; Ondarza & Gomez, 2004; Yang et al., 2011)
or by using the Hamilton-Jacobi formalism (Bourdier,
2009; Bourdier et al., 2005; Landau & Lifshitz, 1975; Sara-
chick et al., 1970). In this homogeneous case, particle motion
is associated with three constants of motion that allows an
exact integration of the problem analytically. The constants
of motion correspond to symmetries associated with the inde-
pendence of the Hamiltonian with respect to the two trans-
verse coordinates and to the longitudinal coordinate x and
the time t except through the combination t− x. From Ham-
iltonian dynamics and Livouville’s integrability theorem
(Arnold, 1988; Bourdier, 2009; 2005; Lictchenber & Liber-
mann, 1983; Tabor, 1989) it is known that a Hamiltonian de-
scribing a system with “n” degrees of freedom is completely
integrable if, “n” invariants are present to characterize a sol-
ution of its “2n” equations of motion. Thus, the homo-
geneous case is integrable with dynamical variables i.e, the
particle position and momentum expressed in terms of con-
stants of motion and laser vector potential.

Physically, the particle motion in a monochromatic plane
wave can be described in the following way. At the beginning
of the interaction, the particle, which is initially at rest is ac-
celerated along the electric field component of the laser field.
It acquires a relativistic velocity along the field direction in a
time much shorter than the period of the wave and is acted
upon by the magnetic field component of the laser field.
Under the effect of �v × �B force, the particle drifts with a rela-
tivistic velocity along the direction of laser propagation. But
due to its finite mass the particle gets slowly phase lagged
from the laser field and eventually the direction of field is re-
versed, which brings the particle back to rest. At the end of
each successive gyration the particle is displaced along the
direction of propagation without any net energy transfer
from the laser. For a finite duration laser pulse, which in-
cludes the light pressure effects, at the onset of pulse particle
interaction, particle is acted upon by a radiation pressure in
the rising front of pulse, which pushes the particle forward
along the direction of propagation. In the trailing part of
the pulse, direction of field is reversed, as a result of this
the radiation pressure retards the motion of a particle. So,
in this process there is no transfer of energy to the particle
as pulse slips past it.
In an inhomogeneous laser field, the particle dynamics is

devoid of the longitudinal constant of motion. As a result, the
total number of constants of motion is reduced by one, which
in turn makes the problem non-integrable. Thus, the particle
dynamics cannot be described in terms of constants of
motion and vector potential, as was possible previously.
However, it is shown (Kaw et al., 1973) that for the slow
variation in the laser intensity, the particle dynamics can be
expressed in terms of an adiabatic invariant. Slowness in
variation of the laser intensity is parameterized in terms of
adiabaticity parameter ε, which is defined as the ratio of gyra-
tion length of particle to scale length of variation in laser in-
tensity. In the adiabatic approximation i.e., ε<< 1, one can
separate the particle dynamics in terms of fast varying quiver
motion and phase averaged slow motion. Particle dynamics
corresponding to the fast motion is associated with an adia-
batic invariant, which in the present paper, is evaluated up
to second order in the adiabaticity parameter using the Lie
transform perturbation method (Boccaletti & Pucacco,
2002; Cary, 1981; Dragt & Finn, 1976; Deprit, 1969;
Kominis, 2008; Lichtenberg et al., 1983). In this method, a
canonical transformation (Bourdier, 2009; Goldstein, 1980;
Licherber & Libermann, 1983; Struckmeier, 2005) from
the lab variables to new phase averaged variables is carried
out, which simplifies the form of Hamiltonian. The new
phase averaged variables are expressed in terms of lab vari-
ables as an asymptotic series in the powers of adiabaticity
parameter. In this method, carrying out a transformation
from lab variables to phase averaged variables is equivalent
to averaging over fast motion. The generators for such a
transformation are derived and expressed in terms of Poisson
brackets, which are invariant under canonical transformation
and this makes the whole formalism canonically invariant.
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The problem is simplified on transforming from lab variables
to phase averaged variables. Finally, the problem is solved by
evolving the new phase averaged variables and subsequently
carrying out an inverse transformation from the phase aver-
aged variables to the lab variables. The variables as stated
above are expressed in the form of an asymptotic series in
the powers of adiabaticity parameter.
The organization of the paper is as follows: in Section 2,

the dynamics of a particle in the field of finite duration
laser pulse, which is spatially homogeneous, is derived
using Hamiltonian dynamics and canonical transformation.
These theoretical predictions are used to validate the results
obtained by numerical integration of the relativistic equation
of motion using Runge-Kutta (R-K) method with adaptive
step size. In Section 3, perturbed Hamiltonian is derived
for the inhomogeneous laser field. For slow variation in
laser intensity an adiabatic formalism is presented, which
is derived using Lie transform perturbation method.
In Section 4, the above derived adiabatic formalism is used
to study the acceleration of the charged particle by focused
finite duration laser pulse in vacuum. The energy estimates
obtained by numerically solving the relativistic equation of
motion for a focused light field are compared with the results
of adiabatic theory. Section 5, contains the summary and
main conclusion of the present work.

2. CHARGED PARTICLE DYNAMICS IN
HOMOGENEOUS LASER FIELD

The dimensionless Hamiltonian describing the motion of a
charged particle placed in a linearly polarized finite duration
laser pulse is given by,

H(�r, �P) =
����������������������������������
1+ P2

x + (Py − A(t − x))2 + P2
z

√
, (1)

with the followingnormalizationsH→H/mc2,Px,y,z→ Px,y,z/
mc, andA0→ eA0/mc

2, t→ ωt, r→ kr. The vector potential of
the laser pulse is chosen to be �A(�r, t) = A0f(ωt − kx)ŷ, where
f(ωt − kx) = Θ(δ(ωt − kx))P(ωt − kx), P is the oscillatory
part, Θ is the pulse shaping factor with δ = λ

L << 1. As
coordinates “y” and “z” are cyclic, therefore the correspond-
ing conjugate canonical momentum components (α) and Pz

are constants. This gives the “y” component of particle
momentum as

py = α− A(t − x). (2)

In the present geometry, the particle dynamics is confined in
x-y plane only, and there is no motion along z direction,
hence it is removed from the calculations hereinafter. On ca-
nonically transforming the old Hamiltonian to the new Ham-
iltonian using a type II generating function (Bourdier, 2009;
2005) defined as,

F2 = (t − x)P′
x. (3)

The transformation equation for the Hamiltonian is,

H ′ = H + ∂F2

∂t
= H + P′

x, (4)

with the transformed Hamiltonian H′ given by,

H′ =
���������������������������
1+ (P′

x)
2 + (P′

y − A(ξ))2
√

+ P′
x, (5)

and under canonical transformation the variables transform as,

Px = ∂F2

∂x
= −P′

x; ξ = ∂F2

∂Px
= (t − x). (6)

Since H′ does not explicitly depend upon time, it is a third
constant of motion and is denoted by Δ. In terms of old co-
ordinates, it can be written

Δ = Γ− Px; ( ∵ Px = px), (7)

where Px is the canonical momentum, px is the particle mo-
mentum, and Γ (the total energy of the particle) is the
value of the Hamiltonian given by Eq. (1). Using Eq. (1),
Eq. (2), and Eq. (7), particle momentum and position can
now be written in terms of constants of motion and vector
potential as

Px = 1− Δ2

2Δ
+ (α− A(ξ))2

2Δ
; x = x0+ ∫

ξ
ξ0

Px

Δ
dξ, (8)

py = (α− A(ξ)); y = y0+ ∫
ξ
ξ0

(α− A(ξ))
Δ

dξ. (9)

In the present work, the particle dynamics is explicitly
derived by choosing Θ= sech(δξ) to define the envelope
and P= sin(ξ) as oscillatory part of the finite duration laser
pulse. The initial conditions are parameterized in terms of
constants of motion Δ and α. Assuming the particle to be
initially at rest before the arrival of laser pulse, which corre-
sponds to Δ= 1 and α= 0, the expressions for particle pos-
ition and momentum takes the form

py + A0sech(δξ)sin(ξ) = 0, (10)

y− y0 =∫
∞
−∞ pydξ = 0. (11)

From the above expression it can be seen that at the end of the
interaction, the transverse component of momentum is zero
and there is no displacement of a particle in the transverse di-
rection. On substituting the initial conditions the longitudinal
position and momentum are expressed as

Px = A2
0sech

2(δξ)sin2(ξ)
2

, (12)

x− x0 =∫
∞
−∞ Pxdξ = A2

0/(2δ). (13)

The integral containing the oscillatory motion does not contrib-
ute and is set equal to zero. At the end of the interaction, the
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longitudinal component of momentum is zero and there is finite
displacement in particle position which is directly proportional-
to the laser intensity A0

2 and inversely proportional to delta (δ).
The analytical predictions obtained above are used for va-

lidating the results obtained by numerically integrating the
relativistic equation of motion. The numerical integration is
carried out using R-K method with an adaptive step size con-
trol for the following values of amplitude A0= 5 and pulse
shaping factor δ= 1/15. In Figure 1, the particle position
and momentum are plotted as function of the variable ξ.
From Figures 1a and 1b, as also told in the analytical predic-
tions, both longitudinal and transverse component of the mo-
mentum are zero at the end of interaction and hence no net
transfer of energy to the particle takes place. The particle pos-
ition along longitudinal and transverse directions are plotted
in Figures 1c and 1d, it is shown that there is no sideways dis-
placement of the particle along the transverse direction. The
shift in the position of a particle along the direction of propa-
gation is on the order of A0

2 /2δ, which agrees with analytical
results. The trajectory of the particle is plotted in Figure 2a, it
is a result of the longitudinal and transverse oscillatory
motion along with a finite drift in the direction of propa-
gation. Over one laser cycle, the particle trajectory resembles

the figure of the number eight when viewed in an average
frame of reference drifting with the particle (Gibbon, 2005;
Sarachick & Schappert, 1970; Yang et al., 2011). It is further
shown that the gyration length and transverse excursion am-
plitude increases with each successive gyration. This corre-
sponds to the accelerating phase of the laser pulse reaching
the maximum at the center of the pulse. Beyond this point,
the particle due to its finite mass is out run by the wave
and goes into retarding phase of the laser pulse. In the retard-
ing phase of a laser pulse, the particle decelerates and comes
back to rest while returning all its energy back to the laser
pulse. The momentum space of the particle is shown in
Figure 2b, which is parabolic representing the oscillation in
particle energy. The total particle energy is shown in Figure 2c,
which shows that the energy at the end of the pulse particle
interaction is equal to its initial value. This confirms that
there is no net transfer of energy to the particle. The new
transformed Hamiltonian is shown in Figure 2d, which is
the constant of motion. The particle dynamics has been de-
scribed simply in terms of the laser vector potential and the
constants of motion. The good agreement of the numerical
results with the analytical predictions validates the numerical
integration scheme for further applications.

Fig. 1. (Color online) Description of evolution of particle position and momentum in the field of a finite duration laser pulse as a function
of variable ξ for parameter a= 5 and δ= 1/15 using sech(δξ) envelope. (a)–(c). Normalized axial component of momentum and position.
In (b)–(d). Normalized transverse component of momentum and position.

V. Sagar et al.442

https://doi.org/10.1017/S0263034612001139 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034612001139


3. INHOMOGENEOUS LASER FIELD

In this section, we consider the particle dynamics in an inhomo-
geneous laser field,which isdue to slowspatial variationof laser
intensity along the direction of propagation of laser pulse. In the
presence of inhomogeneity, the vector potential of the laser
pulse is given by �A(�r, t, εx) = a(εx)P(δ(t − x))Θ(t − x)ŷ,
where as defined earlier, the slowness parameter ε is the ratio
of particle gyration length to the scale length of intensity vari-
ation. For the sake of generality, the functional form of laser
amplitude a(εx), has been kept arbitrary. The dimensionless
Hamiltonian is given by,

H(�r, �P) =
���������������������������������
1+ P2

x + (Py − A(εx, (t − x))2
√

. (14)

The Hamiltonian is cyclic in “y” co-ordinate, hence the conju-
gate canonical momentum is conserved and is expressed as,

py + A(εx, (t − x)) = α. (15)

Using the type II generating function (Lictenber&Liebermann,
1983) for canonical transformation, which is defined by

F2 = (t − x)Jξ + xJη, (16)

the transformed Hamiltonian is given by

H′(ξ, y, Jξ, Py; εη, Jη)

=
���������������������������������������
1+ (− Jξ + Jη)2 + (Py − A(εη, ξ))2

√
+ Jξ. (17)

HamiltonianH′ is cyclic in “t” and thus is a constant of motion
given by Δ′.

Under canonical transformation the variables transform as

Px = ∂F2

∂x
= −Jξ + Jη; ξ = ∂F2

∂Jξ
= (t − x); η = ∂F2

∂Jη
= x.

(18)

The corresponding Hamilton’s equations may be expressed as

dJξ
dt

= − ∂H′

∂ξ
= − 1

2Γ
∂(α− A(εη, ξ))2

∂ξ
, (19)

dJη
dt

= − ∂H′

∂η
= − 1

2Γ
∂(α− A(εη, ξ))2

∂η
, (20)

Fig. 2. (Color online) (a) The trajectory of the particle in the field of a finite duration laser pulse. (b) Momentum space of the particle. (c):
Plot of total particle energy as a function of variable ξ. (d) Transformed time independent Hamiltonian.
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dξ

dt
= ∂H′

∂Jξ
= −(− Jξ + Jη)+ Γ

Γ
= Δ′ − Jη

Γ
, (21)

dη

dt
= ∂H′

∂Jη
= −Jξ + Jη

Γ
. (22)

On expressing the new Hamiltonian in terms of old coordi-
nates by substituting the value of Jξ from Eq. (18), Jη is ob-
tained from Eq. (20), Eq. (21), and Eq. (22) as,

Jη = − ∫
∂(α− A(εη, ξ))2

2(Δ′ − Jη)∂η

[ ]
dξ. (23)

In terms of the old coordinates, the Hamiltonian is expressed as,

H′ = Δ− ε ∫
∂(α− A(εx, ξ))2

2Δ∂(εx)

[ ]
dξ. (24)

Thus, in the presence of an inhomogeneity, the previously de-
fined Δ is no longer an exact constant of motion. However, in
the adiabatic approximation i.e., ε<< 1, Δ is an adiabatic in-
variant and the particle dynamics can be studied adiabatically.
The particle position and momentum can be described in
terms of the laser vector potential, the constant of motion α,
and the adiabatic invariant as was done previously for the
homogeneous case. In the present problem, the adiabatic invar-
iant evolves and its evolution is obtained by solving the follow-
ing Hamilton’s equations,

Δ̇ = − ∂H′

∂ξ
= ε

1
2Δ

∂(α− A)2

∂(εx)
, (25)

ξ̇ = ∂H′

∂Δ
= 1+ ε ∫

1

2Δ2

∂(α− A)2

∂(εx)
dξ, (26)

corresponding to the Hamiltonian given by Eq. (24) and along
with the particle position. In the present form, the above
equation cannot be solved due to the presence of both slow
and fast variables. The solution can be obtained by transfrom-
ing the Hamiltonian given by Eq. (24) into a simpler form and
solving the problem in terms of the new coordinates and carry-
ing out an inverse transfromations. Using the method of Lie
transform, which utilizes the Deprit perturbation series (Bocca-
letti & Pucacco, 2002; Cary, 1981; Dragt & Finn, 1976; Deprit,
1969; Kominis, 2008; Lichtenberg et al., 1983), generators of
such a tranfromations are derived, which transfrom the present
set of lab variables into phase avaeraged slow variables, in
terms of which the new Hamiltonain is simplified. These
phase averaged variables are evolved using the phase averaged
Hamiltonian and the solutions in terms of lab variables is ob-
tained by carryiong out an inverse transfromation. The trans-
formations derived are on the orders of adiabaticity parameter
ε and in the present work are derived till second order of adia-
baticity parameter. The method described here is general and
can be extended to higher orders. The summary of basic aspects
of Lie-transforms essential for the present work along with
Deprit perturbation series is given in Annexure-I.

As per the theory of Lie transform, the evolution operator
T can be represented by T= exp(−L), where Lf= [w, f] rep-
resents its operation upon any function f (X, t) with [,] denot-
ing the Poisson brackets and function w(X ) is the Lie
generator. The inverse evolution operator T−1 is given by
T−1= exp(L). For the second order adiabatic theory, the
Lie generators to second order are expressed as,

w = w10 + εw11 + εw2, (27)

where w1 and w2 are first and second order Lie generators.
For the sake of clarity of presentation, the derivation of
these generators is fully illustrated in Annexure(II), and as
shown they are given by

w10 = a′aΘ2(δξ)
8Δ

cos(2ξ);

w11 = ε
(a′2 + a′′a)Θ2(δξ)

16Δ
sin(2ξ),

w2 = −ε
a′aΘ2(δξ)

8Δ
cos2ξ ∫

a′aΘ2(δξ)dξ

Δ2

+ (a′a)2Θ4(δξ)

16Δ3 sin(2ξ). (28)

On substituting the various terms, the Lie generator to second
order in the adiabaticity parameter takes the following form

w = a′aΘ2(δξ)
8Δ

cos(2ξ)+ ε
(a′2 + a′′a)Θ2(δξ)

16Δ
sin(2ξ)

− ε
a′aΘ2(δξ)

8Δ
cos2ξ ∫

a′aΘ2(δξ)dξ

Δ2 + (a′a)2Θ4(δξ))

16Δ3 sin(2ξ).

(29)

The transformation of the lab variables to the slow phase
averaged variables is obtained by the operation of the evol-
ution operator T, which to second order in ε is given by

�Δ = TΔ,
�Δ = T0Δ+ T1Δ+ T2Δ,

�Δ = Δ− L1Δ+ 1
2
L21Δ− 1

2
L2Δ,

�Δ = Δ− ε[w10, Δ]− ε2[w11, Δ]+ ε2

2
[w10, [w10, Δ]]

− ε2

2
[w20, Δ]. (30)

By computing and substituting the values of Poisson brack-
ets, it is expressed as

�Δ = Δ+ ε
a′aΘ2(δξ)

4Δ
sin(2ξ)− ε2

(a′2 + a′′a)Θ2(δξ)2

8Δ
× cos(2ξ)− ε2,

(a′a)2Θ4(δξ)

32Δ3 − ε2
a′aΘ2(δξ)

8Δ
sin(2ξ) ∫

a′aΘ2(δξ)dξ

Δ2 . (31)
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Similarly, the phase ξ is transformed as

�ξ = ξ− ε[w10, ξ]− ε2[w11, ξ]+ ε2

2
[w10, [w10, ξ]]

− ε2

2
[w20, ξ]. (32)

By computing the various Poisson brackets and substitut-
ing them gives the required series for averaged phase

�ξ = ξ− ε
a′aΘ2(δξ)

8Δ2 cos(2ξ)− ε2
(a′2 + a′′a)Θ2(δξ)

16Δ2 sin(2ξ)

+ ε2
(a′a)2Θ4(δξ)

128Δ4 sin(4ξ)+ ε2(
a′aΘ2(δξ)

16Δ2 cos(2ξ)

× ∫
a′aΘ2(δξ)dξ

Δ2 + 3(a′a)2Θ4(δξ)

32Δ3 sin(2ξ)). (33)

Thus the lab variables are canonically transformed to new
phase averaged variables, which is equivalent to performing
average over fast variables up to second order in ε. The above
derived asymptotic series are not convergent and are valid in
the limit ε<< 1. With the increase in the value of adiabati-
city parameter ε, the adiabatic condition becomes harder to
satisfy and hence requires higher order terms of the series
to improve it. The series becomes fully divergent when the
adiabaticity parameter approaches the limit ε≈ 1. These cal-
culations are accurate up to an order of (εn), where n is the
order of invariance calculation and for the present study re-
stricted up to n= 2.
The transformed phase averaged Hamiltonian to the

second order in adiabaticity parameter in terms of phase aver-
aged variables is given by,

�H = �H0 + ε�H10 + ε2 �H11 + ε2 �H2, (34)

where H0, H1, and H2 are unperturbed Hamiltonians, all
computed until second order in ε. The various terms have
been derived in Annexure-II, and where they are given by

�H0 = �Δ; �H10 = ε ∫
a′aΘ2(δ�ξ)

2�Δ
d�ξ,

�H11 = 0; �H2 = (a′a)2Θ4(δ�ξ)

32�Δ3 .

On substituting various terms the new transformed phase
averaged Hamiltonian is expressed as

�H = �Δ− ε ∫
a′aΘ2(δ�ξ)

2�Δ
d�ξ+ ε2

(a′a)2Θ4(δ�ξ)

32�Δ3 . (35)

The variables (�Δ, �ξ) are evolved using the Hamilton’s
equations correponding to the averaged Hamiltonain
given by Eq. (35). The particle position for the averaged
case is obtained from �Δ, as described earlier for the homo-
geneous case. The inverse transformation from the phase

averaged variables to lab variables is carried out using in-
verse evolution operator T−1. The inverse evolution oper-
ator T−1 is expressed in terms of the Lie operator as
asymptotic series in ε. It is important to mention that the
Lie-transformation involves an operation on the functions,
rather than the variables. The arguments of the functions
are just dummy variables and hence variables in the Lie
generator can be simply replaced by averaged variables.
The operation of the inverse evolution operator T−1 is
given by

Δ = T−1�Δ,

Δ = T−1
0

�Δ+ T−1
1

�Δ+ T−1
2

�Δ,

Δ = �Δ+ L1�Δ+ 1
2
L21�Δ+ 1

2
L2�Δ,

Δ = �Δ+ ε
[
w10, �Δ

]+ ε2
[
w11, �Δ

]+ ε2

2

[
w10,

[
w10, �Δ

]]

+ ε2

2
[w20, �Δ]. (36)

This leads to

Δ = �Δ− ε
a′aΘ2(δ�ξ)

4�Δ
sin(2�ξ)+ ε2

(a′2 + a′′a)Θ2(δ�ξ)

8�Δ

× cos(2�ξ)− ε2
(a′a)2Θ4(δ�ξ)

32�Δ3

+ ε2
a′aΘ2(δ�ξ)

8�Δ
sin(2�ξ) ∫

a′aΘ2(δ�ξ)d�ξ
�Δ
2 . (37)

Similarly, the expression for inversion of variable �ξ is
given by

ξ = �ξ+ ε[w10, �ξ]+ ε2[w11, �ξ]+ ε2

2
[w10, [w10, �ξ]]

+ ε2

2
[w20, �ξ]. (38)

By substituting the value of the Poisson brackets, one ob-
tains

ξ = �ξ+ ε
a′aΘ2(δ�ξ)

8�Δ2 cos(2�ξ)− ε2
(a′2 + a′′a)Θ2(δ�ξ)

16�Δ2 sin(2�ξ)

+ ε2
(a′a)2Θ4(δ�ξ)

128�Δ4 sin(4�ξ)− ε2
a′aΘ2(δ�ξ)

16�Δ2 cos(2�ξ)

(

× ∫
a′aΘ2(δ�ξ)d�ξ

�Δ
2 + 3(a′a)2Θ4(δ�ξ)

32�Δ3 sin(2�ξ)

)
. (39)

The above derived expressions lab variables obtained car-
rying inverse transformation expressing lab variables in
terms of the slow variables. This is equivalent to Hamil-
ton’s equations of motion corresponding to Hamiltonian
given by Eq. (25) and Eq. (26) to an accuracy of ε2.
Thus the adiabatic theory takes into account the effect of
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fast variation on particle motion in the presence of an
inhomogeneity in the laser field.

4. ACCELERATION OF CHARGED PARTICLE IN
VACUUM BY RELATIVISTICALLY INTENSE
FINITE DURATION LASER PULSE

In this section, we consider an one-dimensional model for
vacuum acceleration of a charged particle in the focused
laser field. The focused field of laser is described by a slow
spatial variation of laser intensity along the direction of its
propagation. In the focal region, the laser intensity is defined
by a2= δf (F± x), for x ≶ 0. The peak intensity at the focal
point is given by A0

2= δfF, where f is an external parameter
and the intensity drops to zero in distance of F/λ wavelengths
on either side of the focus. Previously, the problem was ana-
lytically investigated by Kaw et al. (1973) using zeroth
order adiabatic approximation, which corresponds to the con-
sideration of only the first term of the series given by Eq. (37)
and Eq. (38). In their work, optimum initial conditions were
derived for maximum energy gain by the particle in terms of
above defined parameters f, δ, A0

2. In the present work, the pro-
blem has been revisited and studied by numerically integrating
the exact equation of motion. The exact numerical results are
compared with the results of an adiabatic theory, which we

have found in first order. In this problem, using inverse trans-
formations lab variables are described in terms of slowly vary-
ing variables, which includes fast motion to first order. The
final energy gain is predicted in terms of these variables.
In the simulation, we have used sech(δξ) to define the pulse

envelope, the particle is assumed to be at rest before the arrival
of laser pulse and placed very close to focus. The final energy
gain of the particle at the point when the laser intensity drops
to zero is given by Γ≃ 1/(2Δm), where the Δm is the minimum
value of Δ at that point. The results of numerical simulation are
presented in the Figure 3, the energy gain of the particle is
studied as function ofparameter f keeping other parameters δ
and peak laser intensity A0

2 fixed. On the basis of the numerical
results, the study can be divided in the following three differ-
ent parameter regimes, f< 1, f≈ 1 and f> 1.
In region 1, for f< 1, the results of this regime are pre-

sented in Figure 4, the energy gain by a particle depends
upon parameter f only. This can also be inferred from the re-
sults plotted in Figures 7 and 8 as well containing numerical
and theoretical results. The dependence of energy on f along
with the fitting function is given in the figure. In this regime,
even though the adiabatic condition is very well satisfied and
described by zeroth order adiabatic approximation only, it is
not suitable for forward energy gain. This is in accordance
with the predictions given in Kaw et al. (1973).

Fig. 3. (Color online) Plot for energy gain by the particle in the laser field as function of parameter f at different laser intensities A2
0 and 1/δ.
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In region 2, f≈ 1, results of the simulation are given in
Figure 5, the dependence of energy gain by a particle on
laser intensity A0

2 and δ is studied keeping the value of f con-
stant. It can be seen that the final energy gain depends upon
the laser intensity A0

2 and is independent of delta (δ). Using a
fitting function, the dependence of energy gain on laser am-
plitude is established and shown along with the values of the
fitting parameters. The energy gain approximately increases
as a2/3 with the laser amplitude. Thus, the energy gain of
the particle increase at f≈ 1, results are again in good quali-
tative and quantitative match with the previous predictions of
the zeroth order adiabatic theory (Kaw et al., 1973).
For region 3, corresponding to f> 1, a parametric study is

done to establish the dependence of the final energy gain on
the peak laser intensity, delta (δ) and parameter f. In
Figure 6, the dependence of the particle energy gain on
the parameter delta (δ) is studied for different laser intensi-
ties with the value of f kept constant. From the results it is
evident that the regime can be further divided into region
A0≤ 8 and A0≥ 8. In region A0≤ 8, the energy gain by
particle is nearly independent of δ but depends only upon
the laser intensity. For A0≥ 8, the energy gain particle de-
pends upon the parameterdelta (δ) as well as on the laser in-
tensity A0

2.
In Figure 7, the numerical results of the parametric study es-

tablishing dependence of energy gain on parameter f at

different laser intensities are compared with adiabatic results.
In this study, value delta (δ) is kept constant and it is found
that for a fixed laser intensity there is disagreement between
the exact numerical and zeroth order results. Further at lower
intensities the variation is smooth and is as per the predictions
of zeroth order theory. However, at higher intensity the dis-
agreement starts early for lower values of parameter f. The ir-
regularities in the final energy gain of a particle can be
explained by including the fast quiver motion till first order
in ε, as this takes into account the information of phase at
which the interaction between the laser and particle ends.

The parametric study for dependence on energy gain on
parameter f at different delta (δ) values is given in Figure 8,
in this study, the laser intensity A0

2 is kept constant. By com-
paring the numerical results with adiabatic theory, it is seen
that for given δ value, at higher f the energy gain is better pre-
dicted by the first order adiabatic theory. The energy predic-
tion improves at lower values of δ, which corresponds to long
pulses. Thus, from the above results we can infer that zeroth
order adiabatic theory is valid for which f− 1> 0 but not
very large and smaller values of delta (δ).

In Figure 9, the final energy gain of the particle is studied as
function of laser intensity A0

2 for a given value of the par-
ameters f and δ. It is evident from the results that the energy
gain depends upon the laser intensity and there is a regime
in which the energy gain increases linearly with laser

Fig. 4. (Color online) Plot for particle energy gain as function of f for the region f< 1.
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intensity. For the linear regime, the energy gain for a given
laser intensity is higher for higher values of parameter f. In
Figure 9, the energy scales are above ( f− 1)A0

2 /f 2, which
is in close agreement with the previous results (Kaw et al.,
1973). By further increasing the laser intensity the gain no
longer remains linear. Comparing the Figure 9, we see that
for higher values of f, the disagreement between the analytical
prediction and exact numerical results begins at the lower
values of intensity A0

2. This is so because with increase in
the value of f, the scale length of intensity variation reduces
as result ε∼ 1. Thus, the adiabatic condition becomes
harder to satisfy and the gain cannot be predicted using adia-
batic theory.

5. SUMMARY AND CONCLUSIONS

Particle motion has been studied in the inhomogeneous laser
field utilizing the canonical transformation and the method of
Lie transform. An adiabatic formalism is developed for
studying the effect of slow and gradual perturbation of the
particle motion in the laser field. It is used to construct and
calculate higher order approximations of adiabatic invariants
for the near-integrable Hamiltonian system. For a slow vari-
ation in the laser intensity, which corresponds to ε<< 1, the
particle dynamics is associated with an adiabatic invariant.

The dynamical variables i.e., particle position and momen-
tum, are described by one of the constants of motion and
the adiabatic invariant. It is found that for the present pro-
blem, the adiabatic invariant evolves and the Hamilton’s
equation describing its evolution cannot be solved exactly
in the given form. The evolution is obtained by transforming
the old variables to the new variables in terms which the
Hamiltonian takes a simple form. By solving the correspond-
ing Hamilton’s equations and carrying out an inverse trans-
formation, the evolution of the adiabatic invariant is found.
The transformations are carried out by using the Lie-

generator, which are derived and represented in the form of an
asymptotic series in the powers of adiabaticity parameter ε.
The transformations generated by these operators are canonical.
The method described here is general and can be extended for
the calculation of higher orders. The new set of phase averaged
slow variables are derived by the operation of forward
Lie-operator T and are in the form an asymptotic series in
powers of the adiabatic parameter in terms of old co-ordinates.
These series describing the transformed variables are non-
convergent, requires higher orders of ε, which fully diverge in
the limit ε≈ 1. In terms of these phase averaged variables the
form of the Hamiltonian is simplified and thus the Hamilton’s
equations are simpler to solve. The inverse transformation are
derived using the inverse Lie-operator T−1 transforming the

Fig. 5. (Color online) Plot of particle energy gain as a function of laser intensity A2
0, in the region f≈ 1 for fixed value of 1/δ.
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phase average variables to the lab variables. The evolution of the
new phase averaged variable and the application of inverse
transformation gives the required solution.
Further, the adiabatic theory is used to estimate the energy

gain of the particle in the field of focused finite duration pulse.
It is shown that such an acceleration scheme can be used to gen-
erate electrons in the MeV range. The theoretical predictions on
the basis of newly formulated adiabatic theoryare in good agree-
ment with the results obtained by solving the exact equation of
motion. It is shown that in a process of continuous energy gain
the gyration length can become of the order of scale length of
intensity variation. This corresponds to a non-adiabatic limit
(i.e., lg∼ ln is ε≈ 1), beyond which the energy gain is non-
adiabatic and can not be estimated by adiabatic theory.

6. ANNEXURE-I: METHOD OF LIE TRANSFORM
AND DEPRIT’S PERTURBATION SERIES
(BOCCALETTI & PUCACCO, 2002; CARY, 1981;
DRAGT AND FINN, 1976; DEPRIT, 1969;
KOMINIS, 2008; LICHTENBERG &
LIEBERMANN, 1983)

The time evolution of any function f(X,t) from t0→ t is given by

f (X, t) = PH(t0 → t)○f (X0, t0),

where X0= X(t0) are the initial conditions and PH (t0→ t) is
the time evolution operator. The evaluation of PH (t0→ t),
which is equivalent to solving the equations of motion,
may not be possible for the original choice of variables.
The Lie transforms theory is used to map the phase space
in X onto the phase space spanned by the new set of variables
Y. The canonical transformation T(X, t) for this mapping is
such that Y= T(X, T).X, where T(X, t)= exp[−L(X, t)] with
L(X, t) being the lie operator. L(X, t) is obtained from the gen-
erating rating function w(X, t) such that L.f= [w, f]PB where
[,] denotes the Poisson brackets in X phase space. The
transformation is chosen in such a way that the new Hamil-
tonian �H(Y , t) with the corresponding time evolution oper-
ator P�H(t0 → t)is easier to evaluate. An important and
basic property of Lie transform operator is that it generates
canonical transformations and that it commutes with any
function of the space variables. The latter property implies
that the evolution of f (X0, t0) can be obtained by transforming
to new variables set Y0, applying the time evolution operator
P�H(t0 → t) to the transformed function back to the original
variables X,

f (X, t) = T(X0, t0) ○ P�H(t0 → t) ○ T−1(X0, t0) ○ f (X0, t0).

The above described procedure apart from being applicable

Fig. 6. (Color online) Plot for particle energy gain as function of 1/δ at different laser intensities A2
0 for fixed value of parameter f.
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to integrable systems, also serves as perturbation method for
solving approximately near integrable systems in which the
Hamiltonian has a small non-integrable part on the order of
ε. In such cases, the canonical transformation can be con-
structed as a power series of ε by utilizing the method of
the Deprit (Boccaletti & Pucacco, 2002; Cary, 1981; Dragt
& Finn, 1976; Deprit, 1969; Kominis, 2008). According to
this method, the old Hamiltonian H, the new Hamiltonian
�H and the transformation generator T along with the Lie gen-
erator expanded in power series of ε and may be presented by

H =
∑∞
n=0

εnHn, (40)

�H =
∑∞
n=0

εn �Hn, (41)

T =
∑∞
n=0

εnTn, (42)

w =
∑∞
n=0

εnwn+1. (43)

Where the expansion of w has been appropriately chosen

in orders to generate the identity transformation To= I to
the lowest order. The nth order forward and backward trans-
formation generators are given by

Tn = − 1
n

∑∞
n=0

TmLn−m, (44)

T−1
n = 1

n

∑n−1

m=0

Ln−mT
−1
m , (45)

upto fourth order are given below

To = I, (46)

T1 = −L1, (47)

T2 = − 1
2
L2 + 1

2
L21, (48)

T3 = − 1
3
L3 + 1

6
L2L1 + 1

3
L1L2 − 1

6
L31. (49)

Fig. 7. (Color online) Numerically obtained final energy gain of the particle is compared with analytical results. The parametric study is
for the final energy gain of the particle as function of variable f, at different peak laser intensities A2

0 for a fixed pulse length of laser.
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The inverse operator is given by

T−1
o = I, (50)

T−1
1 = L1, (51)

T−1
2 = 1

2
L2 + 1

2
L21, (52)

T−1
3 = 1

3
L3 + 1

6
L1L2 + 1

3
L2L1 + 1

6
L31. (53)

The equations providing the Lie generator w and the new
Hamiltonian �H, to third order can derived from the general
perturbation equation

∂w1

∂t
+ L1Ho = (�H1 − H1), (54)

∂w2

∂t
+ L2Ho = 2(H2 − H2)− L1[�H1 + H1], (55)

∂w3

∂t
+ L3Ho = 3(�H3 − H3)− L1[�H2 + 2H2]

− L2[�H1 + 1
2
H1]− 1

2
L21H1, (56)

the general nth order perturbation equation can be written as

∂wn

∂t
+ LnHo = n(�Hn − Hn)−

∑n−1

m=1

[
Ln−m �Hm + mT−1

n−mHm

]
. (57)

By selecting the arbitrary function �Hm so that the angle in-
dependent part of the right-hand side is eliminated. Further
for the case of adiabatic perturbation the Lie operator is sep-
arated in the form of fast and slow component. That is ex-
pressed in the following manner

L = Lf + εLs, (58)

Lf = ∂wn

∂ξ
∂
∂Δ

− ∂wn

∂Δ
∂
∂ξ

( )
, (59)

Ls =
∑
i

∂wn

∂(εqi)
∂

∂(εpi)
− ∂wn

∂(εpi)
∂

∂(εqi)

[ ]
, (60)

here w = w(ξ, Δ, εp, εq, εt). As can be seen from the above
expressions Tn

−1 is given in terms of the coefficients of
power series expansion of Lf and Ls as an nth order poly-
nomial in ε. The term ∂wn

∂t in the nth-order perturbation
equation is itself of the order ε: ∂wn

∂t → ε ∂wn
∂(εt). One of the pro-

cedures for solving this equation is to expand wn and �Hn as

Fig. 8. (Color online) Numerically obtained final energy gain of the particle is compared with analytical results. The parametric study is
for the final energy gain of the particle as function of variable f, for different pulse lengths 1/δ, keeping the peak laser intensity fixed.
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power series in ε.

wn =
∑∞
k=0

εkwnk, (61)

and equate the like powers of ε. This gives a chain of
equations which can be solved successively for wn0,wn1···.
At each step in the chain, a corresponding �Hnk is chosen to
eliminate the secular term in the fast variable ξ. The
method is equivalent to other methods of carrying out the
averaging. It is systematic in that it automatically separates
the fast and slow variables by order ε, thus allowing an aver-
age over the fast variable in any order to eliminate the secular
terms.

7. ANNEXURE 2: CALCULATION OF HIGHER
ORDERS OF ADIABATIC INVARIANCE

Derivation of Generators of canonical transformation: In
this section, explicit calculations for deriving the generator
of canonical transformation to second order is presented.
The generators are derived using the previously described
Lie transformation method, which is based on Deprit
(Boccaletti & Pucacco, 2002; Cary, 1981; Dragt & Finn,
1976; Deprit, 1969; Kominis, 2008; Lichtenberg et al.,
1983) series method. The canonical transformation of the

variables is brought about by these generators. As a starting
point for the calculations we consider the Hamiltonian
derived in Section 2 for driving these generators,

H′ = Δ− ε ∫
∂(α− A(εx, ξ)2

2Δ∂(εx)

[ ]
dξ. (62)

In the present case, Θ (δξ)= sech(δξ), P(ξ)= sin(ξ) and for
simplicity we set α= 0.
Zeroth – Order: In zeroth order the perturbation equation

is given by

�H0 = H0 = �Δ. (63)

First Order: First order correction to second order(ε2)
Hamiltonian corresponding to fast motion is given by,

w1 = w10 + εw11. (64)

Using the first order perturbation equation,

∂w1

∂t
+ L1Ho = (�H1 − H1). (65)

As there is no explicit dependence on time, the first term on
the left-hand side is zero. Hence, re-writing the equation with
H0= Δ= Γ− px. Substituting the value of transformed

Fig. 9. (Color online) Parametric study for particle energy gain as a function of peak laser intensity A2
0, at different values of f and fixed

value pulse length.
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unperturbed Hamiltonian H0 from Eq. (5) in the following
equation and solving with Δ and (t− x) as independent
variables,

∂w10

∂ξ
∂H0

∂Δ
− ∂w10

∂Δ
∂H0

∂ξ

( )
+ ε

∂w11

∂ξ
∂H0

∂Δ
− ∂w11

∂Δ
∂H0

∂ξ

( )

+ ε
∂w10

∂(εx)
∂H0

∂px
− ∂w10

∂px

∂H0

∂(εx)

( )
= �H10 + ε�H11 − H1

( )
. (66)

Separating in the powers of ε as

∂w10

∂ξ
= �H10+ ∫

a′aΘ(δξ)2

2Δ
dξ− ∫

a′aΘ(δξ)2cos(2ξ)dξ
2Δ

,

∂w11

∂ξ
= �H11 + ∂w10

∂(εx)
.

These equations can be solved by removing the secular
part by equating it to arbitrary constant �H10 and setting it
to zero. In the absence of second order secular term in the
Hamiltonian the arbitrary constant �H11 = 0 is set equal to
zero. While considering fast motion for δ<< 1 we can write

∫
a′aΘ(δξ)2cos(2ξ)dξ

2Δ
≈

a′aΘ(δξ)2

2Δ
sin(2ξ)

2
,

thus we have

w1 = a′aΘ(δξ)2

2Δ
cos(2ξ)

4
+ ε

(a′2 + a′′a)Θ(δξ)2

2Δ
sin(2ξ)

8
, (67)

�H = �H0 + ε�H1, (68)

�H = �Δ− ∫
a′aΘ(δξ)2dξ

2�Δ
. (69)

Second – Order: For second order w2 the perturbation
equation is given by,

∂w2

∂t
+ L2Ho = 2(�H2 − H2)− L1[�H1 + H1], (70)

second order require only w2= w20, for the present case
H2= 0. Re-writing the above equation we have

[w20, H0] = 2�H2 − [w10, (�H1 + H1)],

re-writing it we have,

∂w20

∂ξ
∂H0

∂Δ
− ∂w20

∂Δ
∂H0)
∂ξ

( )
= 2�H20

− ∂w10

∂ξ
∂(�H1 + H1)

∂Δ
− c∂w10∂Δ

∂(�H1 + H1)
∂ξ

( )
,

on calculating various terms of the Poisson of the brackets we

have,

∂(2�H1 + {H1})
∂ξ

= a′aΘ2(δξ)
2Δ

cos(2ξ),

∂(2�H1 + {H1})
∂Δ

= ∫
a′aΘ(δξ)2dξ

Δ2 − a′aΘ(δξ)2

4Δ2 sin(2ξ).

Here the terms inside the curly bracket signify fast terms and
on substituting the various terms,

∂w20

∂ξ
= 2�H20 − (a′a)2Θ(δξ)4

16Δ3 + a′aΘ2(δξ)
4Δ

sin(2ξ)

× ∫
a′aΘ2(δξ)dξ

Δ2 .

The secular term can be removed by equating it to arbitrary
constant

2�H20 − (a′a)2Θ(δξ)4

16Δ3 = 0.

Thus second order generator is given as,

w20 = − a′aΘ2(δξ)
8Δ

cos(2ξ) ∫
a′aΘ(δξ)2dξ

Δ2

+ (a′a)2Θ4(δξ)

16Δ3 sin(2ξ).

Thus we have the averaged and the oscillatory Hamil-
tonian to second order given by,

�H = �Δ− ε ∫
a′aΘ2(δ�ξ)

2�Δ
d�ξ+ (a′a)2Θ4(δ�ξ)

32Δ3 . (71)

The generator of the canonical transformation to second
order is given by,

w = w10 + εw11 + εw20,

w = a′aΘ2(δξ)
8Δ

cos(2ξ)+ ε
(a′2 + a′′a)Θ2(δξ)

16Δ
sin(2ξ),

− ε
a′aΘ2(δξ)

8Δ
cos2ξ ∫

a′aΘ2(δξ)dξ

Δ2

+ (a′a)2Θ4(δξ))

16Δ3 sin(2ξ). (72)
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