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Supercritical granular flow through a linear contraction on a smooth inclined plane is
investigated by means of experiments, theoretical analysis and numerical simulations.
The experiments have been performed with three size classes of spherical glass beads,
and poppy seeds (non-spherical). Flow states and flow regimes are categorized in the
phase space spanned by the supercritical Froude number and the minimum width
of the contraction. A theoretical explanation is given for the formation of steady
reservoirs in the contraction observed in experiments using glass beads and water.
For this purpose, the classical, one-dimensional shallow-water theory is extended to
include frictional and porosity effects. The occurrence of the experimentally observed
flow states and regimes can be understood by introducing integrals of acceleration.
The flow state with a steady reservoir arises because friction forces in the reservoir
are much smaller than in other parts of the flow. Three-dimensional discrete-particle
simulations quantitatively agree with the measured granular flow data, and the crucial
part of the theoretical frictional analysis is clearly confirmed. The simulations of the
flow further reveal that porosity and frictional effects interact in a complicated way.
Finally, the numerical database is employed to investigate the rheology in a priori
tests for several constitutive models of frictional effects.

1. Introduction
In contrast to ‘classical’ fluid dynamics, the governing constitutive equations

describing the dynamics of granular materials are not well-known. This paper records
several approaches attempted (often simultaneously) to predict and understand
granular dynamics. These include: (asymptotic) continuum theories based on kinetic
theory of granular particles (e.g. Lun et al. 1984; Gray, Tai & Noelle 2003); hydraulic
theory applied to granular flows (e.g. Savage & Hutter 1989; Gray et al. 2003;
Hakonardottir & Hogg 2005); and discrete particle mechanics (e.g. Campbell &
Brennen 1985; van der Hoef et al. 2006; Silbert, Landry & Crest 2003). The influence
of the ambient fluid, such as air, can sometimes be ignored. In other cases the ambient
fluid carries the granular material. Examples of carrier fluids are: air in risers; molten
metal in the dense conveying of slurries in the metallurgical industry; water in ice flows
on rivers in civil engineering; and rivers carrying volcanic debris such as pumice and

† Author to whom correspondence should be addressed: o.bokhove@math.utwente.nl
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tephra in geology. We were originally motivated by a geological case that occurred
in the late Pleistocene era (12.900 aBP), in which the Rhine River functioned as the
carrier fluid of floating and submerged granular material, or tephra, from the explosion
of the Laacher See Volcano. This is estimated to have led to an initially 1–8 m thick
layer of tephra around the volcano (Schmincke 2000). There is evidence that this
tephra layer caused dam formation in the Rhine River near the mouth of the Brohltal
canyon in the Rhine valley and at a nozzle near Andernach. A large lake then formed
extending 50 km to the southeast (Schmincke 2000), and subsequently the tephra dams
collapsed. Can we make a corresponding laboratory experiment and theory in support
of this event? The added complexity of a carrier fluid led us to consider the following
and experimentally simpler question first: what flow regimes emerge when dry gravity-
driven granular matter flows down a smooth inclined chute with a contraction?

Before proceeding with flows through a contraction, a short overview of the
literature on granular flows on inclined planes without a contraction is given, in
which a distinction is made between granular flows over smooth planes and over
rough surfaces. Literature concerning flows on smooth frictional planes includes
Augenstein & Hogg (1978), Brennen, Sieck & Palaski (1983); Campbell, Brennen &
Sabersky (1985); Johnson, Nott & Jackson (1990); and Louge & Keast (2001).
Literature concerning flows on rough surfaces often involve a plane with particles
glued to the surface (see, for example, Pouliquen 1999; Pouliquen & Forterre 2002;
and GDR MiDi 2004). It is of interest to mention that GDR Midi (2004) contains
a phenomenological constitutive law for inclined plane flows over uniform but rough
chutes. Obviously, the particles at the bottom experience less slip on rough planes,
and their velocity at the wall is relatively small or even zero (no slip). The work of
Savage & Hutter (e.g. Savage & Hutter 1991) applies to planes of varying roughness.
The chute surface in their experiments consists of PVC, writing paper or sandpaper.
These surfaces are still relatively smooth; in all cases the bottom roughness is much
smaller than the typical size of the flowing grains.

In the rheology of granular flows, Coulomb’s law is a basic concept in which
tangential stress is simply a constant fraction of the stress normal to the wall. The
stress is then entirely frictional and applies to sliding contacts at the bottom. Another
important concept is the classic rheological description by Bagnold (1954), who linked
the tangential stress to the square of the rate of shear. His experiments and kinetic
theory (as e.g. reviewed by Lun et al. 1984) have been very useful in formulating
expressions for so-called collisional stresses. In constitutive equations for granular
flow, these two concepts are usually combined and the result is a stress defined as a
sum of frictional and collisional terms.

Variations in uniform granular flow pertaining to flow around obstacles and oblique
granular jumps or ‘shock waves’ at slight corners have been studied in Gray et al.
(2003) and Hakonardottir & Hogg (2005). In the present paper we consider another
variation, granular flow down a smooth inclined plane with contracting sidewalls.
Using water instead of granular material, Akers (2005) and Akers & Bokhove (2007)
performed and analysed experiments on a flow on a horizontal plane, constrained
downstream by contracting sidewalls. Key parameters to classify the hydraulic, as
well as the granular, flow regimes are the upstream Froude number F0 and the scaled
nozzle width at the end of the contraction bc/b0, with b0 the constant width of the
channel upstream of the contraction. The Froude number F0 = u0/

√
gn h0 is the

ratio of the average upstream velocity u0 down the chute and the surface gravity-
wave speed

√
gn h0 with h0 the mean constant depth and gn the component of the

acceleration due to gravity normal to the plane.
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Figure 1. Top and side view sketches of the inclined chute experiments: (a) of constant
width, b(x) = b0; (b) with a localized contraction; and (c) blocked in the middle, ‘bc = 0’.

The paper’s objectives and outline are as follows. First, we classify the flow regimes
and states in laboratory experiments on granular flow down an inclined chute with
a contraction (§ 2). The chute has uniform width b0 except for a linear contraction
placed in the middle. To limit our study the following constraint is imposed: if we
remove the contraction then the flow is not subject to visible surface or density waves
and is as uniform as possible for a given gap height hl at the upstream sluice gate. This
constraint determines the inclination angle φ of the chute and leads to an approximate
balance between the downstream force of gravity on the granular particles and the
average inter-particle and particle–wall forces. In this way, the Froude number is
largely fixed. To obtain a larger range of Froude numbers F0 we varied the type of
granular material, as well as the gap height at the sluice gate. We used three sizes
of spherical glass beads with small, mean and large diameters, and non-spherical
particles (poppy seeds).

Second we present an extended or novel granular ‘hydraulic’ theory explaining
the observed flow regimes and states, based on an analysis of one-dimensional
equations (§ 3). It is an extension of classical inviscid hydraulic theory because effects
of friction and compressibility are accounted for. The use of acceleration integrals in
our approach is novel, as it does not require a closure based on constitutive equations
to relate theory and experimental data.

Third we explore the observed and analysed granular flow states in detail and,
in particular, confirm our theoretical explanation of the reservoir state by analysing
discrete-particle simulations (§ 4). Computer power is here the limiting factor as a
large number of particles is required to represent the flow realistically.

Finally, we analyse several theories for friction in granular flows, comparing them
in detail with friction and granular temperature data available from the numerical
database of the discrete-particle simulations (§ 5). The rheological implications of this
analysis give further insight into the frictional behaviour of granular flow inside a
contraction.

2. Experiments
In the following subsections, we will describe the experimental set-up and the

experiments performed, and conclude by classifying the results in a phase diagram.
The experiments and the three flow states are illustrated in figures 1 and 2. In
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Figure 2. A classification sketch of the three flow states include, in a top view of the chute:
(I) steady supercritical flow for bc � b0; (II) flow with a lake and an upstream travelling or
steadied bore for bc � 0; and, (III) steady flow with a reservoir, denoted by “R”. All cases
have a jet behind the contraction. Dashed(-dotted) lines are jump or bore fronts.

our experiments we observed three possible states for supercritical flows (F0 > 1) by
varying the Froude number and the contraction width bc. The crucial question is
when and why the transitions between these states occur.

2.1. Description of experiments

Initially the granular material is in a storage tank or feeder, which is fitted with a
funnel down to the top stretch of the chute behind the sluice gate. A gap height of the
sluice gate is set and can be varied between 0 and 13 mm. The inclination angle φ of
the chute is adjustable to between 0 and 35◦. The bottom and sidewalls of the chute
are made of aluminum. The length of the chute is 2 m and its width b0 = 0.13m. The
experimental set-up is sketched in figure 1. An experiment is started by opening
the valve in the funnel of the storage tank. The granular material piles up against
the sluice gate and then gradually flows down the slope of the chute. At the end,
the granular material is collected in a bin placed on an electronic balance connected
to LabView software. The mass flux as function of time as well as the steady state
can thus be determined, with an average mass discharge within 1 % error. Metallic
rods and meshes are placed in the feeder and collecting bin. These, together with the
chute itself, are earthed to minimize electrostatic effects. The velocity of the granular
particles at the top of the granular layer is measured using particle image velocimetry
(PIV) in a selected section of the chute of about 0.20 m in length.

The linear contraction is formed by a pair of triangular-shaped aluminum wedges
(see figure 1b). For most experiments a pair with hypothenuse of L = 0.201 m was
used, but a few experiments were performed with a pair of wedges with hypothenuse
of 0.40 m. The line connecting the sharp corners of the wedges is the contraction
entrance, which is set at 0.60m from the sluice gate, unless otherwise noted. The
narrowest width bc of the contraction could be varied continuously between 0 and
about 0.10 m by rotating the wedge around its sharpest corner touching the chute
wall. From the hypothenuse and the gap width bc, one can calculate the length of the
wedge along the chute with Pythagoras’ rule.

We performed nine series of experiments for dry granular material. Eight series (S1–
8) were performed for three different almost spherical glass beads of multi-disperse
size: (S) small diameter d ∈ [0.28, 0.42] mm, (M) medium d ∈ [0.4, 0.6] mm, and (L)
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large d ∈ [0.75, 1.0] mm. In these series the beads were not sieved by us, but used
in the size class and type as delivered by Sigmund Lindner.† The material density of
the glass beads was ρp = 2470 kg m−3. We performed one series of experiments with
poppy seeds.‡ Unlike spherical glass beads, a typical poppy seed has a banana-like
shape with an approximate length of 1.0 mm, and an approximate diameter of 0.7 mm
in the middle. The density αmaxρp in static random packing equals 616 kg m−3 with
αmax the solid volume fraction. In addition, we performed two series of experiments
with water. It was instructive to observe the behaviour of an incompressible fluid
(water) in the same experimental set-up. To keep the focus on granular flows, a
discussion of these experimental results is relegated to Appendix A.

To measure the depth of the granular layer we used a ruler with electronic display,
applied perpendicularly to the chute’s surface relative to the level sidewalls of the
chute. The ruler was carefully moved down until its tip hit the surface of the flow, with
some granular particles bouncing against the tip, the ruler was yet sufficiently high to
avoid a visible wake in the granular layer. The error in these depth measurements of
the uniform flows is about 0.1 mm, which corresponds to a maximum relative error
of 6 %.

For each set of experiments, the measurements were performed on the same day.
Each measurement of granular flow through the contraction is preceded by an exper-
iment without a contraction to establish nearly uniform flow conditions sufficiently
far from the transients near the sluice gate. A flow is adjusted to be approximately
uniform by changing the inclination angle φ such that variations in depth and velocity
of the particles at the free surface along the chute are minimal. Depth, velocity and
porosity measurements of the flow were taken around 0.60 m downstream of the
sluice gate. In most cases we started with a relatively low inclination for which
the material did not flow regularly. Then we gradually increased the inclination until
the depth could be measured adequately, since surface waves ceased to bounce against
the ruler’s tip. At that point we analysed the top-layer velocity field obtained by PIV
0.60 m from the sluice gate to validate that the variation of the streamwise velocity
in the streamwise direction was small. From the PIV measurements we deduced
that the flow at this chosen inclination was uniform or slightly accelerating: that is,
the measured PIV-velocity increased less than 10 % within the camera window (of
0.15 m). The latter error is an upper bound; typical values were 2 %, 4 % and 6 %.
For a typical streamwise velocity of 0.5 m s−1, this implies an acceleration of at most
0.1 m s−2. In two cases with a reservoir (small particles and water), we verified the
nearly uniform character of the upstream flow by repeating the experiment with the
contraction placed further downstream, and in both cases a similar reservoir state
reappeared. The inclination angle was measured with a protractor supplied with a
spirit level (0.25◦ measurement error). Note that, while performing the procedure
described above, we observed a single inclination angle rather than a range of angles
for which approximately uniform flow without visible density waves occurred.

The volume fraction of the particles was measured by a trapping method (Pouliquen
1999). A cup without a bottom was suddenly placed on the surface of the chute to
trap the mass in the flow in a surface area A = 0.0020 m2. Then the material in the
cup was weighted. To estimate the error, 16 repeated measurements were taken for a
specific flow of small-size particles, in which we measured an average weight of 2.9 g

† Sigmund Lindner, GmbH, Warmersteinach, Germany, www.sigmund-lindner.com; SiLibeads
with Art. Nos. 45015, 4503 (type S) were used.

‡ DIPASA Europe in Enschede, The Netherlands, www.dipasa.nl; with thanks to Oscar Woltman.
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with a standard deviation of 0.2 g, giving a measurement error of about 7 %. (The
balance at the bottom of the chute was used to collect and weigh trapped particles.)
With the measured mean layer depth h0 and given the material density, the error
in particle volume fraction α is then about 13 %. The mean velocity u0 of the flow
along the chute can be expressed in terms of the measured mass flux Q, the weight
mcup measured in the cup and the material density ρp: u0 = Q A/(b0 mcup). Note that
h0 is not necessary to calculate u0. The relative error in u0 is about 7 %, since the
inaccuracy in u0 is mainly caused by mcup . The Froude number

F0 = u0/
√

gn h0 (2.1)

of the flow 0.60 m downstream of the sluice gate is calculated with an error of about
10 %. Here gn = g cosφ is the normal component of the acceleration vector of gravity
of magnitude g = 9.8 m s−2.

For granular material, the Froude number F0 and the inclination angle φ determined
by the procedure described above depend on the weather conditions, the dryness of
the material and the state of polishing by wear and tear of the beads. Despite these
changes, measurements (sets S1 to S11) of the flows through the contraction were set
against the valid and established nearly ‘uniform’ flow state on that day.†

2.2. Experimental results

The experiments concern flow of granular material in a shallow layer with a free
surface. Relatively sudden steady or moving jumps in the free surface and the velocity
were observed; these are granular jumps and bores, akin to hydraulic jumps and bores
in shallow water flows. We consider shallow flows that are supercritical upstream of
the contraction such that F0 > 1. The Froude number is the incompressible analogue
of the Mach number in compressible flows. Although shallow granular flows are often
modelled as incompressible, they can be compressible and we therefore use the words
‘jump’, ‘bore’ and ‘shock’ interchangeably. Thus, shock waves are expected to arise
due to a sufficiently narrow contraction, in which the flow slows down, and large
jumps appear for relatively large F0.

Table 1 summarizes the experimental reference conditions without the contraction
measured 60 cm downstream of the sluice gate. Each set corresponds to a series of
contraction experiments with fixed F0 and varying bc. After a series of experiments,
the contraction wedges were removed to verify whether the same reference state was
still replicable.‡

The following two different main flow states were observed: (i) The flow was
relatively smooth during the entire experiment, also in the contraction. (ii) A bore
with a large jump was formed near the contraction exit and travelled upstream. Most
travelling bores observed stopped before reaching the sluice gate. When the bore

† All measurements were performed in a dry atmosphere (with humidity around 20% and a
temperature around 30 ◦C due to the illumination). One series of experiments (S0) was previously
documented in an internal report (Al-Tarazi et al. 2006). The results of both experiments are
consistent.

‡ In set S0 a different approach was used to obtain F0 since the volume fraction was not
measured at the entrance of the contraction, but 0.20 m before it. Therefore, u0 was derived from
the PIV-velocity (0.48m s−1 according to figure 4) while assuming that the ratio between u0 and
PIV top-velocity equalled the corresponding measured ratio for set S5, in other words the set with
similar particle diameter, at 85 %. The value of h0 was taken by averaging the eight values measured
around the entrance of the contraction (which can be found in figure 8). Finally, the value of α0 for
series S0 was calculated from the mass flux Q, u0 and h0.
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Set Fluid F0 u0 (m s−1) h0 (mm) α0 Sluice gate (mm) φ (deg.)

S0 0.55mm beads 2.9 0.41 2.15 0.35 4 15.5
S1 small beads 3.9 0.48 1.7 0.34 4 24
S2 small beads 4.7 0.94 4.5 0.43 8 24
S3 small beads 5.5 0.67 1.7 0.29 4 26
S4 small beads 3.5 0.44 1.8 0.35 4
S5 medium beads 3.0 0.44 2.35 0.34 4 19.5
S6 large beads 2.0 0.33 3.0 0.25 4 19
S7 large beads 2.6 0.54 4.7 0.32 8 19
S8 large beads 2.8 0.58 4.7 0.32 8 19
S9 water 3.7 0.48 1.7 1 4 3

S10 water 4.0 0.50 1.6 1 4 3
S11 poppy seeds 5.2 1.0 3.9 0.64αmax 13 20

Table 1. The reference flow values in the absence of a contraction for the twelve sets
of experiments. Set S0 comes from an earlier experiment with glass beads of diameter
d = 0.55 ± 0.05 mm (Al-Tarazi et al. 2006). The error in α0 is 13 %.

(a) (b)

Figure 3. Snapshots from experiments: (a) a steady granular reservoir for the smallest size
class of glass beads, and (b) smooth granular flow with two oblique shocks involving small
particles.

remained steady for more than 10 s, we concluded that a steady lake had formed. The
flow between the bore front and the exit of the contraction is called a lake when the
granular jump is outside the contraction, and is called a reservoir when it is inside.
In a lake or reservoir the depth is considerably larger than in other parts of the flow.
However, for very small bc the bore front continued to move backward, until the
feeder was empty (the duration of an experiment was typically about one minute).

Snapshots of experiments are shown in figures 3 and 4 for smooth flow with weak
oblique shocks, and steady reservoirs for different sizes glass beads. In figure 3(a), the
front of the shock as the starting point of the reservoir is clearly recognizable. The
front is V-shaped for the granular flow. When bc is decreased the shock halts further
upstream and the reservoir runs into a lake upstream of the contraction. Depth
measurements are shown in figure 5 for a steady granular reservoir and a water

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

51
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005113


240 A. W. Vreman and others

100

80

80

60

40

20

(m
m

)

0

–20

–40

–60

0 30 60 90 120
(mm)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

V
el

oc
it

y 
(m

 s
–1

)

1 m/s1 m/s

Figure 4. A snapshot of the granular flow with a steady reservoir for bc = 44mm in
experiment S0, see table 1.
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Figure 5. The depth h = h(x, y) of the shallow layer is shown along the centreline of the
chute as a function of the streamwise coordinate x. The contraction starts at x = 0 and ends
at x = 0.20 m. Shown are experiments S1 with bc = 26 mm for small particles and F0 = 3.9
(solid symbols) and S10 with bc = 21mm for water and F = 4.0 (open symbols).
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reservoir. In both cases, the depth suddenly increases across the shock by a factor
3 to 5, whereafter it increases more slowly to attain a maximum several centimetres
before the nozzle exit.

When bc is increased sufficiently, relatively smooth flow occurs with weak oblique
shocks created by the sudden change of the angle of the sidewall relative to the mean
flow direction. These weak oblique shocks are observed in figure 3(b) and are similar
to the those observed by Gray et al. (2003), and also in Hakonardottir & Hogg (2005)
where a single wedge is placed in a uniform flow. For a sufficiently large value of bc

the oblique shocks do not cross before the nozzle exit. The typical jump in the depth
h, about a factor of 2 for these oblique shocks, is smaller than for the reservoir front.
After averaging in the transversal direction, the averaged depth h smoothly increases
from the start of the contraction to at least the point where the shocks cross — if they
cross. The steady reservoir cases are clearly distinguishable from these ‘smooth’ flows.
When a reservoir is created, it has been preceded by oblique shocks in the transient
stage. From the point where these shocks crossed, near the end of the contraction,
a bore developed, travelled backwards, and then covered the oblique shocks until
it halted and formed a steady reservoir. The remainders of the oblique shocks are
still visible in figures 3(a) and 4. They form the outer edges of the V-shape. After
the exit of the contraction a granular jet occurs in all cases, as in figure 6; the flow
freely develops here until, about 0.10m further downstream, the flow reattaches to
the sidewalls.

For experiments S2, S3, S10 and S11 at the three highest Froude numbers for
F0 � 4.0, we observed that the flow was able to attain multiple states for appropriate
values of bc. This phenomenon is called hysteresis (Baines & Whitehead 2003). In
each observed case of hysteresis, a steady smooth flow developed when the flow was
started gradually after opening the storage tank. In contrast, a lake with a bore formed
when a dam-break scenario started the experiment. When we manually disturbed the
former smooth flow by partially blocking the contraction exit for a short time, the
smooth flow state changed to the lake state or reservoir state, see figure 6. This latter
lake state was stable in the sense that it did not disappear spontaneously. However,
when we pushed enough granular material from the lake through the exit, then the
original smooth flow state reappeared.

The experimental results are collected in the F0, bc/b0 phase diagram in figure 7 for
the flows through a contraction. We distinguish three flow states and four flow regimes,
denoted by four different symbols. The three states are: (I) smooth supercritical flow,
(II) an upstream moving bore or a steady lake halting outside the contraction, (III) a
steady reservoir with a strong jump inside the contraction. Regimes (I), (II) and (III)
are regions in the phase space, where the corresponding state is unique. Multiple flow
states were observed in regime (IV), where state (I) spontaneously occurred (when the
experiment started with an empty chute and a fixed contraction width), but changed
into (II) or (III) after a sufficiently strong external perturbation. We found these
hysteretic flows for F0 � 4.0. For set S10 with F0 ≈ 4 we observed all flow regimes in
a single set of experiments.

All measurements reported in this paper are for the wedge length L = 0.201 m;
a longer set of wedges was only used in additional experiments, not discussed here.
We found that a reservoir in a contraction of 0.201 m also occurred in the longer
contraction with L = 0.40 m for the same bc. In both cases the length of the reservoir
was roughly the same. In the same way, a lake that halted several centimetres
outside the 0.201 m contraction (state III) was found to be entirely inside the 0.40 m
contraction, where it would be called a reservoir. Thus, the precise demarcation
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Figure 6. When we manually disturb the smooth flow by partially blocking the contraction
exit for a short time, here with a finger, the smooth flow state changes to the lake state. This
transition is displayed in (a)–(d). (a) Flow with smooth oblique jumps and (d) flow with an
upstream halted jump and lake. All cases clearly show the jet after the contraction exit.

between state II and III depends on L. Nevertheless, we do distinguish between a
reservoir inside the contraction and a steady lake outside the contraction, because the
separating curve (a reservoir that starts at the entrance of the contraction) is suitable
for an analytic approach, which provides insight into the physical mechanism that
creates a reservoir of a certain length (see § 3).

In figure 7, a solid line is drawn to separate regime IV with multiple flow states
from the lake regime II for F0 � 4.0, and to separate the smooth flow regime I from
the reservoir regime III. Similarly, a dashed line is drawn to separate smooth flow
regime I from the multiple flow regime IV for F0 � 4.0, and reservoir state III from
the lake regime II. These curves are essential to further our understanding of these
experiments, and we will present a theory to predict them in the next section. To the
right of the solid curve, the supercritical flow state (co-)exists, whereas to the left of
the curve the lake or reservoir states II or III exist with a subcritical region. For the
supercritical flow, the Froude number F = u/

√
gn h > 1 everywhere including at the

nozzle exit where Fc = uc/
√

gn hc > 1 (the depth and velocity at the exit are denoted
as hc and uc). In contrast, when a subcritical flow state occurs then Fc = 1 at the
nozzle exit, because the flow goes through a shock wave upstream of the nozzle exit.
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Figure 7. Experimental granular results collected in a phase diagram of F0 versus bc/b0.
Smaller symbols denote poppy seed experiments. Flow regimes observed: (I) smooth super-
critical flow, (II) a steady lake halting outside the contraction or upstream moving bore,
(III) a steady reservoir with a granular or hydraulic jump inside the contraction, and (IV) a
hysteretic region with multiple flow states. Solid and dashed lines demarcate transitions between
(a) regimes II–IV and III–I, and (b) regimes IV–I and II–III. Two representative error bars
are shown.

Across this shock, the upstream supercritical Froude number suddenly drops to a
subcritical value Fs < 1, where Fs is the Froude number directly downstream of the
shock front. Between this location x = xs < xc of the shock and the contraction exit
at x = xc, the Froude number increases to Fc = 1 and downstream of the contraction
the flow is again supercritical.

Classical hydraulic theory (Baines & Whitehead 2003) or Lavalle-nozzle theory of
compressible flows (Shapiro 1953) applied to our flow predicts that the streamwise
velocity u either attains a minimum at xc for entirely supercritical flows, or is critical
with Fc = 1 at the nozzle exit. The corresponding mathematics will be shown in the
next section when we extend this theory. We have experimentally verified the classical
theoretical prediction that Fc = 1 at the nozzle exit for flows with a reservoir. For a
range of bc in which there is a switch from smooth flows to flows with either a steady
reservoir or lake, we measured the depth h = hc of the layer at the contraction exit. We
did this for the singlet flow type with small particles (S4) and for the hysteretic flow
type with water (S10). When the depth and the porosity are known, Fc is known, since
we can then calculate the velocity uc from the measured steady mass flux. The values
of hc and Fc are shown in figure 8, using the same symbols as in figure 7. It is clear
that Fc ≈ 1 for the cases with a reservoir or lake (the squares in the figure). Increasing
bc produces smooth solutions (the triangles in the figure) and we observe that Fc

smoothly increases with bc. For a given F0, the minimum bc for all smooth solutions
corresponds to Fc ≈ 1, verifying the validity of hydraulic theory. We conclude therefore
that the experimental solid demarcation line in figure 7 corresponds to Fc = 1.

To calculate Fc for the granular data in figure 8, we indirectly measured the volume
fraction αc. We used a different cup then before (of rectangular shape such that it
fitted in the lake) and trapped material just before the end of the contraction. For the
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Figure 8. (a) Depth and (b) Froude number at the nozzle exit xc for the experimental data
sets S4 (solid symbols) and S10 (open symbols). See figure 7 for the meaning of the symbols.
The values of h for the hysteretic regime concern the smooth flow state (downward pointing
triangles).

lowest value of bc we measured αc = 0.56, which was also used for the granular Fc

for the larger bc in figure 8. In these cases there was no lake and, consequently, the
depth h is not constant across the surface of the cup, which makes determination of
α unreliable for these smooth flow cases. As the value of αc for smooth flow is likely
to be lower than for flow with lake or reservoir flow, the solid triangles for Fc in
figure 8 should be interpreted as lower bounds for the value of Fc. We also measured
α inside a number of granular reservoirs and lakes and typically found values around
0.6, very close to the maximum packing value of about 0.64. Only for lakes in the
sets with the large particles (S6–8), we measured a lower value α ≈ 0.52. Compared
to the reference values of the volume fraction tabulated in table 1, it is clear that the
volume fraction significantly increases in a reservoir. The influence of variations in
the volume fraction on shock speeds will be discussed later.

For series S0, depth and volume fraction measurements are shown in figure 9, which
gives an overview of the steady adjacent states with a lake with a moving bore halted
against the sluice gate (circles), a lake with a jump halted due to friction (triangles), a
reservoir in the contraction (squares), and smooth flow with oblique shocks (crosses).

Contour plots of the measured streamwise velocity for small particles (S1) and
large particles (S8) are shown in figure 10. The two reservoir states demonstrate that
the velocity u suddenly reduces across the shock front. By comparing figures 10(a)
and (c), we see that the strength of this reduction increases with Froude number. Just
after the shock front, the velocity increases again, but at the exit the velocity is still
lower than the free-stream value. In particular figures 10(b) and 10(d) demonstrate
that the sidewalls influence the velocity also if there is no contraction. The cross-
and depth-averaged velocity, u0 = 0.48 m s−1 for S1 and 0.58 m s−1 for S8, on which
the Froude number is based, is considerably lower than the surface velocity at the
centre of the chute, 0.55 and 0.7 m s−1, respectively. Hence, cross-averaging leads to
an average surface velocity of approximately 90 % of the peak velocity measured at
the surface by PIV. The combination with depth-averaging then leads to the following
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Figure 9. (a) The measured layer thickness (solid lines) and (b) the volume fraction (dashed
lines) versus x are shown for various bc and with F0 = 2.9 and φ = 15.5◦: bc = 50mm, nearly
smooth supercritical flow; bc = 44 mm, a reservoir with steady granular jump; and, bc = 20
and 26 mm, a reservoir with upstream moving granular bore. The stars for case bc = 44 mm
correspond to discrete hard-sphere particle simulations starting at the nozzle. Volume fraction
is measured by trapping particles in a cup. From Al-Tarazi et al. (2005).
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Figure 10. Contour lines with steps of 0.05m s−1 are shown for the streamwise velocity of
the surface layer, calculated from averaging PIV snapshots over 0.2 s, with small particles (S1)
and F0 = 3.9 for (a) a reservoir when bc = 27 mm and (b) an asymmetric contraction with one
wedge; and with large particles (S8) and F0 = 2.8 for (c) a reservoir when bc = 37 mm and
(d) flow without a contraction.
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ratios between the mean and centreline surface velocity: 83 % for F0 = 2.8 and 87 %
for F0 = 3.9.

This ratio increases for larger F0 as the boundary layer thickness increases for
larger Froude numbers (compare the right boundary in figure 10(b) (F0 = 3.9) and the
boundaries in figure 10(d) (F0 = 2.8)). Thus, the boundary layer is significant in both
cases. This complicates the prediction of two-dimensional effects by inviscid theory,
as is the case with the angle of the oblique shock shown in figure 10(b), because
the upstream Froude number reduces near the wall. There are sidewall boundary
layers, and the difference between surface and mean velocity, both of which affect
the shock angle. In addition, there are frictional and porosity effects. Porosity effects
are manifested in the oblique jump which lowers the depth after the shock, recorded
at approximately 2h0 for the case plotted in figure 10(b). These uncertainties may
explain why Gray et al. (2003) and Hakonardottir & Hogg (2005) found differences
between their oblique shock predictions (see also Al-Tarazi et al. 2006).

3. Theoretical analysis
When the aspect ratios of velocity and length scales normal to and across the chute

versus the streamwise direction are small, simplifications can be made by averaging the
velocity and volume fraction over a cross-section of the chute and neglecting higher-
order aspect ratio effects. Starting with the three-dimensional granular flow equations
of Haff (1983), or Lun et al. (1984) without focusing on a particular constitutive stress
model, we can extend the asymptotic analysis of Gray et al. (2003) to derive depth- and
width-averaged equations. This extension then includes an effective compressibility
due to allowable variations in volume fraction. The resulting equations are one-
dimensional and in the inviscid limit equivalent to the one-dimensional equations
governing shallow water and gasdynamics (Baines & Whitehead 2003; Shapiro 1953).
Analysis of similar equations predicts a regime of multiple solutions for shallow flows
over a hill (Baines & Whitehead 2003), and through a contraction (Akers & Bokhove
2007). For our granular flows, we extend the latter inviscid theory to include effects of
friction and porosity, which is essential to explain the experimental results reported
so far.

3.1. Averaged and steady-state equations

For shallow flows depth-averaging is useful, since the length and velocity scales in the
z-direction are smaller than the ones in the x- and y-directions. As a direct extension
of the asymptotic analysis in Gray et al. (2003), including the effects of porosity,
the following depth-averaged equations arise in two spatial dimensions with x and y

along the plane of the chute:

∂

∂t
(α h) +

∂

∂x
(α h u) +

∂

∂y
(α h v) = 0, (3.1a)

∂

∂t
(α h u) +

∂

∂x

(
α h u2 + 1

2
α h2 gn

)
+

∂

∂y
(α h u v) = α h gn tan φ − α h gn µ, (3.1b)

∂

∂t
(α h v) +

∂

∂x
(α h u v) +

∂

∂y

(
α h v2 + 1

2
α h2 gn

)
= α h gn tan φ − α h gn µ, (3.1c)

with depth-averaged volume fraction α, and streamwise and crosswise velocity com-
ponents u and v. Instead of the incompressible granular flow equations, their com-
pressible counterparts formed the starting point for this asymptotic analysis. Closure
is not obtained because we did not derive a depth-averaged temperature or particle
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volume fraction equation, but restricted ourselves to considering the continuity and
momentum equations with a hydrostatic approximation for the pressure. The non-
dimensional friction coefficient µ represents all frictional effects.

The next step is to average (3.1) across the chute. The channel walls are at y =
±b(x)/2, where we use slip flow or a kinematic boundary condition. We assume that
flow scales across the chute are much smaller than the ones along the chute. Averaging
of (3.1) across the chute gives

∂

∂t
(αbh) +

∂

∂x
(αbhu) = 0, (3.2a)

∂

∂t
(αbhu) +

∂

∂x

(
αbhu2 + 1

2
gn α b h2

)
= α h b gn (tan φ − µ) + 1

2
gn α h2 db

dx
, (3.2b)

where we have dropped the averaging symbols. The depth- and cross-sectionally
averaged volume fraction α = α(x, t), depth h = h(x, t) and streamwise velocity u =
u(x, t) depend on x and t only. The width of the chute is b = b(x). The friction force
µ now represents the depth- and cross-sectionally averaged friction. The specific
expression for µ is unknown and generally will depend on α, u, b and h. Fluctuational
stresses arising as averages of products of fluctuations should be included in µ. Finally,
the system (3.2) also follows from a control volume analysis using hydrostatic balance
and cross-sectionally and depth-averaged quantities. The derivation assumes that the
velocity profile in the z-direction is uniform (which is a reasonable approximation for
the present granular experiments) and that the ratio of lateral normal and vertical
normal stress is equal to one.

Using the continuity equation, the conservative form of the momentum equation
can be simplified to

∂u

∂t
+

∂(u2/2)

∂x
= a gn − gn

∂h

∂x
. (3.3)

The non-dimensional quantity a represents combined effects of gravitational forcing
along the chute, porosity, and friction:

a = aα + af , aα = − h

2α

∂α

∂x
, af = tan φ − µ. (3.4a–c)

In the experiments with a supercritical upstream inflow two possible states down-
stream were observed, either smooth flow or flow with a strong shock where the
flow suddenly becomes subcritical. When a =0 equations (3.2) are equivalent to
hyperbolic equations such as those in shallow water and compressible gasdynamics.
The eigenvalues of (3.2) for a = 0 and α constant are λ± = u ±

√
gn h, as in the classic

shallow water equations. Classical hydraulic or Lavalle-nozzle theory then predicts
critical flow with λ− = 0 at the narrowest point of the contraction such that Fc = 1.

The condition Fc =1 leads to an important curve in the phase diagram of bc and
F0. The curve is the analytical analogue of the experimental demarcation line (a)
in figure 7. We will first derive and generalize this demarcation line by adding the
effects of friction and porosity to the classical theory. To start, a relation will be
found between the upstream flow – characterized by h0, u0, α0 and b0 evaluated at
the contraction entrance at x = x0 – and the flow at the nozzle exit – characterized by
hc, uc, αc and bc at x = xc. In this formulation, we require the integral functions

A = Aα + Af with Aα =

∫ x

x0

aα dx and Af =

∫ x

x0

af dx, (3.5)
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which represent path integration integrals over the previously introduced acceleration
terms aα and af . With (3.5), the steady form of the continuity and momentum
equations in (3.2) and (3.3) becomes

d(αbhu)

dx
= 0 and

d(u2/2 + gn(h − A))

dx
= 0. (3.6)

Combining this with the constraint Fc = 1 at the nozzle exit and the uniform and
critical state values gives us, for smooth flow, the following three equations:

α0b0h0u0 = αcbchcuc, (3.7a)
1
2
u2

0 + gn(h0 − A0) = 1
2
u2

c + gn(hc − Ac), (3.7b)

u2
c = gnhc, (3.7c)

with acceleration integrals A0 = A(x0) = 0 and Ac = A(xc). Substituting (3.7a) into
(3.7c), solving for hc and substituting the result into (3.7b), yields the desired relation
between bc/b0 and F0:

3

2
(F0b0α0/(bcαc))

2/3 = 1 + 1
2
F 2

0 + Z1 with Z1 = Ac/h0. (3.8)

Once the increase in volume fraction αc/α0 and the non-dimensional acceleration
parameter Z1 are known, bc/b0 is a function of F0. Z1 corresponds to the integral
acceleration of the critical smooth flow in the contraction from the entrance to the exit.

A second relation is derived next, expressing the occurrence of a steady shock with
x−

s = x ↑ xs located just before the shock and x+
s = x ↓ xs just after the shock. We

assume xs = x0 and bs = b0 (later) for clarity, but the derivation holds for arbitrary
xs < xc. The steady bore front is then at the entrance of the contraction, such that the
derived curve is a prediction of the dashed curve (b) in figure 7 for the experimental
data. For the flow around the shock and beyond, we have a system of four equations:

α0b0h0u0 = αsbshsus = αcbchcuc, (3.9a, b)

1
2
u2

s + gn(hs − As) = 1
2
u2

c + gn(hc − Ac), (3.9c)

u2
c = gnhc, (3.9d)

where variables are denoted by subscripts corresponding to their location. From
(3.9a, b, d) we derive expressions for us , hc and uc. We substitute these expressions in
(3.9c) to obtain

(α0/αs)q
3 = βq2 − 1

2
(F0b0/bs)

2, (3.10)

where

q = αshs/(α0h0), (3.11)

β = 3
2
(F0α0b0/(αcbc))

2/3 − Z2 and Z2 = (Ac − As)/h0. (3.12)

Z2 is the non-dimensional acceleration parameter for the lake or reservoir; it
corresponds to the acceleration integrated from just after the shock towards the
contraction exit. To impose energy dissipation across a granular bore or jump, the
(steady) momentum equation in (3.2) is rewritten as

d

dx

(
αbhu2 + 1

2
gnαbh2

)
= α b h gn af + 1

2
gn αh2 db

dx
. (3.13)
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With x−
s = x ↑ x0 and b = b0 around x = xs , the momentum balance across the shock is

α0h0u
2
0 + 1

2
gnα0h

2
0 = αshsu

2
s + 1

2
gnαsh

2
s + gnα0h

2
0Y, Y =

1

α0h
2
0

∫ x+
s

x−
s

αhaf dx. (3.14)

Elimination of us in (3.14), using α0b0h0u0 = αsbshsus , leads to another third-order
polynomial for q:

α0

αs

q3 =
(
1 + 2F 2

0 − 2Y
)
q − 2(F0b0/bs)

2. (3.15)

Subtracting (3.15) from (3.10) results in

β =
1 + 2F 2

0 − 2Y

q
− 3(F0b0/bs)

2

2q2
. (3.16)

Next, we introduce two simplifying assumptions: (i) the thickness of the shock
is negligible, and (ii) the friction force and therefore af are continuous. These
assumptions imply bs = b0 and Y = 0. Incorporating these consequences into the
two expressions (3.12) and (3.16) for β implies

αcbc

α0b0

= F0

(
2
3
Z2 +

2 + 4F 2
0

3q
− F 2

0

q2

)−3/2

. (3.17)

After using the physically realizable solution with q > 1 in (3.15) in (3.17), a com-
plicated but still analytical relation between bc/b0 and F0 results. For the special
case of constant α and Z2 = 0, this relation becomes the inviscid result of Akers &
Bokhove (2007).

In summary, the calculations presented result into two equations, (3.8) and (3.17),
leading to predictions of the experimental demarcation lines (a) and (b) in figure 7,
respectively. In the following, we analyse the distinct role played by friction and
porosity in our theory, to explain the laboratory observations.

3.2. Frictional effects

To assess the role of friction, we will plot isolines of (3.8) and (3.17) in the phase
diagram (bc/b0, F0) for various values of the parameters Z1 and Z2. Neither parameter
is constant, but is instead a function of the flow variables; nevertheless, our extended
theory for fixed parameters gives the trends induced by friction and porosity. To
investigate frictional effects, we assume the volume fraction to be constant, α = α0,
in equations (3.8) and (3.17). Each equation gives a curve in the phase diagram,
depending on the parameters Z1 and Z2; these curves are shown in figure 11 as solid
and dashed lines, respectively.

These assumptions simplify the analytical expression for the shock curves; (3.15)
becomes

(q − 1)
(
q2 + q − 2F 2

0

)
= 0 (3.18)

with only one relevant root q =hs/h0 > 1 for F0 > 1, equal to q = − 1
2
+ 1

2

√
1 + 8F 2

0 ,
which is substituted into (3.17) to obtain the curves in figure 11 (for α = α0). The
asymptotic behaviour for large F0 is

q ∼
√

2F0 and bc/b0 = F0/
(

2
3
Z2 + 2

3

√
2F0

)3/2
. (3.19)

From the latter expression, it is easily seen that positive Z2 causes the curve to shift to
the left, and vice versa for negative Z2, compared to Z2 = 0. Positive Z2 corresponds
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Figure 11. Granular ‘hydraulic’ theory with integral frictional effects predicts two flow types
for non-zero friction. Isolines for several values of Z1 (critical curves; solid lines) and Z2 (shock
curves; dashed lines) are shown in the plane F0 vs. bc/b0.
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Figure 12. Theoretical curves compared with experimental demarcation lines (a) and (b), see
figure 7. Critical curves (solid) and shock curves (dashed). (a) Classical theory without friction;
(b) extended theory with friction.

to a reduction of friction in the lake/reservoir, while negative Z2 corresponds to an
increase of friction in the lake/reservoir.

In figure 12 both ‘inviscid’ and viscous theory are compared with the experimental
demarcation lines. In the inviscid case friction parameters are zero, Z1 = Z2 = 0,
while in the viscous case the friction parameters are selected such that a reasonable
agreement with the experimental results is obtained. The ‘inviscid’ theory would
apply at leading order for small changes of the chute width in the contraction and
small acceleration effects such that in the reference flow a balance would remain
between frictional and gravitational forces. Three striking qualitative differences arise
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between the classical ‘inviscid hydraulic’ theory and the experimental results; the
theory presented indicates how these problems are resolved.

First, where inviscid theory predicts unsteady bores only, the experiments demon-
strated the existence of reservoirs with steady bores inside the contraction. Figure 12
clearly shows that the reservoir regime III cannot be predicted by inviscid theory,
although it emerges if friction is included. We see that curves shift such that they
cross for F0 ≈ Fcrit = 4.0 and another quadrant emerges below Fcrit between the solid
and dashed lines for certain values of parameters Z1 and Z2. In this quadrant, regime
III, a steady reservoir exists as a single state with a jump inside the contraction.

Second, according to inviscid theory hysteresis can occur for all F0 > 1 (the large
region between the curves Z1 = 0 and Z2 = 0). However, in the experiments we observe
no hysteretic regime for F0 < 4.0, and the range of nozzle widths bc demarcating the
hysteretic regime was much smaller than predicted by inviscid theory for larger values
with F0 >Fcrit. However, for certain values of Z1 and Z2 the lines do cross (here near
F0 = 4.0), and the regime of hysteresis becomes smaller than in the inviscid case.

Third, according to our experiments supercritical flow occurs for lower values of bc

than given by inviscid theory: compared to the experimental results the solid inviscid
curve Z1 = 0 is too far to the right. However, using a positive value of Z1 = 1 the
curve shifts to the left and becomes closer to the solid demarcation line plotted from
the experiments.

Apparently, positive values of Zi (i = 1, 2) are required to obtain reasonable
agreement between theory and the experiments with glass beads. Positive values of
Zi are equivalent to positive acceleration integrals, which means that in the reservoir
the friction coefficient µ is smaller than in the flow upstream. The flow upstream is
supercritical, but in the reservoir the Froude number can be much lower than one.
For a reservoir which fills the contraction, Z2 ≈ 6, and in the reservoir the Froude
number F has dropped below one. The friction parameter is much lower for critical
flow, Z1 ≈ 1 and for such a flow 1 < F < F0 in the contraction. These findings indicate
that the friction coefficient µ for spherical particles in a contraction decreases with F .
Indeed, in most friction laws friction is lower when F is reduced (see § 5), suggesting
that Z2 should be positive.

According to the theory presented each upstream travelling bore becomes steady at
some point, provided the friction µ is reduced in the lake. The latter implies Z2 > 0,
which corresponds with our observations. Assuming friction reduction in the lake,
Z2 increases monotonically with the length Ll = xc − xs of the lake. To show that a
shock eventually stops moving, the upper bound of this lake length Ll is estimated
from the asymptotic equations (3.19) by

Ll = 3
2
h1(F1b1/bc)

2/3/(tan φ − µ), (3.20)

using the approximation

Z2 =
1

h1

∫ xc

xs

a dx ≈ Ll (tan φ − µ)/h1 (3.21)

with h1, F1 and b1 = b0 the depth, Froude number and channel width at x = x1 = x−
s ;

φ is the angle of inclination and µ the approximately constant friction in the lake.
For uniform upstream flow or xs = x0, we have h1 = h0 and F1 = F0.

In the experiments reported here, the flow condition before the lake or contraction
was uniform or slightly accelerating (§ 2). However, suppose the upstream flow
experiences a constant acceleration η, or deceleration for negative η. From the
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definition of A and Z, it is apparent that Z should then be corrected using η(x−x0)/h0,
with x0 as the beginning of the contraction. In the parameter plane, this yields an
extra left-shift for accelerating and a right-shift for decelerating chute flow. The main
effect of acceleration or deceleration upstream of the contraction is that the local
Froude number changes. A small acceleration present in an experiment before the
contraction is therefore captured because the Froude number F0 is measured at the
entrance of the contraction. In § 2.1, we found 0.1 m s−2 as the upper bound of this
acceleration, and measured a contraction length Lc = 0.20 m and depth h0 = 2 mm.
Hence the effect of the (scaled) acceleration along the contraction is approximately
�Z1 = �Z2 = 0.1 Lc/(h0gn) = 1. Figure 11 shows that these contributions do not alter
the essentials of the theory because both demarcation lines in the bc, F0 phase plane
simply shift by the same value �Z.

Whereas for the spherical glass beads we found positive values of Zi , for poppy
seeds we found that negative values Z2 ≈ −2 and Z1 < −1 are required to obtain
reasonable agreement between theory and experiment. This indicates that changes in
shape and density of particles can alter the behaviour of µ inside the contraction:
for spherical particles friction reduces while for poppy seeds friction increases, where
F <F0. None of the friction models above is able to explain this fundamentally
different behaviour of spherical and the lighter, non-spherical particles. For these
non-spherical particles, the increase of particle volume fraction in the contraction
seems to influence the friction coefficient µ more than for spherical particles. Non-
spherical particles roll less and an increase of the friction may be due to ‘locking’ of
the particles which increases the volume fraction.

3.3. Effects of porosity

To assess the role of porosity, we plot isolines of (3.8) and (3.17) in the phase
diagram (bc/b0, F0) for various values and simplifications of α/α0. From the granular
experiments, we know that porosity changes are significant. The typical particle
volume fraction measured in a lake is 0.6 (§ 2) which, together with the measured
values for α0 in table 1, means that αs/α0 varies between 1.3 and 2.4. However, for
supercritical flows the ratio αc/α0 is expected to be much lower, say 1.3. When shocks
occur, we for the moment adopt the simplifying assumption that the volume fraction
only increases through the shock and stays constant in the lake and take αs = αc.
Then we calculate the modification of the demarcation lines, using (3.8), and (3.15)
and (3.17). Two sets of isolines for various values of αc/α0 are shown in figure 13 for
Z1 =Z2 = 0. Frictional effects and gradients of α in A are thus neglected in figure 13.
The results displayed suggest that if we take non-zero values of Z the isolines of
αc/α0 retain their order and approximately their separation.

For these realistic values of αc/α0, less than 2 for the shock curve and about 1.3
for the critical curve, it is clear from figure 13 that porosity, unlike friction, is unable
to explain the differences between experiment and inviscid theory by itself. Yet from
the shifts predicted in figure 13, we conclude that porosity and friction reinforce one
another for the shock curve. Both effects cause the curves to shift to the left, which
again supports Z2 >Z1.

Apart from the ratio αc/α0 there is another porosity effect on the curves, namely the
term Aα in (3.5). This term does not alter the above-mentioned conclusions. For the
shock curve, Aα approximately vanishes given the (reasonable) assumption of constant
and nearly maximum volume fraction in the entire lake. For the critical curve, we
assume a gradual increase from α0 to αc in the contraction. For αc/α0 = 1.3 and
typically hc = 3 h0 for granular supercritical flows, we approximate the contribution
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Figure 13. The effects of porosity are displayed in the plane F0 vs. bc/b0 as isolines for several
values of αc/α0 in the absence of friction such that A = 0; critical curves (solid) and shock
curves (dashed).

of Aα/h0 to Z1 by

−
1
2
(h0 + hc) (αc − α0)

2 × 1
2
(α0 + αc) h0

≈ −0.3. (3.22)

This means that the influence of Aα on the critical curve is small.
Finally, we explored the influence of porosity on the shock speed with some

additional experiments. Material and parameters correspond to S0. When the granular
flow is entirely blocked in the middle of the chute for φ =15.5◦ a granular bore
develops, see figure 1(c). We consider a constant upstream state with values u0, h0, α0

and a quiescent state with u+ = 0, h+, α+ downstream of the bore. The jump relations
follow from (B 4) and u+ = 0 in Appendix B. This yields the dimensional bore speed

Sα = −

√
gn

2

α0 h0

α+ h+

(
α+ h2

+ − α0 h2
0

)
(α+ h+ − α0 h0)

. (3.23)

Given h0, α0, h+ and α+ we can predict Sα , and u0 from (B 2). For constant α, (3.23)
reduces to the granular bore speed S = limα0→α+

Sα used by Gray et al. (2003). We
did the experiment three times and the results of all three were reasonably accurate.
Measurements are h0 = 2.1±0.1 mm, h+ = 8.5±0.2 mm and SPIV = 0.073±0.001 m s−1.
For constant α, the prediction by (3.23) results in S = 0.11 ± 0.005 m s−1, which is
1.5 ± 0.1 times too large. To include porosity effects, we take for the upstream porosity
α0 = 0.36 ± 0.06, obtained from the lowest three values in figure 9. Downstream the
material is at rest, such that we have the maximum packing of spheres, α+ = 0.64.
Using these values in (3.23) gives the prediction, Sα = 0.079 ± 0.012 m s−1, which is
1.08 ± 0.16 times the measured value. We conclude from these sets of experiments
that porosity is important, at least when the flow coming into the bore is thin, in this
case 4 to 5 particle diameters d (see also Appendix B).
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4. Simulations
In this section, we consider three-dimensional simulations of granular layers through

a contraction on a downhill slope. First, we will investigate whether discrete-particle
simulations are able to predict the experimental observations presented, and in
particular the occurrence of a reservoir state. Second, we will precisely quantify the
effects of friction and porosity through the simulations and seek further confirmation
of the hydraulic theory presented. The simulations concern the dynamics of discrete
particles, calculated from a soft-sphere discrete-particle model, similar to the model
described in detail by Van der Hoef et al. (2006) and applied to uniform granular
flow on inclined planes by Silbert et al. (2003). These models solve the Lagrangian
equations for spherical particles with a diameter d , based on Newton’s laws for
the velocity and the angular velocity. The contact forces between the particles are
calculated using a so-called linear spring/dash-pot model (Cundall & Strack 1979).
For each pair of particle contacts, the normal displacement between the two particles,
say a and b, is calculated as leading to a normal interaction force Fn,ab, directed
along the normal nab,

Fn,ab = −(kn(d − |ra − rb|) + ηnvab · nab) nab if |ra − rb| < d, (4.1)

where ra and rb are the location vectors of the particles, vab the relative velocity
of a and b, and kn and ηn model constants. The spring stiffness kn is chosen to be
100 Nm−1. This is relatively low, but nevertheless sufficiently high for the present
purposes. The maximum overlap of a soft sphere as a function of time fluctuated
between 0.01d and 0.02d . The damping coefficient ηn is defined as

ηn = −2

√
kn

(π2 + (ln e)2)
(
m−1

a + m−1
b

) ln e, (4.2)

where e is the normal restitution coefficient, taken as equal to 0.97, a realistic value
for glass beads (Goldschmidt, Beetstra & Kuipers 2004). The mass of body a involved
in the contact is denoted by ma , which equals either the mass of a single particle
or infinity if the body a represents a wall. The magnitude of the tangential force is
modelled by µt |Fn|, which resembles a Coulomb friction law. The friction coefficient
µt is taken equal to tan φ =0.344, where φ =19◦ (table 1). It is close to the internal
friction angle mentioned by Hakonardottir & Hogg (2005). The interaction with air
is neglected in the computational model, since its effect is assumed to be small; an
upper bound for the drag force exerted by the surrounding air on a 1 mm glass
bead is estimated to be about 6 % of the tangential gravitional force. The estimate
is based on the standard nonlinear drag law for a single particle moving with a
velocity of 0.6 m s−1 in stagnant far-field surroundings. The physical drag force will
be considerably lower than this upper bound for particles below the surface.

In our simulations, we focused on the experimental set S8 of large particles. We
simulated the chute flow through a contraction for an inclination angle of 19◦ and
g = 9.8 m s−2. We used a uniform d = 1 mm, ρp =2470 kgm−3, and investigated flows
for several contraction widths bc. The velocity imposed at the inflow consisted of a
constant mean plus time-dependent three-dimensional random perturbations of 2 %.
The height of the inflow was approximately the height of the gate at the top of the
chute in the experimental set-up. The value of the mean inflow velocity was 0.17 m s−1.
The inflow volume fraction was high and determined by matching computational and
experimental mass fluxes (0.29 kg s−1). For reasons of computational efficiency, we used
a relatively short chute length of 0.70 m to limit the maximum number of particles
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bc Curve Time (s) No. of particles

130mm dashed 7.0 284000
70mm dotted 6.3 304000
50mm dash-dotted 7.6 323000
40mm solid 10.8 378000

Table 2. Overview of discrete-particle simulations for various nozzle widths bc . Note that
bc = 0.13 m corresponds to the case without a contraction.

to about 400 000. The contraction was placed between x = 0.30 m and 0.50 m. The
equations were integrated sufficiently long to let the flow evolve to a quasi-steady
state. In particular, for the smallest value of bc the integration time was long, 10.8 s,
corresponding to 2.2 × 105 time steps for the fourth-order four-stage Runge–Kutta
method. In each simulation time averaging was performed to obtain statistics. They
did not depend significantly on the length of the time interval of averaging, which
was at least 1.0 s for each case. An overview of parameters for the simulations is given
in table 2, including the final time and the number of particles in the system. We will
show that the simulation for bc = 40 mm produced a reservoir, while the simulations
with higher values of bc led to supercritical flow.

To calculate statistics we need to define appropriate averaging operators. The
time-average of a three-dimensional field u is defined by

〈αu〉t =
πd3

6τ�x�y�z

∫ t

t−τ

∑
i

ui dt, (4.3)

where the sum is taken over all particles with xyz-coordinates of their centres inside a
local cube with ribs �x = �y = 2 mm and �z = 1 mm around the point (x, y, z). The
averaged quantity is a piecewise continuous field. The average of u is now defined by

[u]t =
〈αu〉t

〈α〉t

. (4.4)

The denominator is obtained by evaluating (4.3) for u =1.
The cross-sectional average is defined by

[u]tyz =
〈αu〉tyz

〈α〉tyz

, 〈αu〉tyz =
1

bh

∫ L2

0

∫ 1
2

b

− 1
2

b

〈αu〉t dy dz. (4.5)

Note that we are allowed to extend the outer integration to a fixed L2 >h, the
computational depth of the domain, since α occurs in the integrand. In this way, we
can appropriately handle the free boundaries in the flow once we have appropriate
definitions for the extent of the flow, h and b. An isolated depth-average (transversal
average) is obtained by omitting b (h) and the integral over y (z) and the symbol y

(z) in the subscript.
To define the depth we introduce

ẑ(x, y, t) =
1

τ

∫ t

t−τ

maxi{zi} dt, (4.6)

where the maximum is taken over the z-coordinate of particles centres with xy-
coordinates inside a local square of �x =�z = 2 mm around (x, y). The time integral
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Figure 14. Cross-sectionally averaged steady-state profiles for bc = 130 (dashed), 70 (dotted),
50 (dash-dotted) and 40 mm (solid). The contraction is between x = 0.3 and 0.5 m. (a) Particle
volume fraction, (b), depth, (c) streamwise velocity and (d) Froude number. The inset in (d)
shows the x-value for which F =1 as a function of time and thus represents the evolution of
the upstream boundary of the reservoir.

is over an interval of τ = 0.04 s. Then we define the depth of the layer by

h(x, y, t) = ẑ + 1
2
d +

√
ẑ2 − ẑ2. (4.7)

In the free jet region the width b for a given x and z is estimated by counting the
number of grid cells with non-zero volume fraction. The value of τ is sufficiently
short to follow adequately the temporal behaviour in the transient regime. When the
flows became steady we tried larger values of τ (up to 0.8 s), but we did not observe
substantial differences with τ = 0.04 s.

The cross-sectional averages of depth, volume fraction, velocity and Froude number
are shown in figure 14 for all four simulations. At the contraction entrance (x = 0.3 m),
we computed u0 = 0.61 m s−1, h = 4.7 mm, α0 = 0.31 and F0 = 2.9. These values are
very close to the experimental values for S8 listed in table 1. We observed that the
computed flow without a contraction is still slightly accelerating beyond x = 0.30 m,
which is most clear from the streamwise velocity in figure 14(c). The acceleration
decreases with x and the average acceleration between x = 0.3 and 0.5m is 0.20 m s−2.
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We note from the Froude number displayed in figure 14(d) that the flow is clearly
supercritical for bc � 50 mm, but for bc = 40 mm we see a subcritical region with a
length of 0.111 m. The latter case corresponds to a steady reservoir. The bore front
is defined to be at the location where F =1 in the contraction. The inset of figure
14(d) shows the location of the bore front as a function of time. It formed around
t =2 s at x = 0.47 m and converged at t ≈ 17 s. At t = 2 s the bore velocity was about
32 mm s−1, at t ≈ 10 s about 1mm s−1 and at t ≈ 17 s approximately 0.

That a reservoir appeared for bc = 40 mm is consistent with the experimental data
since for the experimental set S8 we observed a reservoir for bc =40, 38, 37 and
35 mm. For bc = 37 mm the reservoir length was measured and found to be 0.12 m.
The shortest reservoir was found for the largest bc (see figure 7 for F0 = 2.8 and
figure 10c). Thus, the simulated reservoir length of 0.111 m for bc = 40 mm is in line
with the available experimental data; reservoir length and bc are both within 10 %
of the measured values. The depth of the simulated reservoir at bc = 40 mm, about
15 mm according to figure 14(b), is the same as we measured in the experiment for
bc = 37 mm. The maximum volume fraction in the reservoir is 0.57 (figure 14a), which
is within the measurement error of the measured value of 0.52 (with error less than
13 %, see table 1). The compression of the soft particles in the simulation leads to
a slight overprediction of α. By monitoring the maximum compression mentioned
before, we estimate that the calculated α should be corrected to 0.57/(1.0153) = 0.54.

Contour plots of depth-averaged velocity components, depth, and volume fraction
are shown in figure 15. The structure of the simulated and experimental streamwise
velocity component is similar (compare figures 15a and 10c). The depth-averaged
calculated values should be lower because the PIV-result corresponds to the surface
velocity. It appears that the difference between PIV surface velocity and depth-
averaged velocity is about 10 %. The granular temperature T is defined by

T = 1
3
([u · u]t − [u]t · [u]t ). (4.8)

The depth-average of the granular temperature is the integral over z of 〈α〉tT divided
by h〈α〉tz. It is shown in figure 15(f ). The value upstream of the contraction corres-

ponds to an average fluctuation intensity of
√

0.0025 = 0.05 m s−1, approximately 10 %
of u0. The flow is very quiet in the reservoir, as the fluctuation level is much lower
there.

The forces in the discrete-particle model consist of gravitational acceleration and
the surface contact forces between particles and between particles and walls. Thus a
single particle experiences an acceleration of tan φ+acontact, where acontact is the sum of
the contact forces felt through neighbouring particles or walls. To validate the theory
developed in the previous section, we consider the streamwise and cross- and depth-
averaged components of these terms in figure 16. Considering the contact friction
forces in more detail, we observe that in the reservoir (see figure 16a for the case
bc = 40 mm in the interval 0.39 � x � 0.50 m) the absolute value of the friction due
to contact forces decreases dramatically, which confirms the theory of the previous
section.

To obtain more insight, we calculated the integrated acceleration A=
∫ x

x0
a dx

defined in § 3. It is, however, not simply the integral over tanφ + acontact, since acontact

also contains the integral over the granular pressure force. Hence, using the hydrostatic
pressure in (3.3), we rewrite

A = h +

∫ x

x0

(tan φ + acontact) dx, (4.9)
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Figure 15. Depth-averaged steady-state contour plots for (a) streamwise velocity u, (b)
spanwise velocity v, (c) normal velocity w, (d) depth h, (e) particle volume fraction α and (f )
granular temperature T . Negative contours are dashed. Contour increments are (a) 0.05m s−1,
(bc) 0.02 m s−1, (d) 1 mm, (e) 0.1, and (f ) 0.0005m2 s−2.

where x0 = 0.30 m denotes the entrance of the contraction in the simulations. The
quantity A/h0 is shown in figure 16(b) for the four simulated flows. The strong
increase of A/h0 in the reservoir region supports the friction theory in § 3. The
normalization with h0 allows us to compare (Ac − As)/h0, the difference of A/h0

in this figure between xc =0.5 m and xs = 0.39 m for bc = 40 mm, with the Z-values
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Figure 16. Cross- and depth-averaged steady-state profiles for bc =130 (dashed), 70 (dotted),
50 (dashed-dotted) and 40 mm (solid). The contraction is between x = 0.3 and 0.5m. (a)
Acceleration term acontact due to contact forces. (b) Integrated acceleration term A/h0.

discussed in the previous section. We observe that A/h0 increases to 2 in the reservoir
region 0.39 � x � 0.50 m for bc =40 mm. Indeed, the value A/h0 = 2 is between Z1 = 1
and Z2 = 6. The latter values correspond to the theoretical qualitative prediction of
the reservoir regime, as plotted in figure 12(b). In the first part of the contraction the
friction does not become weaker but stronger, however, as A/h0 reduces just before
the reservoir (solid curve). For the smooth flow (bc � 50 mm, dashed-dotted curve), the
friction is increased in the entire contraction, since A/h0 decreases between x0 = 0.3 m
and xc = 0.5 m. This surprising result will be clarified in § 6 where we analyse several
constitutive laws used for depth-averaged models in the literature. The isolated effect
of extra friction would cause a rightward shift for the critical curve. For the critical
curve, we therefore infer that the left-shift due to porosity appears to be stronger than
the right-shift due to extra friction, such that a relatively small net left-shift results.

The crucial point in the theory explaining the reservoir is that due to friction
the shock curve was able to shift to the left from the critical curve. The extended
hydraulic theory, in combination with our observations, showed that the emergence
of a reservoir state was caused by a reduction of friction in the contraction. This
led to a larger left-shift (Z1 > 0) of the shock curve stemming from clasical, inviscid
hydraulic theory than the left shift (Z2 > 0) of the critical curve, such that Z2 −Z1 > 0.
To verify the latter, we calculate the difference between A/h0 for the case bc = 40 mm
and for bc = 50 mm at x = xc =0.50 m in our simulations. According to figure 16(b),
this value ∼Z2 − Z1 is 1.0, which is positive. We conclude therefore that both curves
experience a shift to the left due to porosity effects corrected with an additional shift
to the right because the granular flow appears to experience an increase of friction
in the first part of the contraction between 0.3 <x < 0.4 m. This increase of friction
before the reservoir combined with a reduction of friction in the reservoir illustrates
the complexity of modelling the constitutive friction laws for granular flows.

From figure 16(b), we also see that the acceleration of the flow without a contraction
corresponds to �Z ≈ 1. As argued in § 3, constant accelerations of the flow without a
contraction do not alter essentials of the theory, since both demarcation lines in the
bc, F0 phase plane shift by the same value �Z.
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The calculation is also used to find the magnitude of two terms that were discarded
in the theoretical derivation. The first term is Aα , which is a correction due to the main
effect of porosity represented by αc/α0. The second term is an acceleration integral
of fluctuational stresses arising from the cross- and depth-averaged equations, which
were assumed to be included in µ. Both terms appear to be negative and after
normalization with h0 they lead to corrections of the acceleration integrals varying
between −0.5 and −0.2 for several bc.

5. Discussion of rheology
In this section, we discuss the rheology of the following existing friction models

applicable to smooth planes: the Coulomb model, the kinetic-collisional model of
Johnson et al. (1990), the Savage–Hutter (1991) friction model, and the model of
Louge & Keast (2001). We consider the discrete-particle simulations as references,
because they correspond rather well with the laboratory observations and contain
the required detailed information on the granular stresses and their averages. Hence,
the numerical simulations are used to calculate ‘actual’ pressure and other fields,
which are then used as input for the theoretical friction models proposed in the
literature. The predicted stresses resulting from these friction models are then validated
against the actual (depth- and width-averaged) granular stresses in our simulations.
Such a validation is called a priori testing because no partial differential equations
incorporating the constitutive models have to be solved.

First, the most simple frictional model is the Coulomb model (as used by, among
others, Gray et al. 2003), in which the ratio between tangential and normal stresses
is constant. Estimating the normal stress at the bottom as the hydrostatic pressure,
ρpαgnh, we find µ = tan δ. However, the Coulomb friction model is too simple to
explain the steady granular reservoir since it is not able to reduce the friction in a
contraction significantly. A slight reduction is obtained because the friction coefficient
is formally multiplied with u/|u| � 1. For the reservoir simulation, a cross-sectional
average of this factor has been verified to be at least 0.98, an insignificant deviation
from unity.

In the second model, following the literature, we assume a linear combination of
Coulomb friction and a term expressing the influence of the rate of shear. In these
models, the stress tensor is essentially decomposed into a frictional and a collisional
part (see the review by Jackson 1986). The frictional part is then often modelled with
Coulomb’s law. In Bagnold’s (1954) seminal work, the closing of the collisional part
with a shear stress proportional to the square of the rate of the shear is proposed. In
later work, based upon kinetic theory (see the review of Goldhirsh 2003), the square
of the rate of strain is often replaced by the product of the square root of granular
temperature and rate of strain (see Lun et al. 1984 and Johnson et al. 1990). We
find that after division by αρpgnh a similar collisional stress contribution leads to a
frictional term µ proportional to F 2, since both the root of the granular temperature
and the rate of strain are proportional to u. The inclusion of collisional stresses in
rheological theory therefore leads to reduced friction in the contraction since F is
relatively low in the contraction for steady flows.

A smooth bottom surface instead of a bottom formed by fixed spheres causes
modelling complications. Both Bagnold’s arguments and kinetic theory concern the
shear between two layers of particles and not the shear or slip between a wall and
a layer of particles. For a smooth surface, collisional theory is therefore usually
combined with Coulomb friction. For a perfectly flat frictional bottom, as in our
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Figure 17. Two width-averaged profiles near the wall at z = 0.5 mm (dashed) and z = 1.5 mm
(dotted) compared with the cross-sectionally averaged steady-state profiles (solid) for (a) the
streamwise velocity and (b) the volume fraction.
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Figure 18. (a) Cross-sectionally averaged T profiles near the bottom wall at z = 0.5 mm
(dashed) and z = 1.5 mm (dotted) compared with the depth-averaged steady-state profiles
for T . (b) The three distinct contributions of the depth-averaged T , which together sum to
T : streamwise (solid), transversal horizontal (dashed) and bottom wall-normal contribution
(dotted).

simulations, the velocity profile exhibits shear, see figure 17. When the bottom friction
coefficient is not lower than the internal friction coefficient, the near-wall velocity
is naturally reduced because a particle in the bottom layer has higher probability
of contact with the bottom plane than particles in the adjacent layers. In addition,
figure 17(b) shows the volume fraction, which in theoretical works is often assumed
to be independent of depth, while the simulation results show a relatively high
concentration of particles near the bottom. The profile of granular temperature,
however, is almost independent of depth: the wall and depth-averaged temperature
in figure 18(a) are almost the same.

Johnson et al. (1990) proposed combining the kinetic collisional model by Lun
et al. (1984) with frictional terms and applied the model to chute flows with a flat
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bottom made of aluminium. Although the kinetic collisional theory is based on binary
collisions, a concept which has limitations at high volume fractions, Lun et al. (1984)
and Johnson et al. (1990) both mention that the constitutive equations formulated
by Lun et al. are appropriate for the entire range of volume fractions. We test the
applicability of their theory to the contraction flow.

The constitutive model for the collision stress tensor according to Lun et al. (1984)
is, after a few simplifications

σ c ≈ −(ρpαT (1 + 4αg0) − µb∇ · u)I + 1.2µbS, (5.1)

where I is the unity tensor, S the deviatoric part of the strain and

g0 = 1
/(

1 − (α/αmax)
1/3

)
, µb = 8

3
ρpdα2g0

√
T/π, (5.2)

where d is the particle diameter and αmax = 0.65. We substituted η = 1
2
(1 + e) = 1 in

the original equations given by Lun et al. since in our simulations η = 0.985. From
the viscosity proposed by Lun et al., we only retained the part µb in the coefficient in
front of S, which is the main contribution to the viscosity if α > 0.3. Johnson et al.
(1990) adopted this kinetic theory, but added frictional parts to the stress tensor:
Nf for normal components and Nf sinφi for tangential components where φi is the
internal friction angle. Nf =0.05(α − 0.5)2/(αmax − α)5 if α > 0.5 and 0 otherwise. The
stress boundary condition at the bottom of the chute, is (Johnson et al. 1990; see also
Hui et al. 1984)

Sw = φ′πρpα|usl |
√

3T /(6g0αmax) + Nf tan φw, (5.3)

where φw is the friction angle between the particles and wall, the sliding velocity
usl equals the velocity of the bottom layer of particles (see figure 17a), and φ′ is a
specularity coefficient, equal to 0.25 for aluminium.

We evaluate the frictional-kinetic theory for a one- and two-dimensional description
of the contraction, which means that we use depth and cross-sectionally averaged
profiles to evaluate the constitutive equations, with the exception of Sw which is
calculated with use of the values of T and u at z = 0.

The isotropic part of the constitutive stresses in (5.1) can be interpreted as a granular
pressure, such that a frictional-kinetic model for the granular pressure becomes

pmod = Nf + ρpαT (1 + 4αg0) − µb∇ · u. (5.4)

If we evalute pmod for depth-averaged quantities we can compare this with the depth-
averaged ‘static’ pressure, 1

2
αρpgn h. The comparison is shown in figure 19, where

we also plot 1
2
p1, where p1 is the pressure at the wall directly computed from the

discrete-particle simulation without using the constitutive equation. Two important
conclusions can be drawn from this figure. First, the ‘static’ pressure approximation is
a quite accurate approximation of the actual pressure p1. The small difference between
p1 and αρpgn h can be explained by the term u∂w/∂x, which balances the pressure
gradient in the wall-normal direction, as expressed by the non-averaged momentum
equation in the z-direction. The second conclusion is that although the magnitude of
pmod is wrong, its trend is correct as the pressure increases in the contraction. The
frictional contribution Nf is essential for this increase.

The frictional coefficient µ in our one-dimensional equations can be calculated
from the kinetic theory by cross-sectionally and depth-averaging the divergence of
the granular stress tensor, applying Leibniz’ rule, assuming zero stress boundary
conditions at the free surface, subtracting the hydrostatic pressure term and dividing
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Figure 19. Frictional-kinetic pressure pmod with (dotted) and without Nf (dashed), compared

with the ‘hydrostatic’ pressure 1
2
ρpαgnh (solid) and the actual pressure 1

2
p1 (squares).

the result by ρpαgnh:

µ = −∂h

∂x
− 1

ρpαgnbh

∫ b/2

−b/2

∫ h

0

∇ · σ c dz dy (5.5)

≈ −∂h

∂x
+

1

ρpαgnh

[
∂(hpmod)

∂x
− ∂

∂x

(
6

5
hµb

(
∂u

∂x
− 1

3
∇ · u

))
+ Sw

]
. (5.6)

The terms inside the square brackets represent the depth-averaged ∂σxx/∂x, while
Sw results from depth-averaging the shear-stress term ∂σxz/∂z. The divergence of the
velocity in (5.6) represents

1

h

∫ h

0

∇ · u dz ≈ ∂u

∂x
+

u

h

∂h

∂x
. (5.7)

The last term in (5.7) arises from the integration of ∂w/∂z and application of the
kinematic boundary condition at the free surface.

According to the reservoir simulation data, µ calculated from (5.6) appears to
be an inaccurate approximation of the actual µ (figure 20). However, the friction
is reduced in the reservoir, which means that the model is in principle able to
explain the occurrence of reservoirs in contraction flows. The shear-stress boundary
contribution Sw appears to be the dominant term in (5.6). It is severely reduced inside
the contraction, due to the reduction of granular temperature and slip velocity at the
bottom of the chute.

To verify whether the poor accuracy of the model is caused by the reduction to
one dimension, we also evaluated the model for two-dimensional flow (only depth-
averaged). Results were not improved, as shown by the circles in figure 20, which
represent the two-dimensional friction coefficient after cross-sectionally averaging.
The two-dimensional model is similar to (5.6), but the expression for the divergence
is extended with y-derivatives, while y-derivatives arising from the strain-component
Sxy also occur.
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Figure 20. Models for µ compared with the actual µ (thick solid): constant Coulomb friction
(dotted); equation (5.6), one-dimensional version (dashed) and extension to two-dimensional
(circles); Savage & Hutter model (thin solid).

The third model we wish to validate is that of Savage & Hutter (1991) with

µ = 1.25 tan δ0(1 − exp(−cF ))(1 + 0.453 h/b), (5.8)

where model constant c equals 0.64 and δ0 is a quasi-static value. We put 1.25 tan δ0

equal to 0.344, the friction coefficient used in the simulation. An interesting feature
of this model is that effects of sidewalls are included through the last factor. Since we
do not know the values of the other constants in (5.8) for our specific case, we use
the values mentioned by Savage & Hutter. Although the chute in their experiments
had some roughness, it was not coated with particles of the same material and size
as the flow. Instead PVC, writing paper and sandpaper were used, and in particular
the former two were reasonably flat for particle diameters of a few mm. According
to expression (5.8), 80 % of the friction is expressed by Coulomb’s law, while 20 % is
variable and represents the effects of the rate of shear. The latter part is expressed
in F , and indeed the friction decreases if F decreases. The Savage & Hutter model
will be able to predict a reservoir, since it predicts a significant reduction of friction
inside the contraction (figure 20). However, the peak of friction in the first part of
the contraction is not covered.

None of the models represented in figure 20 is able to reproduce the strong increase
of friction in the first half of the contraction. This strong increase in this part of the
flow may well be caused by the strong shock, since the shock is at the same location
as the first peak of friction. Apparently, the dissipative character of the shock is not
recognized by the constitutive equations of friction that we discuss.

The fourth model (Louge & Keast 2001) differs from the previous models because
friction decreases with F (see equation (54) in Louge & Keast 2001). It is therefore
not able to explain our observations. Nevertheless, using our numerical database, we
calculated the friction coefficient prescribed by equation (59) in Louge & Keast,

µ = µE − fLF 2, (5.9)

where fL is a positive function and µE is the friction coefficient between particles and
the bottom of the chute. The result was very similar to the straight, dotted, Coulomb
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line in figure 20. The difference was less than 1 % and a slight increase of friction in
the contraction was observed.

Finally, we mention the model proposed by Pouliquen & Forterre (2002). This model
was not calibrated for flat planes, but for rough inclines with spherical particles fixed
to the surfaces. Hence, it is not valid for our experiments. We only remark that in
this model friction also increases with F , which is a minimum requirement to capture
steady reservoirs in a contraction.

6. Conclusions
In this paper, we presented a series of granular experiments on supercritical shallow

flows through a contraction on an inclined plane. In line with Akers & Bokhove’s
(2007) hydraulic experiments in a horizontal flume, we observed three different
flow states for granular flows on inclined planes: (I) smooth supercritical flow, (II)
flow with a non-steady backward travelling bore or a steady jump upstream of
the contraction region, and (III) a steady reservoir with a standing jump in the
contraction. Four distinct regimes were observed in the phase plane of contraction
width bc and supercritical upstream Froude number F0 > 1, summarized in figure 12.
Three of these regimes corresponded to the flow states (I), (II) and (III), while a
fourth regime (IV) represented observations of hysteretic flows. Regime (III) concerns
flow states with relatively low supercritical Froude number (1 < F0 < 4), while regime
(IV) corresponded to ones with larger Froude number (F0 > 4). In the latter regime,
two possible flow states were observed for specific points (bc, F0). Short temporal
disturbances of the flow were sufficient to switch the flow from one state (I) to
another (II or III). Significant variations of the porosity were measured, leading to
quantitative changes, but qualitative features of the experimental regimes did not
change due to these porosity variations.

Theoretical analysis showed that friction is essential, in particular to understand the
formation of a steady reservoir. Friction forces in such reservoirs are inferred as being
relatively low compared to their upstream values. Classical, inviscid and incom-
pressible hydraulic theory has been extended to include viscous and compressibility
effects represented by acceleration integrals. The extended theory with approximated
acceleration integrals led to two demarcation lines, dividing the phase plane into
four quadrants, denoted by the four regimes in figure 12. Contrastingly, in classical
hydraulics these demarcation lines cross at (bc/b0, F0) = (1, 1) leading to only three
supercritical regimes. In our granular flow experiment, friction shifts these lines such
that they cross in the middle of the phase plane, around (0.2, 4.0). A new regime
with a steady reservoir inside the contraction emerges as a consequence. Theory
and observations show that the flow accelerates in the contraction. Friction is hence
reduced in the contraction. Simple models in the literature, analysed in § 5, support
this phenomenon because it corresponds to the observed decrease of the macroscopic
velocity scale and increase of the macroscopic length scale, in the depth in the present
instance. Strikingly, the flow regimes for (water and) spherical glass beads and the
lighter, non-spherical poppy seeds do not coincide in the phase diagram. This suggests
that the shape and density of the granular material may have to be included to permit
a possible collapse of the data in one phase diagram.

Discrete-particle simulations were performed for four different widths, bc, and one
Froude number, F0. The maximum number of particles in the system was about
378 000 and the equations were integrated for more than 10 s (physical time), using
a linear spring/dash-pot model for the contact forces. Quantitative agreement was
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observed by comparing depth, porosity, two-dimensional velocity patterns, reservoir
length and the demarcation between flow regimes I and III between simulations and
experiments. The crucial role of friction in the reservoir formation was confirmed
by the simulations from statistics of the contact forces. The simulations also showed
that for smooth supercritical flows of glass beads the friction in the contraction is
increased instead of reduced, see figure 16. The simulations revealed that the effect of
increased porosity and the effect of increased friction in the contraction cancel out to
some extent, while the increase of friction for weakly contracted flows was confirmed.
Furthermore, the simulations strongly indicated that porosity influences friction in a
non-trivial way.

Several friction or constitutive laws reported in the literature have been evaluated
using the numerical database. Most constitutive laws confirm the reduction of friction
if the Froude number decreases, as we observed in the contraction. The magnitude of
the theoretical predictions often did not correspond with our simulations. None of the
models was able to reproduce the increase of friction just before the reservoir. It seems
that the constitutive equations which we considered have problems in accounting for
the dissipation caused by granular bores and jumps. It remains a challenge to model
shallow granular flows accurately by continuum approaches.

The authors are grateful to W. Leppink for his technical support and N.G. Deen for
his instructions on handling the PIV method. O. B., M.A. and A.W.V. acknowledge
support via the Royal Netherlands Academy of Arts and Sciences, and the Institute
for Mechanics, Processes and Control—Twente, respectively. O. B. thanks Professor
H.-U. Schmincke for his expert guidance during the 2002 field trip in the volcanic
Eifel in Germany, and the discussions on the Laacher See eruption. The idea for the
experiments was born during this field trip.

Appendix A. Comparison of granular and hydraulic flows
Two water experiments have been investigated to assess whether the reservoir state

would also occur for an incompressible fluid under similar experimental conditions.
We will show that such a state exists, which then implies that the steady granular
reservoir is not primarily caused by compressibility. Akers (2005) and Akers &
Bokhove (2007) also performed experiments with water through a contraction. In
their case, the chute was horizontal and had larger dimensions. They essentially
observed the same flow states for water as we reported here for granular flows. They
considered the hysteresis phenonemon in detail and showed that classical hydraulic
theory (by adaptation of Baines & Whitehead 2003) applied to one-dimensional
equations, after averaging across the chute, provided a leading-order explanation of
the flow phenomena observed.

A snapshot of a water reservoir is shown in figure 21(a). The flow seems laminar
before the shock and turbulent in the reservoir behind the shock, whereas the granular
flow stays laminar except across the shock. In contrast to the V-shaped shock front
for reservoirs in granular flows, it is straight in the water experiments (cf. Akers &
Bokhove 2007). The results for experimental sets S9 and S10 (table 1) have been
collected in a phase diagram, shown in figure 21(b). The representation of the water
experiments in the phase diagram is similar to the representation of the granular
experiments around F0 ≈ 4 (compare figure 7).

Depth measurements at different locations and the corresponding values of Fc were
given in figure 8. The depth of the water layer was measured with an ordinary ruler
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Figure 21. (a) A snapshot of a steady reservoir state for an experiment with water. (b) The
experimental results for water collected in a phase diagram together with critical (solid) and
shock curves (dashed) found with hydraulic theory including frictional effects.

touching the bottom of the chute (giving measurement errors of about 0.2 mm); due
to the effect of surface tension the electronic ruler used before was inappropriate.

The water and granular experiments shown in figure 8 correspond to roughly
the same F0. Surprisingly h0, u0 and mass flux (α0ρp h0u0b0 for glass beads), and
consequently the effective density (α0ρp for glass beads), are approximately the same
for experiments S1 and S10, see table 1. While in the granular lake αc/α0 = 1.65,
we observe from figure 8 that the depth of the granular reservoir is about 1.5 times
smaller than the depth of the water reservoir. For the water and granular examples,
the ratio αchlake/(α0h0) is quite similar. This suggests that the effect of porosity is
mainly visible in the depth downstream of the shock, and that there is compaction of
the granular layer in the reservoir due to gravity.

We finally show how the value Z2 = 6 can be approximately obtained for water. First,
we remark that the dashed line in figure 21, modelled with an isoline value Z2 = 6,
corresponds to a steady reservoir with length Ll = 0.20 m. According to figure 21 the
flow is turbulent in the reservoir. Thus we know the friction by using the standard
surface skin friction coefficient based on the bulk velocity. For turbulent flow, we find
af = tan φ − cf F 2, which shows that the acceleration increases if the local Froude
number F = u/

√
gnh decreases. In the contraction F < 1 and cf < 0.01 (Pope 2000) if

we just adopt the skin friction coefficient for turbulent channel flow at low Reynolds
number. This means that Ac − As ≈ Llaf > 0.0084 m, such that Z2 > 5, which is close
to Z2 = 6.

Appendix B. Shock relations
The shock relations arising from (3.1), in the absence of friction and forcing terms,

are

[αh(v · n̂ − Sn)] = 0 and [αhv (v · n̂ − Sn)] +
[

1
2
gnαh2

]
n̂ = 0 (B 1)

(Shapiro 1953) with square brackets denoting the jump in a quantity across a shock,
v = (01v) and n̂ the unit vector normal to a shock. In one dimension, the shock
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relations (B 1) reduce to

(u+ − Sα)α+ h+ = (u0 − Sα)α0h0, (B 2)

(u+ − Sα)α+h+ u+ + 1
2
α+gnh

2
+ = (u0 − Sα)α0h0u0 + 1

2
gnα0h

2
0 (B 3)

with Sα = Sn. Further manipulation yields

(u+ − Sα)
2 =

1

2
gn

α0h0

α+h+

(
α+h2

+ − α0h
2
0

)(
α+h+ − α0h0

) , (B 4)

which reduces to (3.23) for u+ = 0. In the steady case, Sn = 0 and (B 1) becomes

[αhv · n̂] = 0, [αh(v · n̂)2] +
[

1
2
gnαh2

]
= 0 and [αhv · τ̂ v · n̂] = 0 (B 5)

with τ̂ the unit vector tangential to the shock. The one-dimensional version of (B 5)
is used in (3.14).

Next, we consider steady flow along a wall with a sudden inclination of angle θc.
Assume that an oblique shock arises with an angle θs > θc. The uniform inflow has
depth h0, speed u0, and volume fraction α0. The flow behind the shock has speed u+

parallel to the wall, depth h+ >h0 and volume fraction α+. Following Shapiro (1953;
see Al-Tarazi et al. 2006), we obtain the extended angle–shock relations:

2F 2
0 sin2 θs =

1

h0

α+h+

α0h0

α0h
2
0 − α+h2

+

α0h0 − α+h+

and
α+

α0

h+

h0

=
tan θs

tan(θs − θc)
(B 6a, b)

with Froude number F 2
0 = u2

0/(gn h0). When α+ = α0, (B 6a, ba) is equivalent to (4.2)
in Gray et al. (2003). For constant porosity, (B 6a, b) reduces to (16) in Hakonardottir
& Hogg (2005).

Thus, relations (B 6a, b) imply that given the upstream inflow values summarized
in F0, the ratio h+/h0 and the inclination angle θc of the contraction, we can find the
shock angle θs and the porosity ratio α+/α0. Using these expressions, the differences
in results between Gray et al. and Hakonardottir & Hogg (2005) may be explained
by porosity effects if we assume that in the former experiment the porosity jump was
relatively large and in the latter relatively small. The diameters of particles in these
experiments were very different, such that h0/d , with d the particle diameter, in the
former experiment equalled 4 and in the latter about 44. In the former case porosity
has more influence than in the latter, since for high h0/d , volume fraction α0 is closer
to its maximum value than for low h0/d .
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