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We develop a generalized Rotne–Prager–Yamakawa approximation for the dipolar
components of the inverse friction matrix and use it for calculating the intrinsic
viscosity of rigidly connected bead conglomerates. Such bead models are commonly
used in the calculation of hydrodynamic properties of macromolecules. We consider
both the case of non-overlapping constituent beads as well as overlapping beads of
different sizes. We demonstrate the accuracy of the approximation in two test cases
and show that it performs well even if the distances between the beads are small
or if the beads overlap. Robust performance of this approximation in the case of
overlapping beads stems from its correct limiting behaviour at a complete overlap,
with one sphere fully immersed in the other. The generalized Rotne–Prager–Yamakawa
approximation is thus well suited for evaluation of intrinsic viscosity, which is a key
quantity in characterizing molecular conformations of biological macromolecules.

Key words: complex fluids, low-Reynolds-number flows, mathematical foundations

1. Introduction

Dilute solution viscometry is an important tool for probing macromolecular
conformations. Suspended particles increase the viscous dissipation in the bulk
flow due to the stresses acting on their surfaces. Such an increase in viscosity,
characterized by the intrinsic viscosity coefficient, can be used to differentiate between
the folded and unfolded states of proteins (Privalov et al. 1986), measure lengths
and conformations of DNA molecules (Harding 1997) or detect polymer collapse
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(Williams, Brochard & Frisch 1981). An attractive approach to the prediction of
macromolecular viscosity is provided by bead models, that originated from Kirkwood
and Riseman, and has since been developed by Bloomfield, de la Torre and their
coworkers (Bloomfield, Dalton & Van Holde 1967; de la Torre & Bloomfield 1978;
Carrasco & de la Torre 1999b; de la Torre, del Rio Echenique & Ortega 2007; Pamies
et al. 2008). In these models, the macromolecule is represented as a collection of
beads, and the forces acting on these beads are obtained from the appropriate friction
matrix. To make the problem tractable, a number of approximations have been
adopted. The most popular is the Oseen approximation, which assumes point forces
and does not take into account the spatial extent of the particles. Moreover, only
the translational component of the mobility matrix is used in the computation
of the friction tensor, which not only neglects the translational–rotational and
rotational–rotational couplings but also fails to include the dipolar elements of
the friction tensor. As a result, these approaches tend to fail whenever some of the
beads are significantly larger than the others (de la Torre & Carrasco 1998), and
in particular give vanishing viscosity for a single sphere, instead of 5/2, as derived
by Einstein. This deficiency can be partially fixed by the introduction of an ad hoc
‘volume correction’ where a term equal to 5/2V is added to the viscosity, with V
standing for the total volume of the beads. Later on it was noticed that such an
approach significantly overestimates viscosity, and an extra multiplying factor needed
to be introduced (de la Torre et al. 2007). As noted by de la Torre et al. (2007),
most of these problems arise from the truncation of hydrodynamic interaction tensors
at the Oseen level. A possible way around this difficulty is to use a higher-order
approximation with the inclusion of translational, rotational, as well as a dipolar
component of the hydrodynamic interaction tensors. In this communication, building
on our previous work (Wajnryb et al. 2013; Zuk et al. 2014) and earlier ideas
by Durlofsky, Brady & Bossis (1987), Brady & Bossis (1988), we generalize the
Rotne–Prager–Yamakawa approximation to include dipolar components of the inverse
friction matrix. This allows us to derive expressions for the intrinsic viscosity of
conglomerates of rigidly connected beads, both non-overlapping and overlapping.
We assess the accuracy of the method on two simple model shapes: a spherical
conglomerate and a dumbbell. We show that the approximation, albeit simple,
performs surprisingly well even if the distances between the beads are small or
if the beads overlap. The good performance of this approximation for overlapping
beads comes from its correct limiting behaviour at a complete overlap, with one
sphere fully immersed in the other.

2. Mobility and friction matrices

We consider N spherical particles in an incompressible fluid of viscosity η0 at a
low Reynolds number, immersed in an external fluid flow v∞(r), with stick boundary
conditions on the particle surfaces. Linearity of the Stokes equations implies a linear
relation (Brenner & O’Neill 1972; Cichocki, Felderhof & Schmitz 1988; Kim &
Karrila 1991) F̃

T̃
S̃

=−
ζ tt ζ tr ζ td

ζ rt ζ rr ζ rd

ζ dt ζ dr ζ dd

 ·
 ṽ∞ − Ũ
ω̃∞ − Ω̃

Ẽ∞

 , (2.1)

which defines the grand friction matrix ζ . The elements ζ pq (with p, q= t, r, d) are
the Cartesian tensors and the superscripts t, r, d denote translational, rotational and
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dipolar components, respectively. Here, F̃= (F1,F2, . . . ,FN) are the 3N-dimensional
vectors of forces with which particles act on the fluid and analogously for the torques
T̃, as well as translational and rotational velocities of the particles (Ũ and Ω̃). Next,
ṽ∞= (v∞(R1), . . . , v∞(RN)) are the values of external flow velocity calculated at the
centres of the particles, Ri. Similarly, ω̃∞ gives the vector of vorticities at the centres
of the particles, with ω∞ = (1/2)∇ × v∞. Finally, Ẽ∞ = (E∞(R1), . . . , E∞(RN)) is
the vector of strain rates, with E∞= (1/2)(∇v∞+ (∇v∞)

T) whereas S̃= (S1, . . . , SN)

are the particle stresses. Both are 5N-dimensional, due to the symmetric and traceless
character of strain and stress tensors.

The grand mobility matrix µ is defined by the relation Ũ− ṽ∞
Ω̃ − ω̃∞
−S̃

=
µtt µtr µtd

µrt µrr µtd

µdt µdr µdd

 ·
 F̃

T̃
Ẽ∞

 , (2.2)

which is a partial inverse of the relation (2.1). The two upper rows of the above
relation describe the dynamics of the system. The third row (stresslet) is needed
to compute the stress tensor in the suspension; however, it has no bearing on the
movement of particles.

Another important hydrodynamic tensor is the full inverse of the grand friction
matrix, introduced by Durlofsky et al. (1987), m= ζ−1 which links force and velocity
multipoles  ṽ∞ − Ũ

ω̃∞ − Ω̃

Ẽ∞

=−
mtt mtr mtd

mrt mrr mtd

mdt mdr mdd

 ·
F̃

T̃
S̃

 . (2.3)

The inverse friction matrix will play a central role in the construction of the
generalized Rotne–Prager–Yamakawa approximation (GRPY), as detailed in the next
section.

3. Generalized Rotne–Prager–Yamakawa approximation

The relation between the velocities of particles moving in a Stokes flow and the
induced force density localized on particle surfaces Si, i= 1, . . . , n, can be written as

[Ui +Ωi × ρi − v∞(r)]r∈Si =

∑
j

∫
T 0(r− r′) · f j(r

′) d3r′. (3.1)

Here ρi = r−Ri with Ri denoting the position of particle i. On the other hand, f j(r′)
is the density of the forces with which the particle j is acting on the fluid. Finally,
T 0 is the Oseen tensor

T 0(r)=
1

8πη0r
(1+ r̂r̂), (3.2)

which is the Green function for the Stokes problem for the unbounded space. In the
above, r is the length of the vector r and r̂ = r/r. The key idea behind the GRPY
approximation is to describe the force density in terms of its three multipoles only:

f j =wt
j ·Fj +wr

j · T j +wd
j : Sj, (3.3)
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where wp
j are operators associated with different multipoles (p= t, r, d)

wt
j(r)=

1
4πa2

j
1δ(ρj − aj), wr

j (r)=
3

8πa3
j
ε · ρ̂jδ(ρj − aj)

wd
j (r)=

3
4πa3

j
δ(ρj − aj)ρ̂j ·I .

 (3.4)

In the above [ε · ρ̂]αβ = εαβγ [ρ̂j]γ and I , is the fourth-rank isotropic tensor, traceless
and symmetric in its first and last index pairs:

Iαβδγ = 1
2(δαδδβγ + δαγ δβδ −

2
3δαβδδγ ). (3.5)

Next, the velocity field in the left-hand side of (3.1) is approximated by a linear
flow. The multipoles characterizing this flow: velocity, Ui − v∞(Ri), vorticity, Ωi −

ω∞(Ri), and strain rate, −E∞(Ri), can be obtained from [Ui+Ωi× ρi− v∞(r)]r∈Si by
integration of this expression multiplied by the transposed wp

i operators. This leads to
the following relation for the elements of the inverse friction matrix

m pq
ij = 〈w

p
i |T 0|w

q
j 〉 =

∫∫
[wp

i (r′)]T · T 0(r′ − r′′) ·wq
j (r′′) dr′ dr′′, (3.6)

where we have used the relation (2.3) together with an approximation (3.3). In the
above, T stands for the transpose. Equation (3.6) can be applied to other geometries
(periodic boundary conditions, presence of a wall etc.) by substituting T 0 with a
relevant Green’s function for a particular geometry, as outlined in Wajnryb et al.
(2013).

A similar construction of the GRPY approximation on the level of the inverse
friction matrix has been carried out by Durlofsky et al. (1987) and Brady & Bossis
(1988); however, their focus was on the suspension of freely moving, non-overlapping
particles. As a result, they combined the RPY approach with the lubrication
corrections which come into play as the particle surfaces approach one another –
an effect not present in the rigidly connected beads in the macromolecular models.

Note that the translational and rotational components of the inverse friction matrix
m pq

ij (with p, q = t, r) are of the same form as the respective elements of the grand
mobility matrix µij in the Rotne–Prager approximation. The explicit formulae for these
components are not given here, since they can be found in Zuk et al. (2014).

We now turn to the calculation of the dipolar elements of the m matrix. The
diagonal or ‘self’ (i= j) elements of the mdd component are obtained from (3.6) by
performing both integrals over the same surface:

mdd
jj =

3
20πη0a3

j
I . (3.7)

The off-diagonal (i 6= j) components have the following form, stemming from the
symmetry of the problem:

mdd
ij (Rij)=

3
40πη0a3

i a3
j
[ f 0(Rij)d

0(R̂ij)+ f 1(Rij)d
1(R̂ij)+ f 2(Rij)d

2(R̂ij)], (3.8)

where Rij =Ri −Rj and d i are the following tensors (Kim & Karrila 1991)

[d0(r̂)]αβγ δ = 3
2

(
r̂α r̂β − 1

3δαβ
) (

r̂γ r̂δ − 1
3δγ δ

)
, (3.9)
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[d1(r̂)]αβγ δ = 1
2

(
r̂α r̂γ δβδ + r̂β r̂γ δαδ + r̂α r̂δδβγ + r̂β r̂δδαγ − 4r̂α r̂β r̂γ r̂δ

)
, (3.10)

d2
=I − d0

− d1. (3.11)

For non-overlapping particles, the integral formula (3.6) can be shown to be equivalent
to the following differential formula

mdd
ij =−

[
1+

a2
i + a2

j

10
∇

2

]
I :−→∇ T 0(Rij)

←−
∇ :I, (3.12)

where the arrow over the operator stands for the direction of its action, e.g.
[T (r)
←−
∇ ]αβγ = ∂γTαβ(r). This yields for f i

f 1(Rij)= a3
i a3

j

(
5

R3
ij
−

8(a2
i + a2

j )

R5
ij

)
, f 2(Rij)= 2a3

i a3
j

a2
i + a2

j

R5
ij

, f 0
=−2f 1

− 2f 2.

(3.13a−c)
The above formulae, for equal-sized particles, have been derived previously by
Durlofsky et al. (1987), whereas the equivalent results for different-sized particles
can be found in Kim & Karrila (1991). However, the case of overlapping particles has
not been considered in the literature. Here, the differential formula (3.12) is no longer
valid, whilst the integral approach based on (3.6) can still be applied. The algebraic
forms of the f i functions for overlapping particles are given in the Appendix. As the
smaller sphere gets completely immersed in the larger one, the dipolar component of
the inverse friction matrix approaches a constant value:

mdd
ij =

3
20πη0a3

>

I, (3.14)

where a> is the radius of the larger (external) sphere. Note that the above is equal to
the ‘self’ element of the larger particle, as given by (3.7). This is analogous to the
earlier results of Wajnryb et al. (2013) for t and r components.

Next, we turn to the analysis of the translational-dipolar components. Symmetry
considerations lead then to the following form of mtd:

[mtd
ij ]αβγ = [m

dt
ji ]βγα =

3
20πη0a2

j

[
h0(Rij)

(
δαβ R̂ij,γ + δαγ R̂ij,β −

2
3
δβγ R̂ij,α

)
+ h1(Rij)R̂ij,α

(
R̂ij,β R̂ij,γ −

1
3
δβγ

)]
. (3.15)

For non-overlapping particles, the functions hi are given by

h0(Rij)=
a2

j (5a2
i + 3a2

j )

6R4
ij

, h1(Rij)=
5
6

a2
j

(
3

R2
ij
−

5a2
i + 3a2

j

R4
ij

)
. (3.16a,b)

Finally, the mrd and mdr components are of the form

[mrd
ij ]αβγ = [m

dr
ji ]βγα =

3
16πη0a3

j
g(Rij)R̂ij,δ(εδαβ R̂ij,γ + εδαγ R̂ij,β), (3.17)

where, for non-overlapping particles, g(Rij) = a3
j /R

3
ij. The results for overlapping

particles for both td and rd components are given in the Appendix.
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3.1. Hydrodynamic matrices of a rigid body
Here we apply the formalism introduced in the preceding section to the description
of a macromolecule, immersed in an external linear flow

v∞(r)= K c · (r−R0), (3.18)

where K c is a constant velocity gradient matrix. We will represent the macromolecule
as a collection of rigidly connected beads of different radii, ai, which can potentially
overlap. When the macromolecule moves as a rigid body, the translational and
rotational velocities of individual constituents (Ui, Ωi) are linked with those of the
body as a whole (Uc, Ωc) in the following way

Ui =Uc +Ωc × (Ri −R0)+Ec · (Ri −R0),
Ωi =Ωc,

E∞,i =Ec,

 (3.19)

where Ec is the symmetric part of K c and R0 is the reference point with respect to
which the translation and rotation are defined. The relations (3.19) can be written as Ũ

Ω̃

Ẽ∞

= T N(R0) ·

Uc
Ωc
Ec

 , (3.20)

where T N is 11N× 11 matrix. We can also define the rigid-body grand friction matrix
ζc, by a relation analogous to (2.1) involving Uc, Ωc and Ec as well as the forces,
torques and stresslets with which the macromolecule acts on the fluid. The relation
between ζc and the N-body grand friction matrix ζN is then given by

ζc = T N(R0)
T
· ζN · T N(R0), (3.21)

with T N defined in (3.20).
The construction of the hydrodynamic matrices in the GRPY approximation now

proceeds as follows. First, we construct the N-body inverse friction matrix mN ,
as outlined in § 3. Next, it is inverted to obtain the N-body friction matrix ζN .
Subsequently, the friction matrix of the macromolecule is obtained by projection (3.21).
Finally, ζc is partially inverted to yield the rigid-body grand mobility matrix µc, which
can then be used to calculate the intrinsic viscosity of the system:

[η]∞ =
∑
αβ

[µdd
c ]αββα

10η0v
. (3.22)

In the above, intrinsic viscosity is normalized by the volume of the macromolecule, v.
To be precise, the above corresponds to the high-frequency limit of intrinsic viscosity,
since we neglected the contribution from the Brownian relaxation of the particle
orientation (Rallison 1978; Cichocki, Ekiel-Jezewska & Wajnryb 2012).

The projection operator T N(R0) defined in (3.19)–(3.20) involves an arbitrary
reference point R0. A natural question which can be raised in this context is whether
the choice of R0 has an effect on the elements of the rigid-body matrices ζc and µc.
As it turns out, the answer is different for different components of these matrices.
Translational and rotational components of the grand mobility matrix have been
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a

(a) (b) (c)

FIGURE 1. Sphere modelled as a conglomerate of beads with different radii: a= 0.5λ (a)
and a= 0.2λ (b). The spheres are positioned on a cubic grid with a lattice constant λ (c).

analysed in Kim & Karrila (1991) and it has been shown that µtt
c , µtr

c and µrt
c depend

on the choice of the origin, whereas µrr
c does not. Generalizing this reasoning to

dipolar components it can be shown that µdd
c , µdr

c and µrd
c are not origin sensitive. In

some of the alternative approaches to the calculation of intrinsic viscosity one finds
that the result is origin sensitive (de la Torre & Bloomfield 1978; Harding 1997) and
it is proposed R0 needs to be chosen in such a way as to guarantee the minimum
energy dissipation (so called ‘viscosity centre’). A possible reason for this discrepancy
is that the derivation by de la Torre & Bloomfield (1978) involves approximations on
the level of the friction matrix, the elements of which do depend on the choice of
origin.

4. Examples

We demonstrate the performance of the GRPY approximation by calculating the
intrinsic viscosity for two simple model systems. In the first example, we represent
a spherical particle of radius ac as a collection of beads, either positioned on the
surface of the sphere only or positioned throughout its entire volume. This corresponds
to the shell model and filling model in the nomenclature of Carrasco & de la Torre
(1999a). In both cases, the starting point is a three-dimensional cubic lattice with
lattice constant λ. For the filling model, we place the spheres in all the nodes that
are at a distance ac or smaller from the centre. For shell model, we choose the outer
layer of the respective volume filling (figure 1). Furthermore, to calculate the intrinsic
viscosity we need to assign an effective radius to such a conglomerate in order to
estimate its volume as needed in (3.22). As shown by Cichocki, Ekiel-Jezewska &
Wajnryb (2014), the correct procedure in such a case is to estimate v based on the
hydrodynamic (Stokes) radius, defined as ahyd= (2πη0Trµtt)−1. For an almost spherical
shape, this approach leads to the correct value of the intrinsic viscosity, up to quadratic
terms in surface roughness. Note that µtt in the formula for the Stokes radius needs
to be calculated using the same approach as the one used to compute µdd (i.e. bead
model combined with the GRPY approximation).

Next, we analyse the accuracy of the GRPY approximation for different radii (a) of
the constituent spheres by comparing their prediction with the exact result for a single
sphere ([η]∞= 5/2). As can be inferred from the data in table 1, both models perform
well for a wide range of bead radii, with an accuracy not worse than approximately
4 %, even at a/λ = 0.05, which corresponds to a very sparse filling. At the other
extreme, for the shell model with touching spheres (a/λ = 0.5) we get an accuracy
of approximately 0.5 %. The accuracy of the results increases significantly with the
decrease of the lattice constant λ, which results in an increase of the total number of
spheres (N) used to represent our molecule. As shown in table 1, an approximately
twofold increase in N results in an approximately twofold reduction in the deviation
from the exact result. Importantly, the model continues to perform well for overlapping
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0 1 2

Two beads

Free beads

Filling model
Multipole
method

3 4
2.0

2.5

3.0

3.5

4.0

4.5

5.0

l

FIGURE 2. High-frequency component of the intrinsic viscosity [η]∞ for the rigid
dumbbell as a function of the beads separation length l measured in unit lengths
of the bead radius, a. Three different methods are used to obtain the results: the
GRPY approximation with two beads (one per each sphere in the dumbbell), the
multipole method and the GRPY approximation with 895 beads filling each sphere of
the dumbbell. Red triangles mark the values of intrinsic viscosity obtained using the
GRPY approximation for free beads, i.e. without imposing the constraint (3.20). The
pictograms below the horizontal axis show schematically the geometry of the dumbbell
for the respective l/a values.

a/λ 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7

Shell model N = 746 2.527 2.465 2.468 2.476 2.482 2.486 2.491 2.493 2.495 2.496
N = 1242 2.494 2.467 2.474 2.481 2.486 2.489 2.493 2.495 2.496 2.496

Filling model N = 895 2.401 2.425 2.447 2.462 2.472 2.479 2.486 2.488 2.490 2.491
N = 2103 2.414 2.448 2.466 2.477 2.483 2.488 2.492 2.494 2.495 2.496

TABLE 1. Intrinsic viscosity of a spherical particle represented by the shell model (with
the beads covering the surface of the sphere) and the filling model (with beads filling the
entire volume of the sphere) for different number of beads (N).

beads (a/λ > 0.5), which demonstrates its applicability to macromolecular models,
where overlapping beads are often used to represent complex biological structures. The
shell model performs better than the filling model, since – for a given number of
beads – it represents the surface of the sphere in a more precise way. The omission
of the internal beads does not affect the accuracy while allowing for a reduction in
the computational complexity of the model.

In the second test of the GRPY approximation we consider a dumbbell with two
equal-sized spheres of radii a0 rigidly connected to each other. Figure 2 shows the
intrinsic viscosity of such a system as a function of the distance between the centres
of the spheres (l). Here, we compare the results of the simple GRPY approximation
with two beads (one per each sphere in the dumbbell) against two more precise
methods: the multipole series expansion method (Cichocki et al. 1994) as well as a
representation of the dumbbell by a filling model with the lattice constant λ = a0/6
and a = λ/2 (this corresponds to the representation of each sphere of the dumbbell
by 895 smaller, touching beads).

As expected, when the particles are widely separated, the results of the GRPY
approximation coincide with those of the multipole method, since GRPY becomes
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exact at the far-field limit. However, the two-sphere GRPY model also works very
well when the particles are overlapping, with a deviation from the result of the
multi-bead model of not more than 5 %. Based on the data in table 1 we expect the
multi-bead model constructed with this many beads to be within 0.5 % of the exact
result. One of the reasons for such good performance of the GRPY approximation
is its correct limiting behaviour at a complete overlap of the spheres (cf. (3.14)).
The non-monotonic dependence of [η]∞ on l/a is the result of normalization of the
intrinsic viscosity by the volume of the dumbbell (3.22). Both the total dissipation
and the volume increase with l/a, but at a different rate, which leads to the overall
non-monotonic behaviour of [η]∞(l/a).

An additional advantage of the present scheme is that it allows for the separation
of two different contributions to intrinsic viscosity: that coming from the presence
of internal constraints between the beads and that coming from the finite size of
the beads themselves (Rallison 1979). Red triangles in Figure 2 mark the values
of η calculated without imposing the constraint (3.20). As observed, if the beads
are close to each other or overlap, the viscosity of free beads is close to that of the
constrained system, i.e. the contribution of constraints is relatively small. Then, as the
distance between the beads is increased, constraints play an increasingly important
role (for l/a = 4 their contribution equals the one connected with the finite size
of the beads). Importantly, the GRPY approach incorporates both contributions to
the intrinsic viscosity, since it takes explicit account of the volume of the beads,
in contrast to the Oseen-level approaches. The data in Figure 2 indicates that the
GPRY approach will be particularly effective for modelling compact systems, such
as proteins and protein complexes, whereas for long linear polymers the Oseen-based
approaches might prove sufficient.

5. Summary

Using a reformulation of the RPY approximation based on the integral formalism
(equations (3.6)) of Wajnryb et al. (2013) we have provided explicit formulae for
the components of the inverse friction matrix, m, both for non-overlapping and
overlapping particles. These have then been used for the calculation of the intrinsic
viscosity of complex-shaped macromolecules, using their representation as a collection
of beads. By inverting the N-particle m matrix and then projecting the resulting
friction matrix on the rigid-body motion of the molecule, we recover the friction and
mobility matrices of the macromolecule, ζc and µc. The dipolar element of the latter
is then used to calculate the high-frequency intrinsic viscosity, [η]∞.

We have tested the RPY approximation for [η]∞ by comparing its predictions either
to exact results (for a sphere) or to the predictions of the virtually exact multipole
series expansion method (for a dumbbell). GRPY has been shown to perform well
not only for separated beads but also for overlapping particles. Importantly, the GRPY
tensors were shown to have the correct limiting behaviour at a complete overlap, with
one sphere fully immersed in another.
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Appendix

In this Appendix, we give the explicit formulae for the inverse friction matrix
elements for overlapping particles. We start with the dd components, given in
terms of the functions f i, as defined in (3.8). For partially overlapping particles,
i.e. a> − a< < Rij 6 ai + aj (where a> and a< are the radii of the larger and smaller
particle, respectively) one gets

f 0(Rij) =
1

32R5
ij

[
5R8

ij − 30R6
ij(a

2
i + a2

j )+ 32R5
ij(a

3
i + a3

j )

−10R2
ij(ai − aj)

4(a2
i + 4aiaj + a2

j )+ 3(ai − aj)
6(a2

i + 6aiaj + a2
j )
]

(A 1)

f 1(Rij) =
1

32R5
ij

[
5R8

ij − 25R6
ij(a

2
i + a2

j )+ 32R5
ij(a

3
i + a3

j )− 15R4
ij(a

2
i − a2

j )
2

+ 5R2
ij(ai − aj)

4(a2
i + 4aiaj + a2

j )− 2(ai − aj)
6(a2

i + 6aiaj + a2
j )
]

(A 2)

f 2(Rij) =
1

64R5
ij

[
5R8

ij − 40R6
ij(a

2
i + a2

j )+ 64R5
ij(a

3
i + a3

j )

− 30R4
ij(a

2
i − a2

j )
2
+ (ai − aj)

6(a2
i + 6aiaj + a2

j )
]
. (A 3)

As the smaller sphere gets completely immersed in the larger one, i.e. when Rij =

a> − a< all the above functions converge to the same limit f 0
= f 1
= f 2
= 2a3

<, which
leads to the relation (3.14). The respective functions for the mtd components at partial
overlap are given by

h0(Rij)=−
10R6

ij − 24aiR5
ij − 15R4

ij(aj − ai)(aj + ai)+ (aj − ai)
5(ai + 5aj)

96aiajR4
ij

, (A 4)

h1(Rij)=−
5((ai − aj)

2
− R2

ij)
2((ai − aj)(ai + 5aj)− R2

ij)

96aiajR4
ij

. (A 5)

At a full overlap, h1(Rij)= 0 whereas h0(Rij)=Rij/2aj (for aj> ai) and h0(Rij)= 0 (for
ai > aj). Finally, for mrd we get

g(Rij)=
((ai − aj)

2
− R2

ij)
2(a2

i + 4ajai + a2
j − R2

ij)

32R3
ija3

i
(A 6)

at a partial overlap and g(Rij)= 0 at a full overlap.
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