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LOGICAL GROUNDS
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The view that some facts obtain in virtue of other facts is both natural and plausible.
Causal examples come to mind: if an event e caused an event f , then it sounds correct to
say that the fact that f occurred obtains in virtue of the fact that e occurred—or, to put it
in a less cumbersome way, that f occurred because e occurred. But many noncausal cases
also come to mind, as illustrated, for example, by the following statements:

• These two apples resemble each other because they have the same shape and the
same colour;

• Her belief that π is an irrational number is justified because it is based on reliable
testimony;

• You acted wrongly because your intention was to cause harm.

In each case, it is said that a fact (e.g., the fact that the two apples resemble each other)
obtains in virtue of another fact (e.g., the fact that they have the same shape and the same
colour), and the explanatory link involved is not—or so is it plausible to think—of the
causal sort.

Noncausal explanatory links have widely been invoked in all domains of philosophy.
Suitable generalisations of the previous examples are indeed important philosophical the-
ses, and further illustrations include, for example, (generalisations of) Aristotle’s oft cited
claim that ‘It is not because we think truly that you are white, that you are white, but
because you are white we who say this have the truth’,1 versions of the Rationalists’
Principle of Sufficient Reason, various “reduction” claims (e.g., that the mental reduces
to the physical, the normative to the natural, or again the aesthetic to the subjective and/or
cultural) and truth-making theory, which assumes that (at least some) truths are true in
virtue of the existence of things.

One special sort of noncausal explanatory relation called ‘grounding’ has recently been
the focus of much philosophical thinking.2 As I see it, a distinctive trait of grounding
is that it is an objective relation: whether it is true or not that a given fact is grounded
in other facts is not relative to epistemic contexts or subjective standpoints (unless the
obtaining of the facts in question is subject to such a relativity). In this respect, ‘grounds’
is unlike ‘explains’ in many of its uses (although, of course, the latter verb can be used in
place of the former as long as it is properly understood). Many of the philosophical theses
previously mentioned are best construed as involving grounding rather than some form of
nonobjective noncausal explanatory connection.

Grounding is sometimes thought to come in various forms or types. In particular, there
appears to be a threefold distinction between metaphysical, conceptual and logical

Received: December 20, 2012.
1 Metaphysics, 1051b6-8.
2 Starting with Fine (2001). See Correia & Schnieder (2012) and Trogdon (2013).
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32 CORREIA

grounding. Thus, it may be said that the fact that the glass is fragile is metaphysically
grounded in some particular fact concerning its molecular structure, that the fact that the
wall is red is conceptually grounded in the fact that it is scarlet, and that the fact that
there are mountains is logically grounded in the fact that Mont Blanc is a mountain.
Distinguishing between these three forms of grounding ties does not mean believing that
they do not intersect. It is indeed plausible to hold that every case of logical grounding
is a case of conceptual grounding (but not vice versa), and that every case of conceptual
grounding is a case of metaphysical grounding (but not vice versa).3

This threefold distinction is somewhat akin to the more usual distinction between meta-
physical, conceptual and logical necessity, whose elements are also standardly taken to
exemplify the order of relative strength from logical to conceptual to metaphysical. The
connection between the two distinctions is even arguably tighter, since it is plausible to hold
that each type of grounding relation generates a necessary connection of the corresponding
sort, that is, whenever some fact is grounded, in either of the three senses, in other facts, it
is necessary, in the corresponding sense, that the former fact obtains if the latter do.4

Although I have some sympathy for the view that there are these two distinctions and that
the notions distinguished have the features I have just mentioned, it will not be presupposed
in its entirety in this paper. My focus will indeed be mainly on the notion of logical ground-
ing and on its connections with those of truth and logical consequence. Other notions
of grounding will appear in discussion only at some points, and the connection between
grounding and necessity will not be properly discussed (even though, given that logical
consequence is tightly connected with logical necessity, my discussion of the connection
between logical grounding and logical consequence will have some bearing on the issue).

What I wish to do is the following:

• Offer elements of clarification of the notion of logical grounding. To this effect, I
will give precise characterisations of logical grounding treated as a relation between
formulas of certain formal languages, to wit propositional and first-order languages.
The proposed characterisations will be proof-theoretic as opposed to semantic.

• Offer elements of a theory of its “external” connections with the concept of truth.
I will show that, for languages of the sort described above, the concept of truth-
according-to-a-valuation/model can be extensionally captured in terms of logical
grounding (as previously characterised).

• Offer elements of a theory of its connections with the notion of logical consequence.
Using the previous results, I will show that, again for languages of the sort described
above, various types of well-known relations of logical consequence can be defined
in terms of logical grounding (as previously characterised).

• Offer elements of a theory of its “internal” connections with the concept of truth.
I will first extend the characterisation of logical grounding to first-order languages
containing a predicate for truth and then use that characterisation to provide a
syntactic companion to Kripke’s (1975) characterisation of truth-in-a-model for
such languages. This will in particular throw some syntactic light on the intuitive

3 In Correia (2005, chap. 3), I make a distinction between various types of grounding ties, including
logical and metaphysical grounding. Fine (2012b) also distinguishes between various types of
such ties, but his discussion mentions only the notions of metaphysical, normative and natural
grounding. Correia (2008) and Correia & Schnieder (2012) mention the full, threefold distinction
between metaphysical, conceptual and logical grounding.

4 See the papers cited in the previous footnote, and the discussion in Trogdon (2013).
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LOGICAL GROUNDS 33

notion of “groundedness” at work in the literature on the paradoxes of truth, which
is itself semantically characterised by Kripke.

As I see it, the main interest of this study is threefold. First, the study provides a precise
account of a pretheoretic notion of logical explanation which, I take it, is of great intrinsic
interest. Second, it shows that the concept of logical grounding can be used to provide a
new angle of approach in logic, which is illuminating and possesses a certain power of
unification. And third, it shows that the concept of logical grounding is not irremediably
obscure or fruitless, thereby providing (i) a direct response to some forms of scepticism
about this concept and (ii) an element of response to certain forms of scepticism about
more general concepts of grounding (in particular, that of metaphysical grounding).5,6,7

§1. Grounding on a propositional language. We suppose given a standard proposi-
tional language L with atoms p, q, etc. and primitive connectives ∧ (conjunction),
∨ (disjunction) and ¬ (negation).8 Following standard terminology, we let the literals be
the atoms of the language and their negations.

One main aim of this section is to characterise the relation of logical grounding on L.
I suggest that this be done in terms of the following rules of inference, which I call the
basic rules:

(∧1)
φ ψ

φ ∧ ψ
(∧2)

¬φ

¬(φ ∧ ψ)
(∧3)

¬ψ

¬(φ ∧ ψ)

(∨1)
¬φ ¬ψ

¬(φ ∨ ψ)
(∨2)

φ

φ ∨ ψ
(∨3)

ψ

φ ∨ ψ

(¬)
φ

¬¬φ

5 For recent responses to scepticism about metaphysical grounding, see, for example, Rosen (2010),
Audi (2012), and Raven (2012).

6 I have used interchangeably the predicate ‘grounds’, the sentential operator ‘because’ and the
hybrid expression ‘in virtue of’ to express the notion of grounding. This should not be understood
as indicating that I take these three modes of expression to be on a par. Quite the contrary,
I think that canonical statements of ground should be made using a sentential connective like
‘because’. (For discussions on these issues, see Correia, 2010; Correia & Schnieder, 2012; Fine,
2012b; Trogdon, 2013.) Likewise, in what follows I will treat logical grounding as expressed by
a relational predicate over formulas of formal languages, but no conclusion on my favoured way
of expressing the notion should be drawn from that fact.

7 Logical studies on grounding are few. To my knowledge they boil down to the following:
Batchelor (2010), Correia (2010, 2011), Fine (2010, 2012a, 2012b), Litland (Manuscript) and
Schnieder (2011). Leaving aside Fine (2010), none of these works specifically deals with the
concept of logical grounding. The core of Fine (2010) is in this respect in line with these works—
it is mainly concerned with a notion of (partial) grounding which is not specifically logical. Yet in
the last section of Fine’s paper, which discusses the connections between previous considerations
and Kripke’s theory of truth, suggestions are made about how to “read off” a relation of (partial)
grounding from inference rules governing the behaviour of the logical constants, and the resulting
relations well deserve the qualification ‘logical’. The general idea suggested by Fine at the end of
his paper (that of “reading off” a relation of logical grounding from appropriate inference rules)
actually turns out to be the one I will follow here. However, my aims, as well as the results I will
present, are significantly different from Fine’s (see in particular §7.4.).

8 Having these as primitives is not necessary, but proves convenient for comparison with other
works on the logic of grounding or on logic tout court.
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34 CORREIA

The thought is the following. Say that a rule of inference for L is ground-theoretically ad-
missible if it represents a rule which licences only inferences from grounding to grounded
statements (in the intuitive sense). The suggestion is that (i) each basic rule for L is ground-
theoretically admissible, (ii) each derived rule for L (i.e., each rule obtained by chaining
basic rules) is also ground-theoretically admissible, and (iii) these basic and derived rules
are the only rules for L which are ground-theoretically admissible.

Things can be made more precise in terms of trees. Let a TREE be a rooted tree whose
nodes are occupied by formulas of L, and whose transitions are given by the basic rules,
in the sense that in a TREE (i) no parent node is occupied by a literal and (ii) every parent
node has either one child or two children, in such a way that the principles depicted in the
following table are satisfied:

Node occupied by Number of children Child(ren) occupied by

φ ∧ ψ 2 φ and ψ
φ ∨ ψ 1 φ or ψ

¬(φ ∧ ψ) 1 ¬φ or ¬ψ
¬(φ ∨ ψ) 2 ¬φ and ¬ψ

¬¬φ 1 φ

The following are examples of TREES:

Clearly, every branch of a TREE is of finite length (i.e., comprises only finitely many
nodes), and a TREE has only finitely many branches.

A TREE for a formula is defined as a TREE whose root node is occupied by the formula
itself, and a TREE for a formula is said to be from a set of formulas � iff � is the set of all
the formulas which occupy leaves on the TREE. Thus, (a) above is a TREE for p ∧¬q from
{p ∧ ¬q}, (b) a TREE for ¬¬p ∧ q from {p, q}, etc. A TREE is said to be a G-TREE (‘G’ is
mnemonic for ‘grounding’) iff it is not degenerate, that is, iff it does not consist of just one
node. Thus, (b)–(e) are G-TREES whereas (a) is not.

Let us now say that a set � of formulas STRICTLY GROUNDS a formula φ—in symbols:
� Λ φ—iff there is a G-TREE for φ from �. The suggestion I previously made is simply
that STRICT GROUNDING correctly characterises the intuitive notion of logical grounding
relative to language L.

For present purposes, it will often prove very convenient to work, not with STRICT

GROUNDING itself, but with a corresponding “nonstrict” relation defined in terms of it—to
wit, the relation of GROUNDING. A set � of formulas is said to GROUND a formula φ—in
symbols: � Ξ φ—iff either φ ∈ �, or for some � ⊆ �, � Λ φ. Obviously, Λ is strictly
stronger than Ξ. Also notice that GROUNDING could have been characterised directly in
terms of TREES, since �Ξ φ iff for some � ⊆ �, there is a TREE for φ from �.
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LOGICAL GROUNDS 35

Let us define the degree of complexity of a formula in the usual, recursive fashion:

• For φ atomic, degree(φ) = 0;
• degree(φ ∧ ψ) = degree(φ ∨ ψ) = 1 + max{degree(φ), degree(ψ)};
• degree(¬φ) = 1 + degree(φ).

A quick inspection of the basic rules will convince us that STRICT GROUNDING invariably
takes one from lower to higher degrees of complexity:

PROPOSITION 1.1. For every set of formulas � and every formula φ:

If � Λ φ, then φ’s degree of complexity is strictly greater than the degree of
complexity of any member of �.

Other important properties of STRICT GROUNDING are listed here:9

PROPOSITION 1.2.

1. If �Λ φ, then � �= ∅

2. If �Λ φ, then φ is not a literal

3. Not: �,φ Λ φ Generalised Irreflexivity

4. If �,φ Λ ψ , φ /∈ � and � Λ φ, then �,� Λ ψ Restricted Cut

Notice the restricting clause ‘φ /∈ �’ in the Cut principle. The unrestricted principle indeed
fails for STRICT GROUNDING. For instance, let p be an atom. Then ¬¬p Λ ¬¬¬¬p, and
so, (a) ¬¬p, ¬¬p Λ ¬¬¬¬p. On the other hand, (b) p Λ ¬¬p. (a) and (b), together
with unrestricted Cut, yield (c) ¬¬p, p Λ ¬¬¬¬p. But (c) fails: there is no G-TREE for
¬¬¬¬p from {¬¬p, p}.

The relation of GROUNDING behaves differently in this respect. Here is a list of some of
its properties:

PROPOSITION 1.3.

1. If �Ξ φ, then � �= ∅

2. If �Ξ φ and φ /∈ �, then φ is not a literal

3. �,φ Ξ φ Generalised Reflexivity

4. If �,φ Ξ ψ and � Ξ φ, then �,� Ξ ψ Cut

5. If �Ξ φ, then �,� Ξ φ Weakening

Of course, Weakening fails for STRICT GROUNDING.

***

A number of remarks are in order at this point, in particular about alternative ways of
characterising logical grounding on a language such as L.

A. Factivity. It is commonplace to view grounding as factive. Taking grounding as a re-
lation between statements, its being factive amounts to the truth of the following principle:
if a statement is grounded in other statements, then both the grounded statement and the
grounding statements must be true. STRICT GROUNDING is not intended to correspond to a

9 These should be understood as closed under the corresponding universal quantifiers: following
standard practice I will often omit to mention outer universal quantifiers. Also, here and below,
I follow the standard notational convention of using �,� for � ∪ � and �,φ for � ∪ {φ}, etc.
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factive notion. In fact, where φ is any formula of languageL, {φ, ¬φ} STRICTLY GROUNDS

φ ∧ ¬φ, whereas on many (if not all) intended interpretations, there are formulas φ of the
language such that φ and ¬φ are not both true. Thus, one might argue, the theory of logical
grounding put forward above is defective.

In response to this objection, one option is to grant the premises but reject the
conclusion—or rather, to temper it: yes, the theory as it has been formulated is defective;
but it’s almost correct. So far no semantics for L has been given. But suppose we provide L
with a notion of truth, more precisely a notion of truth which is preserved by the basic rules.
To fix ideas, let it be the classical notion of truth according to a valuation. Define STRICT

GROUNDING∗, a relation between sets of formulas and formulas relative to a valuation,
as follows: � STRICTLY GROUNDS∗ φ relative to valuation v iffdf (i) all the members of
� are true according to v , and (ii) � STRICTLY GROUNDS (in the old sense) φ. STRICT

GROUNDING∗ is factive: if � STRICTLY GROUNDS∗ φ relative to v , then both the members
of � and φ are true according to v . The suggestion is then that logical grounding is correctly
characterised by STRICT GROUNDING∗ (or by a notion defined in the same way but starting
with some other concept of truth).10

Another reply to the objection is simply to deny that grounding is factive. More precisely,
the view put forward here is that there are nonfactive notions of grounding as well as
factive ones, and that STRICT GROUNDING is intended to characterise a nonfactive notion
of logical grounding.11

I do not think there is a deep difference between the views put forward here. On the first
view, STRICT GROUNDING characterises a nonfactive relation between statements, which
is not a relation of logical grounding itself, but which nevertheless constitutes the “properly
relational core” of such a relation. In contrast, on the second view, logical grounding comes
in two species, one factive and the other not,12 the nonfactive notion being (intended to be)
characterised by STRICT GROUNDING. Both views thus admit the existence of a nonfactive
relation intimately tied to the factive relation of logical grounding, and the central divide
between these two views boils down to the fact that one takes the nonfactive relation to
be itself a relation of logical grounding while the other denies it. It is then tempting to think
that the difference between the two views is merely verbal. Be it as it may, this difference
is immaterial as far as this paper is concerned, and I shall speak of the nonfactive relation
intended to be captured by STRICT GROUNDING as of a relation of logical grounding.

B. Grain. For φ any formula of language L, φ STRICTLY GROUNDS φ ∧ φ, as well
as φ ∨ φ or again ¬¬φ. The notion of logical grounding intended to be characterised by
STRICT GROUNDING is thus very fine-grained. It appears that most of those who thought
about the interaction between grounding and truth-functions had a similarly fine-grained
notion in mind.13 In Correia (2010), I argue in favour of a more coarse-grained conception,
but in later work (Correia, 2011) I admit that both conceptions are viable.

C. Why these rules? My choice of rules to play the role of the building blocks of the
characterisation of logical grounding does not come out of the blue. Clearly, no literal of

10 Of course, this recipe for defining a factive notion of grounding in terms of a nonfactive, proof-
theoretically defined notion is perfectly general, and can be applied for example to the notions
introduced in sections D and F.

11 See Fine (2012b) on factive versus nonfactive grounding.
12 In the same way as, for instance, the concepts expressed by ‘since p, q’ and ‘if p, then q’ might

be viewed as two species, one factive and the other not, of the same generic notion.
13 See Correia (2005), Batchelor (2010), Rosen (2010), Fine (2010, 2012b) and Schnieder (2011).
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language L can be taken to be logically grounded in a set of formulas of L. A nonliteral
must be either of one of the two positive forms φ ∧ ψ and φ ∨ ψ , or of one of the three
negative forms ¬(φ ∧ ψ), ¬(φ ∨ ψ) and ¬¬φ. The basic rules provides a partial answer
to the question: Given a formula of any of these five forms, what logically grounds that
formula? The complete answer to the question is then given by adding that a set � of
formulas logically grounds a formula φ if and only if chaining the basic rules in some way
yields a derived rule that validates the transition from the members of � (all of them) to φ.

Why should all the basic rules—as opposed to only some of them, or even perhaps
none—be taken on board? All I can say here is that they all strike me as correct once a
fine-grained conception of grounding is taken for granted. Leaving the issue of factivity
aside, there would actually seem to be something like a consensus, among the friends of a
fine-grained conception, that the basic rules plausibly record genuine grounding ties, and I
guess that those who do share that view would be happy to say that the ties in question are
properly logical in character.14

D. More rules? Granted that the basic rules are acceptable, do they form a sufficient
basis in the present context, or should further rules be countenanced in addition?

In the spirit of Fine (2012b), one might think that in addition to the basic rules for
disjunction (∨2) and (∨3), rule (∨4) should also be countenanced, and similarly that in
addition to (∧2) and (∧3) we should countenance (∧4):

(∨4)
φ ψ

φ ∨ ψ
(∧4)

¬φ ¬ψ

¬(φ ∧ ψ)

Of course, having these extra rules makes a difference. For example if p and q are any
atoms, p, q Λ p ∨ q does not hold in the original theory, but holds if the theory includes
(∨4).

It is not clear to me whether the new rules should be adopted. Fortunately, for the
purposes of this paper it will not be very important to make a decision on this issue and,
although I will work with the original theory throughout, I shall consider the richer theory
as a serious alternative. The reason why it will not be important to choose between the
two theories is, in a nutshell, that what will “do the real job” in what follows is “nonstrict”
grounding, and that the two theories’ nonstrict concepts of grounding are equivalent. To
be more precise, let Λ′ stand for the notion of STRICT GROUNDING defined as before
but with (∨4) and (∧4) as extra rules, and let Ξ′ stand for the corresponding notion of
GROUNDING. The point is that even though Λ′ does not have the same extension as Λ, Ξ′
and Ξ are nevertheless equivalent.

E. The basic rules as introduction rules. The basic rules, which are the building
blocks of the proposed theory of logical grounding for languages such as L, all take
simpler formulas to more complex formulas. This is why Proposition 1.1 holds. They
can in fact all be viewed as introduction rules. (∧1) is known as the rule of conjunction
introduction, and (∨2) and (∨3) as the rules of disjunction introduction. Following this
standard terminology, (¬) may also appropriately be called a rule of double negation
introduction. The case of the remaining rules is a bit different. Yet these rules can naturally
be described as introduction rules in negative contexts: each takes us from one or more

14 There certainly is room for less than full consensus on the view that all the basic rules are
acceptable. For instance, Fine (2010) contemplates the rejection of some of the basic rules as
part of a solution to some puzzles about grounding. See §7.4.
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negated formulas to a negated formula containing an extra connective (conjunction or
disjunction, as the case may be).

Our set of basic rules is thus significantly different from the set of rules for a standard
natural deduction system for (say) classical or intuitionistic logic, which comprises both
introduction and elimination rules. This difference makes the set of basic rules rather weak
indeed. For instance, whereas all the basic rules are intuitionistically and hence classically
valid, some rules which are valid in these two logics are neither among the basic rule
nor among the derived rules definable from them: the rule of conjunction elimination is a
simple illustration. This does not mean that the basic rules cannot be used to characterise
strong logics, though; as we shall see in what follows, they can be used to fully characterise
classical logical consequence, as well as other important consequence relations.15

F. Amalgamation. Fine (2012a, 2012b) takes the concept of (strict) grounding to obey a
principle he calls ‘Amalgamation’: if a statement is grounded in a plurality X of statements,
and also in another such plurality Y , then it is grounded in X and Y taken jointly.16 Of
course, STRICT GROUNDING does not obey such a principle: for p and q distinct atoms of
L, we have both p Λ p ∨ q and q Λ p ∨ q, but not p, q Λ p ∨ q. Is this a problem?

Those who think that it is may wish to hold that logical grounding is properly charac-
terised not by STRICT GROUNDING, but rather by the strictly stronger relation of STRICT

GROUNDING×, which is defined as follows:

� STRICTLY GROUNDS× φ iffdf there is a covering of � (i.e., a family of sets
whose union is �) such that for each � in this covering, � Λ φ.

STRICT GROUNDING× indeed obeys Amalgamation.
I have no firm intuition on the question whether logical grounding should be taken to

obey Amalgamation. Yet, here as with the question whether rules (∨4) and (∧4) should be
countenanced, it will not be important to decide whether STRICT GROUNDING or STRICT

GROUNDING× should be taken to characterise logical grounding, and for just the same rea-
son: the corresponding nonstrict notions are equivalent. (The details are straightforward.)

STRICT GROUNDING′, that is, the relation symbolised by Λ′ in part D above, does not
obey Amalgamation either. For let p be an atom. Then ¬¬pΛ′¬¬¬¬p and pΛ′¬¬¬¬p.
Yet it is not the case that ¬¬p, p Λ′ ¬¬¬¬p.17 Those who think that (∨4) and (∧4)

15 Gentzen (1969) took the natural deduction introduction rules for the logical constants to enjoy a
privileged status over the elimination rules: the former rules provide the “definitions” (Gentzen
himself uses scare quotes) of the logical constants, whereas the latter rules are (in some sense)
just consequences of these definitions. Gentzen’s view has given rise to a massive literature,
both logical and philosophical (in particular on inferentialism in the theory of meaning and
so-called proof-theoretic harmony), which certainly connects with the present work at several
places. I hope to investigate these connections elsewhere. (Tatzel, Manuscript, is an interesting
paper which deals with the connections between some of Gentzen’s views and Bolzano’s views
about grounding, and is of particular relevance.)

16 In these two papers, Fine distinguishes between strict and weak grounding. Fine’s concept of weak
grounding is significantly different from my notion of GROUNDING. He takes both strict and weak
grounding as primitives, but indicates how one may be defined in terms of the other. His sugges-
tion for defining the weak notion in terms of the strict one is very different from my definition
of GROUNDING in terms of STRICT GROUNDING: for him, ‘P , Q, . . . weakly ground R’ can be
defined as ‘for every plurality of statements X and every statement S, if R, X strictly ground S,
then P , Q, . . ., X strictly ground S’. One important formal difference between GROUNDING and
Fine’s weak grounding is that the former obeys Weakening whereas the latter does not.

17 The same example could have been used to show that Λ infringes Amalgamation.
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should be countenanced amongst the basic rules may alternatively wish to hold that logical
grounding is rather to be characterised by STRICT GROUNDING

′×, which is defined as
follows and also obeys Amalgamation:

� STRICTLY GROUNDS
′× φ iffdf there is a covering of � such that for each � in

this covering, � Λ′ φ.

Yet, again, the corresponding nonstrict notion is equivalent to GROUNDING, and conse-
quently characterising logical grounding using this notion rather than STRICT GROUNDING

would not make an essential difference.

§2. Grounding and propositional truth. The basic rules are intuitively connected
with the concept of truth: they authorise only transitions from truths to truths. Yet the
connection is stronger than that.

Let a valuation be a distribution of truth-values (True and False) over the atoms of
language L. It is not required that a valuation be maximal (i.e., that it assigns at least
one truth-value to each atom) or coherent (i.e., that it assigns at most one truth-value to
each atom).

Truth (|�) and falsity ( |�) relative to a valuation v are defined for arbitrary formulas of
L in the following, natural way:

• v |� p iff p is True according to v
• v

|�p iff p is False according to v
• v |� φ ∧ ψ iff v |� φ and v |� ψ
• v

|�

φ ∧ ψ iff v

|�

φ or v

|�

ψ
• v |� φ ∨ ψ iff v |� φ or v |� ψ
• v

|�
φ ∨ ψ iff v

|�
φ and v

|�
ψ

• v |� ¬φ iff v

|�

φ
• v

|�¬φ iff v |� φ.

In case valuation v is maximal, v � |�

φ entails v |� φ; in case v is coherent, v

|�

φ entails
v |�� φ; if v is both maximal and coherent, v

|�

φ is equivalent to v |�� φ, and the definition
above yields the standard characterisation of classical truth for formulas of L.

The intuitive connection between the basic rules and truth mentioned above can now be
given in a precise form: for any valuation v , each basic rule preserves the property of being
true according to v . This yields the following preservation result:

PROPOSITION 2.1. Let v be a valuation, � a set of formulas and φ a formula. If both
v |� � and �Ξ φ, then v |� φ.

(By ‘v |� �’, I mean: v |� ψ for all ψ ∈ �.)
Let us now turn to establishing some lemmas which will lead us to the main result of

this section, Fundamental Connection.

LEMMA 2.2. Let � be any set of formulas. Then:

1. If �Ξ φ and �Ξ ψ , then �Ξ φ ∧ ψ

2. If �Ξ ¬φ or �Ξ ¬ψ , then �Ξ ¬(φ ∧ ψ)

3. If �Ξ φ or �Ξ ψ , then �Ξ φ ∨ ψ

4. If �Ξ ¬φ and �Ξ ¬ψ , then �Ξ ¬(φ ∨ ψ)

5. If �Ξ φ, then �Ξ ¬¬φ.
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Proof. Let me just prove (1)—the proofs for (2)–(5) run in much the same way. Suppose
that �Ξ φ and �Ξψ . Then there is a TREE T for φ from some � ⊆ � and a TREE T ′ for
ψ from some �′ ⊆ �. These two TREES may be represented as follows:

(Any of these TREES may be degenerate.) We can combine them into a new tree using rule
(∧1) as follows:

U is obviously a TREE (it is indeed a G-TREE) for φ ∧ ψ from � ∪ �′. Since � ∪ �′ ⊆ �,
it follows that �Ξ φ ∧ ψ . �

LEMMA 2.3. Let � be any set of formulas. Then:

1. If �Λ φ ∧ ψ , then �Ξ φ and �Ξ ψ

2. If �Λ ¬(φ ∧ ψ), then �Ξ ¬φ or �Ξ ¬ψ

3. If �Λ φ ∨ ψ , then �Ξ φ or �Ξ ψ

4. If �Λ ¬(φ ∨ ψ), then �Ξ ¬φ and �Ξ ¬ψ

5. If �Λ ¬¬φ, then �Ξ φ.

Proof. Let me here only prove (1) and (3) (the other proofs are similar). (1) Suppose
� Λ φ ∧ ψ . Then there is a G-TREE for φ ∧ ψ from �. This G-TREE must have its root
node occupied by φ ∧ ψ , and this root node must have two children, one occupied by φ
and the other one by ψ . It may be represented thus:

where � ∪ �′ = �, and

φ

�

represents a (possibly degenerate) TREE for φ from � and

ψ

�′

a (possibly degenerate) TREE for ψ from �′. Clearly, then, both � Ξ φ and � Ξ ψ . (3)
Suppose � Λ φ ∨ ψ . Then there is a G-TREE for φ ∨ ψ from �. This G-TREE must have
its root node occupied by φ ∨ ψ , and this root node must have one child, occupied either
by φ or by ψ . Suppose it is occupied by φ (the other case is similar). The G-TREE may be
represented thus:
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φ ∨ ψ

φ

�

where

φ

�

represents a (possibly degenerate) TREE for φ from �. Hence, �Ξ φ. �

DEFINITION 2.4. A situation is a set of literals.

Putting the previous two lemmas together yields:18

LEMMA 2.5. Let � be a situation. Then:

1. �Ξ φ ∧ ψ iff �Ξ φ and �Ξ ψ

2. �Ξ ¬(φ ∧ ψ) iff �Ξ ¬φ or �Ξ ¬ψ

3. �Ξ φ ∨ ψ iff �Ξ φ or �Ξ ψ

4. �Ξ ¬(φ ∨ ψ) iff �Ξ ¬φ and �Ξ ¬ψ

5. �Ξ ¬¬φ iff �Ξ φ.

Proof. The right-to-left directions are directly given by Lemma 2.2 (the assumption that
� is a situation plays no role). For the other directions, let θ stand for either of φ ∧ ψ ,
¬(φ ∧ψ), φ ∨ψ , ¬(φ ∨ψ) and ¬¬φ. Suppose then �Ξ θ . Since � is a situation, θ /∈ �.
So there must be some � ⊆ � with � Λ θ . Using Lemma 2.3 and Weakening for Ξ, we
get the result. �
Thus, the notion of being-grounded-in-a-situation interacts with the truth-functional con-
nectives exactly like the notion of being-true-according-to-a-valuation.

DEFINITION 2.6. The situation determined by a valuation v—in symbols: S(v)—is the
set of all the literals which are true according to v .

We have the following further connection:

THEOREM 2.7. (Fundamental Connection) Let v be a valuation and φ a formula. Then:
v |� φ iff S(v)Ξ φ.

Proof. It is possible to prove the theorem by induction on the degree of the formulas
using Lemma 2.5 and Proposition 2.1. Another route, which I follow here, invokes Propo-
sition 2.1 and Lemma 2.2.

The right-to-left direction of the Theorem is immediate given Proposition 2.1, since for
every valuation v , v |� S(v). The other direction is proved by induction on the degree of
the formulas—more precisely, what is proved by induction is the following proposition:

For all formulas φ: for all valuations v , (i) if v |� φ, then S(v)Ξφ and (ii) if v

|�

φ,
then S(v)Ξ ¬φ.

18 Fine (2012b) establishes a somewhat similar result for his concept of weak grounding.
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(A) φ atomic. (i) Suppose v |� φ. Then φ ∈ S(v), and so S(v) Ξ φ. (ii) Suppose v |�φ.
Then v |� ¬φ, and so ¬φ ∈ S(v), and so S(v)Ξ ¬φ.

(B) φ = ¬α. (i) Suppose v |� ¬α. Then v

|�

α. By IH, then, S(v) Ξ ¬α. (ii) Suppose
v

|�¬α. Then v |� α. By IH, then, S(v)Ξ α. By Lemma 2.2 it follows that S(v)Ξ¬¬α.

(C) φ = α∧β. (i) Suppose v |� α∧β. Then both v |� α and v |� β. By IH, then, S(v)Ξα
and S(v) Ξ β. Then by Lemma 2.2, S(v) Ξ α ∧ β. (ii) Suppose v

|�

α ∧ β. Then either
v

|�

α or v

|�

β. Then by IH, S(v) Ξ ¬α or S(v) Ξ ¬β. By Lemma 2.2, it follows that
S(v)Ξ ¬(α ∧ β).

(D) The case φ = α ∨ β is similar to (C). �
This result is noteworthy. It states that for a formula of language L, being true according

to a distribution of truth-values over the atoms of L is equivalent to being GROUNDED in
the literals ofLwhich are true according to that distribution. As a corollary, for a formula of
L, being false according to a distribution of truth-values over the atoms of L is equivalent
to having its negation GROUNDED in the literals of L which are true according to that
distribution. Thus, Fundamental Connection captures in a precise way the informal thought
that the truth-value of any formula of L is ultimately explained by the truth-values of the
atomic formulas of the language.

§3. Grounding and propositional consequence. The results of the previous section
about the connections between GROUNDING and truth immediately yield interesting results
about the connections between GROUNDING and logical consequence.

Four well-known consequence relations are naturally characterised in terms of valu-
ations as defined above: classical consequence (|�Cl ), “first-degree entailment” conse-
quence (|�F DE ), “logic of paradox” consequence (|�L P ) and “Kleene 3-valued logic”
consequence (|�K 3).19 Remember that a valuation is said to be maximal iff it assigns a
truth-value to each atom of L and coherent iff it never assigns both truth-values to an
atom. The characterisations run as follows:

• � |�Cl φ iff for every maximal coherent valuation v , v |� � ⇒ v |� φ
• � |�F DE φ iff for every valuation v , v |� � ⇒ v |� φ
• � |�L P φ iff for every maximal valuation v , v |� � ⇒ v |� φ
• � |�K 3 φ iff for every coherent valuation v , v |� � ⇒ v |� φ.

|�F DE is strictly stronger than both |�L P and |�K 3, and in turn both are strictly stronger
than |�Cl . Using an arrow to represent strict inclusion, this fact can be depicted as
follows:

|�L P

|�F DE |�Cl

|�K 3

19 See for example Priest (2008, pp. 142–149).
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By Proposition 2.1, GROUNDING is stronger than |�F DE . In fact, it is strictly stronger,
since, for example for p an atom, ¬¬p |�F DE p whereas ¬¬p does not GROUND p.
Since in addition, STRICT GROUNDING is strictly stronger than GROUNDING, the diagram
can be extended as follows:

|�L P

Λ Ξ |�F DE |�Cl

|�K 3

The connections between GROUNDING and the four consequence relations do not boil
down to this: Fundamental Connection straightforwardly suggests a syntactic characterisa-
tion of each consequence relation in terms of GROUNDING.

The function S which assigns situation S(v) to valuation v is obviously a bijection from
the set of all valuations to the set of all situations. Say that a situation S is maximal iff for
every atom p of L, either p or ¬p is in S, and that it is coherent iff for every atom p in
L, not both p and ¬p are in S. For any valuation v , S(v) is maximal iff v is maximal, and
S(v) is coherent iff v is coherent.

Let us define four relations of ground-theoretic derivability as follows (‘S Ξ �’ means
‘S Ξ ψ for all ψ ∈ �’):

• � �Cl φ iff for every maximal coherent situation S, S Ξ� ⇒ S Ξ φ
• � �F DE φ iff for every situation S, S Ξ� ⇒ S Ξ φ
• � �L P φ iff for every maximal situation S, S Ξ� ⇒ S Ξ φ
• � �K 3 φ iff for every coherent situation S, S Ξ� ⇒ S Ξ φ.

We then have:

THEOREM 3.1. Let � be a set of formulas and φ a formula. Then:

• � |�Cl φ iff � �Cl φ
• � |�F DE φ iff � �F DE φ
• � |�L P φ iff � �L P φ
• � |�K 3 φ iff � �K 3 φ.

Like Theorem 2.7 (i.e., Fundamental Connection), this theorem is noteworthy: it states
that our four semantic consequence relations can be fully characterised in ground-theoretic
terms. Since GROUNDING is a proof-theoretic notion, Theorem 3.1 is, in effect, a soundness
and completeness result.20

§4. Grounding on a first-order language. The aim is now to extend the previous
results to first-order languages. The languages I will focus on have, like the previous

20 Schnieder (Manuscript) has recently put forward a ground-theoretic characterisation of
entailment. His approach is quite different from mine, but there are similarities, for instance
regarding the conception of the interaction of grounding with the truth-functional connectives.
It would be interesting to compare the two approaches.
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propositional language L, ∧, ∨ and ¬ as primitive truth-functional connectives and have in
addition both the universal quantifier ∀ and the existential quantifier ∃ as primitives. It will
not be necessary to assume that these languages comprise a predicate for identity, but since
for many applications identity is important I will nevertheless take them to have such a
predicate, =. For the sake of simplicity I will suppose that these languages have individual
constants but no functional terms. Also for the sake of simplicity, it will be understood
that the ground-theoretic rules for these languages involve only sentences, that is, closed
formulas.

In order to extend the previous study to a language of the sort under consideration, it is
natural to make most of the analogies between universal quantification and conjunction on
one hand, and existential quantification and disjunction on the other hand, and to introduce
rules for ∀ and ∃ similar to the rules for ∧ and ∨, respectively. A fairly natural suggestion
is to adopt the following rules:

(∀1)
φ(a) φ(b) . . .

∀xφ(x)
(∀2)

¬φ(a)

¬∀xφ(x)

(∃1)
¬φ(a) ¬φ(b) . . .

¬∃xφ(x)
(∃2)

φ(a)

∃xφ(x)

where in (∀1) and (∃1), a, b, . . . are all the constants of the language.21

Yet, in contrast with rules (∀2) and (∃2), (∀1) and (∃1) are problematic if—as this is
the case in this study—we want to work with rules which are (at least) classically valid.
That (∀1) is not classically valid can be easily seen for example by taking a model whose
domain comprises at least two objects o and o′, such that all the constants of the language
refer to o, and the extension of some monadic predicate F of the language comprises o but
not o′. To show that (∃1) is not classically valid either, it suffices to modify the example by
changing the condition on predicate F , and require this time that its extension comprise o′
but not o.

Although (∀1) and (∃1) do not preserve classical truth-relative-to-a-model, they do
preserve classical truth (and suitable generalisations thereof) relative to full models, that
is, models such that every object in their domain is referred to by some constant of the lan-
guage. This will be reason enough to take these two rules seriously, and I will do so in §5.

Yet it will also be interesting to work with an alternative set of rules, which relevantly
differ in terms of truth-preservation. The formulation of these alternative rules requires
that the languages under consideration be enriched with a special “totality” predicate A.22

21 If our language is a language for arithmetic, and if a, b, . . . are the numerals 0, 1, . . ., then a
standard name for (∀1) is ‘ω-rule’.

22 Fine (2012b) advocates the use of such a predicate in the formulation of the principles governing
the interaction of grounding with universal quantification. Notice that he also advocates the use of
an existence predicate in the formulation of the principles governing the interaction of grounding
with existential quantification, on grounds that would make him modify rules (∀2) and (∃2) by
adding the condition ‘a exists’ on top of both. (He also suggests using totality statements instead
of existence statements, but this is not a route I explore here.) The opposition between the original
rules (∀2) and (∃2) and their suggested variants corresponds, of course, to the standard opposition
between classical logic and free logic. I opted for the classical rules for the sake of simplicity, but
it would not be difficult to adapt the forthcoming material starting with the alternative rules.
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A is not a regular predicate: it is multigrade, capable of receiving any number of terms
(one, finitely many, or even infinitely many) to make a formula. Where t , u, ... are terms of
the language, A(tu...) is to be read ‘t, u, ... are all the objects that there are’.

The suggestion is thus to replace (∀1) and (∃1) by the following two sets of rules (again,
involving only sentences):

(∀1∗)
φ(a) A(a)

∀xφ(x)

φ(a) φ(b) A(ab)

∀xφ(x)
. . .

(∃1∗)
¬φ(a) A(a)

¬∃xφ(x)

¬φ(a) ¬φ(b) A(ab)

¬∃xφ(x)
. . .

Given the intended interpretation of predicate A, each of these new rules is, contrary to
(∀1) and (∃1), intuitively truth-preserving. I will deal with these alternative rules in §6.

§5. First-order languages: first set of rules. Suppose given a first-order languageM
of the sort described at the beginning of the previous section. The basic rules for M are
here taken to be the basic rules for the sentential connectives as given at the beginning of
§1, plus rules (∀1), (∃1), (∀2) and (∃2) for the quantifiers. As I previously stressed, all
these rules are taken to concern sentences, that is, closed formulas.

We define TREES as in §1, with the stipulation that the nodes of a TREE can only be
occupied by sentences, and with the obvious modifications required by the presence of the
new rules. Notice that the TREES so defined may have nodes with infinitely many children.
In fact, any parent node in a TREE which is occupied by a sentence of type ∀xφ(x) or
¬∃xφ(x) will have as many children as there are individual constants in the language, and
these may be infinite in number. Hence, a TREE may have infinitely many branches. Yet,
here as in the propositional case every branch of a TREE must be of finite length.

We then define, as before, a G-TREE as a nondegenerate TREE. The relations of STRICT

GROUNDING and GROUNDING are also defined as in §1, but with the requirement that
GROUNDING be a relation between sets of sentences and sentences (this condition is al-
ready satisfied by STRICT GROUNDING given the stipulation that the nodes of a TREE must
be occupied by sentences). We finally define the degree of a sentence ofM as we defined
the degree of a formula of L, but with the following condition for the quantifiers:

• degree(∀xφ(x)) = degree(∃xφ(x)) = 1 + degree(φ(a)) for a an arbitrary constant.

(Which constant is chosen is actually immaterial.) Given these definitions, Propositions
1.1, 1.2 and 1.3 still hold.

Let us turn now to the semantics forM. As in the case of language L, we want to leave
room for truth-value gaps and truth-value gluts. We accordingly define a model forM as
a pair 〈D, I 〉, where:

• D is a nonempty set, and
• I is a function which assigns:

– To each constant of the language a member of D, and
– To each n-place predicate R distinct from = an extension I +(R) and an anti-

extension I −(R), both subsets of Dn .
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A model is said to be maximal iff all n-place predicates R are such that I +(R) ∪ I −(R) =
Dn , and coherent iff all predicates R are such that I +(R)∩ I −(R) = ∅. The models which
are both maximal and coherent correspond, of course, to the classical models forM.

Exploiting a label already used in the previous section, say that a model 〈D, I 〉 forM
is full iff for every o ∈ D, there is a constant a ofM such that I (a) = o.

I will be especially interested in full models for languages such as M, and so I first
formulate the semantics forM relative to such models. Doing so allows one to avoid the
use of assignments to variables (or the like) and to directly define truth and falsity for
sentences relative to a model. Where M = 〈D, I 〉 is a full model forM, truth and falsity
for sentences relative to M are defined by the following clauses, plus the clauses for the
truth-functional connectives corresponding to those used in §2:

• M |� R(a1, a2, ...) iff 〈I (a1), I (a2), ...〉 ∈ I +(R)
• M |�R(a1, a2, ...) iff 〈I (a1), I (a2), ...〉 ∈ I −(R)
• M |� a = b iff I (a) = I (b)
• M |�a = b iff I (a) �= I (b)
• M |� ∀xφ(x) iff for all constants a, M |� φ(a)
• M |�∀xφ(x) iff for some constant a, M |�

φ(a)
• M |� ∃xφ(x) iff for some constant a, M |� φ(a)
• M |�∃xφ(x) iff for all constants a, M |�

φ(a).

In case model M is maximal, M � |�

φ entails M |� φ; in case M is coherent, M |�

φ
entails M |�� φ; if M is both maximal and coherent, M |�

φ is equivalent to M |�� φ, and the
definition yields the standard characterisation of classical truth for sentences ofM.

Extending the terminology used in the propositional case, we adopt the following
definitions:

DEFINITION 5.1. A situation is a set of sentential literals ofM. The situation determined
by a model M—in symbols: S(M)—is the set of all the sentential literals ofM which are
true according to M.

With these definitions in place, all the results of §2 about GROUNDING and truth can
be shown to hold in the present context, mutatis mutandis. First, we have the following
preservation result:

PROPOSITION 5.2. Let M be a full model forM, � a set of sentences ofM and φ a
sentence ofM. If both M |� � and �Ξ φ, then M |� φ.

Then we have the following extensions of Lemmas 2.2, 2.3 and 2.5 forM:

LEMMA 5.3. Like Lemma 2.2, plus the following clauses:

6. If �Ξ φ(a) for all constants a, then �Ξ ∀xφ(x)

7. If �Ξ ¬φ(a) for some constant a, then �Ξ ¬∀xφ(x)

8. If �Ξ φ(a) for some constant a, then �Ξ ∃xφ(x)

9. If �Ξ ¬φ(a) for all constants a, then �Ξ ¬∃xφ(x).

LEMMA 5.4. Like Lemma 2.3, plus the following clauses:

6. If �Λ ∀xφ(x), then �Ξ φ(a) for all constants a

7. If �Λ ¬∀xφ(x), then �Ξ ¬φ(a) for some constant a

8. If �Λ ∃xφ(x), then �Ξ φ(a) for some constant a

9. If �Λ ¬∃xφ(x), then �Ξ ¬φ(a) for all constants a.

https://doi.org/10.1017/S1755020313000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020313000300


LOGICAL GROUNDS 47

LEMMA 5.5. Like Lemma 2.5, plus the following clauses:

6. �Ξ ∀xφ(x) iff �Ξ φ(a) for all constants a

7. �Ξ ¬∀xφ(x) iff �Ξ ¬φ(a) for some constant a

8. �Ξ ∃xφ(x) iff �Ξ φ(a) for some constant a

9. �Ξ ¬∃xφ(x) iff �Ξ ¬φ(a) for all constants a.

And finally, the relevant version of Fundamental Connection holds:

THEOREM 5.6. (Fundamental Connection) Let M be a full model forM and φ a sentence
ofM. Then: M |� φ iff S(M)Ξ φ.

These results can be proved in much the same way as those of §2.
Contrary to Theorem 2.7, Theorem 5.6 cannot be used directly to provide characterisa-

tions of standard consequence relations in ground-theoretic terms, due to the fact that it
concerns full models. Yet truth and falsity in an arbitrary (i.e., full or nonfull) model can
be defined in terms of truth and falsity in a full model, and thanks to such a definition
it is possible to characterise the first-order versions of the four consequence relations of
§3 using Theorem 5.6. I will not go into details here, but I will nevertheless indicate
how to define truth and falsity in an arbitrary model in terms of truth and falsity in a full
model.23

LetM still be our target language. Let anM-language be a language resulting fromM
by adding 0 or more constants. For everyM-language, truth and falsity relative to a full
model are defined in the same way as above.

Let M = 〈D, I 〉 be a model for M. A pair 〈M+, M+〉 is said to be a full expansion
of the pair 〈M, M〉 iff (i) M+ is an M-language, (ii) M+ is a model 〈D, I +〉 for M+
which is full, and such that I + agrees with I on the constants and predicates ofM. Thus,
if M is a full model for M, 〈M, M〉 is a full expansion of itself; and if M is not a full
model forM, the full expansions are obtained by adding new constants to the language,
at least until all the members of the domain have been named. Clearly, for every model M
forM, 〈M, M〉 has a full expansion (members of the domain can be used as names for
themselves). Moreover, it can be shown that if 〈M+, M+〉 and 〈M++, M++〉 are any two
full expansions of 〈M, M〉, then for every sentence φ ofM, M+ |� φ iff M++ |� φ and
M+ |�

φ iff M++ |�

φ.
The suggestion is, then, to define truth and falsity for sentences of M relative to an

arbitrary model by appealing to full expansions: a sentence φ of M is said to be true
relative to model M iff for some (equivalently: for every) full expansion 〈M+, M+〉 of
〈M, M〉, M+ |� φ—and similarly for falsity.

§6. First-order languages: second set of rules. Let us now focus on a language N
which is just likeM except that it contains the extra multigrade totality predicate A. The
basic rules forN are the same as those forM except for (∀1) and (∃1), which are replaced
by sets of rules (∀1∗) and (∃1∗). We again take the basic rules to concern sentences, and
the ground-theoretic notions, as well as the notion of the degree of a sentence, are defined
as before.

23 The method is used in Fine (1978).
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The models for N are simply the models for M. Truth and falsity relative to a full
model M = 〈D, I 〉 are defined as before, but with the following extra clauses for the
totality predicate:

• M |� A(ab...) iff D = {I (a), I (b), ...}
• M |�A(ab...) iff D �= {I (a), I (b), ...}.

Consider a sentence A(ab...) where a, b, ... are all the constants of N . Then by the truth-
clause for A, A(ab...) is true in any full model.

Truth and falsity for N have not been defined relative to any arbitrary model, but it is
obvious how this should be done using assignments to variables or the like. Suppose, then,
that this has been done. Then all the basic rules will preserve truth-in-a-model so defined,
and so the version of Proposition 5.2 for languageN without restriction to full models will
hold. Yet the corresponding unrestricted version of Theorem 5.6 will nevertheless fail. For
instance, let M be a model for N which is not full, but which verifies ∀x F(x) for some
given monadic predicate F . Since M is not full, no sentence of typeA(ab...) is verified by
M , and therefore no sentence of type A(ab...) belongs to S(M). As a consequence, S(M)
cannot GROUND ∀x F(x).

In contrast, the restricted version of Theorem 5.6 holds in the present context—and
more generally, the results from the last section carry over to language N if we focus on
full models, with only few differences.

First, all the basic rules for N preserve truth-in-a-full-model, and so Proposition 5.2
holds for N . Second, Lemmas 5.3, 5.4 and 5.5 fail as they stand, but suitably modifying
items 6 and 9 in each of them yields truths. In each case, the condition

�Ξ φ(a) for all a

in item 6 should be replaced by:

for some a, b, ..., (i) A(ab...) ∈ � and (ii) �Ξ φ(a), �Ξ φ(b), ...,

and the condition

�Ξ ¬φ(a) for all a

in item 9 should be replaced by:

for some a, b, ..., (i) A(ab...) ∈ � and (ii) �Ξ ¬φ(a), �Ξ ¬φ(b), ....

Finally, as announced, Theorem 5.6 holds in the present context:

THEOREM 6.1. (Fundamental Connection) Let M be a full model for N and φ a sentence
of N . Then: M |� φ iff S(M)Ξ φ.

The proof for this latter result can be carried out as before, using the fact that for M a full
model for N :

• M |� ∀xφ(x) iff for some constants a, b, ..., (i) M |� A(ab...) and (ii) M |� φ(a),
M |� φ(b), ...;

• M |�∃xφ(x) iff for some constants a, b, ..., (i) M |� A(ab...) and (ii) M |�

φ(a),
M |�

φ(b), ....

(The assumption that M is full is, of course, crucial here.)
Truth relative to an arbitrary model for N can, in the same way as before, be defined

in terms of truth relative to a full model. Theorem 6.1 can then be used jointly with this
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definition to characterise consequence relations over the sentences of N . I skip again the
details.

§7. Grounding and the liar. Consider a first-order languageM of the sort described
in §5, and a full model M = 〈D, I 〉 for that language, such that each sentence of the
language belongs to the domain D. Since the model is full, each sentence of the language
has a name within the language itself.

CouldM possibly contain a monadic predicate T that behaves, relatively to model M ,
like a truth-predicate, that is, be such that:

(T) For every sentence φ ofM and constant a ofM such that I (a) = φ, M |� φ iff
M |� T(a)?

We know from the literature on the Liar Paradox that if we assume that M is a classical
model, then granted certain weak assumptions aboutM and M the answer must be ‘no’.

Assume M contains the two predicates T and P . Then M contains the sentence ∃x
(P(x) ∧ ¬T(x)), which we abbreviate as �, and a name l for that sentence. Make the
further semantical assumptions about P:

(i) M |� P(l);

(ii) For every constant b, if M |� P(b), then I (b) = I (l).

Given these conditions, if T is interpreted as expressing truth, then the sentence � ef-
fectively “says of itself” that it is not true. These assumptions about M and its model
are easily satisfied: as Kripke (1975) nicely emphasised, whatever the interpretation of
T, the predicate P in � may be taken to express an ordinary, “empirical” property that is
satisfied by �, and only by it, like for example the property of having a token written on the
blackboard in FC’s office at noon on October 23rd, 2012. Be it as it may, the assumptions
can be used to show that if M is a classical model, then:

(P) M |� � iff M |�� T(l).

On these assumptions, thus, (T) leads to paradox, since (T) and (P) together entail:
M |� T(l) iff M |�� T(l).

That (P) holds granted that M is classical and that the assumptions about predicate P are
satisfied can be shown as follows. (This is covered territory, but it will prove convenient to
run through the proof in the way I do here.)

(u) Suppose M |� �, that is, M |� ∃x(P(x) ∧ ¬T(x)). Then for some constant b,
M |� P(b) ∧ ¬T(b). So, for some constant b, both M |� P(b) and M |� ¬T(b).
By assumption (ii) above, M |� P(b) entails I (b) = I (l). Therefore, M |� ¬T(l).
HENCE, given that M is classical, M |�� T(l).

(v) Suppose now that M |�� �, that is, M |�� ∃x(P(x) ∧ ¬T(x)). Then for all constants
b, M |�� P(b) ∧ ¬T(b). So, for all constants b, M |�� P(b) or M |�� ¬T(b). So,
M |�� P(l) or M |�� ¬T(l). By assumption (i) above, M |� P(l). It follows that
M |�� ¬T(l). HENCE, given that M is classical, M |� T(l).

Notice that the only steps at which the assumption that model M is classical is used are
those indicated by ‘HENCE’. The first ‘HENCE’ is justified if the model is coherent, and
the second ‘HENCE’ if the model is maximal. Dropping any one of the two conditions on
the model invalidates the reasoning.

Kripke (1975) famously showed how to consistently extend interpreted first-order lan-
guages without a predicate for truth into interpreted first-order languages that do contain
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such a predicate, in such a way that it semantically behaves like we expect it to do (a
sentence φ of an extended language is true according to the associated model iff the
sentence which says that φ is true is true in that same model). Kripke’s models for the
extended languages are, of course, not classical.

There is an interesting connection between the Kripkean constructions24 and the theory
of logical grounding developed in the previous sections, and it is the aim of the remaining
part of this section to spell it out. I will first specify which languages and models we
are interested in (§7.1.). I will then present the Kripkean constructions, in a somewhat
more general form (§7.2.). Subsequently, I will spell out the connections between these
constructions and the theory of logical grounding (§7.3.). A result which is close to the
main result of that latter section, Theorem 7.11, has been stated in a somewhat different
form by Fine (2010). In this and other respects, Fine’s article is interestingly connected
to the present paper, and I will accordingly devote the very last part of this section to a
discussion of some of the relevant connections.25

7.1. Set-up. We suppose given a first-order language M of the sort described in §5,
and another first-order language MT which differs from M only by having an extra
monadic predicate T (for truth).

We also suppose given a full model M = 〈D, I 〉 forM and make the assumption that
its domain D contains all the sentences of the extended language MT. We may assume
that M is classical, but this is not needed: M may fail to be maximal, or to be coherent, or
both.

Given that M is a full model forM, and given that its domain contains all the sentences
of MT, each of these sentences has a name in M (according to interpretation function
I ). We make the further inessential but simplifying assumption that each sentence φ of
MT has only one name in M, which we shall write �φ�. Importantly, such names are
syntactically simple from the point of view of languageM.

To get a model for the extended language MT from model M , it suffices to extend
interpretation function I so that it assigns an extension and an anti-extension to predicate T.
However, it will be more convenient to adopt an alternative but equivalent characterisation
of these models. Let D be the set of all pairs 〈E, A〉 where both E and A are sets of
sentences of MT. A model for MT will be taken to be a pair M[X ] = 〈M, X〉, where
X ∈ D. If X = 〈E, A〉 is in D, then E will play the role of the extension of T relative to
M[X ], and A the role of its anti-extension. This being said, truth and falsity for a sentence

24 I have in mind those which occupy him for the most part of the paper, which assume what he
and others call “Kleene’s strong three-valued semantical scheme”. He also discusses or mentions
two other particular semantical schemes, that of supervaluations and that of Kleene’s weak three-
valued logic, but they will not concern us.

25 There are various ways in which one can specify the languages and models to present the
Kripkean constructions. For the sake of simplicity, and also to secure a straightforward continuity
with the previous sections of this paper, I will make certain choices, some merely cosmetic, some
others more substantial. My aim here is not to achieve maximal generality, but merely to illustrate
how the theory of logical grounding can interestingly be connected to the Kripkean constructions.
The material presented in §7.2 is rather familiar and fairly close to part of the material found in
Kripke’s paper, so I will not bother to mention connections with other relevant works. Nor will
I attempt to connect the material in §7.3 with the rich post-Kripkean literature on “semantical
groundedness” (see e.g., Yablo, 1982; Leitgeb, 2005). There certainly is much to say on this
topic, but this is something I will have to leave for another occasion.
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ofMT relative to model M[X ] is defined just like in §5, with the following special clauses
for T:

• M[X ] |� T(a) iff I (a) ∈ E
• M[X ] |�T(a) iff I (a) ∈ A.

Notice that for any X ∈ D, a formula of the unextended languageM is true (false) relative
to M iff it is true (false) relative to M[X ].

Let M[X ] be a model forMT, with X = 〈E, A〉. M[X ] is said to be down-adequate iff
the following two conditions are satisfied:

• For every sentence φ ofMT, if φ ∈ E , then M[X ] |� φ
• For every sentence φ ofMT, if φ ∈ A, then M[X ] |�

φ.

The model is said to be up-adequate iff the converse conditions hold, that is, iff:

• For every sentence φ ofMT, if M[X ] |� φ, then φ ∈ E
• For every sentence φ ofMT, if M[X ] |�

φ, then φ ∈ A.

And it is said to be adequate iff it is both down- and up-adequate. These definitions
could be equivalently formulated by using ‘M[X ] |� T(�φ�)’ instead of ‘φ ∈ E’ and
‘M[X ] |�T(�φ�)’ instead of ‘φ ∈ A’. This explains why I chose the labels ‘down-adequate’
and ‘up-adequate’.

Given the truth-clauses for T, adequate models for MT are models relative to which
T behaves like a truth-predicate. I now move on to Kripke-style constructions of such
models.26

7.2. Fixed points and adequate models. Define a binary relation ≤ onD, and a unary
“jump” operation J on D, as follows:

• For X, Y ∈ D, with X = 〈E, A〉 and Y = 〈F, B〉, X ≤ Y iffdf both E ⊆ F and
A ⊆ B.

• For X ∈ D, J (X) =df 〈J1(X), J2(X)〉, where:

J1(X) =df {φ ∈MT : M[X ] |� φ}
J2(X) =df {φ ∈MT : M[X ] |�

φ}.
≤ is a partial ordering (a reflexive, antisymmetric and transitive relation) on D, and it can
be shown that J is monotonic relative to ≤:

LEMMA 7.1. For all X, Y ∈ D, if X ≤ Y then J (X) ≤ J (Y ).

26 There are some differences between Kripke’s constructions and the ones to be presented below
which are worth highlighting. (1) Whereas I take the sentences of the extended language
themselves to be members of the domain of the original model, Kripke takes these sentences
to be represented (“coded”) by numbers, themselves taken to be members of the domain of that
model. (2) I require that, in a model for MT, the anti-extension of the truth-predicate contain
only sentences, whereas for Kripke the anti-extension of that predicate may contain both (codes
of) sentences and objects of the domain which are not (codes of) sentences. (3) Kripke starts with
a completely classical model for the initial language, and the models in his constructions allow
for truth-value gaps but not for truth-value gluts. He nevertheless grants that the assumption that
the initial model is classical is not necessary, so that gaps may be allowed. In contrast, I also allow
both the initial model and the models forMT to be incoherent.
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Let X be in D. We adopt the following usual definitions:

• X is sound iffdf X ≤ J (X)
• X is complete iffdf J (X) ≤ X
• X is a fixed point iffdf X is both sound and complete, that is, iff J (X) = X .

Clearly, then:

LEMMA 7.2. For every X ∈ D:

• X is sound iff M[X ] is down-adequate
• X is complete iff M[X ] is up-adequate
• X is a fixed point iff M[X ] is adequate.

That there exists fixed points associated with any arbitrary sound member of D can be
established as follows. Let X = 〈E, A〉 ∈ D be sound, that is, such that X ≤ J (X). We
define Xα = 〈Eα, Aα〉 for all ordinals α as follows:

• X0 = X ; that is to say, 〈E0, A0〉 = 〈E, A〉
• Xα+1 = J (Xα); that is to say, 〈Eα+1, Aα+1〉 = 〈J1(Xα), J2(Xα)〉
• Xλ = 〈⋃{Eα : α < λ}, ⋃{Aα : α < λ}〉 for λ a limit ordinal.

Since X ≤ J (X), ≤ is a partial ordering and J is monotonic relative to ≤, it can be shown
that the series of Xαs is constantly increasing:

LEMMA 7.3. For all ordinals α, β such that α ≤ β, Xα ≤ Xβ .

The series of the Xαs cannot be constantly strictly increasing, since otherwise all its
members would be distinct, and hence as many as there are ordinals, which is not the
case since they are all elements of the set D. So, there must be some member Xε of the
sequence such that Xε = J (Xε), that is, which is a fixed point. Since X is the first member
of the sequence, such a fixed point extends X (in the sense of ≤). Notice that once a fixed
point Xε is reached in the series of Xαs, the series remains constant thereafter, that is, each
subsequent element of the series is identical with Xε . We call this unique fixed point in the
series X̂ . It is easy to show that X̂ is the smallest fixed point extending X , that is, that for
every fixed point Y such that X ≤ Y , X̂ ≤ Y .

Summing up, we can state:

THEOREM 7.4. Let X ∈ D be sound. Then there is a member Y ofD with X ≤ Y which is
a fixed point.

More specifically, there is a (unique) member X̂ of D such that: (i) X̂ is a fixed point,
(ii) X ≤ X̂ , and (iii) for every Y ∈ D with X ≤ Y which is a fixed point, X̂ ≤ Y .

Thanks to Lemma 7.2, this result can be equivalently formulated thus:

COROLLARY 7.5. Let X ∈ D such that M[X ] is down-adequate. Then there is a
member Y of D with X ≤ Y such that M[Y ] is adequate.

More specifically, there is a (unique) member X̂ of D such that: (i) M[X̂ ] is adequate, (ii)
X ≤ X̂ , and (iii) for every Y ∈ D with X ≤ Y such that M[Y ] is adequate, X̂ ≤ Y .

A particularly interesting sound member ofD is � = 〈∅,∅〉. The corresponding model
M[�] verifies no literals ofMT containing the truth-predicate T, and so makes true only
the literals of M which are made true by M . �̂ is the smallest fixed point (simpliciter),
and by the previous result, M[�̂] is an adequate model.
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SupposeMT contains monadic predicate P and that ∃x(P(x)∧¬T(x)), which we again
abbreviate as �, is a Liar sentence. We may take this to mean, in the present context, that
I +(P) is {�} and I −(P) is the whole domain minus �. Then for all X ∈ D:

• M[X ] |� � iff M[X ] |�T (���)
• M[X ] |�

� iff M[X ] |� T (���).
For M[X ] adequate, we thus have:

• M[X ] |� � iff M[X ] |�

�.

We then know that M[�̂] cannot be classical, that is, both maximal and coherent. If M
is coherent (be it maximal or not), M[�̂] will be coherent but not maximal: � will be
neither true nor false in M[�̂]. If on the other hand M is incoherent (be it maximal or
not), M[�̂] will be incoherent but again not maximal: � will still be neither true nor false
in M[�̂].27

As I previously stressed, Kripke (1975) starts his constructions by assuming that the
model for the unextended language is classical; he notes that the assumption that the model
be maximal can be dropped, but he does not envisage the case where the model is not
coherent. The starting point of his first construction is a model for the extended language
in which the truth-predicate has both an empty extension and an empty anti-extension, and
the result of the construction is the model based on the smallest fixed point—that is, using
our terminology, the starting point is the model M[�] and the result the model M[�̂]. He
defines a sentence of the extended language to be grounded iff the sentence has a truth-
value in the model based on the smallest fixed point. As we shall see in the next section,
Kripke’s semantic notion of groundedness is connected in a definite and interesting sense
to our syntactic notion of GROUNDEDNESS.

7.3. Connection with logical grounding. Following a previously given definition, the
situation determined by model M , S(M), is defined as the set of all the sentential literals
of language M which are true according to M . Similarly, where X ∈ D, the situation
determined by model M[X ], S(M[X ]), is defined as the set of all the sentential literals
ofMT which are true according to M[X ]. In order to simplify notation I shall abbreviate
S(M[X ]) to S(X). Notice that:

• S(M) = S(�);
• For all X ∈ D, S(M) ⊆ S(X);
• For all X, Y ∈ D, if X ≤ Y , then S(X) ⊆ S(Y ).

Consider then X ∈ D sound and the series of the Xαs as defined in the previous section.
This series starts with X , is constantly increasing, eventually reaches a fixed point, X̂ ,
and remains constant thereafter. By the last point above, the series of the S(Xα)s starts
with S(X), is also constantly increasing, eventually reaches S(X̂), and remains constant
thereafter.

The Fundamental Connection result of §5 (Theorem 5.6) yields the following fact:

LEMMA 7.6. Let X ∈ D. Then for all sentences φ ofMT: M[X ] |� φ iff S(X)Ξ φ.

27 Interestingly, the pair Z = 〈{�}, {�}〉 is sound, and the adequate model based on the
corresponding fixed point Ẑ makes � both true and false.
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This is one connection between the semantic languageMT and logical grounding, but it
is of limited interest since there is nothing special in this connection as opposed to the
connection between logical grounding and nonsemantic languages.

Things become much more interesting if we modify our definition of GROUNDING by
extending the basic rules from which the notion is formally defined. There is a plausible
principle connecting truth and the notion of grounding, sometimes associated with the
name of Aristotle (see the introduction to this paper), according to which every truth
grounds the fact that it is true. There are several ways the principle might be formally
expressed, and in the present context it is natural to render the principle as saying that if a
statement is true, then it grounds the statement which says that it is true. A dual principle
involving negation is equally plausible, namely the principle that if a statement is not true,
then the negation of the statement grounds the statement which says that it is not true.
These motivates the view that the following two rules for sentences of MT are ground-
theoretically admissible:28

(T1)
φ

T(�φ�) (T2)
¬φ

¬T(�φ�)
Let us then define a new concept of strict grounding, just like STRICT GROUNDING has
been defined in §5 but adding these two rules to the set of basic rules, and let us define
a corresponding new notion of grounding in terms of that notion of strict grounding,
just like GROUNDING has been defined in terms of STRICT GROUNDING. We may use
‘STRICT GROUNDINGT’ and ‘GROUNDINGT’ for these new notions, and ΛT and ΞT for
the corresponding abbreviations.

Importantly, contrary to the previous rules T1 and T2 do not systematically license
transitions from the less complex to the more complex. In fact, by our definitions T(�φ�)
always has degree of complexity 0 and ¬T(�φ�) degree of complexity 1, whereas φ can
have any degree of complexity and ¬φ any degree of complexity greater than 0. Proposition
1.1 thus fails for ΛT. Another effect of having rules T1 and T2 is that Proposition 1.2(2)
and Proposition 1.3(2) fail in the present context, since for every sentence φ, both T(�φ�)
and ¬T(�φ�) are literals.29

Relatedly, STRICT GROUNDINGT is not irreflexive (and consequently, in the present
context some TREES have some branches of infinite length). The following TREE shows
that ∃xT(x) STRICTLY GROUNDST itself, one transition being given by ∃2 and the other
one by T1:

∃xT(x)

T(�∃xT(x)�)

∃xT(x)

Some might take this as problematic: logical grounding is intuitively irreflexive, so the
thought goes, therefore the view that STRICT GROUNDINGT corresponds to a genuine

28 It might be questioned whether these rules capture links of ground which are properly logical in
character, rather than just conceptual or even just metaphysical. I will not pursue this issue here.

29 The assumption that the names for the sentences of the extended language are syntactically simple
is clearly at work here. Suppose that, in contrast, �φ� is understood as literally containing φ.
Then T(�φ�) and ¬T(�φ�) can in a very good sense be said to be more complex than φ and
¬φ, respectively. Yet, given the corresponding alternative sense of ‘complex’, the rules for the
quantifiers will fail to always take one from the less to the more complex.
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relation of logical grounding over the sentences of language MT is wrong. But I do
not see why this should be the appropriate reaction. The view that grounding (logical,
or simpliciter) is irreflexive may be prima facie plausible, and I am prepared to grant that
the putative examples of self-grounding we typically think of when wondering whether
grounding is irreflexive turn out to be intuitively not cases of grounding at all. Yet we have
two rules, ∃2 and T1, which are very plausibly ground-theoretically acceptable. These two
rules, in conjunction with the equally plausible view that grounding is transitive, straight-
forwardly yield cases of self-grounding. Why give up one of the rules or the transitivity of
grounding, rather than its irreflexivity? I personally take the proposed example involving
∃2 and T1 to provide a nice and convincing counterexample to irreflexivity.

Let us go back to the connections. We first have the following preservation result:

PROPOSITION 7.7. Let X ∈ D. If X is complete (in particular, if X is a fixed point),
then for all sets of sentences � ofMT and all sentences φ ofMT: if both M[X ] |� � and
�ΞT φ, then M[X ] |� φ.

Proof. Suppose X is a complete member of D. Then by Lemma 7.2, M[X ] is up-
adequate, and so:

• For all sentences φ ofMT: M[X ] |� φ ⇒ M[X ] |� T(�φ�), and
• For all sentences φ ofMT: M[X ] |� ¬φ ⇒ M[X ] |� ¬T(�φ�).

It follows that the rules T1 and T2 preserve truth-relative-to-M[X ]. Therefore, the same
goes for GROUNDINGT. �
It allows one to establish the following connection between language MT and
GROUNDINGT:

LEMMA 7.8. Let X ∈ D. If X is complete (in particular, if X is a fixed point), then for
all sentences φ ofMT: M[X ] |� φ iff S(X)ΞT φ.

Proof. Take X ∈ D complete, and let φ be a sentence ofMT. The members of S(X) are
all true according to M[X ]. So if S(X)ΞT φ, then by the previous proposition, M[X ] |� φ.
For the other direction, suppose that M[X ] |� φ. By Lemma 7.6, then, S(X)Ξφ. But since
Ξ ⊆ ΞT over the sentences ofMT, we get S(X)ΞT φ. �

Now we have the following important fact about the interaction between GROUNDINGT

and the jump operator J defined previously:

LEMMA 7.9. For all X ∈ D, S(X)ΞT S(J (X)).

Proof. Let X ∈ D. By Lemma 7.6, S(X) Ξ J1(X). Given that Ξ ⊆ ΞT, it follows that
S(X)ΞT J1(X). The lemma will follow if we establish that J1(X)ΞT S(J (X)).

To this effect, let φ ∈ S(J (X)). Then φ is a sentential literal true according to M[J (X)].
If φ does not contain T, then it is true according to any model of type M[−], and so it is
true according to M[X ], that is, φ ∈ J1(X). Then trivially, J1(X)ΞT φ. Suppose now that
φ contains T. Then φ is either (a) T(�ψ�) or (b) ¬T(�ψ�) for some sentence ψ ofMT.

(a) Suppose φ is T(�ψ�). That φ is true relative to M[J (X)] then means that ψ ∈ J1(X).
Now ψ ΞT T (�ψ�). Consequently, J1(X)ΞT φ.

(b) Suppose φ is ¬T(�ψ�). That φ is true relative to M[J (X)] then means that ψ ∈ J2(X),
and this implies that ¬ψ ∈ J1(X). Now ¬ψ ΞT ¬T (�ψ�). Consequently, J1(X)ΞT φ. �
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Consider now a sound member X of D, and consider again the series of the Xαs. As I
previously emphasised, the corresponding series of the S(Xα)s is constantly increasing in
the sense of set-theoretic inclusion. Using the previous lemma and transfinite induction, it
can be shown that it is also constantly increasing in the sense of GROUNDINGT:

LEMMA 7.10. For all α, β, if α ≤ β, then S(Xα)ΞT S(Xβ).

We are now in a position to establish the main result of this section:

THEOREM 7.11. Let X be a sound member ofD, and X̂ the smallest fixed point extending
X. For all sentences φ ofMT: M[X̂ ] |� φ iff S(X)ΞT φ.

Proof. Let X , X̂ and φ be as stated. Suppose M[X̂ ] |� φ. Then by Lemma 7.8, S(X̂)ΞT

φ. By the previous lemma, we know that S(X) ΞT S(X̂). So, S(X) ΞT φ. Conversely,
suppose S(X)ΞT φ. Since X ≤ X̂ , S(X) ⊆ S(X̂), and so S(X̂)ΞT φ. But then by Lemma
7.8, M[X̂ ] |� φ. �
Consider the special case where X is � = 〈∅,∅〉. By the theorem, for a sentence φ of
the extended language MT to be true (false) in the model M[�̂] based on the smallest
fixed point is for it (its negation) to be GROUNDEDT in situation S(M) (which comprises
no semantic sentences, that is, no sentence containing the truth-predicate). Thus, a sen-
tence of MT is grounded in Kripke’s sense iff either it or its negation is GROUNDEDT

in S(M).

7.4. A note on Fine’s “Some Puzzles of Ground”. Fine’s (2010) article “Some Puz-
zles of Ground” (2010) is interestingly connected to the present paper. Given the particular
line of thought followed by Fine in the article, I found it more appropriate to discuss it in a
separate section rather than making piecemeal remarks in the previous parts. My aim here
is not to run through all connections in details, but rather to make some comments on some
important points.

The article is concerned with certain puzzles concerning the concept of partial ground-
ing. The qualification ‘partial’ is understood in a relaxed sense: what fully grounds, as well
as what merely helps to ground, is taken to be a partial ground. The concept of grounding of
interest to Fine is not specifically logical in character, although many of the connections of
grounding Fine takes into consideration may appropriately be understood to be connections
of logical grounding.

Fine’s puzzles arise when it is assumed that partial grounding is irreflexive and that
a number of other plausible assumptions—regarding partial grounding, logical validity
and other notions like truth and existence—are in place. The puzzles arise because these
assumptions can be shown to lead to inconsistency. Fine discusses ways of avoiding in-
consistency and eventually retains some options which all stick to the view that partial
grounding is irreflexive. Barring a radical move he calls ‘predicativism’, the retained op-
tions either reject both a certain set GP of ground-theoretic principles and a certain set LP
of classically valid logical principles (compromise position), or reject one set of principles
while keeping the other (extremist positions).30

30 See Fine (2010, pp. 109–110). GP comprises the rules of inference (E is the existence predicate
and ≺ the partial grounding operator):

• ∀xφ(x), E(y) / φ(y) ≺ ∀xφ(x)
• φ(y), E(y) / φ(y) ≺ ∃xφ(x)
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Each position, Fine argues, “corresponds” to a Kripkean approach to the Liar paradox
(see footnote 24): the compromise position corresponds to the “strong Kleene” approach,
one of the extremist position to the “weak Kleene” approach, and the other extremist
position to the supervaluational approach. Since I have so far focused on the first Kripkean
approach, I will simply ignore the other two.

Fine proposes a proof-theoretic approach to Kripke’s (strong Kleene) fixed point con-
structions which turns out to be very close to the one I have put forward in the previous
section. Putting things in terms we previously used, he assumes that the model M for the
unextended languageM is classical, and he ends up, in effect, stating that a sentence of
the extended languageMT is true in the model based on the smallest fixed point, M[�̂],
iff it is GROUNDEDT in the set of all the sentences ofM which are true according to M .31

To be completely accurate, Fine does not invoke the relation of GROUNDINGT but rather
directly the basic rules from which that relation is defined.32

Importantly, unlike me, Fine does not take mere chaining of these basic rules to al-
ways give rise to links of partial ground. For, as we saw, chaining the rules ∃2 and T1
yields a connection between ∃xT(x) and itself, and Fine maintains that partial grounding
is irreflexive (he actually uses our very example when discussing the point). He rather
proposes an alternative characterisation of partial grounding in terms of these very same
rules, according to which partial grounding turns out to be irreflexive.

Now the correspondence which Fine sees between the compromise position on the
puzzles of ground and the Kripkean (strong Kleene) approach to the Liar boils down to
this: the set GP of ground-theoretic principles and the set LP of classical logical principles
which are both rejected by the compromise position are also rejected on the Kripkean
approach (granted the alternative characterisation of partial grounding).

My rejection of the irreflexivity of logical grounding (see §7.3) brings with it a rejection
of the irreflexivity of the broader notion of grounding that Fine has in mind, as well as
a rejection of the irreflexivity of the corresponding partial notions. It allows me to take
mere chaining of the basic rules to systematically give rise to links of partial ground, and
indeed it allows me to view relation ΛT as corresponding to genuine connections of full

• φ /φ ≺ φ ∨ ψ
• ψ /ψ ≺ φ ∨ ψ ,

and LP the theses (E is, again, the existence predicate):

• ∀x(φ(x) ∨ ¬φ(x))
• ∃x(φ(x) ∨ ¬φ(x))
• ∀x E(x)
• ∃x E(x).

When I talk of rejection of either of these two sets, I mean rejection of at least some of its members,
not necessarily rejection of all of them.

31 The instance of Theorem 7.11 for X = � and M a classical model is a slightly “stronger” result,
in so far as it mentions the set of all the sentential literals, rather than the set of all the sentences,
ofM which are true according to M .

32 Davis (1979) already established a similar result. (See also Hazen, 1981.) The rules in action in
Davis’ constructions are somewhat different, though: instead of stating that one can move from
one or more formulas to a formula, they state that one can move from the truth or falsity of one
or more formulas to the truth or falsity of a formula. On Davis’ approach, the truth of ¬φ is to
be distinguished from the falsity of φ. In contrast, it is in the spirit of the approach I followed to
identify the two.
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grounding. On this account, the Kripkean approach to the Liar will not correspond to a
compromise position in Fine’s sense: the ground-theoretic principles which cannot jointly
be accepted on a compromise position, namely those constituting the set GP, will all hold.

Finally, let me stress that rejecting the irreflexivity of partial grounding will have a direct
impact on Fine’s puzzles of ground, since the arguments proposed by Fine which lead to
inconsistency all explicitly invoke irreflexivity. What exactly remains of the puzzles once
irreflexivity is abandoned is an interesting question, but one I will not pursue here.33
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