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INVARIANT PROBABILITY
DISTRIBUTIONS IN ECONOMIC
MODELS: A GENERAL RESULT

ALFREDO MEDIO
University Ca’ Foscari of Venice

This paper discusses the asymptotic behavior of distributions of state variables of Markov
processes generated by first-order stochastic difference equations. It studies the problem
in a context that is general in the sense that (i) the evolution of the system takes place in a
general state space (i.e., a space that is not necessarily finite or even countable); and (ii)
the orbits of the unperturbed, deterministic component of the system converge to subsets
of the state space which can be more complicated than a stationary state or a periodic
orbit, that is, they can be aperiodic or chaotic. The main result of the paper consists of the
proof that, under certain conditions on the deterministic attractor and the stochastic
perturbations, the Markov process describing the dynamics of a perturbed deterministic
system possesses a unique, invariant, and stochastically stable probability measure. Some
simple economic applications are also discussed.
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1. INTRODUCTION AND MOTIVATION

This paper discusses the asymptotic behavior of distributions of the state variables
of Markov processes generated by first-order stochastic difference equations. The
theory of stochastic dynamical systems in discrete time plays a very significant
role in economic dynamics. The well-known treatise by Stokey and Lucas (1989)
provides an extensive discussion of the relevant mathematical and statistical meth-
ods and includes many applications of the theory of Markov processes to economic
models.

To fix ideas and put the mathematical background in place, we start with some
formal definitions.

The basic stochastic dynamical system investigated in the paper can be described
by the following equation:

xt+1 = T
(
xt , ξ

ε
t+1

)
, (1)
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where the ξ ε
t (t = 1, 2, . . .) are i.i.d. random vectors with values in Wε , an open

subset of Rm ; the state variables xt take values in M , an open subset of Rn; the
initial vector x0 is a given constant (not random). Alternatively, we can take x0 as
a random vector taking values in M , arbitrary but independent of ξ ε

t for t ≥ 1. In
either case, xt is independent of ξ ε

t+1, for all t ≥ 0. The index ε parameterizes the
level of ξ perturbations. T is a measurable function mapping M × Wε to M ⊂ Rn .

The fact that xt+1 is conditionally independent of xt−1, xt−2, . . . , given xt , en-
sures that (1) has the Markovian property, that is, for any integrable function φ,
we have

E[φ({xτ }), τ > t | {xτ }, τ ≤ t] = E[φ({xτ }), τ > t | xt ] ∀ t ≥ 0

In words, this means that the present value of the state variable x contains all the
information from its past history relevant for the prediction of its future. System
(1) generates a collection X = {xt } | t ∈ Z+ of random variables, which is called
Markov chain or process.

The dynamics of Markov processes such as (1) can be defined by the iterations
of an one-step transition probability kernel

P(x, A) x ∈ M, A ∈ B(M),

where, denoting by M the state space and by B(M) the Borel σ -algebra on M , we
have

(i) for each A ∈B(M), P(·, A) is a nonnegative measurable function on M ;
(ii) for each x ∈ M, P(x, ·) is a probability measure on B(M);

(iii)

Pn(x, A) =
∫

M

P(x, dy)Pn−1(y, A), x, y ∈ M, A ∈B(M), n ≥ 1,

with P0(x, A) = δx (A), δx being the Dirac measure centered on x .

The formal relation between the map T of equation (1) and the corresponding
transition probability kernel is the following:

Pε(x, A) =
∫

Wε

χA[T (x, ξ ε)]νε(dξ ε),

where χA is the indicator function of the set A, i.e.,

χA(x) =
{

1 for x ∈ A
0 for x /∈ A,

and νε is the probability measure

νε(B) = prob
(
ξ ε

t ∈ B
)

for B ∈B(Wε),

identical for all t .
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In the investigation of systems represented by equation (1), we are especially
interested in finding invariant configurations of the (random) state variables. Then
we need the following.

DEFINITION 1. We say that a probability measure π :B(M) → [0, 1] is in-
variant with respect to P or, equivalently, that π is preserved by P , if we have

π(A) =
∫

P(x, A)π(dx) A ∈B(M).

An interesting special case of (1) obtains when we have {ξ ε
t } = {ξ̂ , ξ̂ , ξ̂ , . . .},

where ξ̂ is a vector of constants and therefore the difference equation (1) is de-
terministic. In what follows, we assume that for ε = 0, ξ 0

t = ξ̂ for all t , where ξ̂

corresponds to a certain “normal” configuration of parameters. In each particular
application, it is possible to normalize ξ̂ to zero. Thus, we can write

F(xt ) ≡ T
(
xt , ξ

0
t+1

)= T (xt , 0) ∀ t ≥ 0,

where the map F denotes the deterministic component of the stochastic dynamical
system (1), which we shall often call “deterministic core.”

Although the results presented below, and in particular Theorem 1, can be ap-
plied to any problem taking the form of a Markovian process, we had in mind
especially two broad types of economic models giving rise to stochastic difference
equation such as (1). Because the models in questions are well known, we de-
scribe them very briefly, ignoring variations and omitting many technical details,
for which we refer the reader to the literature. Our purpose here is to relate the
models in questions to the mathematical setup described above.

1.1. Type 1 Models: Stochastic Intertemporal Optimization

The first class of models deals with intertemporal optimization problems, in the
presence of exogenous shocks perturbing fundamentals. It includes single-agent
models of optimal growth, inventory accumulation, asset pricing, search unem-
ployment and many others. Earlier results in this area are found in Brock and
Mirman (1972), subsequently extended, by Radner (1973), Brock and Majumdar
(1978), Majumdar and Zilcha (1987), and Joshi (1995), among others. A detailed
discussion of the basic mathematical methods involved is provided by Stokey and
Lucas (1989).

A general representation of these problems can be written as follows:

sup
{yt }∞t=0

E

[ ∞∑
t=0

β t f (kt , yt , ωt )

]

s.t. (kt , yt , ωt ) ∈ D = [K × Y × � | yt ∈ �(kt , ωt )]; (P1)

(k0, ω0) ∈ K × � are given constants,
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where k is the endogenous state variable; y is the control variable; K ⊆ Rn , Y ⊆ Rd ;
{ω1, ω2, . . .} is a sequence of i.i.d. exogenous shocks taking values in � ⊆ Rm ;
β ∈ (0, 1) is the constant discount factor. The correspondence � is the set of all
possible control choices, given the known, endogenous and exogenous, state of
the system; f : D → R is the return function.

The Bellman equation for problem (P1) can be written as

V (k, ω) = sup
y|(k,y,ω)∈D

{
f (k, y, ω) + β

∫
�

V [φ(k, y, ω′), ω′]ν(dω′)
}

, (2)

where (k, ω) is the current, known state of the system; y the control variable; ω′ is
next period’s shock, unknown at the moment of decision; and the function φ is the
given “law of motion” relating the next period’s value of the endogenous variable
to its current state, the current decision, and the future exogenous shock.

Under appropriate, fairly standard assumptions on the spaces K , Y, �, the return
function f , the feasibility constraint D, and the “law of motion” φ, there exists
a unique, continuously differentiable function V satisfying (2) and an associated,
continuous “policy function” g(k, ω), which determines the optimal value of the
control variable y for any given pairs of the endogenous and exogenous state
variables. Thus, from g and φ, we can derive a difference equation of the form

kt+1 = �(kt , ωt , ωt+1). (3)

The sequence of the joint state variable {xt = (kt , ωt )} taking values in the set
K × � follows a Markov process. If the sequence {ωt } is i.i.d., from equation (3)
we can derive a first-order stochastic difference equation of the form

xt+1 = T (xt , ωt+1) (4)

with the same properties as (1).

1.2. Type 2 Models: Sunspots in Sequential Markets Models

This class of models includes many variations, mostly of the overlapping genera-
tions (OLG) type. We shall provide an abstract characterization of it, referring the
reader to the comprehensive survey by Chiappori and Guesnerie (1991) for details
and a rich bibliography.

Consider a competitive economy in which, at each time t , the present state xt

is entirely determined by nonstochastic fundamentals, agents’ expectations about
the state one step ahead, xt+1, and the equilibrium requirement that markets clear
at all times. Suppose now that agents observe a Markov process of i.i.d. signals,
ξ ε

t , characterized by a probability distribution νε , as described earlier, and that they
commonly believe that these signals are perfectly correlated with the equilibrium
values of the state variable x , in the sense that there exists a homeomorphism φ
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such that
xt = φ

(
ξ ε

t

) ∀ t. (5)

Then, the equilibrium conditions can be written as

E[G(xt , xt+1) | xt ] =
∫

M
G(xt , xt+1)P(xt , dxt+1) = 0, (6)

where P(xt , dxt+1) = νε[φ−1(xt , dxt+1)], and the function G depends on (non-
stochastic) fundamentals, for example, utility functions. We say that agents’ ex-
pectations are self-fulfilling if the equilibrium values of x , as determined by fun-
damentals and beliefs, actually validate equations (5) and (6). In this case, the
resulting sequence of equilibrium values {xt } is a Markov process with probabil-
ity transition kernel P(x, A), which is called sunspot equilibrium (SE). An SE is
stationary (SSE) if there exists a probability measure π , invariant for the Markov
process, as in Definition 1.

As will be illustrated in Example 2, below, sufficient conditions for the validation
of (5) and (6) can be represented by an equation �(xt , xt+1, ξ

ε
t+1) = 0. When

the conditions for the implicit function theorem hold, � can be inverted locally
with respect to xt+1, yielding a difference equation xt+1 = T (xt , ξ

ε
t+1) like (1). In

sunspot OLG models, “locally” usually means in a neighborhood of a stationary,
or periodic, solution of the perfect-foresight, “deterministic core.” Whether or not
the map T is uniquely defined globally depends on the properties of the function G
and ultimately on the fundamental functions of the model. The results of this paper
can therefore be applied both to the “invertible” and, locally, to the “noninvertible”
case . Global analysis of the noninvertible case is difficult and involves discussion
of delicate questions concerning the so-called “backward dynamics” that would
take us far afield. Because our main interest here is to establish global results, the
examples discussed in Section 3 refer to problems of Type 1 (stochastic dynamic
optimization), and to problems of Type 2 (sunspots) limited to the invertible case.

2. MAIN RESULT

Our discussion of existence and stability of invariant probability distributions for
Markov processes generated by equation (1) is general in the following, twofold
sense:

• We discuss the question in the context of general spaces. In the present
context, the term “general” refers to cardinality, not dimension, and means
that the space in which the Markov process takes values is not necessarily
finite (as almost always assumed in the sunspot literature), or even count-
able. Because endogenous state variables in deterministic economic models
(e.g., consumption, labor supply, capital stock) are typically assumed to be
continuous, we do not see why their stochastic counterparts should be con-
fined to finite-state spaces. To make this problem tractable, some regularity
assumptions are needed and are provided by Assumptions 1, 3, and 4, below.
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• We discuss the relations between stability of invariant sets of the “determin-
istic core” of the system and existence and stability of invariant probability
distributions, in the general case in which those sets are not necessarily fixed
points or periodic orbits, but they can be aperiodic or chaotic. This is all the
more interesting because there is strong analytical and numerical evidence
that deterministic optimal growth models as well as overlapping generations
models with perfect foresight can have complex or chaotic dynamics. See, for
example, the survey by Boldrin and Woodford (1990) and the readings vol-
ume edited by Benhabib (1992). In particular, this paper provides a genera-
lization of some of the results of the sunspot literature linking local (forward)
stability of stationary or periodic states to local sunspots, showing that there
exists an analogous relation between the existence of attractors of any kind
and global sunspots.

Proving the existence of an invariant probability distribution for the Markov
process under investigation may not be very interesting if that distribution only
obtains for very special (random) initial conditions. Therefore, we explicitly dis-
cuss the question of uniqueness and stochastic stability of invariant distributions,
making use of some recent, powerful results in this field of research.

Given the rather technical nature of the argument, we postpone a more detailed
discussion of the relevant specialized literature until the end of the paper, when the
necessary concepts and methods have been properly defined. For the unexplained
concepts and the basic results used in the following pages and in particular in
Appendices A and B, we refer the reader to the excellent treatise on stochastic sta-
bility by Meyn and Tweedie (1993), which contains the state of the art in this area.

In view of what we said before and without loss of generality, we study the basic
stochastic difference equation (1) in the following decomposed form:

xt+1 = T
(
xt , ξ

ε
t+1

)= F(xt ) + G
(
xt , ξ

ε
t+1

)
, (7)

where the map F(xt ) = T (xt , 0) is the deterministic core, which we assume to be
known, and the map G(xt , ξ

ε
t+1) = T (xt , ξ

ε
t+1) − F(xt ) denotes the perturbation

term.
We also need to consider the related family of equations:

xk = Tk
(
x0, ξ

ε
1 , . . . , ξ ε

k

)
, (8)

where for each k the function Tk : M × W k
ε → M (to be distinguished from the kth

iterate of T , T k!) can be determined inductively as follows:

Tk
(
x0, ξ

ε
1 , . . . , ξ ε

k

)= T
[
Tk−1

(
x0, ξ

ε
1 , . . . , ξ ε

k−1

)
, ξ ε

k

]
k > 1

with T0(x0) = x0; T1(x0, ξ
ε
1 ) = T (x0, ξ

ε
1 ).

Equation (8) can be interpreted by saying that, for any given initial state x0 ∈ M ,
and any given set of values (ξ ε

1 , . . . , ξ ε
k ) ∈ W k

ε , the value of x at time k, xk , is
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determined by the function Tk . In that sense, equations (8) describe a deterministic
system uniquely related to the Markov chain (1), known in the literature as an
associated control system (ACS). We have more to say about ACS later.

Let us now introduce the following assumptions:

Assumption 1. The maps F and G (and therefore the map T ) are continu-
ously differentiable with bounded derivatives. This implies that those maps are
Lipschitzian on bounded sets.

To formulate the next assumption, we need a few preliminary definitions.
For a set A ⊂ M and a scalar constant r > 0, let L(r, A) = [x ∈ M | d(x, A) < r ],

where d(x, A) denotes the distance from x to A, namely,

d(x, A) = inf
y∈A

{‖x − y‖}

and ‖ · ‖ is any vector norm, such as the Euclidean distance. Then we have the
following definition.

DEFINITION 2. A compact subset � of the state space M , invariant under a
map f , is said to be Lyapunov stable if, for any ε > 0, there exists δ > 0 (depending
on ε) such that f n[L(δ, �)] ⊂ L(ε, �), for n ≥ 0. � is said to be asymptotically
stable if

(a) it is Lyapunov stable; and
(b) the basin of attraction of �, i.e., the set

B(�) = {x ∈ M | lim
n→∞

d[ f n(x), �] = 0},

is open non-empty.

DEFINITION 3. A map f : � → � is said to be topologically transitive (t.t.)
on � if, for any two open sets U, V ⊂ �, there exists an integer n such that
f n(U ) ∩ V �= ∅.

Transitivity implies that orbits generated by the map f starting from any arbitra-
rily small open neighborhood visit any other arbitrarily small open neighborhood
in � in finite time. Thus, the set � is dynamically indecomposable and must be
studied as one piece.

Sometimes we need stronger forms of transitivity, as defined below.

DEFINITION 4. A map f : � → � is said to be strongly topologically transitive
(s.t.t.) on � if for any integer m > 0 the map f m is topologically transitive on �.

DEFINITION 5. A map f : � → � is said to be topologically mixing on � if
for any two open non-empty sets U, V ⊂ � there exists a positive integer N such
that for every n > N, f n(U ) ∩ V �= ∅.

Topological mixing implies s.t.t. and each of these properties implies t.t.
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DEFINITION 6. An asymptotically stable set � is said to be an attractor if it is
“indecomposable” under the action of the map f in the sense that f is topologically
transitive on �.

We can now write the Assumption 2.

Assumption 2. The deterministic system

xt+1 = F(xt ) (9)

possesses a (locally unique) attractor � ⊂ M , which is in the interior of its basin
of attraction B(�). Moreover, the map F is strongly topologically transitive on �.

The stronger form of indecomposability is necessary to guarantee aperiodicity
of the Markov chain generated by (7). The case in which F is not t.t., and the one
in which F is t.t., but not strongly t.t., are discussed in the Remarks 2 and 3 below.
Notice than we do not require that the attractor be exponentially stable.

Assumption 3. For all ε > 0, the probability measure νε characterizing the i.i.d.
random variables ξ ε

t (discussed earlier) possesses a density γε that is lower semi-
continuous (l.s.c.), and its support, that is, the set

Wε = {x | γε(x) > 0 a.s.},

is an open, bounded subset of Rm , containing the singleton {0}. (For ε = 0, the
measure νε degenerates to the Dirac measure centered on {0}.)

This assumption is obviously satisfied for many distributions with continuous
density, commonly assumed in the description of noise. However, continuity is a
sufficient, but not necessary, condition for l.s.c. For example, uniform distributions
on bounded, open sets, although not continuous, would satisfy Assumption 3. In
fact, a discrete distribution with mass concentrated on k points (x1, . . . , xk) can be
approximated by a uniform distribution with support on small open balls centered
on those points.

Before stating Assumption 4, we need to define the concept of forward accessi-
bility. Keeping in mind the earlier definition of ACS and, in particular, equation (8),
we can write Definition 7.

DEFINITION 7. Let A+(x) denote the set of all states reachable from x at
some time in the future for any admissible sequences of perturbations {ξ ε

1 , ξ ε
2 , . . .}.

Then, an ACS is said to be forward accessible (FA) if, for each x0 ∈ M, the set
A+(x0) ⊂ M has a non-empty interior.

Then, we can state the following assumption.

Assumption 4. The deterministic ACS (8) associated with the stochastic system
(7) is forward accessible.
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From Definition 7 (and the definition of interior), we gather that a Markov
chain X, for which the corresponding ACS is FA, cannot be concentrated in some
lower dimensional subset of the state space (e.g., if M ⊂ R, the chain cannot be
concentrated in a point; if M ⊂ R2, it cannot be concentrated in a line, and so
forth). For additional comments on FA, together with a brief description of the
method for ascertaining the presence of FA in simple models, see Appendix B.

Assumption 5. For all ξ ε , the perturbation term ‖G(x, ξ ε)‖ is bounded uni-
formly for x ∈ B(�), i.e., for each ε ≥ 0 there exists a Lε < ∞, such that

sup
x∈B(�)

‖G(x, ξ ε)‖ ≤ Lε a.s.

and
Lε → 0 as ε → 0.

Thus, by reducing ε, we can make the perturbation level as small as we please
and in the limit for ε → 0 the stochastic process (7) degenerates to its “deterministic
core” (9).

We can now prove the following theorem.

THEOREM 1. Let a Markov chain X be defined by (7), and by the associated
transition probability kernel Pε(x, A), and let assumptions 1–5 hold. Then, for
any deterministic attractor � and a sufficiently small ε [depending on the size of
the basin of attraction B(�)], there exists a set Oε ⊂ B(�) that is absorbing; i.e.,
Pε(x, Oε) = 1 if x ∈ Oε . Moreover, for the chain X restricted to Oε, the following
properties hold:1

(a) X is uniformly ergodic; namely,

sup
x∈Oε

∥∥Pn
ε (x, ·) − πε

∥∥ → 0 as n → ∞,

where, for any given ε, πε is a uniquely determined, finite (i.e.,finite mass) probability
measure, which is invariant with respect to Pε, according to Definition 1.

(b) For all x ∈ Oε, there exists rε > 1 and Rε < ∞, such that∥∥Pn
ε (x, ·) − πε

∥∥ ≤ Rεr
−n
ε ;

i.e., the convergence of Pn
ε to the invariant measure πε takes place at a geometric

rate.
(c) Moreover, πε is stable in the sense that, for any initial probability measure µ, we

have ∥∥∥∥
∫

Pn
ε (x, ·)µ(dx) − πε

∥∥∥∥ → 0 as n → ∞.

The proof of the Theorem above—which is the core of this paper—is rather long
and quite technical and we have relegated it to Appendix A. In economic terms,
the consequence of the mathematical results listed above can be summarized in
the following proposition.
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PROPOSITION 1. Let equation (7) describe a problem of Type 1 (e.g., stochas-
tic optimal growth), let equation (9)describe the corresponding deterministic core,
and let the conditions of the Theorem hold. Then,

(a) An invariant probability distribution πε for (7) exists, is unique and has a bounded
support that is nontrivial in the sense that πε is not a Dirac measure. The support of
πε is in the set Oε defined in Theorem 1 and includes the attractor of (9).

(b) Given any random initial distribution (with support in Oε), arbitrary but independent
of the shocks, the distribution will converge asymptotically to πε, which therefore
properly characterizes the long-run behavior of the system.

Analogously, in the case of Type 2 problems (sunspots), we have the following
proposition.

PROPOSITION 2. Let equation (7) describe a sunspot equilibrium, let equa-
tion (9) describe a (forward-moving) perfect-foresight equilibrium (PFE), and let
the conditions of Theorem 1 hold. Then,

(a) A stationary sunspot equilibrium (represented by πε) exists, is unique, and has a
bounded, nontrivial support in the set Oε . The support of πε includes the attractor
of the perfect-foresight deterministic core (9).

(b) For any initial distribution (with support in Oε), chosen arbitrarily but independently
of the perturbations, the distribution will converge asymptotically to πε, correspond-
ing to the unique SSE.

Remark 1. Strong topological transitivity is satisfied trivially when the deter-
ministic attractor � is a fixed point. It is also satisfied when the dynamics of map
F are chaotic and mixing on �. As we shall see in Example 3, strong transitivity
may also be verified when the attractor is quasiperiodic (aperiodic but not chaotic).

Remark 2. When the deterministic map is t.t. on �, but not strongly t.t.,
Assumption 2 is violated, the Markov process need not be aperiodic or converge to
a unique probability distribution. This situation obviously occurs when � is peri-
odic and, less obviously, when � consists of two or more chaotic sets mapped into
each other cyclically by F—the so-called periodic, or nonmixing chaos. However,
this is not as serious a drawback as it seems, in view of the fact [cf. Meyn and
Tweedie (1993, Proposition 5.4.6, p. 118)] that for an irreducible Markov process
X periodic with period d, the state space can be decomposed as

M =
d⋃

i=1

Di ∪ E,

where the d sets Di , i = 1, . . . , d are disjoint, absorbing, and irreducible for the
process Xd generated by the probability transition kernel Pd (i.e., the dth iterate
of P), and the process Xd on any of the sets Di is aperiodic. The residual set E is
transient and therefore negligible.2 The conclusions of Theorem 1 still hold for the
process Xd on any of the absorbing sets Di . All of this means that, if the dynamics
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generated by the map T of equation (1) or (7) and the corresponding Markov
process X are d-periodic, then we can change the time unit and consider instead
the map T d (the dth iterate of T ) and the associated kernel Pd . The corresponding
Markov process will be aperiodic and, as n → ∞, the probability measure defined
by Pnd(x, ·) will converge to one of d probability measures πi (one for each set
Di ) and the choice among them will depend on the initial conditions.3

Remark 3. When the deterministic map F is not t.t. on an attracting set � (e.g.,
� is decomposable into two invariant sets), Assumption 2 is violated, the Markov
process is not irreducible, and Theorem 1 is no longer valid. However, for any
reducible T-chain, there exists a finite decomposition of the state space

M =
n⋃

k=0

Hk ∪ E

where the sets Hk are disjoint, absorbing sets and the chain restricted to any
of the Hk sets is uniformly ergodic, whereas E a transient set. For each of the
absorbing, irreducible set Hk , there is a unique, invariant, probability distribution
stochastically stable for appropriate initial conditions [cf. Tuominen and Tweedie
(1979); Meyn and Tweedie (1993, p. 408)].

Remark 4. The hypothesis of independence of the exogenous perturbations is
not essential. When perturbations are not independent, we can still write a stochas-
tic difference equation in which there appear i.i.d. exogenous perturbations, but
the equations need not be of first order. That is to say, we would have equations of
the form

wt+1 = T (wt , wt−1, . . . , ξt+1),

where wt denotes the state variable, the sequence {ξt } is i.i.d., and the order of the
difference equation depends on the structure of the dependence of perturbations.
The resulting nth-order system of equations can then be reduced to an equiva-
lent first-order system by extending the state space through the introduction of
appropriate auxiliary variables. This procedure is illustrated in Example 4.

3. SOME SIMPLE ECONOMIC EXAMPLES

A brief discussion of simple economic models of Type 1 and Type 2 will help un-
derstand the nature and relevance of our results and the assumptions on which they
are based. To avoid repetitions, let us start with some general considerations con-
cerning the four models that follow. First, the functional relationships commonly
adopted in the models considered here guarantee that the “smoothness assump-
tion,” Assumption 1, is satisfied. Second, the r.v.s considered below comply with
Assumption 3. This does not pose any particular restriction on the economic prim-
itives of the model and, as mentioned on p. 10 above, it allows a wide choice of
stochastic perturbations.
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3.1. Example 1: Type 1—One-Dimensional Optimal Growth

Consider the well-known, one-good/two-sector optimal growth model in reduced
form. In the deterministic version of the model, if we choose the single capital
good k as the endogenous state variable, and the control variable is the amount
y of output saved and invested, the map governing the dynamics of k along an
optimal path coincides with the optimal policy function g; that is, we have

kt+1 = yt = g(kt ). (10)

It is known that, for sufficiently small discount factor β (i.e., sufficiently large
discount rate), any C2 map can be a policy function for a problem of optimal
growth satisfying the standard economic requirements—in a nutshell, convexity
of technology and convexity of preferences [see Montrucchio (1986), Boldrin
and Montrucchio (1986)]. In particular, there exist specifications of the return
function f , satisfying those economic requirements, that yield the optimal policy
map

kt+1 = µkt (1 − kt ), (11)

i.e., the “logistic” map much studied in the literature on chaotic dynamics [in
the present context, besides the articles quoted above, see Deneckere and Pelikan
(1986)].

Suppose now we introduce a stochastic perturbation such that a random pro-
portion ξ ε

t+1 of output saved at each instant t is wasted before it can be used as
production input, but after the optimal choice of how much to save has been made.
Consequently, we have kt+1 = yt (1 − ξ ε

t+1) and

kt+1 = µkt (1 − kt )
(
1 − ξ ε

t+1

)
, (12)

which is a special case of problem (P1), above, where the return function f (k, y)

in this case can be interpreted as the “consumption frontier.”
We also assume that {ξ ε

t } is a sequence of i.i.d. r.v., uniformly distributed over
(0, a), 0 < a < 1. If we normalize by defining ε = a/2

√
3, the standard deviation

ε of the r.v. ξ ε
t can be used as the index parameterizing the level of perturbations.

Putting F(kt ) = µkt (1 − kt ) and G(kt , ξ
ε
t+1) = −ξ ε

t+1 F(kt ), equation (12) can
be written in the form of (7) as

kt+1 = µkt (1 − kt ) − ξ ε
t+1µkt (1 − kt ). (13)

The dynamic behavior of the map F is extremely well documented in the math-
ematical literature on maps of the interval and we refer the reader to it for de-
tails [see, e.g., Whitley (1983), Sharkovsky et al. (1997)]. Broadly speaking, the
properties of attractors depend on the single parameter µ, which is a decreas-
ing function of the discount factor. In particular, it is known that, for µ ∈ (1, 3),
attractors are all fixed points; for µ ∈ (3, µ∞), µ∞ ≈ 3.57, attractors are all peri-
odic; for µ ∈ (µ∞, 4), there exist periodic, quasiperiodic, or chaotic attractors. We
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have already discussed the simpler cases (fixed-point and periodic attractors) in
Remarks 1 and 2, and the quasiperiodic case is taken up in Example 3. Here, we
concentrate on the case of attractors that are chaotic in the following sense: there
exists a unique, absolutely continuous, ergodic F-invariant probability measure ρ

with support in �, with respect to which F has a positive metric entropy (and a
positive Lyapunov exponent of equal value). There are two possibilities here: (i)
ρ is mixing, which implies that F is topologically mixing on � [see Katok and
Hasselblatt (1995, p. 151)] and Assumption 2 is satisfied; (ii) F is topologically
transitive, but not topologically mixing on �, and we have the case of periodic, or
nonmixing, chaos, discussed in Remark 2.

Assumption 4 (forward accessibility) is verified because (see Appendix B)

∂

∂ξε
1

T
(
k0, ξ

ε
1

)= −F(k0) = −µk0(1 − k0) �= 0, (14)

which is true for initial conditions 0 < k0 < 1 (initial conditions k0 = 0 or k0 = 1
are excluded because, for µ∞ < µ < 4, they are not in the basin of attraction
of �). Finally, for initial conditions 0 < k0 < 1, 0 < F(kt ) < 1, ∀ t . This and the
said properties of the r.v., ξt , guarantees that, for kt ∈ B(�), the perturbations
term ‖G(kt , ξ

ε
t+1)‖ = ‖ − ξ ε

t+1 F(kt )‖ is bounded and goes to zero with ε, and
Assumption 5 is verified.

3.2. Example 2: Type 2—Pure Exchange, One-Dimensional OLG Model

The deterministic core of this example is the pure exchange OLG model discussed
by Samuelson (1958), Gale (1973), and many others. Here, we use a modified
version of the Benhabib and Day (1982) model. In this model, there is no pro-
duction, but each agent receives endowments of a single, perishable consumption
good. Because we concentrate on Gale’s “classical case” (young are impatient
and borrow from the old), for simplicity’s sake we assume that only old agents
receive a constant endowment w. At each time t , the young agent borrows a certain
amount ct of the good and, when old, must pay back an amount w − gt+1 (and will
accordingly consume an amount gt+1 of the good) that depends on the exchange
rate between present and future consumption Rt+1. Finally, at each t , the good
market clears; that is, w = ct + gt . (We would also need some intergenerational
arrangements guaranteeing that young people’s debts are always settled, as well
as some ad hoc rules for the “time zero” of the model, but we cannot discuss them
here.)

In the stochastic case, agents believe that in equilibrium the exchange rate is
perfectly correlated with an extrinsic i.i.d. sunspot, ξ ε

t —that is, Rt = R(ξ ε
t ) ∀ t .

We assume that ξ ε
t is characterized by a probability distribution νε with open,

bounded support on the real line including {0} and the bound goes to zero with ε

(thus Assumption 5 is satisfied).
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Assuming separable utility function, U (ct , gt+1) = v(ct ) + u(gt+1), the young
agent’s program is

max v(ct ) + E[u(gt+1) | ct ]

s.t. w − gt+1 = R
(
ξ ε

t+1

)
ct , or

max
ct

v(ct ) + E
[
u(w − R

(
ξ ε

t+1

)
ct )
]
,

where expectation is taken w.r.t. the measure νε and it is conditional to ct . If agents’
beliefs are self-fulfilling and markets always clear, i.e., ct = w − gt ∀ t , we must
have

V(ct ) + E[U(ct+1) | ct ] = 0, (15)

where V(c) = v′(c)c and U(c) = u′(c)c. If U is invertible (and putting E(ξ ε
t+1) = 0

for simplicity’s sake), condition (15) is satisfied for

ct+1 = T
(
ct , ξ

ε
t+1

)=U−1
[−(V(ct ) + ξ ε

t+1

)]
. (16)

Notice that the deterministic core of (16) is F(ct ) =U−1[−V(ct )], corresponding
to the perfect-foresight no-sunspot version of the pure exchange OLG model,
and G(ct , ξ

ε
t+1) = T (ct , ξ

ε
t+1) − F(ct ). Let us now choose the utility functions

v(c) = A − we−c; u(g) = g, corresponding, respectively, to constant absolute risk
aversion and risk neutrality, with A a positive constant. In this case, F(ct ) = wct e−ct

and G(ct , ξ
ε
t+1) = ξ ε

t+1. F is a much-studied member of the class of unimodal
maps of the interval. Notice that the interval Iw = [0, w/e] is invariant for F and
therefore, if c0 ∈ Iw, gt = w − ct will never become negative along a deterministic
orbit. In the complete stochastic system, for every given w the level of perturba-
tions (the parameter ε) must be fixed so that gt ≥ 0 at all times. For w > 1, F has
two nonnegative fixed points, namely, c̄1 = 0, unstable, and c̄2 = ln w, which is
asymptotically stable (with improper oscillations) for 1 < w < e2. If the endow-
ment is increased, at w = e2, a flip bifurcation occurs, leading to an initially stable
period-2 cycle and then, if w is increased further, to a cascade of bifurcations with
(initially) stable cycles of increasing periods. Analytical and numerical studies of
the map F [see, e.g., May and Oster (1976)] indicate that, for larger values of
the endowment w, complex (chaotic) attractors will appear. Thus, the typology of
attractors of the map F is similar to that occurring for the logistic map discussed
in Example 1, and we could repeat what we said there with regard to Assump-
tion 2. (However, notice that, in this case, very large values of w will lead back
to simpler, periodic attractors). Other choices of the utility function v(c), such
as v(c) = ac − bc2, or u(c) = λ(c + b)1−a/(1 − a) would lead to similar results
[for details, see Benhabib and Day (1982)]. Notice that Assumption 4 is satisfied
because (∂/∂ξε

1 )T (c0, ξ
ε
1 ) = 1 �= 0.
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3.3. Example 3: Type 2—Two-Dimensional OLG Model with Production

This model differs from the one discussed in Example 2 in some important and
related aspects concerning both technology and agents’ behavior. First, the single
good can be both consumed and invested (with depreciation equal to one period).
There are no endowments and, at each time t , the single good is produced by current
labor, supplied by young agents, and capital (output − consumption), invested at
time t − 1. Second, only old agents consume.

To fix ideas, let us consider the case in which (i) the technology is represented by
a Leontief linear production function, yt = min[lt , bkt−1] (where y denotes output,
k = y − c is capital, c is consumption, l is labor, and, for viable systems, b > 1);
(ii) young agents’ preferences are represented by a separable utility function of
a Cobb-Douglas type, u(ct+1, lt ) = (1/α)cα

t+1 − (1/β)lβt , 0 < α < 1 < β; (iii) un-
certainty is represented by means of random, i.i.d. perturbations of the future price
of consumption. Under these assumptions, equilibrium dynamics of consumption
and labor supply are described by the following stochastic dynamical system:

(
ct+1

lt+1

)
=
[(

lβt + ξ ε
t+1

)1/α

b(lt − ct )

]
, (17)

where {ξ ε
t } is an i.i.d. process and ξ ε

t is a zero-mean r.v. with open, bounded support
on the real line, including {0} and with bound going to zero with ε. If we denote
by xt the two-dimensional vector variable (ct , lt ), equation (17) has the same form
as (1). The RHS can be split into a deterministic part

F(xt ) =
[

lβ/α
t

b(lt − ct )

]
(18)

corresponding to the perfect-foresight version of the model and a stochastic per-
turbation

G
(
xt , ξ

ε
t+1

)= T
(
xt , ξ

ε
t+1

)− F(xt ) =
[(

lβt + ξ ε
t+1

)1/α − lβ/α

0

]
.

There exist two fixed points for the map F , namely, E1 located at the origin and
E2:c̄2 = (1−1/b)β/(β−α); l̄2 = (1−1/b)α/(β−α), in the positive orthant. E1 is always
unstable. Stability of E2 depends on two parameters, that is, b, measuring produc-
tivity (output/capital ratio), and (β/α), the ratio between the utility elasticities. For
sufficiently low values of b and β/α, E2 is locally, asymptotically stable and its
basin of attraction is a forward invariant subset of M = {(c, l) ∈ R2 | c, l > 0 and
l > c}. If we increase either (or both) of those parameters, E2 loses its stability
through a Neimark–Sacker bifurcation leading to the appearance of an invariant,
closed curve around E2 [for details, cf. Reichlin (1986), Medio (1992, ch. 12)].
Numerical investigation suggests that for this model the curve is indeed stable. The
dynamics on the curve can be periodic or quasiperiodic. Here, we concentrate on
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the quasiperiodic case. It is known that, under quite general conditions, in this case
the dynamics of the map F on the invariant curve is homeomorphically equivalent
to the fixed rotation of the circle, described by the map θ : R/Z → R/Z,

θt+1 = f (θt ) = θt + ρ mod 1, ρ irrational (19)

Consider first that, for ρ irrational, the map f is t.t. on the circle and so are
all the maps f k for arbitrary k > 1. Consequently, f is strongly t.t. on the circle
and, because of the homeomorphic equivalence, so is F on the invariant attracting
curve. Thus, Assumption 2 is verified. F A can now be ascertained by means of
the techniques explained in Appendix B. The determinant of the “controllability
matrix” C2

c0,l0
, evaluated as in Appendix B, is

det C2
(c0,l0)

= b

α2 (
{

[b(l0 − c0)]
β + ξ ε

2

}[
lβ0 + ξ ε

1

]
)

1−α
α .

From an economic point of view, we are interested in solutions that stay in the
subset M ⊂ R2 defined before. Therefore, for any initial conditions (l0, c0) ∈ M ,
we can always choose values of ξ ε

1 , ξ ε
2 belonging to the support of ξ ε

t , such that
det C2

(c0,l0)
> 0, rank C2

(c0,l0)
= 2. Consequently F A is verified and Assumption 4

holds. Finally, notice that, given the assumptions on ξ ε
t and for all (ct , lt ) in the

basin of attraction, the perturbation term G defined before is bounded and goes to
zero with ε. Thus Assumption 5 is verified.

3.4. Example 4: Type 1—One-Dimensional Optimal Growth
with Dependent Perturbations

This is a simple variation of the well-known one-good/one-sector model of optimal
growth.4 Suppose that the return function is given by utility function u(ct ) = ln ct

and the production function is xt = f (kt , ωt ) = (eωt kα
t ), 0 < α < 1, where c, x, k

denote, respectively, consumption, output, and capital stock; yt = xt − ct is the
control variable (saving) and kt = yt−1; and eωt is a technology shock observed after
the optimal choice of how much to save has been made. In this case, we assume
that the sequence of shocks {ωt } is generated by the equation ωt+1 = rωt + ξ ε

t+1,
with 0 ≤ r < 1; {ξ ε

t } is a zero-mean, i.i.d. process and ωt and ξ ε
t are independent.

Therefore, the sequence {ωt } is a Markov chain stationary but not independent for
r > 0.

Under the stated assumptions, the Bellman equation can be written as

V (x, ω) = sup
0≤y≤x

{
ln(x − y) + β

∫
�

V (x ′, ω′)µ(ω, dω′)
}

, (20)

where � is the support of ω′ and µ is its probability distribution, conditional on ω

and, as usual, for a generic variable, we adopt the notation x = xt and x ′ = xt+1. Let
us now try a solution V (x, ω) = m ln x + n1ω + n2, with m, n1, n2 undetermined
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coefficients. Substituting into (20), we have

m ln x + n1ω + n2 = sup
y

{
ln(x − y) + β

∫
�

[m ln x ′ + n1ω
′ + n2]µ(ω, dω′)

}
,

(21)

whence, using the facts that at each point in time, (i) x ′ = eω′
(k ′)α = eω′

yα and (ii)∫
�

ω′µ(ω, dω′) = rω, we can write

m ln x + n1ω + n2 = sup
y

{ln(x − y) + β[(m + n1)rω + mα ln y + n2]}. (22)

Next, finding the value of y that maximizes the RHS of (22) and solving for the
unknown coefficients m, we obtain the policy function y = g(x) = αβx . Finally,
considering that for all t, yt = kt+1, we can write the stochastic difference equation
of the model; that is,

xt+1 = eωt+1(αβxt )
α (23)

or, taking logarithms,

ln xt+1 = C + α ln xt + ωt+1 = C + α ln xt + rωt + ξ ε
t+1, (24)

where C = α ln(αβ) is a constant. Moving (24) one period back in time, solving
for ωt , and substituting into (24), we obtain

ln xt+1 = B + (α + r) ln xt − αr ln xt−1 + ξ ε
t+1, (25)

where B = C(1 − r).
Equation (25) is a one-variable, second-order stochastic difference equation

with an i.i.d. perturbation. By introducing appropriate auxiliary variables, it can
be transformed into a dynamically equivalent two-variable, first-order equation.
Putting wt = ln xt − w̄; ut = ln xt−1 − w̄, where w̄ = B/[1 − (α + r) + αr ], we
have(

wt+1

ut+1

)
= J

(
wt

ut

)
+
(

ξ ε
t+1

0

)
=
(

α+r −αr
1 0

)(
wt

ut

)
+
(

ξ ε
t+1

0

)
, (26)

which has the same form as (1), with the RHS already split into a deterministic
and a stochastic part, and it satisfies Assumption 1. It also provides an illustration
of our comment in Remark 3 concerning the non-essentiality of the assumption of
independence of perturbations.

The deterministic part of (26) is linear and it has a unique fixed point located at
the origin (actually it corresponds to a positive value of the state variable, x̄ = ew̄).
Under the stated assumptions, and, in particular, the fact that 0 < α < 1, 0 ≤ r ≤ 1
(both absolutely reasonable in this context), the fixed point is always globally,
exponentially asymptotically stable. Thus (26) satisfies (trivially) Assumption 2.
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Assumption 4 (forward accessibility) can again be proved by applying the same
technique as in Example 3. Choosing k = 2, the controllability matrix is

C2
w0,u0

=
(

α + r 1
1 0

)
;

hence det(C2
w0,u0

) = −1 �= 0 and rank C2
w0,u0

= 2 as required. Finally, in view of the
stability properties of the fixed point and the fact that the noise is additive, the
results of Theorem 1 can be established under weaker conditions on the perturbing
term ξ ε

t . In particular, Assumption 5 can be replaced by the condition E ‖ ξ ε
t ‖ < ∞

[for details, see Tong (1990), pp. 127–129].

4. A NOTE ON THE LITERATURE

Apart from the general reference to the book by Meyn and Tweedie, mathematically
the obvious reference is to Chan and Tong, to whose work [see, Tong (1990), in
particular its Appendix 1, written by Chan; Chan and Tong (1994)], we would like
to acknowledge our intellectual debt. In particular, these authors proved uniform
ergodicity of a Markov chain under hypotheses similar to Assumptions 1 and 3–5
above [see Chan and Tong (1994)]. However, they assumed exponential stability
of the deterministic attractor, an assumption considerably stronger than Assump-
tion 2 and unnecessarily restrictive. As will be seen in Appendix A, our proof of
Theorem 1 (and the choice of the Lyapunov function) is accordingly different.

Moreover, Chan and Tong do not relate these results on stochastic stability to
the economic literature in general, or to the sunspot question in particular, and so
we shall do it here briefly.

Consider first that, for irreducible, aperiodic Markov chains, uniform ergodicity
is equivalent (it implies and is implied by) the celebrated Doeblin condition. This
condition requires that there exist a (finite-valued) measure φ on B(M), an integer
n ≥ 1, and a positive δ, such that

Pn(x, A) ≤ 1 − δ if φ(A) ≤ δ

for every x ∈ M . Roughly speaking, this requirement means that there exists a
measure φ such that the process X is not concentrated on φ-small sets.5

Uniform ergodicity (or, equivalently, the Doeblin condition) also implies that
the operator P :M→M, defined by

P[µ(A)] =
∫

M
P(x, A)µ(dx) (27)

(where M is the space of finite probability measures) is quasi compact. Hence,
uniformly ergodic chains are sometimes called quasi compact. A formal definition
and a thorough discussion of the concepts of compactness and quasi compactness
of operators is out of the question here. Broadly speaking, we can say that if the
operator P on M is quasi compact and the associated Markov chain is weak Feller
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(which in the case of our model is implied by Assumptions 1 and 3), then the
sequences generated by P , starting from any initial condition on M, converge to
a unique invariant probability measure.

The relation between the Doeblin condition and quasi compactness of operators,
and the associated property of convergence of probability measures, was introduced
in the economic literature by Carl Futia’s (1982) excellent mathematical survey.
Several applications of these ideas to economic problems are discussed by Stokey
and Lucas (1989, chs. 11–13). Futia’s results were also employed in the sunspot
literature (cf. Farmer and Woodford (1997), originally circulated in 1984 as a
CARESS W.P.; Chiappori and Guesnerie (1991), p. 1708).

A sufficient condition for uniform ergodicity of an irreducible, aperiodic T-chain
is that the state space can be reduced to a compact invariant set [see Meyn and
Tweedie (1993, Th. 16.2.5, p. 395)]. The compact set argument was apparently
introduced in the economic literature by Blume (1982), generalized by Duffie
et al. (1994), and applied in a number of contexts, including the sunspot models
[cf. Chiappori and Guesnerie (1991, pp. 1708–1710)]. See also Stokey and Lucas
(1989, ch. 12).

The distinctive advantage of the approach adopted in this paper is that we do
not assume compactness of the state space (or any other equivalent condition), but
deduce uniform ergodicity from assumptions directly concerning the deterministic
core of the dynamical system, on the one hand, and its stochastic perturbations, on
the other. In the context of the sunspots problem, this means that we relate those
assumptions to the properties of the perfect-foresight equilibrium and the agents’
random beliefs, respectively.

NOTES

1. Notice that, here, ‖·‖ denotes the total variation norm defined as

‖µ‖ ≡ sup
A∈B(Oε )

µ(A) − inf
A∈B(Oε )

µ(A).

Convergence in the total variation norm implies weak convergence. We say that a sequence of probability
measures {µk} converges weakly to µ if, for any bounded continuous function f , we have

lim
k→∞

∫
f dµk =

∫
f dµ

[cf. Meyn and Tweedie (1993, pp. 311, 521)].
2. A transient set E is negligible in the sense that the expected number of times that an infinite

chain X starting in E returns to it is finite.
3. For further details on this point, see Doob (1953, pp. 190–218) and Stokey and Lucas (1989,

pp. 334–351).
4. Here we use the version discussed by Cugno and Montrucchio (1998, pp. 178–179).
5. The Doeblin condition, under the name of “Hypothesis D,” and its implications are extensively

discussed by Doob (1953, pp. 190–234). See also Stokey and Lucas (1989, pp. 344–351), and Meyn
and Tweedie (1993, Th. 16.0.2, pp. 384–385). (Meyn and Tweedie, however, use a somewhat different
definition of the Doeblin condition, which is equivalent to the traditional one for irreducible Markov
chains.)
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6. Meyn and Tweedie do not give a full proof of Proposition 7.1.5, but it can be found in Meyn and
Caines (1991).

7. Our converse lemma is an extension of Gordon’s converse theorem (Gordon, 1972, Th. 3, p. 79).
The main difference is that Gordon considers stability of a fixed point and we deal with the more
general case of a compact attractor. (Of course, our dynamical system is autonomous and Gordon’s
is not, but this is irrelevant here.) We do not want to insist too much on the originality of this result.
It is possible that a generalization of Gordon’s theorem exists already in the very vast mathematical
literature on stability, but we could not find it.

8. This lemma is mentioned by Gordon in the quoted article, but its source is misquoted. See also
Hahn (1963, p. 70).

9. These are conditional expectations for a given value of xt ∈ Oε . Therefore, we have

E[V (xt+1)] = E
{

V
[

T
(

xt , ξ
ε
t+1

)]}
=
∫

Wε

V
[

T
(

xt , ξ
ε
t+1

)]
νε(dξε).

10. The fact that, in Meyn and Tweedie’s definition of Condition V (4), the range of V (x) is [1, ∞],
rather than [0, ∞], is irrelevant here.

REFERENCES

Benhabib, J. (ed.) (1992) Cycles and Chaos in Economic Equilibrium. Princeton, NJ: Princeton Uni-
versity Press.

Benhabib, J. & R.H. Day (1982) A characterization of erratic dynamics in the overlapping generations
model. Journal of Economic Dynamics and Control 4, 37–55.

Blume, L.E. (1982) New techniques for the study of stochastic equilibrium processes. Journal of
Mathematical Economics 9, 71–82.

Boldrin, M. & L. Montrucchio (1986) On the indeterminacy of capital accumulation paths. Journal of
Economic Theory 40, 26–39.

Boldrin, M. & M. Woodford (1990) Equilibrium models displaying endogenous fluctuations and chaos:
A survey. Journal of Monetary Economics 25, 189–223.

Brock, W.A. & M. Majumdar (1978) Global asymptotic stability results for multisector models of
optimal growth under uncertainty when future utilities are discounted. Journal of Economic Theory
18, 225–243.

Brock, W.A. & L.J. Mirman (1972) Optimal economic growth and uncertainty: the discounted case.
Journal of Economic Theory 4, 479–513.

Chan, K.S. & H. Tong (1994) A note on noisy chaos. Journal of the Royal Statistical Society B 56,
301–311.

Chiappori, P.A. & R. Guesnerie (1991) Sunspot equilibria in sequential markets models. In
W. Hildenbrand & H. Sonneschein (eds.), Handbook of Mathematical Economics, vol. IV, pp. 1683–
1762. New York: Elsevier.

Cugno, F. & L. Montrucchio (1998) Scelte Intertemporali: Teoria e Modelli. Rome: Carocci Editore.
Deneckere, R. & S. Pelikan (1986) Competitive chaos. Journal of Economic Theory 40, 13–25.
Doob, J.L. (1953) Stochastic Processes. New York: John Wiley & Sons.
Duffie, D., J. Genakoplos, A. Mas-Colell, & A. MacLennan (1994) Stationary Markov equilibria.

Econometrica 62, 745–783.
Farmer R.E.A. & M. Woodford (1997) Self-fulfilling prophecies and the business cycle. Macroeco-

nomic Dynamics 1, 740–770.
Futia, C. (1982) Invariant distributions and the limiting behavior of Markov economic models. Econo-

metrica 50, 377–407.
Gale, D. (1973) Pure exchange equilibrium of dynamic economic model. Journal of Economic Theory

6, 12–36.

https://doi.org/10.1017/S1365100503030074 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100503030074


182 ALFREDO MEDIO

Gordon, S.P. (1972) On converses of the stability theorems for difference equations. SIAM Journal of
Control 10, 76–81.

Hahn, W. (1963) Theory and Applications of Liapunov’s Direct Method. Englewood Cliffs, NJ: Prentice-
Hall Int.

Hahn, W. (1967) Stability of Motion. Berlin: Springer-Verlag.
Joshi, S. (1995) Recursive utility and optimal growth under uncertainty. Journal of Mathematical

Economics 24, 601–617.
Katok, A. & B. Hasselblatt (1995) Introduction to the Modern Theory of Dynamical Systems.

Cambridge, UK: Cambridge University Press.
Majumdar, M. & I. Zilcha (1987) Optimal growth in a stochastic environment: Some sensitivity and

turnpike results. Journal of Economic Theory 43, 116–133.
Massera, J.L. (1949) On Liapounoff’s condition of stability. Annales of Mathematics (2) 50, 705–721.
May, R.M. & G.F. Oster (1976) Bifurcations and dynamic complexity in simple ecological models.

American Naturalist 110, 573–594.
Medio, A. (1992) Chaotic Dynamics. Theory and Applications to Economics. Cambridge, UK: Cam-

bridge University Press.
Meyn, S.P. & P.E. Caines (1991) Asymptotic behavior of stochastic systems processing Markov real-

izations. SIAM Journal of Control and Optimization 29, 535–561.
Meyn, S.P. & R.L. Tweedie (1993) Markov Chains and Stochastic Stability. London: Springer-Verlag.
Montrucchio, L. (1986) Optimal decisions over time and strange attractors: An analysis by the Bellman

Principle. Mathematical Modelling 7, 341–352.
Radner, R. (1973) Optimal stationary consumption with stochastic production and resources. Journal

of Economic Theory 6, 68–90.
Reichlin, P. (1986) Equilibrium cycles and stabilization policies in an overlapping generations models

with production. Journal of Economic Theory 40, 89–102.
Samuelson, P.A. (1958) An exact consumption–loan model of interest with or without the social

contrivance of money. Journal of Political Economy 66, 467–482.
Sharkovsky, A.N., S.F. Kolyada, A.G. Sivak, & V.V. Fedorenko (1997) Dynamics of One-Dimensional

Maps. Dordrecht, The Netherlands: Kluwer Academic.
Stokey, N.L. & R.E. Lucas, Jr. (1989) Recursive Methods in Economic Dynamics. Cambridge, MA:

Harvard University Press.
Tong, H. (1990) Non-Linear Time Series. A Dynamical System Approach. New York: Oxford University

Press.
Tuominen P. & R.L. Tweedie (1979) Markov chains with continuous components. Proceedings of the

London Mathematical Society (3) 38, 89–114.
Whitley, D. (1983) Discrete dynamical systems in dimensions one and two. Bulletin of London Math-

ematical Society 15, 177–217.

APPENDIX A

A.1. PROOF OF THEOREM 1

Step 1. The Regularity Assumption 1, the Density Assumption 3, and the Forward acce-
ssibility Assumption 4, together imply that the Markov chain X is a T-chain {cf. Meyn and
Tweedie [1993, Prop. 7.1.2, pp. 152–154 (scalar case) and 7.1.5, p. 157 (multidimensional
case)]}.6

Step 2. From step 1 and the assumptions,

(i) the set � is asymptotically stable and the map F of the deterministic system (9) is
strongly topologically transitive on � (Assumption 2),
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(ii) {0} is in the support of the (density of the) r.v. ξ ε
t (Assumption 3), and

(iii) the ACS is “forward accessible” (Assumption 4),

we conclude that any point x ∈ � is reachable, in the sense that for every neighborhood N
of x ,

∑
n Pn

ε (y, N ) > 0, y ∈ B(�). But from Meyn and Tweedie (1993, Prop. 6.2.1, p. 133),
we gather that, if X is a T -chain and the state space contains a reachable point x∗, then
X is ψ-irreducible with ψ = T (x∗, ·). Aperiodicity follows from the above argument as
well as the second part of Assumption 2 (F is strongly topologically transitive on �). This
implies that, for any integer m, the Markov chain X(m) associated with the kernel Pm is also
ψ-irreducible. Thus, the Markov chain X is aperiodic.

Step 3. The fact that X is a ψ-irreducible, aperiodic T-chain also implies that every
compact set is petite [cf. Meyn and Tweedie (1993, Th. 6.2.5, p. 134)].

Step 4. To complete our proof, we now need to prove the following auxiliary lemma.7

LEMMA 1 (Converse Stability Lemma). If a compact subset of the state space �⊂M is
uniformly asymptotically stable for the deterministic dynamical system (9), then there exists
a real scalar function V (x) which satisfies the following properties for x in any bounded
set U ⊆ B(�):

(a) V (x) is positive definite if x /∈ �,
(b) V (x) admits an infinitesimally small upper bound,
(c) V (x) is Lipschitzian,
(d) "DETV (xt ) ≡ [V (F(xt )) − V (xt )] = [V (xt+1) − V (xt )] is negative definite if x /∈ �.

Proof. First, we need to recall a lemma by Massera (1949, pp. 716–717),8 which, with
some inessential modifications, states that, for a scalar function σ(t) > 0, defined for t ≥ 0
such that limt → +∞ σ(t) = 0, and a scalar function ρ(t), positive, continuous, and nonde-
creasing for t ≥ 0, there exists a positive, continuous, and increasing function �(r), defined
for r ≥ 0, with continuous, increasing derivative, �(r) > 0 for r > 0 and �(0) = �′(0) = 0,
and such that for any fixed number c > 0 and any function σ ∗(t) satisfying the inequality
0 < σ ∗(t) ≤ cσ(t), the integrals∫ ∞

0

�[σ ∗(t)] dt and

∫ ∞

0

�′[σ ∗(t)]ρ(t) dt (A.1)

converge. Notice that � ∈ C1 and therefore it is Lipschitzian on a bounded set.
This result can be extended to the discrete-time case [cf. Hahn (1967, p. 235) and Gordon

(1972, p. 78)]. If σ ∗(t) is a nonincreasing function, the application of the Massera Lemma
and the integral test for convergence of a series guarantees the uniform convergence of the
sums ∞∑

t=0

�[σ ∗(t)] and
∞∑

t=0

�′[σ ∗(t)] (A.2)

where we put ρ(t) = 1, � is the same as in (A.1), but we now have t ∈ Z+.
Next, let us consider that the scalar function sups≥t {d[Fs(x), �]} (where Fs denotes

the sth iterate of F) is defined for t ≥ 0, positive for x /∈ �, and nonincreasing. Moreover,
because the set � is uniformly asymptotically stable for any initial condition x ∈ B(�), that
function converges to 0 as t → ∞. If we now put c = 1,σ(t) = σ ∗(t) = sups≥t {d[Fs(x), �]},
from the Massera Lemma and the integral test for sequences, we conclude that the infinite
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sums
∞∑

t=0

�

(
sup
s≥t

{d[Fs(x), �]}
)

and
∞∑

t=0

�′
(

sup
s≥t

{d[Fs(x), �]}
)

converge.
Let us now define the scalar function

V (x) =
∞∑

t=0

1

kt
�{d[Ft (x), �]} (A.3)

Obviously, d[Ft (x), �] ≤ sups≥t {d[Fs(x), �]}, and therefore, for any scalar k ≥ 1, (A.3)
converges.

Moreover, for any two values x1, x2 ∈ U , we have

|V (x1) − V (x2)| =
∣∣∣∣∣

∞∑
t=0

1

kt
�{d[Ft (x1), �]} −

∞∑
t=0

1

kt
�{d[Ft (x2), �]}

∣∣∣∣∣
≤

∞∑
t=0

1

kt
|�{d[Ft (x1), �]} − �{d[Ft (x2), �]}|

≤
∞∑

t=0

M�

kt
|d[Ft (x1), �] − d[Ft (x2), �]|

≤
∞∑

t=0

M�

kt
‖Ft (x1) − Ft (x2)‖

≤
∞∑

t=0

M� Mt
F

kt
‖x1 − x2‖,

where M�, MF are the Lipschitz constants of the functions � and F , respectively. We
have used here the known fact that, for a given set A ⊂ Rn , the map d(x, A) : Rn → R is
Lipschitzian with Lipschitz constant equal to one. If we now put

k = max(1, MF ),

the infinite sum
∑∞

t=0[(M� Mt
F )/kt ] converges and we can write

|V (x1) − V (x2)| ≤ M‖x1 − x2‖,

where M < ∞ is a constant. Property (c) then obtains.
If we now choose x2 as the point in � closest to x1, we shall have d(x2, �) = 0,

V (x2) = 0, d(x1, �) = ‖x1 − x2‖ and

V (x1) ≤ Md(x1, �) (A.4)

and property (b) follows.
Moreover, consider that, obviously, V (x) ≥ �[d(x, �)] and property (a) follows. Finally,

consider that "DETV (xt ) = −�[d(xt , �)] < 0 for x /∈ �, which establishes property (d).
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Step 5. Applying the result just established to the complete, stochastic system (7), we
have almost surely

V (xt+1) − V (xt ) = V
[

F(xt ) + G
(

xt , ξ
ε
t+1

)] − V (xt )

= V
[

F(xt ) + G
(

xt , ξ
ε
t+1

)] − V [F(xt )] + "DETV (xt )

(A.5)≤ "DETV (xt ) + M
∥∥G
(

xt , ξ
ε
t+1

)∥∥
= −�

[
d(xt , �) + M

∥∥G
(

xt , ξ
ε
t+1

)∥∥
where M < ∞ is a constant. If the perturbation term G(xt , ξ

ε
t+1) is sufficiently small (i.e.,

ε is sufficiently small), we can find a positive constant δε > 0 (which can be made as small
as we please by reducing ε) such that

V (xt+1) − V (xt ) ≤ −�(δε) + M
∥∥G
(

xt , ξ
ε
t+1

)∥∥ < 0. (A.6)

From (A.4), it follows that [V (x) > Mδε] ⇒ [d(x, �) > δε]. Then, from (A.6) and the
fact that � is increasing in its argument, it follows that, for sufficiently small ε, we can
find a positive scalar constant ηε > Mδε such that the set Oε ≡ {x | V (x) ≤ ηε} ⊂ B(�) is
absorbing; ηε , too, can be made arbitrarily small by reducing ε.

We can now show that, for the Markov chain constrained to the absorbing set Oε , the
function V (x) defined above satisfies the so-called “geometric drift condition” for stochastic
stability [Condition V(4), Meyn and Tweedie (1993, pp. 255, 367)]. Taking expectations9

on both sides of equation (A.6), we can write

"V (x) ≡ E[V (xt+1) − V (xt )] ≤ −�[d(xt , �)] + M E
[∥∥G

(
xt , ξ

ε
t+1

)∥∥] . (A.7)

Consider now that, in view of Assumption 5, M E[‖G(xt , ξ
ε
t+1)‖] < aε < ∞. Next, define

the scalar quantity βε = [�(δε) − aε]/ηε and the set Cε = {x |d(x, �) ≤ δε}, and notice that:
(i) we can always fix ε (and thereby δε and aε) so that βε > 0, and (ii) Cε is compact
and therefore, because X is a T-chain, petite (cf. Step 3 above). Hence, V (x) satisfies the
Condition V(4),10 namely,

"V (x) ≤ −βε V (x) + bεχCε
(x),

where χCε
denotes the characteristic function of the set Cε and bε < ∞. Because Cε is petite,

from Meyn and Tweedie (1993, Lemma 15.2.2, p. 367), we deduce that the function V is
unbounded off petite set; that is, the “level set,” Oε defined above is also petite.

Then, from Meyn and Tweedie (1993, Th. 16.2.2, pp. 390–391, establishing that a ψ-
irreducible, aperiodic Markov chain is uniformly ergodic if (and only if) the state space is
petite, we conclude that the Markov chain X generated by (7), restricted to the absorbing set
Oε , is uniformly ergodic. This proves point (a) of the Theorem. Point (b) of the Theorem
follows because Meyn and Tweedie (1993, Th. 16.0.2, pp. 384–385) proves that (a) is
equivalent to (b) (the former implies and is implied by the latter).

Finally, point (c) of the Theorem follows from Meyn and Tweedie (1993, Th. 13.0.1,
pp. 309–310; A. 3, p. 500; and Th. 13.3.3, p. 323), establishing that for an aperiodic,
ergodic (“positive Harris”) Markov chain, any initial probability measure converges in the
total variation norm to the unique, finite invariant measure. �
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APPENDIX B

In this Appendix, we provide some additional explanations of the concept of forward ac-
cessibility and briefly discuss a method for ascertaining FA in simple models, such as those
of Examples 1–4. For further technical details and proofs, see Meyn and Tweedie (1993,
pp. 150–155). Unexplained symbols and notions are as in the main text of the paper.

Let us first recall from the text that to each system of stochastic difference equations
like (1) we can associate a control system (ACS) whose trajectories are determined by the
equations

xk = Tk

(
x0, ξ

ε
1 , . . . , ξ ε

k

)
, (B.1)

where xk ∈ Rn is the state reached at time k starting from x , given a certain sequence
{ξ ε

1 , . . . , ξ ε
k }. Therefore,

Ak
+(x) = {Tk

(
x, ξ ε

1 , . . . , ξ ε
k

) ∣∣ ξ ε
t ∈ Wε, 1 ≤ t ≤ k

}
defines the set of all the states reachable from an initial state x for any admissible sequence
of perturbations, and

A+(x) =
∞⋃

k=0

Ak
+(x)

is the set of all states reachable from x at some time in the future.
Consider now equation (B.1) and the (n × k) matrix Ck

x0
of the partial derivative of the

function Tk with respect to its ξ -arguments.
Then [cf. Meyn and Tweedie (1993, Prop. 7.1.4, p. 156)], a necessary and sufficient condi-

tion for an ACS defined by (B.1) to be FA is that, for each initial condition x0 ∈ M ⊂ Rn , there
exists an integer k ≥ 1 and a sequence of given values {ξ ε

1 , . . . , ξ ε
k } ∈ W k

ε such
that

rank Ck
x0

(
ξ ε

1 , . . . , ξ ε
k

) = n

The matrix Ck
x0

is called the controllability matrix.
For scalar models, that is, those for which M ⊂ R, the “rank condition” for the associated

ACS reduces to[
∂

∂ξε
1

Tk

(
x0, ξ

ε
1 , . . . , ξ ε

k

)
, . . . ,

∂

∂ξ ε
k

Tk

(
x0, ξ

ε
1 , . . . , ξ ε

k

)] �= 0.

Notice that, to prove the existence of the rank condition, and thereby FA, we must find
an integer k ≥ 1 and an admissible sequence such that the condition holds for any initial
condition.

Let us conclude by actually calculating the controllability matrix for the two-dimensional
model discussed in Example 3—overlapping generations model with production.

If we now choose k = 2, from equation (17) we have

(
c2

l2

)
= T2

[(
c0

l0

)
,

(
ξ ε

1

0

)
,

(
ξ ε

2

0

)]
=
[ {

[b(l0 − c0)]β + ξ ε
2

}1/α

b2(l0 − c0) − b(lβ

0 + ξ ε
1 )1/α

]
. (B.2)
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Therefore, the controllability matrix is the (2 × 2) matrix

C2
(c0,l0) =


 0 1

α

{
[b(l0 − c0)]β + ξ ε

2

} 1−α
α

− b
α
(lβ

0 + ξ ε
1 )

(1−α)
α 0




and rank C2
(c0,l0) = n = 2, iff det C2

(c0,l0) �= 0.
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