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Low-density jets are central to many natural and industrial processes. Under certain
conditions, they can develop global oscillations at a limit cycle, behaving as
a prototypical example of a self-excited hydrodynamic oscillator. In this study,
we perform system identification of a low-density jet using measurements of its
noise-induced dynamics in the unconditionally stable regime, prior to both the Hopf
and saddle-node points. We show that this approach can enable prediction of (i) the
order of nonlinearity, (ii) the locations and types of the bifurcation points (and
hence the stability boundaries) and (iii) the resulting limit-cycle oscillations. The
only assumption made about the system is that it obeys a Stuart–Landau equation
in the vicinity of the Hopf point, thus making the method applicable to a variety of
hydrodynamic systems. This study constitutes the first experimental demonstration of
system identification using the noise-induced dynamics in only the unconditionally
stable regime, i.e. away from the regimes where limit-cycle oscillations may occur.
This opens up new possibilities for the prediction and analysis of the stability and
nonlinear behaviour of hydrodynamic systems.

Key words: bifurcation, low-dimensional models

1. Introduction
Low-density jets have attracted considerable attention over the last few decades

as a result of their role in industrial processes such as fuel injection and plasma
spraying. Under certain conditions, such jets can develop global hydrodynamic
instability, leading to self-excited oscillations at a limit cycle (Sreenivasan, Raghu &
Kyle 1989; Huerre & Monkewitz 1990; Monkewitz et al. 1990). On the one hand,
such oscillations can be beneficial in situations where mixing is desired. On the
other hand, they can be detrimental in situations where they excite unwanted acoustic
or structural resonances. Therefore, it is important to be able to predict the onset
of global hydrodynamic instability as well as the frequency and amplitude of the
resulting limit-cycle oscillations (LCOs).

† Email addresses for correspondence: larryli@ust.hk, vik.gupta@cantab.net
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1.1. Bifurcation of a low-density jet
Raghu & Monkewitz (1991) have shown that a low-density jet becomes globally
unstable via a Hopf bifurcation: after a critical point (the Hopf point), the jet
becomes unstable to infinitesimal perturbations and transitions to a self-excited state
characterised by LCOs. Near the Hopf point, the growth rate is small, implying that
the oscillation amplitude (a) evolves much more slowly than the oscillation frequency
(ω) (Raghu & Monkewitz 1991). Landau (1944) proposed an equation to model the
amplitude evolution in this specific regime, which Stuart (1960) later formulated
for plane Poiseuille flow using an energy balance. This has become known as the
Stuart–Landau equation:

da
dt
= k1a+ k2a3 + · · · , (1.1)

where t is time, k1 is a linear driving/damping parameter and k2 is a nonlinear
parameter. The Hopf point is at k1 = 0, after which (k1 > 0) the system becomes
linearly unstable.

The Hopf bifurcation in low-density jets is usually considered to be supercritical
(Monkewitz et al. 1990; Raghu & Monkewitz 1991), i.e. LCOs cannot occur before
the Hopf point (k1 < 0). Therefore, the linear parameter (k1) alone determines the
stability boundaries of the system. However, Sreenivasan et al. (1989) observed a
hysteretic regime in which LCOs can occur even when k1 < 0. This led Kyle &
Sreenivasan (1993) to suggest that the Hopf bifurcation in low-density jets can also
be subcritical, which Zhu, Gupta & Li (2017) later formally established. In a system
with a subcritical Hopf bifurcation, a finite-amplitude perturbation can trigger the
system to LCOs via contributions from the nonlinear terms (such as k2a3) even when
k1 < 0. This regime, where LCOs can occur despite the system being linearly stable,
is called the bistable regime.

An important implication from the existence of a subcritical bifurcation in a system
is that the nonlinear terms need to be calculated before the stability boundaries can be
determined. The challenge, however, is that existing methods applied to jets (Raghu
& Monkewitz 1991) and wakes (Provansal, Mathis & Boyer 1987; Dusek, Le Gal
& Fraune 1994; Sipp & Lebedev 2007) can only calculate the nonlinear terms from
measurements of the system dynamics after the emergence of LCOs. In other words,
such methods can describe the system behaviour via post-processing, which is itself
useful, but they lack predictive capabilities, particularly for nonlinearities.

1.2. Bifurcation analysis and system identification of fluid dynamical systems
In most fluid dynamical systems, it is important to know where the bifurcation
points are, as they determine the stability boundaries. The most direct way of
finding the bifurcation points is to solve the time-dependent Navier–Stokes equations
and determine the parameter value (e.g. the Reynolds number, Re) at which the
flow undergoes a qualitative change in behaviour. Alternatively, one can obtain
steady solutions of the system at a lower computational cost, and then solve for the
eigenvalues of its Jacobian matrix (Jackson 1987; Dijkstra et al. 2014). However, if
applied to systems with complex geometries or boundaries, such direct methods can
be expensive and unreliable, as it is often difficult to define the boundary conditions
with sufficient accuracy to produce meaningful numerical solutions (Kim & Moin
1985; Thompson & Troian 1997). In such cases, one needs to first identify the
system using the data available and then determine its bifurcation points. System
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identification (SI) methods for this purpose can be divided into two classes: (i) purely
data-driven methods and (ii) hybrid methods.

In purely data-driven methods, the governing equations of a physical system are
found exclusively from experimental data, without the need to assume a system
model a priori. For example, Schmidt & Lipson (2009) used symbolic regression
to identify the nonlinear differential equations governing a variety of physical
systems, ranging from simple harmonic oscillators to chaotic double pendula. In
that procedure, experimental data are fitted to simple mathematical building blocks
based on Hamiltonians and Lagrangians. New equations are then added to these
via genetic programming. Although useful for simple systems, symbolic regression
becomes impractical for systems containing a large number of degrees of freedom.
To overcome this problem, Brunton, Proctor & Kutz (2016) recognised that the key
dynamics of most physical systems is usually simple enough to be described by
just a few leading terms. This makes it possible to use sparsity-promoting tools
and machine learning to identify low-dimensional models of physical systems at a
reduced computational cost. Recently, Shimizu & Kawahara (2018) also used machine
learning to determine the low-dimensional equations governing low-Re turbulence in
plane Couette flow, enabling the entire bifurcation cascade to be reproduced and
studied.

Purely data-driven methods for SI are useful for their role in explaining many
naturally occurring phenomena for which there is an abundance of experimental
data but nearly no knowledge of the governing equations. In engineering situations,
however, collecting experimental data is usually expensive, but there is often some
knowledge of the underlying system dynamics. Therefore, for such situations, a hybrid
method may be more suitable. In hybrid methods, an appropriate low-dimensional
model is assumed for the system, and then experimental data are used to determine
the parameter values of the model and their variations with the physical parameters of
the system (Price & Valerio 1990; Thothadri & Moon 2005). For example, (1.1) can
be assumed to be a low-dimensional model of a jet or wake in the vicinity of a Hopf
bifurcation. Variations in k1 and k2 with Re can then be extracted from experimental
data, as demonstrated by Provansal et al. (1987) and Raghu & Monkewitz (1991).
These conventional methods, however, are limited to nearly noise-free measurements
and to systems with a supercritical Hopf bifurcation.

Recently, Noiray & Schuermans (2013) and Boujo & Noiray (2017) have
extended the aforementioned SI methods to exploit the influence of noise, which,
in their experiments, came from background turbulence in the flow field of
a thermoacoustic system. They replaced the Stuart–Landau equation with its
corresponding Fokker–Planck equation, yielding expressions for the probability
density function, which is equivalent to the long-time average of the noise-affected
measurements. Bonciolini et al. (2018) further extended this method to enable SI of a
laboratory-scale combustor undergoing a subcritical Hopf bifurcation. However, to be
able to determine the nonlinear terms, all of these SI methods require at least some
data from the LCO regime. Consequently, these methods cannot predict the nature of
a bifurcation or the resulting LCO dynamics. In fact, in most of these methods, the
nonlinear terms are ignored in the regime before the Hopf point (k1 < 0) (Provansal
et al. 1987). By contrast, Zhu (2017, chap. 3) has shown from the noise-induced
dynamics of a low-density jet that the nonlinear terms are active even before the
stability boundaries are reached, i.e. in the unconditionally stable regime, where the
system is stable to infinitesimal as well as finite-amplitude perturbations.
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1.3. Noise-induced dynamics: coherence resonance
In a pioneering work, Wiesenfeld (1985) explored the effect of noise on oscillatory
systems and found that the spectra of the noise-induced dynamics contain precursors
capable of forecasting impending nonlinear instabilities. In particular, it was found
that the system response to noise becomes more coherent (or less noisy) on approach
to the Hopf point. Later, Pikovsky & Kurths (1997) found for the FitzHugh–Nagumo
system that the coherence in the noise-induced dynamics first increases, reaches a
maximum and then decreases as the noise amplitude increases. They termed this
phenomenon coherence resonance. Ushakov et al. (2005) formally defined coherence
resonance in terms of the coherence factor and showed that systems with Hopf
bifurcations generally exhibit some degree of coherence resonance.

Recently, Kabiraj et al. (2015) and Zhu (2017) reported coherence resonance in two
different fluid dynamical systems: a thermoacoustic oscillator and a low-density jet,
respectively. Gupta et al. (2017) phenomenologically modelled coherence resonance
in a thermoacoustic system, enabling the noise-induced dynamics arising from
supercritical and subcritical Hopf bifurcations to be explored in detail. Moreover,
Zhu (2017) experimentally demonstrated the use of coherence resonance to identify
the different types of Hopf bifurcation in a low-density jet via the noise-induced
dynamics in only the unconditionally stable regime. However, information obtained
in this specific regime has yet to be exploited for SI of any experimental system –
fluid dynamical or otherwise.

1.4. Contributions of the present study
In this paper, we develop an SI framework that uses data from only the unconditionally
stable regime to predict the nonlinear behaviour of a low-density jet in the vicinity of
its Hopf bifurcation. Specifically, we aim to predict (i) the order of nonlinearity,
(ii) the locations and types of the bifurcation points (and hence the stability
boundaries) and (iii) the resulting LCO dynamics – without having to operate the
system in the potentially dangerous linearly unstable or bistable regimes.

Below, we present the experimental data and SI methodology in §§ 2 and 3,
respectively. We then show the results in § 4 in terms of the order of nonlinearity,
dynamic and stochastic bifurcations and the LCO dynamics beyond the bifurcation
points, before concluding in § 5.

2. Experimental data
We use the experimental data from Zhu (2017). Figure 1 shows the set-up used

to collect the data, which consists of an axisymmetric nozzle assembly, an acoustic
forcing system, gas supply lines and a hot-wire anemometer. In this set-up, a laminar
helium–air jet discharging into quiescent ambient air is perturbed by external noise.
There are three main independent control parameters governing the stability boundaries
of the jet and its LCO dynamics. These are (i) the jet-to-ambient density ratio, S ≡
ρj/ρ∞, (ii) the aspect ratio of the nozzle tip, L/D, which controls the thickness of the
initial shear layer, and (iii) the jet Reynolds number, Re≡ ρjUjD/µj, where Uj is the
jet centreline velocity, D is the nozzle exit diameter and µj is the dynamic viscosity
of the jet fluid. In this paper, we keep the first two parameters fixed and vary only Re.

The acoustic forcing system consists of three components: (i) a signal generator
(Keysight 33512B), (ii) a power amplifier (Alesis RA150), and (iii) a loudspeaker
(FaitalPRO 3FE25). The signal generator produces Gaussian noise with a bandwidth
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FIGURE 1. A schematic of the experimental set-up used to produce a low-density jet
perturbed by external noise (Zhu 2017). MFC: mass flow controller.
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FIGURE 2. (Colour online) Bifurcation diagrams for two experimental cases: (a) ExpSuper
and (b) ExpSub. In the legend, the terms ‘forward’ and ‘backward’ refer to data
collected by increasing and decreasing Re, respectively. The data used for SI are collected
exclusively in the unconditionally stable regime, as highlighted in yellow.

of 0–20 MHz. The upper frequency limit of the noise (20 MHz) is four orders
of magnitude higher than the natural global frequency of the jet. Therefore, the
noise felt by the jet is essentially white. The noise amplitude is controlled by
regulating the input voltage into the loudspeaker (V) with the power amplifier. The
noise-induced dynamics of the jet is measured in terms of the local streamwise
velocity in the potential core, using a hot-wire probe positioned on the jet centreline,
1.5D downstream from the jet exit. The output voltage from the hot-wire probe is
digitised at a frequency of 32 768 Hz. Further details on these measurements can be
found in Zhu (2017).

We consider two representative flow conditions, whose bifurcation diagrams are
shown in figure 2. In figure 2(a), where S= 0.14 and L/D= 1, the Hopf point is at
Re= 592, below which LCOs are not observed. Thus, this condition is experimentally
determined to be supercritical and is called ExpSuper here. In figure 2(b), where
S = 0.18 and L/D = 1, the Hopf point is at Re = 787, below which LCOs are
observed down to Re = 757, which is a saddle-node point. Thus, this condition is
experimentally determined to be subcritical and is called ExpSub here. In this study,
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tt

a(t) a(t)(a) (b) xx

FIGURE 3. (Colour online) Evolution of a(t) and x(t) for (a) noise-induced dynamics in
the marginally unconditionally stable regime and (b) noise-free limit-cycle development in
the marginally linearly unstable regime. In both cases, the evolution of a(t) is slower than
that of x(t).

the data used for SI are collected exclusively in the unconditionally stable regime,
which is highlighted in yellow in figure 2.

3. Methodology for system identification
3.1. System model

Figure 3 shows cartoon drawings relating the oscillation amplitude, a(t), to the
instantaneous state of the system, x(t), e.g. velocity measurements from a hot-wire
probe, for (a) a marginally unconditionally stable regime and (b) a marginally linearly
unstable regime. For both regimes, the evolution of a(t), which can be approximated
by a Stuart–Landau equation, is at a much slower rate than that of x(t). The effect
of noise on the system is felt via x(t), for which we assume the following governing
equation:

ẍ− (ε + α1x2 + α2x4 + α3x6 + α4x8 + · · ·)ẋ+ x+ βx3 =√2dη(t), (3.1)

where η(t) is a unit additive white Gaussian noise term representing the effect of the
loudspeaker, d is its amplitude, ε is the linear growth/damping term, α1, α2, α3, α4, . . .
are the nonlinear system parameters and β is the anisochronicity factor, which controls
the shift in oscillation frequency with amplitude. Equation (3.1) is non-dimensionalised
such that (i) the natural frequency is fixed at 1 for all Re and (ii) x≡ u′/u, where u′ is
the measured velocity fluctuation and u is its time average. Here α1 is a counterpart
to k2 in (1.1) and determines the nature of the Hopf bifurcation.

To derive the probabilistic solution of (3.1), we first use the method of variation
of parameters (Nayfeh & Mook 1979; Nayfeh 1981), transforming the instantaneous
state of the system (x) into its amplitude (a) and phase (φ):

x(t)= a(t) cos(t+ φ(t)). (3.2)

This leads to two equations (3.1) and (3.2) in three unknowns: x(t), a(t) and
φ(t). Thus, we can impose a third condition that is independent of (3.1) and (3.2).
Following Nayfeh (1981), we take this condition to be

ẋ(t)=−a(t) sin(t+ φ(t)). (3.3)

It should be noted that so far we have made no assumptions about a and φ being slow
variables. This transformation simply allows us to derive two first-order differential
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equations from one second-order differential equation and is popular in analyses of
noisy nonlinear oscillators (Roberts 1986; Zhu & Yu 1987; Xu et al. 2011; Yamapi
et al. 2012). Its effectiveness, particularly when a and φ are slow variables, will
soon become clear. By (i) differentiating (3.2) and subtracting (3.3) from it and
(ii) differentiating (3.3), we get the following two equations, respectively:

0= ȧ(t) cos(t+ φ(t))− a(t)φ̇(t) sin(t+ φ(t)), (3.4a)
ẍ(t)=−ȧ(t) sin(t+ φ(t))− a(t) cos(t+ φ(t))− a(t)φ̇(t) cos(t+ φ(t)). (3.4b)

Substituting (3.2), (3.3) and (3.4) into (3.1) and applying trigonometric identities
(such as sin2(θ)= 1/2− (1/2) cos(2θ)), we get the following transformed first-order
equations in a and φ:

ȧ=
(
ε

2
a+ α1

8
a3 + α2

16
a5 + 5α3

128
a7 + 7α4

256
a9 + · · ·

)
+Q1(a, Φ)︸ ︷︷ ︸

f1

− (√2d sinΦ)︸ ︷︷ ︸
g1

η1,

(3.5a)

φ̇ = 3β
8

a2 +Q2(a, Φ)︸ ︷︷ ︸
f2

−
(√

2d
a

cosΦ

)
︸ ︷︷ ︸

g2

η2, (3.5b)

where η1 and η2 are independent white noise terms and Φ(t) = t + φ(t). Lastly,
Q1(a, Φ) and Q2(a, Φ) are the sum of all the terms with first-order sine and cosine
components (i.e. in the form of an1 cos n2Φ, where n1 and n2 are integers). Up
to this point, the equations are exact, but, in the averaging procedure to follow,
we will assume that a and φ are slow variables, implying that terms of the form∫ 2π

0 an1 cos n2Φ become zero. Therefore, after time averaging and for d= 0 (no noise),
equation (3.5a) has the same form as the Stuart–Landau equation, which justifies our
choice of the governing equation for x(t). Equation (3.5) contains deterministic parts
( f1, f2) and stochastic parts (g1, g2). When stochastically averaged as per Stratonovich
(1963, 1967), equation (3.5) transforms into a stochastic differential equation for a,
which can be written in Itô sense as

da=m dt+ σ dW, (3.6a)

m = Tav{ f1} + Tav

{∫ 0

−∞

(
∂g1(s)
∂a

g1(s+ τ)+ ∂g1(s)
∂φ

g2(s+ τ)
)
〈η(s)η(s+ τ)〉 dτ

}
=
(
ε

2
a+ α1

8
a3 + α2

16
a5 + 5α3

128
a7 + 7α4

256
a9 + · · ·

)
+ d

2a
, (3.6b)

σ 2 = Tav

{∫ ∞
−∞

g1(s)g1(s+ τ)〈η(s)η(s+ τ)〉 dτ
}
= d, (3.6c)

where dW is a unit Wiener process, Tav denotes the time average of the functions
and m and σ represent the drift and diffusion terms of a, respectively. Finally, the
equation for a is transformed into equations for the probability density function of a,
yielding the Fokker–Planck equation:

∂

∂t
P(a, t)=− ∂

∂a
[m(a, t)P(a, t)] + ∂2

∂a2

[
σ 2(a, t)

2
P(a, t)

]
, (3.7)
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FIGURE 4. (Colour online) Modelling of the actuator to determine (a) n and (b) b and k.
The markers are experimental data, and the dotted lines are linear fits.

P(a)=Ca exp
[

a2

d

(
ε

2
+ α1

16
a2 + α2

48
a4 + 5α3

512
a6 + 7α4

1280
a8 + · · ·

)]
. (3.8)

Here P(a, t) denotes the probability that the oscillation amplitude has a value of a at
a given time t, P(a) is its stationary solution and C is a normalisation constant. These
equations are independent of the anisochronicity factor β.

3.2. Actuator model
One of the key challenges in SI is modelling the effect of an actuator on an
experimental system. This is because the way in which an actuator input, e.g.
the loudspeaker voltage (V), is fed into a system, via the noise amplitude (d), is
unique to that particular system. This difficulty can be circumvented by turning to
output-only SI, in which the actuator input is not modelled (Noiray & Schuermans
2013; Boujo & Noiray 2017). We will discuss this further in § 5. Here, we derive
a relationship between V and d based on experiments, with only two assumptions:
(i) a power-law relationship exists between V and d, such that d= b+ kVn, where b
is the inherent amplitude of background noise, k is the proportionality constant and
n is the exponent; and (ii) b� d. Thus, we can write

ln
(

d
−ε
)
≈ n ln V + ln

(
k
−ε
)
. (3.9)

The logarithm of (3.8) gives the ratio between d and one of the system parameters
(ε, α1, . . .) at each value of V (see the matrix in (3.11)). We choose ε based on its
smallest variance in multiple experimental replications, and plot ln (d/− ε) against ln V
in figure 4(a). The data for both ExpSuper and ExpSub fit well with a common slope
of n= 2.66. The y-intercept directly gives ln (k/− ε), but neither k nor ε is known at
this stage.

To find k and b, we use information in the spectral domain. Following Ushakov
et al. (2005), we derive an equation for the jet spectrum (Su):∫ ∞

−∞
Su(ω) dω= 2d

∆ω

= 2(b+ kVn)

∆ω

, (3.10)

where ∆ω is the half-width at half-maximum when a Lorentzian curve is fitted to Su.
The coefficients k and b are then extracted from the y-intercept and gradient of the
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FIGURE 5. (Colour online) Probability density function P(a) at different noise amplitudes
for (a) ExpSuper (Re = 584) and (b) ExpSub (Re = 755). The markers are experimental
data, and the dashed and solid lines are numerical estimates from the N5 model (up to α2,
quintic order) and the N9 model (up to α4, nonic order), respectively.

data in figure 4(b), respectively. Thus, the relationship between the input loudspeaker
voltage and the noise amplitude is d= (3.1× 10−7)+ (6.2× 10−3)V2.66. The fact that
data for both ExpSuper and ExpSub fit this power-law model and that b is indeed
very small justifies our modelling assumptions for the actuator.

3.3. System identification
Figure 5 shows the probability density function of the velocity fluctuation amplitude,
P(a), in the jet for (a) ExpSuper and (b) ExpSub under increasing noise amplitudes.
The model coefficients (ε and α1,...) are found by fitting polynomials to (3.8) with
the measured P(a). More specifically, the model coefficients are found via a linear
least-squares fitting solution of the following matrix problem:


ln P(ab1)− ln ab1
ln P(ab2)− ln ab2

...

ln P(abN)− ln abN

=


1 a2
b1 a4

b1 a6
b1 · · ·

1 a2
b2 a4

b2 a6
b2 · · ·

...
...

...
...

1 a2
bN a4

bN a6
bN · · ·





ln C
ε

2d
α1

16d
α2

48d
...


, (3.11)

where ab1, ab2, . . . , abN are uniformly distributed bins of a (i.e. the x axis of figure 5).
At each Re, there are 20 and 19 different levels of d in ExpSuper and ExpSub,
respectively. For each value of d, there are five sets of data. The final values of
the model coefficients are determined by averaging across all levels and sets of d
at each Re. In this averaging procedure, we exclude outliers by discarding the data
points within 20 % of the extrema. Figure 5 shows that the ability of the model to
reproduce P(a) improves as the number of nonlinear terms in the model increases.

4. Results and discussion
4.1. Determination of the order of nonlinearity

The order of nonlinearity in the system is determined based on the number of
nonlinear terms required to reproduce the measured P(a). This is achieved by
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Coef. Model Re for ExpSuper Re for ExpSub

577.4 580.5 583.8 587.0 590.3 738.5 742.7 746.9 751.1 755.3

ε

N5 −2.4e−3 −2.2e−3 −1.5e−3 −1.0e−3 −7.4e−4 −1.7e−2 −1.4e−2 −1.3e−2 −1.1e−2 −9.1e−3
N9 −4.0e−3 −3.6e−3 −3.3e−3 −2.7e−3 −2.1e−3 −2.2e−2 −2.1e−2 −1.8e−2 −1.7e−2 −1.5e−2

N13 −4.0e−3 −3.6e−3 −3.0e−3 −2.8e−3 −2.2e−3 −2.2e−2 −2.0e−2 −1.8e−2 −1.6e−2 −1.5e−2

α1

N5 8.1e−1 1.8e+0 1.5e+0 1.8e+0 2.1e+0 1.4e+1 1.4e+1 1.1e+1 1.4e+1 1.3e+1
N9 1.6e+1 1.6e+1 1.5e+1 1.5e+1 1.5e+1 5.0e+1 4.9e+1 4.7e+1 4.5e+1 4.3e+1

N13 1.6e+1 1.6e+1 1.3e+1 1.5e+1 1.5e+1 4.9e+1 4.5e+1 4.5e+1 4.1e+1 4.4e+1

α2

N5 −1.5e+3 −1.8e+3 −1.5e+3 −1.5e+3 −1.5e+3 −5.9e+3 −6.1e+3 −4.2e+3 −4.5e+3 −3.5e+3
N9 −1.8e+4 −1.6e+4 −1.4e+4 −1.3e+4 −1.2e+4 −4.0e+4 −3.2e+4 −3.1e+4 −2.6e+4 −2.3e+4

N13 −1.8e+4 −1.6e+4 −1.4e+4 −1.3e+4 −1.2e+4 −3.9e+4 −3.0e+4 −3.0e+4 −2.5e+4 −2.3e+4

α3
N9 5.3e+6 4.2e+6 3.5e+6 3.0e+6 2.4e+6 1.0e+7 6.2e+6 6.1e+6 4.6e+6 3.9e+6

N13 5.1e+6 4.1e+6 3.5e+6 3.2e+6 2.4e+6 9.7e+6 6.2e+6 6.1e+6 4.6e+6 3.4e+6

α4
N9 −5.1e+8 −3.8e+8 −2.9e+8 −2.2e+8 −1.6e+8 −8.4e+8 −4.5e+8 −4.1e+8 −3.0e+8 −2.4e+8

N13 −4.9e+8 −3.6e+8 −3.1e+8 −2.4e+8 −1.6e+8 −8.0e+8 −4.7e+8 −4.1e+8 −2.9e+8 −1.8e+8

α5/α6 N13 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0

TABLE 1. Model coefficients for ExpSub and ExpSuper. The models N5, N9 and N13
have up to α2, α4 and α6 terms, respectively. Increasing the order of nonlinearity above
the nonic term (α4) does not further improve the agreement with the experimental data.

successively adding higher-order nonlinear terms to (3.1) until the rank of the matrix
in (3.11) becomes deficient. Figure 5(b) shows that, at an intermediate noise amplitude,
two peaks appear in P(a). This behaviour is called bimodality and is observed in
both ExpSuper and ExpSub. We derive a condition for the amplitude (am) at which
extrema of P(a) occur:

d+ εa2
m +

α1

4
a4

m +
α2

8
a6

m +
5α3

64
a8

m +
7α4

128
a10

m + · · · = 0. (4.1)

For bimodality to exist, there must be two positive solutions of a2
m at some values

of d. For this to occur, the model must have nonlinear terms up to at least quintic
order (α2).

To reproduce P(a), we show three different models. The first model, called N5, has
up to fifth-order (quintic) nonlinearity, requiring up to α2, which is the minimum for
bimodality. The second and third models have up to ninth-order (called N9; up to α4)
and thirteenth-order (called N13; up to α6) nonlinearity, respectively. Table 1 lists the
coefficients for the three models. It can be seen that when going from N5 to N9, the
coefficients change significantly – by an order of magnitude in many cases. However,
when going from N9 to N13, only a small change in the coefficients is observed, with
α5 and α6 being negligible. In figure 5, we observe that the N9 model (solid lines)
reproduces P(a) satisfactorily. Thus, we conclude that the nonlinearity in this system
is up to ninth order.

4.2. Prediction of dynamic and stochastic bifurcations
The main motivation for SI is to be able to predict dynamic bifurcations (i.e. the
Hopf and saddle-node points) and, hence, the stability boundaries. In addition to this,
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FIGURE 6. (Colour online) Model coefficients with respect to Re for (a–e) ExpSuper and
( f –j) ExpSub. The black markers with error bars are the experimental data. The dotted red
lines are (a, f ) linear fits and (b–e,g–j) power-law fits. The red markers are the extrapolated
points for ExpSuper (Re= 603, 616, 629) and for ExpSub (Re= 772, 789, 806).

we also predict stochastic P-bifurcations, i.e. when the system switches from unimodal
to bimodal behaviour (Zakharova et al. 2010). Stochastic P-bifurcations are important
for determining the dynamic bifurcations of noisy systems (Zakharova et al. 2010).

To predict the bifurcation points, we extrapolate the model coefficients calculated
in § 4.1 to higher Re, as shown in figure 6. We use a linear regression for ε, much as
Provansal et al. (1987) did in their experiments on a cylinder wake. For the higher-
order coefficients, we use a power-law fit: αn ∝ (Re− m1)

−m2 , where m1 and m2 are
positive constants obtained from least-squares fitting of the experimental data. From
the extrapolated coefficients, we generate dynamic and stochastic bifurcation plots for
ExpSuper and ExpSub, and compare them in figure 7 with our experimental data. The
dynamic bifurcation plots are generated by solving (3.5a) without the effect of noise,
whereas the stochastic bifurcation plots are generated by finding solutions of (4.1) that
have two positive a2

m.
Figure 7(a,b) shows that, without noise (d = 0), the numerically predicted Hopf

and saddle-node points are, respectively, at Re = 606 and 588 for ExpSuper, and at
Re= 790 and 758 for ExpSub. The model correctly identifies ExpSub to be subcritical
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FIGURE 7. (Colour online) Dynamic and P-bifurcation plots for (a,c) ExpSuper and
(b,d) ExpSub. In (a,b), the solid and dotted lines denote the stable and unstable
solutions, respectively, as calculated from the model. In (c,d), the grey areas denote
the bimodal regime calculated from the model, the blue vertical lines denote where the
experiments were conducted and the blue circular markers denote where bimodality is
observed experimentally. The orange horizontal lines denote the inherent amplitude of the
background noise.

but, curiously, it identifies ExpSuper to be subcritical as well, which might seem to
contradict the experiments. However, a careful examination of the experimental data
(figure 7a) shows a marked jump in the oscillation amplitude at the bifurcation point.
We speculate that this jump occurs because the Hopf and saddle-node points have
either collided or moved so close to each other as to be indistinguishable within the
limits of experimental uncertainty. This interpretation of supercritical-like behaviour
can also explain previous observations of a similar amplitude jump in the low-density
jet experiments of Hallberg & Strykowski (2006) and Zhu et al. (2017). Moreover,
the presence of background noise shrinks the hysteretic bistable region by triggering
LCOs. Next, we examine the effect of background noise on dynamic bifurcations
using P-bifurcation plots.

Bimodality is usually associated with subcritical Hopf bifurcations (Zakharova et al.
2010). As shown in figure 7(c,d), bimodality (grey areas) exists between the Hopf
and saddle-node points, even for infinitesimally weak noise. Bimodality represents
the tendency of a system to switch between the zero-amplitude state and the LCO
state in the bistable regime. In the presence of finite-amplitude noise, this tendency
can be observed even before the system reaches the saddle-node point. This is seen
in our experiments (figure 7c,d: blue markers) and is well predicted by our model.
Background noise, however, can shrink the bimodal region by triggering LCOs. In
figure 7(c,d), this shrinkage can be seen as a tapering of the bimodal region (grey
area) above the inherent amplitude of the background noise, b (orange horizontal
line). Therefore, for an accurate comparison between the predicted and experimentally
observed bifurcation points, we must account for the effect of noise. We do this by
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FIGURE 8. (Colour online) Phase portraits of the LCOs for (a–c) ExpSuper and (d–f )
ExpSub. The experimental LCO orbits (grey bands) are shown alongside their mean orbits
(black dotted lines). These can be compared with the numerically obtained LCO orbits
from the N5 model (blue line) and the N9 model (red line).

locating the points (green crosses) at which b (orange horizontal line) intersects the
bimodal region (grey area). For ExpSuper (figure 7c), this gives a predicted Hopf
point of Re= 592, which matches exactly with the experimentally observed value at
Re = 592 (figure 2a). As mentioned earlier, the absence of a bistable region can be
understood because it is exceedingly small. For ExpSub (figure 7d), the intersection
of b and the bimodal region gives predicted Hopf and saddle-node points of Re= 782
and 758, respectively, which match well with the experimentally observed values at
Re= 787 and 757 (figure 2b).

4.3. Prediction of the system dynamics beyond the bifurcation points
We now turn to predicting the system dynamics away from the bifurcation points.
Figure 8 shows phase portraits of the LCOs for (a–c) ExpSuper at Re = 603, 616
and 629, and (d–f ) ExpSub at Re= 772, 789 and 806. These are compared with the
corresponding LCOs from the experiments. In seminal work, Takens (1981) showed
that the dynamical properties of a system containing many degrees of freedom can
be represented by just a single scalar time series with an appropriately chosen time
delay (τ ). Here, we show the phase portrait in two dimensions with τ calculated
using the average mutual information method of Fraser & Swinney (1986). The
comparison between the experimental and numerical LCOs shows that the N9 model
can accurately predict both the amplitude and shape of the LCO orbits. This further
highlights the important role that the higher-order nonlinear terms have in determining
the system dynamics.

5. Conclusions
We perform SI of a low-density jet from its noise-induced dynamics, using a low-

order oscillator model and its corresponding Fokker–Planck equation. To the best of
our knowledge, this is the first time that SI has been achieved on an experimental
system using the noise-induced dynamics in only the unconditionally stable regime,
i.e. without having to operate in the regimes where LCOs may occur. We show that
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our estimated numerical model can accurately predict three key system properties:
(i) the order of nonlinearity, (ii) the locations and types of the bifurcation points
(and hence the stability boundaries) and (iii) the limit-cycle dynamics beyond the
bifurcation points.

There are two main implications of this work that go beyond low-density jets. First,
the SI methodology proposed here should be applicable to many other dynamical
systems, as the only inherent assumption made about the system is that it obeys the
Stuart–Landau equation. This assumption is, in fact, valid in the vicinity of the Hopf
point for many dynamical systems – hydrodynamic or otherwise. Consequently, the
Stuart–Landau equation has been used in a number of other SI methodologies in the
literature (see § 1). However, in all of those studies, it has been assumed that the
nonlinear terms can only be obtained from data collected during the occurrence of
LCOs, in the unstable or bistable regime. With our SI methodology, however, we
show that data from the noise-induced dynamics in the unconditionally stable regime
are themselves enough to determine the bifurcation points and to predict the LCO
dynamics beyond those points. Thus, our SI methodology opens up new pathways
for the development of early-warning indicators and active-control strategies against
unwanted oscillations in systems operating near a Hopf point. This is particularly
useful for the design of systems prone to exhibiting dangerously energetic LCOs, such
as thermoacoustic oscillations in gas turbines and rocket engines.

Second, the prediction of system nonlinearity – in particular, the order and signs of
the nonlinear terms – can provide physical insight into the system. For plane Poiseuille
flow, Stuart (1960) was able to explain that the physical meaning of a positive k2
term is that the distortion of the fundamental instability mode is dominant over the
combination of the distortion of the mean motion and the generation of harmonics. It
is beyond the scope of this paper to perform an equivalent analysis for the low-density
jet and extend it to the higher-order terms. Stuart (1960), however, did not attempt to
calculate the nonlinear terms, which we have done here.

As for improvements to this SI methodology, we should be able to relax the
assumption that the background noise amplitude is small. In many natural and
engineered systems, background noise can be significant, making the development
of an actuator model difficult. An instinctive solution is to turn to output-only SI
methods, but these are usually only reliable when the input data size is large (Mevel
et al. 2006). This problem can be alleviated through the use of adjoint equations, as
demonstrated by Boujo & Noiray (2017). Furthermore, in the simple axisymmetric
jet studied here, we have used information collected at only one spatial location. This
keeps the system size small without adversely affecting the quality of the predictions
for the bifurcation points and LCO dynamics. However, there could be other, more
complicated, flows for which it may be useful to include information about the spatial
structure of the global instability mode. In such cases, we may need to incorporate
the use of sparsity-promoting tools and machine learning in this SI framework to
deal with the larger data matrices.
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