
J. Fluid Mech. (2013), vol. 720, pp. 140–168. c© Cambridge University Press 2013 140
doi:10.1017/jfm.2013.17

Viscous boundary layer properties in turbulent
thermal convection in a cylindrical cell: the effect

of cell tilting

Ping Wei and Ke-Qing Xia†

Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China

(Received 25 September 2012; revised 3 December 2012; accepted 3 January 2013;
first published online 27 February 2013)

We report an experimental study of the properties of the velocity boundary layer in
turbulent Rayleigh–Bénard convection in a cylindrical cell. The measurements were
made at Rayleigh numbers Ra in the range 2.4 × 108 < Ra < 5.6 × 109 and were
conducted with the convection cell tilted with an angle θ relative to gravity, at
θ = 0.5, 1.0, 2.0 and 3.4◦, respectively. The fluid was water with Prandtl number
Pr = 5.3. It is found that at small tilt angles (θ 6 1◦), the measured viscous boundary
layer thickness δv scales with the Reynolds number Re with an exponent close to that
for a Prandtl–Blasius (PB) laminar boundary layer, i.e. δv ∼ Re−0.46±0.03. For larger tilt
angles, the scaling exponent of δv with Re decreases with θ . The normalized mean
horizontal velocity profiles measured at the same tilt angle but with different Ra are
found to have an invariant shape. However, for different tilt angles, the shape of the
normalized profiles is different. It is also found that the Reynolds number Re based on
the maximum mean horizontal velocity scales with Ra as Re∼ Ra0.43 and the Reynolds
number Reσ based on the maximum root mean square velocity scales with Ra as
Reσ ∼ Ra0.55. Within the measurement resolution neither exponent depends on the tilt
angle θ . Several wall quantities are also measured directly and their dependencies on
Re are found to agree well with those predicted for a classical laminar boundary layer.
These are the wall shear stress τ (∼Re1.46), the viscous sublayer δw (∼Re0.75), the
friction velocity uτ (∼Re−0.86) and the skin friction coefficient cf (∼Re−0.46). Again, all
of these near-wall quantities do not exhibit a dependence on the tilt angle within the
measurement resolution. We also examined the dynamical scaling method proposed by
Zhou and Xia (Phys. Rev. Lett., vol. 104, 2010, p. 104301) and found that in both the
laboratory and the dynamical frames the mean velocity profiles show deviations from
the theoretical PB profile, with the deviations increasing with Ra. However, profiles
obtained from dynamical scaling in general have better agreement with the theoretical
profile. It is also found that the effectiveness of this method appears to be independent
of Ra.
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Viscous boundary layer in turbulent thermal convection 141

1. Introduction
1.1. Rayleigh–Bénard convection

Rayleigh–Bénard (RB) convection, a fluid layer heated from below and cooled from
the top, is an idealized model to study turbulent flows involving heat transport and
has attracted much attention during the past few decades (Siggia 1994; Kadanoff 2001;
Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010). The system is characterized
by two control parameters: the Rayleigh number Ra and Prandtl number Pr , which are
defined as

Ra= αg1TH3

νκ
, (1.1)

and

Pr = ν
κ
, (1.2)

respectively. Here α is the thermal expansion coefficient, ν the kinematic viscosity, κ
the thermal diffusivity of the convecting fluid, g the gravitational acceleration, 1T the
temperature difference between the bottom and the top plates and H the height of the
fluid layer between the plates. In addition, the aspect ratio Γ = D/H (D is the lateral
dimension of the system) also plays an important role in the structures and dynamics
of the flow.

In a fully developed RB turbulent flow, most of the imposed temperature difference
is localized in the thermal boundary layers (BLs) near the surface of the top and
bottom plates, within which heat is transported via conduction (Wu & Libcharber
1991; Belmonte, Tilgner & Libchaber 1994; Lui & Xia 1998). The velocity field
has the same character: velocity gradient is localized in a thin layer near the plates,
which is called the viscous boundary layer. Turbulent flow in the central region of
the RB cell is approximately homogenous and isotropic (Sun, Zhou & Xia 2006;
Zhou, Sun & Xia 2008; Ni, Huang & Xia 2011a, 2012). As the top and bottom
boundary layers contribute the main resistance to heat transfer through the cell and
thus dominantly determine the Nusselt number, they deserve special attention. Indeed,
nearly all theories in RB convection are in essence BL theories. For example, a
turbulent BL was assumed in the models by Shraiman & Siggia (1990), Siggia (1994)
and Dubrulle (2001, 2002). On the other hand, a Prandtl–Blasius (PB)-type laminar
BL was assumption in the Grossmann and Lohse (GL) theory (Grossmann & Lohse
2000, 2001, 2002, 2004). Therefore, direct characterization of the BL properties is
essential for testing and differentiating the various theoretical models, and will also
provide insight into the physical nature of turbulent heat transfer.

1.2. BL measurements in turbulent thermal convection
One of the earlier measurements of temperature and also of velocity profiles in
turbulent RB convection was taken by Tilgner, Belmonte & Libchaber (1993) in water
(Pr = 6.6) at the fixed Ra= 1.1× 109 and at a fixed lateral position. Belmonte, Tilgner
& Libchaber (1993) extended these measurements over the range 5 × 105 6 Ra 6 1011

in compressed gas (air) at room temperature (Pr = 0.7), but still at fixed lateral
position. Lui & Xia (1998) measured the mean temperature profiles at various
horizontal positions on the lower plate of a cylindrical convection cell, the result
shows that the thermal BL thickness δth varied over the plate for the same Ra, and
the thinnest BL is closest to the centre of the plate. Wang & Xia (2003) found
similar results for a cubic cell. du Puits et al. (2007b) measured high-resolution
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142 P. Wei and K.-Q. Xia

temperature profiles in RB convection near the top plate of a cylindrical container with
air (Pr = 0.7) as the working fluid. Their result shows that the thermal BL thickness
δth ∼ Ra−0.25 in the cell with Γ = 1.13. Sun, Cheung & Xia (2008) found that the
thermal BL thickness scales with Ra−0.32 in a rectangular cell, at Pr = 4.3 and Ra
ranging from 108 to 1010.

For the velocity measurement, the methods for determining the velocity profiles
near the solid walls of the cell are developed in recent years. Since strong
temperature fluctuations exist in RB convection, the well-established hot-wire
anemometry could not be applied to this system. For the viscous BL, the large
temperature fluctuations make conventional laser Doppler velocimetry ineffective
because temperature fluctuations cause fluctuations in the refractive index of the fluid
that in turn make it difficult to steadily focus two laser beams to cross each other in
the fluid (Xia, Xin & Tong 1995). Tilgner et al. (1993) introduced an electrochemical
labelling method and measured the velocity profile and BL thickness near the top
plate of a cubic cell filled with water, but only at a single value of Ra. In a later
study, Belmonte et al. (1993, 1994) developed an indirect method, the correspondence
between the peak position of the cutoff frequency profile of the temperature power
spectrum and the peak position of the velocity, to infer the viscous BL thickness
in gaseous convection. This method has subsequently been used to infer the viscous
layer in thermal convection in mercury (Naert, Segawa & Sano 1997). It may just
be that the method works in certain situations, but there is no theoretical basis for it.
Xin, Xia & Tong (1996), using a novel light-scattering technique developed by Xia
et al. (1995), conducted the first direct systematic measurement of velocity profiles
in RB convection in a cylindrical cell as a function of Ra. They found δυ ∼ Ra−0.16

from the velocity profile above the centre of the lower plate. Qiu & Xia (1998a,b)
extended these measurements to convection in cubic cells, finding the same scaling
exponent −0.16 at the bottom plate, but at the sidewall a different result δυ ∼ Ra−0.26.
Using various organic liquids, Lam et al. (2002) explored the Pr dependence, finding
δυ ∼ Pr0.24Ra−0.16. With the measured Ra–Re scaling relationship Re ∼ Ra0.5 obtained
in these studies (in fact, it was the Péclet number Pe = υL/κ rather than Re in some
of these studies; see Sun & Xia (2005) for more detailed discussions), the above
results imply a scaling relation δυ ∼ Re−0.32.

In recent years, the technique of particle image velocimetry (PIV) has been
introduced to the experimental studies of thermal convection (Xia, Sun & Zhou 2003;
Sun & Xia 2005; Sun, Xi & Xia 2005a; Sun, Xia & Tong 2005b). Sun et al. (2008)
further applied the PIV technique to measure the viscous BL in a rectangular cell.
Their results show that δυ ∼ Ra−0.27 and δυ ∼ Re−0.50, which showed that the viscous
BL in thermal turbulence has the same Re-scaling as a PB laminar BL. This result
validates the laminar BL assumption made in the GL model in a scaling sense. Thus
it appears there is a discrepancy in the measured scaling exponent of δυ with respect
to Ra (Re) between those obtained in cylindrical and cubic cells and that obtained in
rectangular cells. Sun et al. (2008) argued that because of the more complicated flow
dynamics of the large-scale circulation (LSC), such as the azimuthal motion in the
cylindrical cell (Brown, Nikolaenko & Ahlers 2005; Sun et al. 2005b; Xi, Zhou & Xia
2006) and the secondary flows in the cubic cell (Qiu & Xia 1998a), the shear flow
near the plates is less steady as compared with that in the rectangular cell which is
closer to quasi-two-dimensional (quasi-2D). As the viscous boundary is created by the
shear of the LSC, this may plausibly change the BL properties, resulting in a different
exponent. However, the above argument has not been substantiated experimentally.
Part of the motivation of the present work is to determine how the three-dimensional
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Viscous boundary layer in turbulent thermal convection 143

LSC dynamics will affect the BL properties. It is known that tilting the cell by a small
angle will ‘lock’ the LSC in a fixed azimuthal plane in the sense that it will limit the
range of the LSC’s azimuthal meandering (Sun et al. 2005a) and reduce its azimuthal
oscillation amplitude near the top and bottom plates of the cell (Ahlers, Brown &
Nikolaenko 2006). In the present work, we present measurements of BL properties
in a cylindrical cell with the cell tilted over a range of angles. For small tilting
angles, we measure a BL under a more steady shear compared with the ‘levelled’
case when the LSC can freely meander in the azimuthal direction but presumably the
BL is otherwise unperturbed under such a small tilting angle (61◦). We also examine
how the BL scaling exponent and other BL properties behave when the tilting angle
becomes not so small (>1◦), which would amount to a perturbation to the BLs. BLs
play such an important role in turbulent thermal convection, it is therefore important
to examine how BLs respond to external perturbations. Understanding the stability or
instability of BLs is also relevant to the search for the so-called ultimate state of
thermal convection, as the transition from the ‘classical state’ to the ultimate state is
essentially an instability transition of the BL from being laminar to being turbulent.

In addition to the scaling of the BL thickness, the shape of the velocity profile near
the top and bottom plates has attracted a lot of attention recently. Although the BL
has been found scaling wise to be of PB type (at least in the quasi-2D case), the
time-averaged velocity profiles are found to differ from the theoretically predicted one
(du Puits, Resagk & Thess 2007a; Sun et al. 2008), especially in the region around
the thermal BL. Recently, Zhou & Xia (2010) have proposed a dynamic scaling
method that shows that the mean velocity profile measured in the laboratory frame
can be brought into coincidence with the theoretical PB laminar BL profile, if it is
resampled relative to the time-dependent frame that fluctuates with the instantaneous
BL thickness. This method was tested initially for the case of velocity profile in
turbulent convection in a quasi-2D rectangular cell with water as working fluid
(Pr = 4.3). In a follow-up study using 2D direct numerical simulation (DNS) data,
Zhou et al. (2010) found that the method is also valid for thermal BLs and for the
case of Pr = 0.7. More recently, these authors further showed, again using numerical
data, that the method works also in other positions in the horizontal plate other than
the central axis (Zhou et al. 2011) and in a three-dimensional (3D) cylindrical cell for
moderate values of Ra (Stevens et al. 2012). On the other hand, Scheel, Kim & White
(2012) and Shi, Emran & Schumacher (2012), both using numerical approaches, have
found that the dynamic scaling works less well in the 3D cylindrical geometry than
in the quasi-2D case (see also Chillà & Schumacher (2012)). Note that the method
has not been tested experimentally so far in a 3D system. Here we would like to
examine the dynamical scaling method using the experimentally obtained instantaneous
velocity profiles in our three-dimensional cylindrical cell. We caution, however, that
the PB theory rely on a two-dimensional and steady flow, and the temperature is
assumed to be passively advected and pressure gradients are zero. So there is no
a prior justification for why the PB profile should necessarily be applicable to the
present case.

1.3. Organization of the paper
The remainder of this paper is organized as follows. We give detailed descriptions
of the experimental set-up and measurement instrumentation in § 2 and present and
analyse experimental results in § 3, which is divided into six subsections. In § 3.1 we
present the measured temperature profiles and corresponding position-dependent fluid
properties, which will be used to calculate the viscous and Reynolds stresses. In § 3.2,
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FIGURE 1. (Colour online) Sketch of the convection cell and the Cartesian coordinates
used in temperature and velocity measurements: (a) side view of the set-up (shaded region
indicates the PIV measurement area) and (b) the top view.

the measured velocity profiles and their characterizations are presented. In § 3.3, the
scaling properties, with both Ra and Re, of the thickness δv obtained from the mean
velocity profiles and δσ obtained from root mean square (r.m.s.) velocity profiles, are
presented and discussed. We also discuss the influence of the cell tilting angle θ on the
BL scaling. In § 3.4 statistical properties (r.m.s. and skewness) of the velocity field in
the BL region are discussed. In § 3.5 we present results of the viscous and Reynolds
shear stress distributions in the BL, and discuss the scaling of the wall quantities. In
§ 3.6 we test the dynamic scaling method with respect to the measured instantaneous
velocity profiles. We summarize our findings and conclude in § 4.

2. Experimental apparatus
2.1. Convection cell

The measurements were made in a cylindrical RB convection cell, which has been
described in detail previously (Zhou & Xia 2002; Sun et al. 2005b; Ni, Zhou & Xia
2011b). Here we give only its essential features. The top and bottom conducting plates
are made of pure copper and coated with a thin layer of nickel to avoid oxidation.
The sidewall is made of Plexiglas. To avoid distortions in the images viewed by the
camera, a square-shaped jacket is fitted around the sidewall of the convection cell. As
shown in figure 1(b), the jacket is filled with water. The diameter and height of the
cell is D = 19.6 cm and H = 18.6 cm, respectively. The aspect ratio Γ = D/H is thus
close to one. Two (three) thermistors are embedded in the top (bottom) plate. The
top plate temperature is maintained constant by a refrigerated circulator (Polyscience
Model 9702) that has a temperature stability of 0.01 ◦C. A NiChrome wire (26 Gauge,
Aerocon Systems) surrounded by fibreglass sleeving and Teflon tape is distributed
inside the grooves carved under the bottom plate. The wire is connected with five
DC power supplies (GE Model GPS-3030) in series to provide constant and uniform
heating. During the measurement, the whole cell is placed in a thermostat box that
is kept at the same temperature (30 ◦C) as that of the fluid at the centre of the cell.
During the experiment the cell was tilted by an angle θ such that the circulation plane
of the LSC was parallel to the image plane of the camera (the x–z plane, see figure 1).

2.2. PIV measurement
The application of PIV to thermal turbulence has been described in detail in several
previous publications (Xia et al. 2003; Sun et al. 2005b, 2008). Here we only provide
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Viscous boundary layer in turbulent thermal convection 145

details concerning the particular features of the present experiment. The PIV system
consists of one CCD camera with resolution 2048 pixels × 2048 pixels, a dual pulse
Nd-YAG laser with 135 mJ per pulse, a synchronizer and software (Dantec Dynamics,
Inc.). As the cell was tilted, both the CCD and the laser light-sheet were tilted
accordingly with the same angle. A 105 mm focal-length macro lens was attached
to the CCD to achieve a measuring area with size varying from 18 mm × 18 mm
to 30 mm × 30 mm. Each 2D velocity vector is calculated from a subwindow
(32 pixels × 32 pixels) that has 50 % overlap with its neighbouring subwindows, so
each vector corresponds to a region of 16 pixels × 16 pixels and each velocity map
contains 127× 127 velocity vectors in the x–z plane (see figure 1). This corresponds to
spatial resolutions of ∼0.135 mm× 0.135 mm to 0.236 mm× 0.236 mm for velocities
u and w measured in the horizontal x and vertical z directions, respectively. For the
measurement at θ = 3.4◦ particles with diameter 2 µm were used, while particles
with diameter of 10 µm were used for measurements with other three tilted angles.
For each run, typically about 25 200 image pairs were acquired with frame rate of
2 Hz. It is known that particles with finite sizes and with densities unmatched to
that of carrier fluid have inertia. The inertial effect is characterized by the Stokes
number St = τp/τη, which is the ratio between the time scale of the Stokes drag due
to the interaction between particle and fluid and the Kolmogorov time scale. Here,
τp = d2(2ρp + ρf )/(48νρf ), d is the diameter of particles, ρp is the density of particles,
ρf is the density of fluid, ν is the kinematic viscosity of fluid. According to the
measurement by Ni et al. (2012), the local Kolmogorov time scale is τη = 0.5 ∼ 3
s in our range of Ra. So in the present case, St = 2 × 10−8 ∼ 2 × 10−6 for 10 µm
diameter particles, St = 7×10−9 ∼ 4×10−8 for 2 µm diameter particles. As St is much
smaller than one in both cases, these particles can be safely treated as tracer particles.
We also note that within the duration of the measurements (typically lasting for 3.5 h)
most of the particles remain suspended in the fluid. To calibrate the positions of
particles in the measured image to the real positions and also to correct the difference
between the apparent positions captured by the camera and the real position due to
refractive index (temperature) gradient in the BL, we placed a ruler inside the cell
with an imposed temperature difference that is the same as that used in the experiment
and this process is repeated for every Ra used in the experiment. The effect of
refractive index (temperature) fluctuations may be estimated from the magnitude of
the measured vertical velocity. As the vertical velocity should be zero at or near the
plate, the magnitude of a non-zero vertical velocity should provide an indication of
the influence of temperature effect on the PIV measurement and provide an estimate
of the measurement error. We find that the magnitude of the vertical velocity W is
indeed very small (see figure 8), especially inside the BL region. Compared with the
magnitude of the horizontal velocity, this is indeed negligible.

It perhaps should be noted that in general it is more difficult to measure the velocity
accurately in the cylindrical cell than it is in the rectangular cell. There are several
reasons for this. One is that the curved surface of the sidewall in the cylindrical cell.
Although the square jacket reduces the distortion to the optical image seen by the
CCD camera, it cannot completely eliminate this effect. The distance between the
camera and the measuring plane in the present case is also larger than that in the
rectangular case, which affects the optical quality of the measured image. There is
also the azimuthal motion of the LSC. Although the cell has been titled, the random
meandering of the LSC is not suppressed completely. All of these will contribute
negatively to the quality of the measured velocity, which makes the measurement
accuracy in a cylindrical geometry less than that in a rectangular geometry.
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θ Ra Pr Umax δv θ Ra Pr Umax δv
(deg.) (mm s−1) (mm) (deg.) (mm s−1) (mm)

0.5 5.77×108 5.45 4.77 2.80 2.0 1.34× 109 5.42 7.47 2.57
2.79×108 5.41 3.57 3.40 5.85×108 5.42 5.21 3.25
1.55× 109 5.39 7.38 2.44 5.53×109 5.32 13.49 1.97
2.93×109 5.39 9.11 2.13 3.4 2.74×108 5.67 4.02 4.54
4.26×109 5.38 10.88 2.06 4.19×108 5.66 4.70 4.23

1.0 1.68× 109 5.45 7.53 3.46 6.69×108 5.66 6.00 3.58
3.19×109 5.39 9.96 2.87 1.38× 109 5.68 7.59 2.70
5.54×109 5.42 11.60 2.66 2.19×109 5.64 9.40 2.50
9.46×108 5.45 5.72 3.82 2.66×109 5.66 10.20 2.11
2.40×108 5.42 3.06 5.07 9.89×108 5.66 6.47 3.00
6.00×108 5.43 4.71 3.94 3.20×109 5.65 10.84 2.14

2.0 2.76×108 5.41 3.76 4.12 4.28×109 5.63 12.65 1.89
2.78×109 5.42 10.09 2.15 5.19×109 5.56 13.49 1.84

TABLE 1. Control parameters of the experiment (cell tilt angle θ , the Rayleigh number
Ra and the Prandtl number Pr) and the measured maximum horizontal velocity Umax and
viscous BL thickness δv . The data are listed in chronological order within a data set of
given θ .

3. Results and discussion
PIV measurements were made at four values of the tilting angle θ= 0.5, 1, 2 and

3.4◦. For each θ , measurements over a range of Ra were made. Table 1 lists the
parameters (θ , Ra and Pr) of each measurement, which typically lasted for ∼3.5 h.
As already mentioned, tilting the cell by a small angle has the effect of ‘locking’ the
LSC’s circulation plane at a fixed azimuthal angle (in reality it restricts the angular
range of the LSC’s azimuthal meandering). Thus, measurements made with small
θ(6 1◦) are aimed at studying BL properties under more steady shear, but the BL
itself is assumed to be unperturbed otherwise. For large values of θ(> 1◦) we wish to
examine how the BL responds to relatively large perturbations.

3.1. Temperature profile and fluid properties
The local values of fluid properties are needed in calculating the viscous and Reynolds
shear stress, which requires measurement of the local temperature. Temperature
profiles for the levelled case have been measured systematically by Lui & Xia (1998)
in a similar cylindrical cell. To check whether tilting the cell by a relatively large
angle will change the temperature profile, we measured one mean temperature along
the central axis (x = y = 0) of the cell at a tilting angle θ = 3.4◦ (Ra = 6.8 × 108).
The result is shown in figure 2(a) and the dynamic viscosity corresponding to the
local temperature is shown in figure 2(b). In the inset of figure 2(a) we also show
the profile of the temperature r.m.s. σT . From this mean temperature profile, we obtain
the thermal BL thickness δth = 1.9 mm using the ‘slope’ method, while the peak
position of the r.m.s. profile is 1.6 mm. As these results are similar to those obtained
in previous studies by Lui & Xia (1998) and Sun et al. (2008), we will use results
from those studies at similar Ra in the calculations of Reynolds stress (§ 3.5) and other
wall quantities that require position-dependent viscosity and density. For reference, in
the range of Ra of the present experiment, δth varies from 0.5 to 2.0 mm (Lui & Xia
1998).
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FIGURE 2. (a) A profile of mean temperature 〈T〉 measured at Ra = 6.8 × 108 and θ = 3.4◦.
The inset is the profile of the corresponding r.m.s. temperature σT . (b) A profile of dynamic
viscosity µ obtained from the mean temperature profile in (a).
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FIGURE 3. (Colour online) Coarse-grained vector maps of the instantaneous (a) and time-
averaged (b) velocity field measured near the centre of the bottom plate (Ra= 4.2× 108 with
θ = 3.4◦), the velocity scale bar is in unit of mm s−1.

3.2. Velocity profiles and the Reynolds number scaling

Figure 3(a) shows an example of measured instantaneous velocity map and (b)
time-averaged velocity field taken over a period of 3.5 h (corresponding to 25 200
velocity frames), with the cell tilted at θ = 3.4◦ and at Ra = 4.2 × 108. In the present
measurement, x spans from −8.75 to 8.75 mm, and z spans from 0 to 17.5 mm. From
the velocity scale in figure 3(a) and (b), it is seen that there exist velocity bursts with
values much larger than the maximum velocity in the time-averaged velocity field. It
is found that velocity maps measured at other tilt angles have similar features. As
the mean velocity and the velocity fluctuations do not exhibit any obvious dependence
on the horizontal position x over the small measurement area, the quantities presented
below are based on values averaged along the x-direction over the width of the
measuring area.
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FIGURE 4. (Colour online) Time-averaged horizontal velocity profiles measured at tilt angles
θ = 0.5◦ (a), 1.0◦ (b), 2.0◦ (c) and 3.4◦ (d). In each plot the corresponding value of Ra
decreases from top to bottom (see table 1 for exact values).

Figure 4 plots the velocity profiles for different tilt angles and various values of Ra,
which shows that the shapes of the profiles are rather similar at this level of detail.
Figure 5 plots normalized profiles in which U(z) is normalized by the maximum
horizontal velocity Umax(Ra) (for ease of reference the values of Umax are also listed
in table 1) and the distance z from the wall by the viscous BL thickness δv(Ra) (to
be defined below). The figure shows that up to 2δv profiles for different Ra and for
the same tilt angle collapse on to a single curve quite well (except perhaps those
correspond to the largest Ra for θ = 2.0 and 3.4◦). Note that z ' 2δv is around where
U reaches its maximum value and beyond this position it decays toward cell centre.
So this position may be taken as the separation between the BL region and the bulk.
The above results suggest that for the same tilt angle the profiles in the BL region
have an invariant shape with respect to different values of Ra. This result is consistent
with the finding by Xin et al. (1996), Qiu & Xia (1998a,b) and Sun et al. (2008). In
figure 5 we also plot the theoretical PB profile. It is seen that within the BL (z 6 δv)
the profiles match the theoretical solution very well, whereas in the region just outside
the BL where plume emissions occur, all measured profiles are generally less steep
than the PB profile. This feature is also similar to that observed by Zhou & Xia (2010)
and will be further discussed in § 3.6. On the other hand, it is seen from figure 5 that
profiles obtained at different θ seem to have different degrees of deviation from the
PB profile. This can be seen more clearly in figure 6 where we show two examples
in which profiles for different θ but with values of Ra close to each other are plotted
together along with the theoretical PB profile. This result suggests that the shape of
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FIGURE 5. (Colour online) Profiles normalized by their respective maximum velocity
Umax(Ra) and the corresponding viscous BL thickness δv(Ra) with tilt angles θ = 0.5◦ (a),
1.0◦ (b), 2.0◦ (c) and 3.4◦ (d). The solid line in each plot represents the theoretical PB profile.

the velocity profile near the plume-emission region is modified by the tilting angle. It
is also seen from the figure that at small z/δv some of the data (especially those for
θ = 1◦) deviate from a straight line passing through the origin. This is probably caused
by the strong reflection of light near the plate that can give false velocity vectors with
zero or very small values. In this case, we ignore the few points very close to z = 0
when determining δv. As there are still quite number of points with z/δv < 1 that lie on
a straight line in such profiles, the determined δv should not be significantly affected
by the exclusion of these few points. We also note that the profile for θ = 1.0◦ shown
in figure 6(b) is a rather extreme case and there are only two or three such profiles
among all of the measured ones.

Taking Umax as the characteristic velocity of LSC, we define the Reynolds number
Re= UmaxH/ν and plot Re as a function of Ra and for different θ in figure 7(a). When
fitting a power law to the data for different θ separately, they all produce an exponent
close to 0.43. To better compare the amplitude of Re for different θ , we fix the
scaling exponent at 0.43 and fit power laws to the different data sets again. This gives
Re= (0.185± 0.002, 0.182± 0.003, 0.206± 0.001, 0.203± 0.001)× Ra0.43, where the
amplitudes in the brackets are for θ = 0.5, 1.0, 2.0 and 3.4◦, respectively. These results
show that in general the values of Re with larger θ are larger than those with smaller
θ . In an earlier study of the effect of cell tilting, Ahlers et al. (2006) have found that
Re obtained indirectly from temperature measurement increases with the tilted angle,
which is consistent with the trend observed here. We also note that the value of the
scaling exponent of Re obtained from many previous studies and sometimes under
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FIGURE 6. (Colour online) Normalized profiles measured at different tilt angles θ but with
approximately the same value of Ra. Profiles in (a) have a nominal value of Ra = 5 × 108

and in (b) have a nominal value of Ra = 1.5 × 109. In both figures the symbols are: inverted
triangles (θ = 0.5◦); squares (θ = 1.0◦); triangles (θ = 2.0◦); and circles (θ = 3.4◦). The solid
line in each plot represents the theoretical PB profile.

103
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108 109 1010 108 109 1010

(a) (b)

FIGURE 7. (Colour online) (a) Reynolds number Re based on the maximum horizontal
velocity Umax and (b) Reσ based on the maximum fluctuating velocity σmax as a function
of Ra for different tilting angles. Inverted triangles: θ = 0.5◦; squares: 1◦; triangles: 2◦; circles:
3.4◦. The dashed lines in (a) represent power-law fits to the individual data sets all with a
scaling exponent 0.43 (see the text for the fitting results). The solid line in (b) is a power law
fit to all data sets in the plot, which gives Reσ = 0.0072Ra0.55±0.01.
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nominally similar conditions, varies over a rather wide range from 0.43 to 0.55 (see,
for example, Xin et al. (1996), Xin & Xia (1997), Qiu & Xia (1998a,b), Ashkenazi
& Steinberg (1999), Chavanne et al. (2001), Lam et al. (2002), Brown, Funfschilling
& Ahlers (2007), Sun et al. (2008) and Xie, Wei & Xia (2012)). The reason for such
variations is not completely clear at present. A detailed study on this issue is beyond
the scope of this paper. For interested readers, we refer to Sun & Xia (2005) who
offered an explanation that can account for most of these differences in the exponent.

From the measured profile of the r.m.s. velocity (see figure 8), we can define another
Reynolds number Reσ = σmaxH/ν, which is shown in figure 7(b) as a function of Ra
in a log–log scale for the four tilt angles. Here it is seen that within the measurement
resolution Reσ does not have an obvious dependence on θ . We therefore fitted a single
power law to all four data sets on the plot, which gave Reσ = 0.0072Ra0.55±0.01. The
value of the exponent is somewhat larger than 0.50 that was obtained from several
previous studies (Xin et al. 1996; Xin & Xia 1997; Qiu & Xia 1998a,b; Sun et al.
2008).

3.3. The viscous BL and its scaling with Ra and Re
We define the thickness δv of the viscous BL through the ‘slope method’ as shown in
figure 8 where a mean velocity U(z) (circles) profile and the corresponding standard
deviation profile σu(z) (crosses) are shown, which are measured at Ra= 4.2× 108 with
θ = 3.4◦. It is seen that δv is defined as the distance at which the extrapolation of
the linear part of U(z) equals its maximum value Umax , i.e. δv = Umax [dU/dz|z=0]−1.
A length scale δσ can also be defined from the profile of σu(z) where σu reaches its
maximum value. For the present example, the values for the two BL length scales δv
and δσ are found to be 4.20 and 6.05 mm, respectively. For ease of reference, the
values of δv are listed in table 1. Note that if we define δm as the position of the
maximum horizontal velocity, the exponents obtained from the fitting results δm − Ra
and δm − Re have similar trend as those for δv. However, because the velocity profiles
near Umax are rather flat, the determined δm have relatively larger uncertainties as
compared with δv.

We now examine the scalings of the BL thickness with both the Rayleigh number
Ra and the Reynolds number Re. In figure 9(a) and (b) we plot the measured viscous
BL thickness δv versus Ra and Re, respectively, for the four tilt angles. The lines in
the figures represent the best power-law fits to the respective data sets, as listed in
the caption of figure 9. The obtained fitting parameters for the normalized thicknesses
δv/H = A1Ra

β1 and δv/H = A2Re
β2 are listed in table 2. Also shown in the table for

comparison are results obtained in cells with different geometries and using different
methods. It is seen from the table that for small tilt angles (θ = 0.5 and 1.0◦),
the exponents are essentially the same and within the experimental uncertainties the
Re-scaling exponent may be taken the same as that predicted for a PB BL, i.e.
δv ∼ Re−1/2. For larger tilting angles, there appears to be a trend for both β1 and β2

to decrease (absolute value increases) with increasing θ . It thus appears that tilting the
cell by over 1◦ is a rather strong perturbation to the BL, at least for its scaling. The
situation for the amplitude of viscous BL thickness δv is a bit more complicated. From
both figure 9(a) and (b) it seems that at lower values of Ra (Re) the BL thickness
increases with increasing tilting angle, except for θ = 1◦. For this latter tilting angle,
δv appears to have an overall upward shift from the rest data sets. While we do not
know the exact reason(s) for this, we note from figure 6 that the profiles for this tilt
angle seem to have a non-zero intercept on the horizontal axis. This appears to suggest
that the origin of the z-axis for this tilt angle was somehow shifted. But even if this is
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FIGURE 8. (Colour online) Determination of the viscous BL thickness δv through the slope
method from the mean horizontal velocity profile U(z) (circles) and the thickness δσ from
the standard deviation profile σu (crosses). Also shown is the mean vertical velocity profile
W(z)(squares). The measurement was made near the bottom plate with tilt angle θ = 3.4◦ and
at Ra= 4.2× 108.

the case, the relatively small ‘shift’ cannot account for the large ‘deviation’ of this δv
from the rest data sets (assuming there is indeed something ‘wrong’ with this data set).
Aside from the amplitude, the behaviour of the Ra- and Re-scaling exponents may be
summarized as follows. For small tilting angle (θ 6 1◦), the effect of tilting is to lock
the azimuthal plane of the LSC (or restrict its azimuthal meandering range) but the BL
is otherwise not strongly perturbed and scaling wise the BL is approximately PB type.
For relatively large tilting angle (θ > 1◦), the BL appears to be strongly perturbed as
far as scaling is concerned and the absolute value of the scaling exponent increases
with tilting angle, i.e. the BL thickness δv decays with increasing Ra (Re) with a
steeper slope. The situation is illustrated in figure 10 where β2 is plotted as a function
of the tilt angle θ .

In addition to the BL thickness δv determined from the mean horizontal velocity
profile, another length scale can also be defined based on the profile of the horizontal
r.m.s. velocity σu, which may be called the r.m.s. velocity BL thickness, as defined
in figure 8. In figure 11(a) and (b) we plot δσ versus Ra and Reσ , respectively. The
Ra-scaling exponent varies from −0.15 to −0.29, which appears to follow a similar
trend to that of δv, i.e. its absolute value increases with increasing θ . But there are
significant differences between this and the Reσ -scaling exponent and those obtained in
previous studies. Table 2 shows the fitting results of δσ = A3Ra

β3 and δσ = A4Re
β4
σ .

Now we compare our result with previous experimental results obtained in the cells
with different geometries. Using a cylindrical geometry with Γ = 1 and with air as
the working fluid, Li et al. (2012) found experimentally that β1 = −0.24 ± 0.03 and
β2 =−0.54±0.09. In a numerical study also in a Γ = 1 cylindrical geometry, Verzicco
& Camussi (1999) found for the scaling of viscous BL that β1 =−0.18 for Pr = 0.022
and β1 = −0.23 for Pr = 0.7. For the Γ = 1/2 geometry, Verzicco & Camussi (2003)
obtained β1 = −0.309 for Pr = 0.7. Here we compare our results to those from
previous studies with similar or larger Prandtl numbers. As shown in table 2, the value
of β1 obtained in both cylindrical and cubic geometries and measured near the bottom
plate of the cell is −0.16. In all of these previous measurements, the Reynolds number
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FIGURE 9. (Colour online) (a) Measured viscous BL thickness δv versus Ra and
power-law fits (dashed lines) to the respective data sets for the four tilt angles: δv =
137Ra−0.19±0.01 mm (inverted triangles, θ = 0.5◦); δv = 260Ra−0.20±0.01 mm (squares, 1.0◦);
δv = 1078Ra−0.29±0.01 mm (triangles, 2.0◦); and δv = 2442Ra−0.32±0.01 mm (circles, 3.4◦). (b)
Plot of δv versus Re and power-law fits to the respective data sets for the four tilt angles:
δv = 68Re−0.45±0.04 mm (inverted triangles, θ = 0.5◦); δv = 104Re−0.46±0.03 mm (squares, 1.0◦);
δv = 260Re−0.61±0.04 mm (triangles, 2.0◦); and δv = 115Re−0.81±0.01 mm (circles, 3.4◦).

based on the maximum horizontal velocity near the plate was also obtained and they
gave a scaling exponent γ = 0.50 via Re ∼ Raγ . From this we obtain β2 = −0.32. In
these studies, the convection cell was nominally levelled, i.e. not intentionally tilted.
In the present study, for the small tilting angle cases, where we assume the BL is
not strongly perturbed, the measured β1 ' −0.19 when combined with γ = 0.43 give
a β2 ' −0.45 ± 0.04 (note that the actual value of β2 are obtained from fitting the
δv versus Re data, not from the relationship between the exponents). If we take these
values to be close to the PB result, then scaling wise the viscous BL in a cylindrical
geometry is also of a PB type, as was already found in a rectangular cell (Sun
et al. 2008). For the relatively large deviations found in the untilted case, it may be
attributed to the random azimuthal motion of the LSC.

Finally we remark that as far as the scaling of the viscous BL is concerned, there
is no theoretical prediction for the dependence of δv on Ra, only that on Re (for
example, δv ∼ Re−1/2 for the PB BL). In the literature, it is sometimes stated that δv
should scale as Ra−1/4 for the PB BL. This is based on the assumption that Re∼ Ra1/2.
From above we have seen that the scaling exponent of Re with Ra varies over a
rather wide range. It is therefore more meaningful to talk about the scaling of δv
with Re, rather than with Ra. We further note that in Sun et al. (2008) it was found
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FIGURE 10. (Colour online) The scaling exponent β2 versus cell tilt angle θ , where β2 is
obtained from the power-law fit δv/H ∼ Reβ2 . The dashed line indicates β2 = −0.5 for a PB
laminar BL.
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FIGURE 11. (Colour online) (a) Scalings of the BL scale δσ determined from the
measured r.m.s. velocity profiles versus Ra with power-law fits (dashed lines) to the
respective data sets for the four tilt angles: δσ = 106Ra−0.15±0.02 (inverted triangles,
θ = 0.5◦); δσ = 327Ra−0.20±0.02 (squares, 1.0◦); δσ = 493Ra−0.23±0.02 (triangles, 2.0◦); and
δσ = 1822Ra−0.29±0.02 (circles, 3.4◦). (b) Plot of δσ versus Reσ , and the dashed lines are
power-law fits to the respective data sets for the four tilt angles: δσ = 25Re−0.26±0.03

σ (inverted
triangles, θ = 0.5◦); δσ = 50Re−0.37±0.04

σ (squares, 1.0◦); δσ = 59Re−0.41±0.04
σ (triangles, 2.0◦);

and δσ = 139Re−0.54±0.04
σ (circles, 3.4◦).

that δv ∼ Ra−0.27 and Re∼ Ra0.55, which together give δv ∼ Re−0.50. In the present case,
we have δv ∼ Ra−0.20 and Re ∼ Ra0.43, which together give δv ∼ Re−0.46±0.03. Whether
this is fortuitous or there is something deep here remains to be explored.

3.4. Fluctuations and statistical properties of the velocity field in the BL
In previous BL measurements in the cylindrical cell, owing to the nature of the
dual-beam incoherent cross-correlation technique employed (Xin et al. 1996; Lam
et al. 2002), only time-averaged velocity profiles are measured and no time-dependent
quantities are obtained. It is therefore interesting to examine these quantities and
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FIGURE 12. Time traces of horizontal u(t) (a–e) and vertical w(t) (f –j) velocity components
measured at Ra = 2.4 × 108 and θ = 1◦, at x = 0 and at different distances z from the bottom
plate.

compare them with similar quantities obtained in other types of turbulent flows.
Figure 12 shows the time series of both the horizontal component u(t) (a–e) and
the vertical component w(t) (f –j) of the velocity, measured at various positions
from the plate. The corresponding velocity histograms are shown in figure 13. The
measurements were made at Ra = 2.4 × 108 and θ = 1◦. We show the velocity trace
at several typical positions: (i) inside the thermal BL; (ii) around the thermal BL;
(iii) around the viscous BL; (iv) at the position of the maximum velocity; and (v) far
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FIGURE 13. (Colour online) Histograms of (a) the horizontal velocity u(t) and (b) vertical
velocity w(t) measured at various distances from the bottom plate with Ra = 2.4 × 108 and
θ = 1◦.

away from the BLs. The figures show that the absolute horizontal velocity is much
higher than vertical velocity at each position. One general feature we observe is that
velocity time series and histograms look similar for different tilting angles. For this
reason, we show here results for only one tilting angle.

At Ra = 2.4 × 108 and θ = 1.0◦, the viscous BL thickness is δv = 5.07 mm. It is
seen from figure 12(a,b) that at positions inside the BL, the horizontal velocity u(t)
skews toward the positive side, i.e. the velocity is skewed toward the mean flow
direction. This may be understood by the fact that close to the plate the mean velocity
is almost zero and a fluctuation resulting a negative instantaneous horizontal velocity is
a rather rare event. Once outside of the BL, one observes more symmetric fluctuations
around the mean velocity. For the vertical velocity w(t), its mean velocity is very
small at most positions. But the fluctuation increases significantly when the position is
outside of the BL, which are signatures of plume emissions at these positions. These
properties can also be seen from the velocity histograms shown in figure 13. A notable
difference between the present results and those observed by Sun et al. (2008) is
that for positions outside of the BL the horizontal velocity fluctuates more or less
symmetrically around the mean, rather than skewed toward the negative as seen in the
rectangular cell.

The statistical properties of the velocity may be characterized more quantitatively
by its r.m.s. value and its skewness, which are shown in figure 14. Figure 14(a)
plots the velocity r.m.s. σu and σw normalized by maximum horizontal velocity
Umax versus the normalized distance z/δv. Figure 14(b) shows the skewness profiles
Su = 〈(u− 〈u〉)3〉/ (〈(u− 〈u〉)2〉)3/2 and Sw = 〈(w− 〈w〉)3〉/ (〈(w− 〈w〉)2〉)3/2 for the
horizontal and vertical velocities, respectively. Similar to Sun et al. (2008), our result
could not tell whether σw favours a power law or a logarithmic scaling with the
distance z, even though our measurement had a much higher spatial resolution. This is
partly due to the limited size of the measurement area.

3.5. Properties of shear stresses and near-wall quantities
One of the advantages of PIV measurement is that it enables one to measure
the horizontal and vertical velocities at the same time, so that one can calculate
the Reynolds shear stress τR = −ρ(z)〈u′w′〉. Here u′ and w′ are, respectively, the
fluctuations of the horizontal and vertical velocity components away from their
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FIGURE 14. (Colour online) Profiles of (a) the normalized r.m.s. velocity σu (σw) and of
(b) the skewness Su (Sw) measured at Ra = 2.4 × 108 and θ = 1◦. The vertical distance z
is normalized by the velocity BL thickness δv . In both plots the circles represent those for
the horizontal velocity component u and the crosses represent those for the vertical velocity
component w.
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FIGURE 15. (Colour online) Viscous stress τv (solid squares, green online), the Reynolds
stress τR (open circles, red online) and the total stress τ (open diamonds, blue online)
as functions of the normalized distance from the plate for (a) Ra = 4.19 × 108 and (b)
Ra= 4.28× 109, both with θ = 3.4◦.

mean value, u′ = u(t) − 〈u〉 and w′ = w(t) − 〈w〉. Viscous shear stress is defined as
τv = µ(z)du/dz, Note that the dynamic viscosity µ(z) and fluid density ρ(z), because
of their temperature dependence, are dependent on position z in the thermal BL.
The Reynolds stress represents the transport of momentum by turbulent fluctuations,
whereas the viscous stress describes the momentum transfer by viscosity. The total
shear stress is then τ = τv + τR.

Figure 15 plots the profiles of the viscous shear stress, Reynolds stress and total
stress for (a) Ra= 4.19×108, and (b) 4.28×109. It is seen that both Ra have the same
qualitative features. Here the examples are for θ = 3.4◦ and results for other tilting
angles are similar. Near the plate, it is seen that the Reynolds stress τR is close to zero,
while the viscous shear stress τv is maximum because of the large velocity gradient
du/dz at the wall. So the total stress at the wall τw(=τ(0)) comes almost entirely
from the contribution of the viscous shear stress. Moving away from the plate, the
velocity gradient becomes smaller and the viscous shear stress decreases to zero. The
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FIGURE 16. (Colour online) The Ra-dependence of (a) the wall shear stress τw, (b) the
friction velocity uτ , (c) the wall thickness (viscous sublayer) δw and (d) the friction coefficient
cf , with power-law fits shown as solid lines. The symbols represent data for different tilting
angles: θ = 0.5◦ (inverted triangles), 1◦ (squares), 2◦ (triangles) and 3.4◦ (circles).

Reynolds stress τR increases and attains its maximum at z ≈ 1.5δv. It then decreases
to around zero z ≈ 2δv and becomes negative in the bulk flow. It is also seen clearly
from the figure that τR and τv cross at z ≈ 1.5δv, where τR is close to its maximum
value. This suggests that the momentum transfer in the outer region is dominated by
turbulent fluctuations. But in the viscous BL, the momentum transfer is still dominated
by the viscous diffusion, which implies that the viscous BL is still laminar in this
range of Ra.

With the velocity field obtained from high-resolution measurements, we are now in
a position to check the dynamic wall properties in turbulent thermal convection. We
first consider the scaling of four basic wall quantities with both Ra and Re. These
are the wall shear stress τw, the skin-friction velocity uτ = (τ/ρ0)

1/2, the viscous
sublayer length scale δw = ν0/uτ and the skin-friction coefficient cf = τ/ρ0U2

max . Here
ρ0 ≡ ρ(z = 0) and ν0 ≡ ν(z = 0). Figure 16 shows the scaling of these quantities with
Ra. It is seen that within experimental uncertainties there is no difference between
data with different θ . This suggests that tilting the cell does not have any appreciable
effect on BL properties near the wall. Without differentiating the different data sets,
power-law fits to all data yield τw ∼ Ra0.63±0.03, uτ ∼ Ra0.32±0.01, δw ∼ Ra−0.37±0.01 and
cf ∼ Ra−0.19±0.02. In a rectangular cell, Sun et al. (2008) found for the same quantities
the fitted power-law exponents 0.86, 0.44, −0.50 and −0.28 respectively. It is seen
that the absolute values of these exponents are all larger than those obtained in the
present experiment. There is no theoretical prediction for the Ra-scaling of these
quantities in turbulent thermal convection, so we do not know what the differences
mean.
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FIGURE 17. (Colour online) The Re-dependence of (a) the wall shear stress τw, (b) the
friction velocity uτ , (c) the wall thickness (viscous sublayer) δw and (d) the friction
coefficient cf . The symbols represent data for different tilting angles: θ = 0.5◦ (inverted
triangles), 1◦ (squares), 2◦ (triangles) and 3.4◦ (circles). Power-law fits are indicated in the
figure.

It will be more useful perhaps to examine the scaling of these quantities with
the Reynolds number Re, since theoretical predictions exist for such scalings for
wall-bounded shear flows (Schlichting & Gersten 2000). Figure 17 plots these
quantities as a function of Re, the symbols are the same as in figure 16. For the
quantities τw, uτ , δw and cf our results give the exponents 1.46 ± 0.05, 0.75 ± 0.02,
−0.86 ± 0.03 and −0.46 ± 0.05, respectively. For a laminar BL over a flat plate,
the theoretically predicted ‘classical’ exponents for these quantities are 3/2, 3/4, −1
and −1/2, respectively. One sees that within the experimental uncertainties there is
an excellent agreement between the present experiment and the theoretical predictions
for all of the wall quantities except for δw, which is a bit smaller. For reference, the
previous measurement in a rectangular cell gives 1.55, 0.8, −0.91 and −0.34 for the
corresponding quantities (Sun et al. 2008). For the skin-friction coefficient cf , Verzicco
& Camussi (2003) did not give a fitting for cf − Re, but based on Reσ the exponent for
cf is approximately −1/2.

To further compare the present system with classical BLs, we examine velocity
profiles in terms of the wall units. Figure 18 shows the normalized mean horizontal
velocity profiles for four different values of Ra taken at θ = 3.4◦ in a semi-log plot,
here u+ = u(z)/uτ and z+ = z/δw. The linear scaling of u+ over z+ in the viscous
sublayer below z+ < 5 is reflected quite well by the measured profiles confirming that
the BL is not turbulent in the present range of Ra and Pr . The velocity normalized by
wall unit decrease after reaching the maximum value in z+ ∼ 10. Compared with the
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FIGURE 18. (Colour online) Measured horizontal velocity profiles normalized by wall units
for four different Ra all taken at tilting angle θ = 3.4◦.

same quantity measured in the rectangular cell (Sun et al. 2008), however, our result
shows some deviation from the theoretical profile.

3.6. Dynamical scaling and the shape of velocity profiles in the BL
The dynamic scaling method of Zhou & Xia (2010) has been found to work well when
tested in quasi-2D experiment and 2D numerical simulations (Zhou et al. 2010, 2011),
but it has not been examined in 3D experiments. Here we investigate how effective
this method is in our cylindrical geometry. As the method has been well documented
elsewhere (Zhou & Xia 2010; Zhou et al. 2010, 2011), we will only give a brief
description of it here. From the measured instantaneous velocity profile u(z, t) one
can obtain an instantaneous viscous BL thickness δv(t) using the same ‘slope’ method
as used for the mean velocity profiles. A local dynamical BL frame can then be
constructed by defining the time-dependent rescaled distance z∗(t) from the plate as

z∗(t)≡ z/δv(t). (3.1)

The dynamically time-averaged mean velocity profile u∗(z∗) in the dynamical BL
frame is then obtained by averaging over all values of u(z, t) that were measured at
different discrete times t but at the same relative position z∗, i.e.

u∗(z∗)≡ 〈u(z, t) | z= z∗δv(t)〉. (3.2)

Figure 19 shows the mean velocity profiles measured in the laboratory and the
dynamical frames respectively at the four tilting angles and for comparable values of
Ra (as indicated in the figure caption). These results show that the dynamical scaling
method is more effective for larger values of θ , i.e. for larger θ profiles obtained in
the dynamic frame have faster approach to the asymptotic (maximum) velocity than
the corresponding lab frame profiles. This may be understood based on the fact that a
larger tilt angle will place stronger restriction on the azimuthal meandering of the LSC
so that it has less fluctuations in the horizontal direction perpendicular to the mean
flow. We note, however, regardless of the tilt angle, the method works less effectively
than it is in quasi-2D experiment and 2D simulations.

A more quantitative approach to characterize the shape of the mean velocity
profiles is to investigate their shape factor H = δd/δm defined as the ratio between
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FIGURE 19. (Colour online) Comparison between profiles obtained in the dynamical frame
(u∗(z∗), circles, red online) and the laboratory frame (u(z), squares, blue online), measured
at different tilt angles θ but with comparable values of Ra: (a) θ = 0.5◦, Ra = 5.77 × 108;
(b) θ = 1.0◦, Ra= 6.00×108; (c) θ = 2.0◦, Ra= 5.85×108; and (d) θ = 3.4◦, Ra= 6.69×108.
Also shown for comparison is the theoretical PB laminar velocity profile (solid line).

the displacement thickness δd and the momentum thickness δm, where

δd =
∫ ∞

0

[
1− u(z)

umax

]
dz, and δm =

∫ ∞
0

[
1− u(z)

umax

]
u(z)

umax
dz. (3.3)

Since u(z) decays after reaching its maximum value, the above integrations are
evaluated only over the range from z = 0 to where u(z) = umax . For our profiles the
obtained shape factors range between 1.9 to 2.3, which are smaller than H = 2.59, the
value for a laminar PB BL. A shape factor smaller than the theoretical value means
the corresponding profile will approach its asymptotic value (the maximum velocity)
slower than the theoretical profile does.

In figure 20 we show the shape factor H for mean velocity profiles obtained in the
laboratory and dynamical frames respectively for the four tilting angles and for all Ra
measured. The dashed lines in the figure indicate the PB value of 2.59. It is seen that,
despite the data scatter, there is a general trend that for both lab- and dynamical-frame
profiles the deviation from the PB profile increases with Ra. This is no surprise, since,
as the convective flow above the BL becomes more turbulent with increasing Ra, the
BL itself will experience stronger fluctuations and hence larger deviations from the
laminar case. This finding is consistent with those found in a DNS study in the same
geometry by Stevens et al. (2012) for the temperature profile and by Shi et al. (2012)
and by Scheel et al. (2012) for the velocity profile. The second feature is that for
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FIGURE 20. (Colour online) The shape factor H = δd/δm of profiles u∗(z∗) (circles, red
online) obtained in the dynamical frame and of u(z) (squares, blue online) obtained in the
laboratory frame as a function of Ra and for different tilting angles: (a) θ = 0.5◦, (b) 1.0◦,
(c) 2.0◦ and (d) 3.4◦. The dashed line represents the value of 2.59 for the theoretical PB
laminar BL.

all θ and Ra the profiles obtained in the dynamical frame in general show some
degree of improvement towards that of PB value as compared with those obtained in
the laboratory frame. We also note that the degree of improvement does not have an
obvious dependence on Ra within the resolution of the measurement, which is also
consistent with the findings of Zhou & Xia (2010) and Zhou et al. (2010).

Some insight can be obtained by examining the rescaled instantaneous velocity
profiles. Figure 21 show examples of rescaled instantaneous velocity profiles, where
the distance from the plate has been normalized by the instantaneous BL thickness
corresponding to that moment and the velocity has been normalized by the
instantaneous maximum horizontal velocity. It is seen that there are quite few cases
where the rescaled instantaneous velocity profile is rather close to the theoretical PB
profile (up to the point of the maximum velocity) and deviations of the instantaneous
shape are likely caused by disturbances such as plume emissions. Also shown in the
figure are the shape factor H(t) of these instantaneous profiles. To quantify how the
instantaneous profiles are distributed with respect to the PB profile, we examine the
probability density function (p.d.f.) of the shape factor difference δH(t) = H(t) − HPB

where HPB = 2.59. Figure 22 plots the p.d.f.s of δH(t) for the four tilting angles and
for all measured Ra, respectively. Despite the seemingly large variations among them,
these p.d.f.s show the general trend that the rescaled instantaneous profiles measured
at lower values of Ra (.1 × 109) are most of the time having a shape closer to that
of the PB profile and that for higher values of Ra the peaks of the p.d.f.s shift to
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FIGURE 21. (Colour online) Examples of instantaneous horizontal velocity profiles scaled by
the instantaneous viscous BL thickness and the instantaneous maximum velocity (measured at
Ra = 6.00 × 108 and θ = 1◦). The corresponding instantaneous shape factor is also indicated
on the plot. The solid curves are the PB velocity profiles.

smaller values of H. This indicates that with increasing Ra the profiles around the BL
thickness becomes more rounded, i.e. the approach to the maximum velocity becomes
slower and slower. We further note that these general trends are true across all tilt
angles. Another feature observed in the present 3D case is that we did not find any
strong correlation between the instantaneous BL thickness δv and the velocity u(t) just
above the BL. This is in contrast to the finding in the quasi-2D experiment where δv
and u(t) are found to have a strong negative correlation, i.e. a large velocity above
would exert a stronger shear and therefore thins the BL thickness (Zhou & Xia 2010).
This result suggests that in certain aspect the BLs in the 3D and in the 2D/quasi-2D
cases are dynamically different.

4. Summary and conclusions
We have conducted an experimental study of velocity BL properties in turbulent

thermal convection. Two-dimensional high-resolution measurements of the velocity
field were made using the PIV technique in a cylindrical cell of height H = 18.6 cm
and aspect ratio close to unity, with the Rayleigh number Ra varying from 2.4 × 108

to 5.6 × 109 and the Prandtl number Pr fixed at ∼5.4, with the convection cell tilted
with respect to gravity at angles θ = 0.5, 1, 2 and 3.4◦, respectively. Measurements
made with small θ are aimed at studying BL properties under more steady shear, but
the BL itself is assumed to be unperturbed otherwise. For large values of θ we wish
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FIGURE 22. (Colour online) Probability density functions of the shape-factor difference δH
between those of the rescaled instantaneous profiles and that of the PB profile, measured at
(a) θ = 0.5◦, (b) 1.0◦, (c) 2.0◦, and (d) 3.4◦.

to examine how the BL responds to relatively large perturbations. We also examined
effectiveness of the dynamical BL scaling method in a 3D system.

It is found that the Reynolds number Re (=UmaxH/ν) based on the maximum
mean horizontal velocity scales with Ra as Re ∼ Ra0.43 and the Reynolds number Reσ
(=σmaxH/ν) based on the maximum r.m.s. velocity scales with Ra as Reσ ∼ Ra0.55.
Both exponents do not seem to have a dependence on the tilt angle. On the other hand,
the amplitude of Re seem to show a weak increasing trend with θ .

With the measured horizontal velocity, we obtain two length scales, i.e. the viscous
BL thickness δv based on the mean horizontal velocity profile and the length scale
δσ based on the r.m.s. horizontal velocity profile. It is found that as far as scaling
with the Reynolds number Re is concerned, the behaviour of δv can be divided
into two regimes according to the tilting angle of the cell. For θ 6 1◦, it is found
that δv ∼ Re−0.46±0.03, which within experimental uncertainty may be considered to be
consistent with that of the Prandtl–Blasius BL. For θ > 1◦, the absolute value of the
exponent is found to increase with θ and in this case the BL may be considered to
be strongly perturbed. It is found that similar to δv, the absolute value of the scaling
exponent of δσ increases with increasing θ .

It is also found that tilting the cell modifies the velocity profile in the BL region, i.e.
for different tilt angles the shape of profiles is different. But for the same tilting angle
the velocity profiles measured at different Ra can be brought to collapse on a single
curve when the mean velocity is normalized by the maximum velocity Umax and the
distance from the plate by the viscous BL thickness δv.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

17
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.17


166 P. Wei and K.-Q. Xia

With simultaneously measured horizontal and vertical velocity components, we also
obtain the Reynolds stress τR in the velocity BL. It is found that τR is stronger in the
mixing zone comparing with the rectangular cell. The wall quantities such as the wall
shear stress τw, the viscous sublayer δw, the friction velocity uτ are also measured.
Their scaling exponents with the Reynolds number are found to be in excellent
agreement with those predicted for classical laminar BLs, which is also consistent
with the measurement in rectangular cell.

Regarding the dynamical scaling method, we found that in general it leads to
profiles that are closer to the theoretical PB profile when the cell is tilted at a larger
angle. With respect to the influence of Ra, it is found that in general the mean velocity
profile sampled in both the laboratory and dynamical frames are closer to the PB
profile at smaller values of Ra than they are at larger Ra, which is consistent with
findings from previous DNS studies. Moreover, it is found that for smaller values of
Ra (.1 × 109) the p.d.f.s of the shape factor H for the rescaled instantaneous profiles
exhibit a peak close to that for the PB profile, whereas for larger values of Ra the
peaks shift to smaller values of H, indicating the profile’s approach to the maximum
velocity becomes slower and slower with increasing Ra. Another finding is that the
effectiveness of the dynamical scaling method, in terms of its ability of bringing
the mean velocity profile closer to that of PB profile, does not have any apparent
dependence on Ra. Our general conclusion is that as far as the effectiveness of the
dynamical scaling method is concerned the influence of tilting angle is much smaller
than that of the Rayleigh number Ra. We note that the Prandtl–Blasius BL theory is
a 2D model, so it is perhaps no surprise that the dynamic method works less well in
three dimensions than in two dimensions.

Acknowledgements
We would like to thank X.-D. Shang and S.-Q. Zhou for kindly making their PIV

facility available to us and L. Qu, Y.-C. Xie and S.-D. Huang for helping with the
experiment. This work was supported in part by the Hong Kong Research Grants
Council (RGC) under Project Numbers CUHK404409 and CUHK403811, and in part
by a RGC Direct Grant (project code 2060441).

R E F E R E N C E S

AHLERS, G., BROWN, E. & NIKOLAENKO, A. 2006 The search for slow transients, and the effect
of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 557,
347–367.

AHLERS, G., GROSSMANN, S. & LOHSE, D. 2009 Heat transfer and large-scale dynamics in
turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537.

ASHKENAZI, S. & STEINBERG, V. 1999 High Rayleigh number turbulent convection in a gas near
the gas–liquid critical point. Phys. Rev. Lett. 83, 3641–3644.

BELMONTE, A., TILGNER, A. & LIBCHABER, A. 1993 Boundary layer length scales in thermal
turbulence. Phys. Rev. Lett. 70, 4067–4070.

BELMONTE, A., TILGNER, A. & LIBCHABER, A. 1994 Temperature and velocity boundary layers in
turbulent convection. Phys. Rev. E 50, 269–279.

BROWN, E., FUNFSCHILLING, D. & AHLERS, G. 2007 Anomalous Reynolds-number scaling in
turbulent Rayleigh–Bénard convection. J. Stat. Mech. Theory E. 2007 (10), P10005.

BROWN, E., NIKOLAENKO, A. & AHLERS, G. 2005 Reorientation of the large-scale circulation in
turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.
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