
J. Inst. Math. Jussieu (2019) 18(3), 449–497

doi:10.1017/S147474801700007X c© Cambridge University Press 2017

449

DUBROVIN’S SUPERPOTENTIAL AS A GLOBAL
SPECTRAL CURVE

P. DUNIN-BARKOWSKI1, P. NORBURY2, N. ORANTIN3, A. POPOLITOV4,5 AND

S. SHADRIN4

1Faculty of Mathematics, National Research University Higher School of

Economics, Usacheva 6, 119048 Moscow, Russia (ptdbar@hse.ru)
2School of Mathematics and Statistics, University of Melbourne, 3010 Australia

(pnorbury@ms.unimelb.edu.au)
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1. Introduction

1.1. Goal of the paper

A semi-simple (conformal) Frobenius manifold is an important algebro-geometric

structure, introduced by Dubrovin, that appears naturally in a circle of questions related

to classical mirror symmetry. Closely related to a semi-simple conformal Frobenius

manifold is a cohomological field theory, that is, a system of cohomology classes on

the moduli space of stables curves introduced by Kontsevich and Manin in order to

capture the main universal properties of Gromov–Witten theory. Via Givental–Teleman

theory, these two concepts (semi-simple conformal Frobenius manifolds and semi-simple

homogeneous cohomological field theories) are essentially equivalent.

The theory of Landau–Ginzburg superpotentials associates to a Riemann surface (or a

family of Riemann surfaces) equipped with a meromorphic function and a meromorphic

differential 1-form (or a meromorphic function whose differential is this 1-form) structure

that is essentially equivalent to the concept of a semi-simple Frobenius manifold, after

work of Dubrovin [6]. It is part of a more general theory of Landau–Ginzburg models

that exists in any dimension, not necessarily on a curve.
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The theory of spectral curve topological recursion, initially developed for computation

of the correlation differentials of matrix models, uses a very similar input: a Riemann

surface (or a family of Riemann surfaces) equipped with a meromorphic function,

a meromorphic differential 1-form (or a meromorphic function, whose differential

is this 1-form), and a symmetric bidifferential. It produces a system of symmetric

differentials on the Cartesian powers of the underlying Riemann surface. Under some

extra conditions these symmetric differentials can be expressed in terms of the correlators

of a cohomological field theory.

To summarize, we have the following system of relations:

semi-simple conformal ↔ Landau–Ginzburg

Frobenius manifolds (FM) superpotentials (LG)

m

semi-simple homogeneous spectral curve

cohomological field theories (CohFT) ↔ topological recursion (TR)

(1.1)

We give precise definitions of all geometric structures involved in this diagram and explain

the precise statements about their relations in § 2. In all cases the rigorous formulation of

these correspondences requires extra conditions and is not a one-to-one correspondence

or an equivalence of categories. It is more like a dictionary that allows one to translate

from one language to another under various extra assumptions.

The theory of Landau–Ginzburg superpotentials and spectral curve topological

recursion use almost the same input data, namely a Riemann surface equipped with

a meromorphic function and a meromorphic differential 1-form. This input data is used

in a completely different way in these two theories; nevertheless, the natural question is

whether one can add a vertical arrow so that the diagram commutes. More explicitly, if

a Landau–Ginzburg superpotential and spectral curve topological recursion produce the

same Frobenius manifold/CohFT structure on the left hand side of this diagram, do we

expect that the input data for the LG model and TR to be the same?

This paper is devoted to an affirmative answer to this question. As in the case of all

other correspondences in this diagram, it is not an equivalence of categories or one-to-one

correspondence, but rather a system of general statements that allows one to connect the

input data of LG and TR in a large class of examples.

1.2. Description of the main results

A Landau–Ginzburg superpotential determines a structure of a semi-simple conformal

Frobenius manifold. However, a particular semi-simple Frobenius structure can have

several different superpotentials, and it is not at all clear that it always has a

superpotential. The latter problem was addressed by Dubrovin in [7], where he proposed a

general construction that under some mild extra assumptions associates a superpotential

to a Frobenius manifold. This construction is called Dubrovin’s superpotential in this

paper. It is a family of curves Dτ = D(τ ) parametrized by the semi-simple points τ of the

underlying Frobenius manifold, equipped with two meromorphic functions, λτ and pτ (in

fact, the differential form dpτ would be sufficient for the definition). This construction
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depends on some choices, which are an important part of the LG–TR correspondence

presented in this paper.

For the spectral curve topological recursion we need a Riemann surface Σ with two

meromorphic functions, x and y (in fact, the differential forms dx and dy are sufficient

for the construction), and a symmetric bidifferential B on Σ ×Σ with double pole with

biresidue 1 on the diagonal [15–17].

To every point of the Frobenius manifold we associate a cohomological field theory

ατ , using the Givental–Teleman theory (see [13, 21, 28–30]). Under some conditions one

can also associate a CohFT to the spectral curve topological recursion [10] (see also [25],

where an approach using singularity theory is given, and [14], where a more general

framework for this correspondence is discussed).

The mains results of this paper, Theorems 5.1 and 6.1, are devoted to proving that

topological recursion applied to

Σ = Dτ , x = λτ , y = pτ ,

and some choice of B gives, under the correspondence from [10], exactly the CohFT

ατ .

One main tool in the proofs of Theorems 5.1 and 6.1 is the result of [10] which associates

a CohFT to topological recursion applied to a spectral curve satisfying a set of conditions.

These conditions give a close relation between x , y and B. Our main task is to show that

λτ , pτ and an appropriately chosen B satisfy these relations. Here we give a brief outline

of the proof.

The identification of x and λ up to some topological properties is the starting point since

the CohFT is based on a vector space formally spanned by the zeros of dx , respectively

the zeros of dλ. On the side of topological recursion there is one requirement that we need,

namely we have to assume that there is exactly one critical point on Dτ over each critical

value of x = λτ .1 This gives a restriction on the possible choices of analytic continuation

in Dubrovin’s superpotential.

The relation of y with structure constants in the Frobenius manifold required in [10]

leads to an identification of y = pτ . This theorem (Theorem 3.1) is heavily based on the

computations done by Dubrovin in [7]. Next we need to find a good choice of B that will

make either theorem work. In genus zero we find that the unique possible Bergman kernel

B satisfies the conditions required by [10] which we present in a form that can be checked

(or used as a condition) for the superpotentials. This is Theorem 4.1 and its corollaries.

It allows us to conclude that topological recursion applied to the superpotential produces

a CohFT and it remains to prove that this CohFT is the one associated to the Frobenius

manifold defined by the superpotential. We show that in fact it is sufficient to know that

we get a homogeneous CohFT from the Bergman kernel – then the correct CohFT ατ is

reproduced automatically. This leads to a general theorem on the LG–TR correspondence

in genus 0 (Theorem 5.1). This theorem is key to several important examples that we

discuss in this paper as well (we mention these examples in the list of applications in § 1.3).

1We release this constraint in § 10.
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In higher genera, the Bergman kernel is not canonical and we need to choose the correct

one. In order to have a suitable shape of the Laplace transform of the Bergman kernel

(required for a correspondence with Givental graphs), we have to use the Bergman kernel

normalized on a basis of A-cycles for some Torelli marking, using results of Eynard [14].

We show, using the Rauch variational formulas, that the homogeneity property is also

satisfied in this case, and this allows us to make a general statement for the LG–TR

correspondence in any genus (Theorem 6.1). This is a conditional statement requiring

Theorem 4.1 that needs to be checked in particular examples. Still there are interesting

examples; in particular, we work out an elliptic example in detail (Theorem 9.2).

Finally, we develop a theory for the case when the extra assumptions on the choice

of analytic continuation of Dubrovin’s superpotential are dropped. In this case we have

to generalize the setup of topological recursion in order to take into account the action

of the reflection group associated with Frobenius manifold. The correspondence that we

obtain in this case (Theorem 10.6) is parallel to the ideas of Milanov [26].

1.3. Contributions to the theory of topological recursion

In order to establish a correspondence with the Landau–Ginzburg theory and to work

out several basic examples, we obtain a number of results that are of independent interest

for the theory of topological recursion, and here we collect them all.

1.3.1. Global spectral curve for the CohFT–TR correspondence. One way to

present our main result is the following. The correspondence between CohFT and TR

obtained in [10] uses a local version of topological recursion, that is when the spectral

curve is just a union of disks. An important open question is whether we can glue all

these open disks into a global spectral curve. This would allow one to use a variety of

analytical methods developed in the theory of topological recursion that are applicable

only in the case of a global curve [16, 17]. The main result of our paper is an affirmative

answer to this question, that is, for a large class of CohFTs we can indeed claim the

existence of a global spectral curve. In this form this question was also considered by

Milanov for singularity theory [26].

1.3.2. Bouchard–Eynard recursion locally. Topological recursion requires the

spectral curve to have simple critical points. There is an extension of the theory of

topological recursion for the curves with higher order critical points, due to Bouchard

and Eynard [3]. A fundamental question is to identify the correlation functions of their

generalized recursion in the elementary case of one point of order r + 1. Bouchard and

Eynard have announced [4] a theorem that in this case the correlators are expanded in

terms of the string tau-function of the r -Gelfand–Dickey hierarchy (or, equivalently, in

terms of the intersection theory of the Witten top Chern class on the moduli space of

r -spin structures, [18, 31]).

An application of the main theorem of this paper, i.e. where topological recursion

applied to Dubrovin’s construction of a superpotential produces the same CohFT is the

case of the An singularity. Careful analysis of this example in its limit at the zero point

implies immediately the theorem of Bouchard and Eynard.
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1.3.3. Enumeration of hypermaps. Each time a particular combinatorial problem

is solved in terms of topological recursion, there occurs a natural question whether

this leads to an interesting CohFT inside this combinatorial problem, and, as a

consequence, to an interesting ELSV-type formula for it. This logic is explained in detail

in [12, Introduction]. In particular, the topological recursion was proved in [11] for the

enumeration of hypermaps; see also [5].

In the case of hypermaps the correspondence between LG and TR gives us immediately

a full description of the Frobenius manifold structure behind this combinatorial problem;

it is a particular simple example of a so-called Hurwitz–Frobenius manifold. In the

simplest case one can say that the Frobenius manifold with the prepotential t2
1 t2/2+

t2
2 log t2 resolves, via its associated CohFT and the ELSV-type formula, the combinatorial

problem known, in different versions, as generalized Catalan numbers, discrete volumes

of moduli spaces, or discrete surfaces [1, 9, 17, 27]. This explains, in a conceptual way,

some observations already made in [2, 19].

1.3.4. Bergman kernel and Torelli marking. Another important application of

this paper is to prove a form of independence of the output of topological recursion from

the choice of the bidifferential B for a global spectral curve. Topological recursion depends

on B and there are many ways to normalize B depending on a choice of Torelli marking on

the Riemann surface. We show that for a global spectral curve satisfying a compatibility

condition, topological recursion gives rise to a so-called homogeneous CohFT with flat

identity independent of the choice of normalization of B.

1.4. Guide to the paper

In § 2, we give a full description of all concepts mentioned in diagram (1.1) and explain

the known relations between them.

In § 3, we prove that Dubrovin’s superpotential always gives the right function y
for the topological recursion. Then, in § 4, we revisit in geometric terms the necessary

compatibility conditions between y and B on the spectral curve from [10]. This allows

us to prove the two main theorems of this paper. Namely, in § 5, we prove the LG–TR

correspondence in the genus 0 case, and in § 6, we generalize this result to higher genera.

Then we discuss several important series of examples, where Dubrovin’s superpotential

can be computed explicitly. In § 7, we discuss An singularities, with an application to the

Bouchard–Eynard generalization of topological recursion. In § 8, we present in detail a
computation for a special class of Hurwitz–Frobenius manifolds, corresponding to the

case of meromorphic functions on the Riemann sphere with two poles, one of which is

of order 1. In this case the corresponding topological recursion resolves enumeration of

hypermaps. In § 9, we describe a higher genera case, namely, we consider the case of an

elliptic curve, where the superpotential is given by the Weierstrass function.

Section 10 is devoted to a general theory where we use a universal construction

of analytic continuation instead of the rather particular constructions of §§ 7–9. This

essentially reproduces, in our context, the main ideas of the work of Milanov [26] initially

applied by him to the case of simple singularities.
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In the appendix we explicitly construct global spectral curves for two rank 2 CohFTs.
We need to vary the construction slightly due to degeneracy of the Gauss–Manin system.
These examples satisfy the conditions of Theorem 6.1 and hence topological recursion
produces the CohFT associated to the Frobenius manifold.

2. Recollection of basic facts

The purpose of this section is to recall all necessary definitions and facts on Frobenius
manifold, moduli spaces of curves, cohomological field theories, Dubrovin’s universal
construction of Landau–Ginzburg superpotentials, and topological recursion.

2.1. Frobenius manifolds

In this section we recall, following [6, 7], the definition of a Frobenius manifold and
recollect some basic facts about its structures.

Consider a function F(t1, . . . , tn) defined on a ball B ⊂ Cn and a constant inner product
ηαβ such that the triple derivatives of F with one shifted index,

Cγ
αβ :=

∂3 F
∂tα∂tβ∂tλ

ηλγ , (2.1)

are the structure constants of a commutative associative Frobenius algebra with the
scalar product given by ηαβ . We can think about this structure as defined on the tangent
bundle of B ⊂ Cn (and we denote the corresponding multiplication of vector fields by ·),
and we require that ∂t1 is the unit of the algebra in each fiber.

Consider a vector field E :=
∑n
α=1((1− qα)tα + rα)∂tα , here qα and rα are some

constants, α = 1, . . . , n. We require that q1 = 0 and rα 6= 0 only in the case 1− qα = 0.
We require that there exists a constant d such that E .F − (3− d)F is a polynomial of
order at most 2 in t1, . . . , tn .

The triple (F, η, E) that satisfies all conditions above gives us the structure of a
(conformal) Frobenius manifold of rank n and conformal dimension d. The function F is
called the prepotential; the vector field E is called the Euler vector field. Of course, there
are coordinate-free descriptions of this structure as well; we refer to [6, 7] for details.

Two important structures associated to Frobenius manifolds are the second metric
η′ on TB and the extended flat connection ∇̃ on B×C. The second metric η′ on TB
is defined in the following way. The first metric η can be considered as an isomorphism
η : TB→ T ∗B. For any two vector fields ∂ ′ and ∂ ′′ we define η′(∂ ′, ∂ ′′) to be E ` η(∂ ′ · ∂ ′′).
The extended connection ∇̃ is defined as

∇̃∂ ′∂
′′
:= ∇

η

∂ ′
∂ ′′+ z∂ ′ · ∂ ′′; (2.2)

∇̃∂ ′∂z := 0; (2.3)

∇̃∂z∂z := 0; (2.4)

∇̃∂z∂
′
:= ∂z(∂

′)+ E · ∂ ′−
1
z
µ∂ ′, (2.5)

where ∇η is the Levi-Civita connection of η, and the endomorphism µ : TB→ TB is
defined by

µ(v) := (1− d/2)v−∇ηv E . (2.6)

In the flat basis, µ = diag(µ1, . . . , µn) for constants µα = qα − d/2.
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In this paper we only consider semi-simple Frobenius manifolds, that is, we require

that the algebra structure on an open subset Bss
⊂ B is semi-simple. In a neighborhood

of a semi-simple point we have a system of canonical coordinates u1, . . . , un , defined up

to permutations, such that the vector fields ∂ui , i = 1, . . . , n, are the idempotents of the

algebra product, and the Euler vector field has the form E =
∑n

i=1 ui∂ui .

The geometric structure that is equivalent to the notion of conformal Frobenius

manifolds can be described in canonical coordinates [6]. The canonical coordinate vector

fields ∂ui are orthogonal but not orthonormal. We can normalize them to produce a

so-called normalized canonical frame in each tangent space, that is, if 1−1
i = η(∂ui , ∂ui ),

then the orthonormal basis is given by 1
1/2
i ∂ui , i = 1, . . . , n. By 9 we denote the

transition matrix from the flat basis to the normalized canonical one. Hence the columns

of 9 are given by the coordinates of the flat vectors ∂tα in the basis 1
1/2
i ∂ui , with first

column 9i1 = 1
−1/2
i representing the unit vector. We have the relation

E ·9 = 9µ,

where E · is differentiation with respect to E .

Define the matrix V to be the endomorphism µ with respect to the normalized canonical

basis, hence V = 9 · diag(µ1, . . . , µn) ·9
−1 and V + V T

= 0. Covariant constancy of µ

implies that V satisfies

dV = [V, d9 ·9−1
].

Define Vi = ∂ui9 ·9
−1 so

∑
i ui Vi = V .

Remark 2.1. Note that Givental [21] (and [10]) uses a different convention for matrices

than what is used here. Givental’s convention uses a right action of matrices on vectors

which is the transpose of the convention we use here.

2.2. Superpotential

A convenient way to describe a Frobenius structure is in terms of a so-called

Landau–Ginzburg superpotential. We recall the definition from [6, 7]. A superpotential is

a function λ(p, u1, . . . , un) of a variable p ∈ D in some domain D that depends on points

(u1, . . . , un) ∈ B0 ⊂ Bss in a ball in the semi-simple part of the Frobenius manifold, and

satisfies the following properties:

(1) The critical values of λ as a function on D are u1, . . . , un .

(2) The critical points are non-degenerate.

(3) If there are several critical points in the inverse image λ−1(ui ), then the Hessians

of λ at these points must coincide.

(4) For any choice p1, . . . , pn ∈ D of the critical preimages of u1, . . . , un (that is,

λ(pi , u1, . . . , un) = ui ) and for any choice of the vector fields ∂ ′, ∂ ′′, and ∂ ′′′ on

B0 we have:

η(∂ ′, ∂ ′′) = −

n∑
i=1

Res
p→pi

∂ ′(λ dp)∂ ′′(λ dp)
dpλ

; (2.7)
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η′(∂ ′, ∂ ′′) = −

n∑
i=1

Res
p→pi

∂ ′(log λ dp)∂ ′′(log λ dp)
dp log λ

; (2.8)

η(∂ ′ · ∂ ′′, ∂ ′′′) = −

n∑
i=1

Res
p→pi

∂ ′(λ dp)∂ ′′(λ dp)∂ ′′′(λ dp)
dp dpλ

(2.9)

where ∂ ′(λ dp) gives the action of the vector field by derivation in the parameters

ui . In particular, the map ∂ ′ 7→ ∂ ′(λ dp) from vector fields on B to meromorphic

differentials on D quotiented out by dpλ is injective.

(5) There exist some cycles Z1, . . . , Zn in D such that the integrals

1
√

z

∫
Zα

ezλ dp, α = 1, . . . , n (2.10)

converge and give a non-degenerate system of flat coordinates for ∇̃.

In these terms, the identity vector field ∂t1 of the Frobenius manifold is represented by

dp, i.e. ∂t1(λdp) = dp. Indeed, since η(∂t1 · ∂, ∂ ′) = η(∂, ∂ ′) for all vector fields ∂, ∂ ′, then

non-degeneracy of η implies that ∂t1 · ∂ = ∂ for all ∂. The Euler vector field is represented

in these terms by λ dp, i.e. E(λ dp) = λ dp.

2.3. Cohomological field theories

In this section, we recall all basic definitions that are necessary to introduce the concept

of a cohomological field theory. It is an algebraic structure on a given vector space that

captures the main properties of Gromov–Witten theories, and there is a natural group

action on these structures, due to Givental. The main sources for this section are [21, 23,

28–30].

A stable curve of genus g with k marked points is a possibly reducible curve with nodal

singularities, of arithmetic genus g and k non-singular marked points, such that the group

of its automorphisms is finite. By Mg,k we denote the moduli space of stable curves

of genus g with k ordered marked points. There are natural line bundles L i →Mg,k ,

i = 1, . . . , k, whose fiber at the point [(Cg, x1, . . . , xk)] ∈Mg,k represented by the curve

Cg with the marked points x1, . . . , xk ∈ Cg is given by T ∗xi
Cg. The first Chern class of L i

is denoted by ψi ∈ H2(Mg,k,C).
There are a number of natural maps between the moduli spaces. By π :Mg,k+1 →Mg,k

we denote the map that forgets the last marked point and stabilizes the curve. By

σ : Mg1,k1+1×Mg2,k2+1 →Mg,k we denote the map that sews the last marked points

on the source curves into a node on the target curve, g = g1+ g2, k = k1+ k2. By

ρ :Mg−1,k+2 →Mg,k we denote the map that sews the two last marked points on the

source curve into a node on the target curve.

Consider a vector space V = C〈e1, . . . , en〉 with a scalar product η. A cohomological

field theory with the target (V, η) is a system of cohomology classes αg,k : V⊗k
→

H∗(Mg,k,C) satisfying the following conditions:

(1) The form αg,k , g > 0, k > 0, 2g− 2+ k > 0, is invariant under the action of Sk that

simultaneously reshuffle V⊗k and relabel the marked points on the curves in Mg,k .
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(2) We have:

π∗αg,k = e1 ` αg,k+1; (2.11)

σ ∗αg,k+1 = ηαβeα ⊗ eβ ` αg1,k1+1αg2,k2+1; (2.12)

ρ∗αg,k = ηαβeα ⊗ eβ ` αg−1,k+2. (2.13)

Here by ` we denote the substitution of the vector e1 at the (k+ 1)-st argument in

the first equation, and the substitution of the bivector corresponding to the scalar

product at the marked points that are sewed into the nodes under the maps σ

and ρ.

Note that if all classes {αg,k} are of degree 0, then the structure that we get is called a

topological field theory (TFT), and it is equivalent to a Frobenius algebra structure on

(V, η).
Correlators, or ancestor invariants, of the CohFT are defined by:∫

Mg,k

αg,k(eν1 , . . . , eνk ) ·

k∏
j=1

ψ
m j
j (2.14)

for mi ∈ N, {eν, ν=1,...,N } ⊂ H .

There is a group action on CohFTs with a fixed target space (V, η). The group is the

group of matrices R(z) ∈ End(V )⊗C[[z]] such that R = I+ O(z) and R(z)R∗(−z) = I.
The action is defined as follows. The classes {α′g,k} = R.{αg,k} are defined as the sums

over so-called stable graphs.

A stable graph is a graph with a set of vertices V , a set of edges E , and a set of

unbounded edges (leaves) L t D. The vertices are labeled by non-negative integers, that

is, we have a map V → Z>0, v 7→ g(v). The stability condition means that for each vertex

v of valency k(v) we require 2g(v)− 2+ k(v) > 0. We say that the stable graph 0 has

genus g and k leaves if b1(0)+
∑
v∈V g(v) = g and |L| = k. So, we allow an arbitrary

number of unbounded leaves in D (these leaves are called dilaton leaves), that is, the set

of stable graphs of genus g with k leaves is infinite. The leaves in L are labeled from 1
to k.

A stable graph 0 gives us a map f0 from the Cartesian product of the spaces Mg(v),k(v),

v ∈ V , to Mg,k . Namely, we associate to each vertex v a curve of genus g(v), and to all
attached half-edges we associate the marked points on the curve. Then we first apply the

maps π on each space Mg(v),k(v), v ∈ V , in order to forget all marked points corresponding

to the dilaton leaves, and then we apply a sequence of maps σ and ρ, indexed by the

edges E of the graph, such that each edge determines the sewing of the corresponding

curves.

We associate to a stable graph 0 a map from V⊗k to
⊗

v∈V H∗(Mg(v),k(v),C). That

is, a map from eα1 ⊗ · · ·⊗ eαk to the following class. We decorate by R−1(ψ)eαi the leaf

labeled by i . We decorate each dilaton leaf by −ψ(I− R−1(ψ))e1. We decorate each edge

by (
I⊗ I− R−1(ψ ′)⊗ R−1(ψ ′′)

ψ ′+ψ ′′

)
ηαβeα ⊗ eβ , (2.15)
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where by ψ ′ and ψ ′′ we denote the ψ-classes associated with the marked points that

correspond to the ends of the edge. Each vertex v is decorated by αg(v),k(v) considered as

an element of (V ∗)⊗k(v)
⊗ H∗(Mg(v),k(v),C). We contract the tensor product of the vectors

corresponding to edges and leaves with the tensor product of covectors corresponding to

the vertices according to the graph. This gives us a class α0 in
⊗

v∈V H∗(Mg(v),k(v),C).
By definition, the class α′g,k is given by

∑
0( f0)∗α0, where the sum is taken over all

stable graphs of genus g with k leaves. Though there is an infinite number of graphs like

that, one can check that only a finite number of them can contribute to this sum for

dimensional reasons. It is indeed a group action on CohFTs; see e.g. [28].

There is a canonical way to associate a CohFT to a semi-simple point of a Frobenius

manifold. Namely, we associate to a point b ∈ Bss of a Frobenius manifold the topological

field theory {αg,k} with values in (Tb B, η|b). The equations for the flat sections of the

connection ∇̃ have essential singularity at z = ∞. The asymptotic fundamental solution

near z = ∞ can be represented in a neighborhood of b as 9−1 R(z−1)ezU , where all

involved matrices are functions on Bss , and the matrix R satisfies all properties required

in the definition of the group action. We can construct a CohFT applying the group

element R(z)|b to the topological field theory on (Tb B, η|b).

2.4. Dubrovin’s superpotential

In this section, we recall a construction of a particular Landau–Ginzburg superpotential

due to Dubrovin [7].

Given a manifold M equipped with a flat metric, a locally defined function t is a flat

coordinate at p ∈ M , if

(i) dt (p) 6= 0 and

(ii) dt is covariantly constant with respect to the Levi-Civita connection.

Condition (i) guarantees that t is a local coordinate, i.e. we can find a coordinate system

(t1, . . . , tn) with t1
= t and an open neighborhood B ⊂ M of p such that (t1, . . . , tn) :

B → B0 ⊂ Rn is a homeomorphism onto an open set B0 of Rn . Condition (ii), which

uses the induced connection on the cotangent bundle, guarantees that (t1, . . . , tn) can be

chosen so that the metric is represented by a constant matrix with respect to (t1, . . . , tn).

We now consider a flat coordinate ρ(λ, u) with respect to the pencil of metrics η′− λη.

We study covariant constancy of dρ via its gradient vector field φ(λ, u) = ∇ρ(λ, u) defined
by

(η′− λη)(φ, ·) = dρ.

The Levi-Civita connection of η′ with respect to flat coordinates (for η) is given in [7,

equation (5.5)]). This leads to the following system of equations for vector fields φ

expressed in canonical coordinates on a Frobenius manifold (the extended Gauss–Manin

system [7, equations (5.31) and (5.32)]):

dφ = −(U − λ)−1d(U − λ)
( 1

2 + V
)
φ+ d9 ·9−1φ. (2.16)

Here d = dλ+ du is the total de Rham differential; U = diag(u1, . . . , un) and V and 9

are naturally associated to a Frobenius manifold as defined in § 2.1. Abusing notation,
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we use λ for the matrix of multiplication by λ. So (2.16) encodes the system of PDEs

giving covariant constancy of φ(λ, u) = ∇ρ(λ, u) in directions ∂/∂λ, ∂/∂ui .

One can retrieve ρ from its gradient vector field via

ρ(λ, u) =

√
2

1− d
φT (U − λ)91. (2.17)

This is proved in [8, § 2].

This equation has poles at λ = u1, . . . , un on the λ-plane, so we choose parallel

cuts L1, . . . , Ln from the points ui to infinity (we assume that u j 6∈ L i for i 6= j).
On C \

⋃n
i=1 L i we choose branches of functions

√
ui − λ, i = 1, . . . , n. We denote by Ri

the monodromy of the space of solutions of equation (2.16) corresponding to following a

small loop around u1.

Dubrovin proves that there exist a unique system of solutions φ(1), . . . , φ(n) to equation

(2.16) satisfying the following properties:

R jφ
( j)
= −φ( j), j = 1, . . . , n; (2.18)

φ
( j)
j =

1√
u j − λ

+ O
(√

u j − λ
)

for λ→ u j , j = 1, . . . , n; (2.19)

φ
( j)
a =

√
u j − λ · O(1) for λ→ u j , a 6= j; a, j = 1, . . . , n; (2.20)

R jφ
(i)
= φ(i)− 2Gi jφ( j), i, j = 1, . . . , n; (2.21)

where Gi j
:= (φ(i))T (U − λ)φ( j) is a bilinear form that does not depend on λ and

u1, . . . , un .

Assume that Gi j is non-degenerate and denote by Gi j the inverse matrix. Note that

non-degeneracy of Gi j is a property of the Frobenius manifold M which holds generically.

In fact the proof of Theorem 3.1 does not require the non-degeneracy of Gi j —see

Remark 3.2. Consider a special solution of equation (2.16) given by φ :=
∑n

i, j=1 Gi jφ
( j).

The main property of this solution is that φ has the local behavior

φ j =
1√

u j − λ
+ O(1) for λ→ u j , j = 1, . . . , n; (2.22)

φa =
√

u j − λ · O(1) for λ→ u j , a 6= j; a, j = 1, . . . , n. (2.23)

We consider the function p = p(λ, u) given by the formula

p(λ, u) :=

√
2

1− d
φT (U − λ)91. (2.24)

This function is analytic in C \
⋃n

i=1 L i , with a regular singularity at infinity, and its

local behavior for λ→ ui is given by

p(λ, u) = p(ui , u)+9i,1
√

2(ui − λ)+ O(ui − λ), i = 1, . . . , n. (2.25)

The 1-form dλ p has at most a finite number of zeros. We denote them by r1, . . . , rN and

we assume that they do not belong to the cuts L i , i = 1, . . . , n. Let D be the image of

C \
⋃n

i=1 L i under the map p(λ, u). This domain has a boundary given by the unfolding
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of the cuts L i , i = 1, . . . , n. The inverse function λ = λ(p, u) is a multivalued function

on D. Consider the points p(rc, u), c = 1, . . . , N . We glue a finite number of copies of D
along the cuts from the points p(rc, u) to infinity, c = 1, . . . , N . In this way we obtain a

domain D̂, where the function λ is single-valued.

We analytically continue the function λ on D̂ beyond the boundary. This procedure is

not unique; for instance, we can glue several copies of D̂ along the boundaries that are

the images of the same cuts on the λ-plane. In any case, we can perform this construction

uniformly over a small ball in the space of parameters u1, . . . , un . This way we obtain a

(not necessarily compact) Riemann surface D, with a function λ = λ( p̃, u) : D→ C (by

p̃ we denote some local coordinate on D).

Dubrovin proves in [7] that the family of functions λ( p̃, u) defined this way is a

superpotential of the Frobenius manifold which was the input of this construction.

2.5. Spectral curve topological recursion

In this section, we recall the basic setup of the topological recursion procedure, which

originated in the computation of the correlation functions of matrix models [15, 16].

Consider a Riemann surface Σ with meromorphic functions x, y : Σ → C such that x
has a finite number of critical points, c1, . . . , cn , and y is holomorphic near these points

with a non-vanishing derivative. Let B be a symmetric bidifferential on Σ ×Σ , with a

double pole on the diagonal, the double residue equal to 1, and no further singularities.

We define a sequence of symmetric n-forms ωg,k(z1, . . . , zk) on Σ×k , known as

correlation differentials for the spectral curve, by the following recursion:

ω0,1(z) := y(z)dx(z); (2.26)

ω0,2(z1, z2) := B(z1, z2); (2.27)

ωg,k+1(z0, z1, . . . , zk) := (2.28)

n∑
i=1

Res
z→ci

∫ σi (z)
z ω0,2(•, z0)

2(ω0,1(σi (z))−ω0,1(z))
ω̃g,2|k(z, σi (z)|z1, . . . , zk),

where σi is the deck transformation for the function x near the point ci , i = 1, . . . , n, and

ω̃g,2|k is defined by the following formula:

ω̃g,2|k(z′, z′′|z1, . . . , zk) := ωg−1,n+2(z′, z′′, z1, . . . , zk)

+

∑
g1+g2=g

I1tI2={1,...,k}
2g1−1+|I1|>0
2g2−1+|I2|>0

ωg1,|I1|+1(z′, z I1)ωg2,|I2|+1(z′′, z I2). (2.29)

Here we denote by z I the sequence zi1 , . . . , zi|I | for I = {i1, . . . , i|I |}.

Remark 2.2. In the global recursion we also allow y to be the (multivalued) primitive of

a differential ω on Σ . The ambiguity in y consists of periods and residues of ω and hence

the ambiguity is locally constant. Since y appears in the recursion only via y(σi (z))− y(z)
(and there are no poles of ω at the zeros of dx) the locally constant ambiguity disappears

and the recursion is well defined.
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Remark 2.3. A local version of the recursion was defined in [14] as follows. Consider

some small neighborhoods Ui ⊂ Σ of the points ci . If we look at just the restrictions of

ωg,k to the products of these disks, Ui1 × · · ·×Uik , we can still proceed by topological

recursion, using as an input the restrictions of ω0,1 to Ui , i = 1, . . . , n, and ω0,2 to Ui ×U j ,

i, j = 1, . . . , n. Indeed, equation (2.28) uses only local data for the recursion.

Remark 2.4. There is a variation of the usual (global) topological recursion that will

also be important in this paper, especially in § 10. Namely, we can assume that there is

more than one critical point in the fiber of the function x over a critical value ui . Then

we require that the local behavior of the function x near these points is the same (that

is, the Hessians are the same), and in this case it is still possible to define a version

of topological recursion; see § 10. Note that this more general critical behavior of the

function x is exactly the one that is allowed for the function λ in the definition of the

Landau–Ginzburg superpotential of a Frobenius manifold in § 2.1.

2.6. Spectral curve topological recursion via CohFTs

In this section, we recall a relation of the (local version of) spectral curve topological

recursion to the Givental formulas for cohomological field theories obtained in [10]. A

more convenient exposition is given in [24], so we follow the presentation given there.

We choose the local coordinates wi in the domains Ui such that x |Ui = −w
2
i /2+ x(ci ),

i = 1, . . . , n. The identification with the data of a CohFT then goes as follows:

1
−

1
2

i =
dy

dwi
(0); (2.30)

R−1(ζ−1)
j
i = −

1
√

2πζ

∫
∞

−∞

B(wi , w j )

dwi

∣∣∣∣
wi=0
· e(x(w j )−x(c j ))ζ ; (2.31)

n∑
k=1

(R−1(ζ−1))ik1
−

1
2

k =

√
ζ

√
2π

∫
∞

−∞

dy(wi ) · e(x(wi )−x(ci ))ζ . (2.32)

Note that equation (2.30) is in fact a consequence of equation (2.32).

There is an extra condition on the bidifferential B that can be formulated as a

requirement on a decomposition of its Laplace transform as
√
ζ1ζ2

2π

∫
∞

−∞

∫
∞

−∞

B(wi , w j )e(x(wi )−x(ci ))ζ1+(x(w j )−x(c j ))ζ2 =

∑n
k=1 R−1(ζ−1

1 )ik R−1(ζ−1
2 )

j
k

ζ−1
1 + ζ

−1
2

.

(2.33)

This assumption is always satisfied if the curve is compact and the differential dx is

meromorphic. This uses a general finite decomposition for B(p, q) proven by Eynard in

[14, Appendix B] together with (2.31).

This data (the constants 1
−

1
2

i and the matrix R−1(ζ−1)
j
i ) determine for us a

semi-simple CohFT {αg,k} with an n-dimensional space of primary fields V := 〈e1, . . . , en〉.

The differentials ωg,k can be written in terms of the auxiliary functions

ξ i (z) :=
∫ z B(wi , •)

dwi

∣∣∣∣
wi=0

(2.34)
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as

ωg,k =
∑

i1,...,ik
d1,...,dk

∫
Mg,k

αg,k(ei1 , . . . , eik )

k∏
j=1

ψ
d j
j d
((

d
dx

)d j

ξ i j

)
. (2.35)

(These kind of formulas are typically of ELSV-type; see [12] for explanation.) In terms

of the underlying Frobenius manifold structure, the basis e1, . . . , en corresponds to the

normalized canonical basis.

3. Superpotential and function y

The goal of this section is to prove that Dubrovin’s superpotential provides us with a

Riemann surface with two functions, x := λ and y := p, such that the local expansion

of y near the critical points of x reproduces the unit vector at the point (u1, . . . , un) of

the underlying Frobenius manifold as well as the value of the matrix R−1 on the unit

vector. These two local properties of y are precisely equivalent to the equations (2.30)

and (2.32).

Consider Dubrovin’s construction of a superpotential on the Riemann surface D
described in § 2.4. It is associated to a Frobenius manifold with given constants 1

−
1
2

i

and the matrix R−1(ζ−1)
j
i at the point with canonical coordinates u1, . . . , un . Consider

the points ci = p(ui , u) ∈ D. These points are the critical points of the function x := λ.

Theorem 3.1. Given a semi-simple Frobenius manifold M, and Dubrovin’s construction

of a superpotential D for M, define spectral curve data by Σ = D, x := λ, y := p (with B

yet to be defined). Then equations (2.30) and (2.32) are satisfied for the constants 1
−

1
2

i

and the matrix R−1(ζ−1)
j
i associated to M.

Proof. Let us prove the first statement, namely, equation (2.30) (though it is a corollary

of equation (2.32), it is convenient to check it directly). Indeed, equation (2.25) states

that near the points ci the function p looks like

p = ci +9i,1(u)
√

2(u j − λ)+ O(u j − λ).

Therefore, the derivative of p with respect to the local coordinate wi =
√

2(ui − λ) at the

point ci is equal to 9i,1(u) = 1
−

1
2

i .

Now we prove equation (2.32). We can assume that the contour of integration on the

right hand side in equation (2.32) is the image of L i under the map p. Then,
√
ζ

√
2π

∫
p(L i )

dp · e(λ−ui )ζ =

√
ζ

√
2π

∫
p(L i )

dp
dλ
· e(λ−ui )ζdλ. (3.1)

Here we treat dp and dλ as 1-forms defined on the surface D.

Observe that from equation (2.16) we have

dφT

dλ
= φT

(
1
2
− V

)
(U − λ)−1. (3.2)
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Therefore, using definition (2.24), we get

dp
dλ
=

d
dλ

√
2

1− d
φT (U − λ)91 =

√
2

1− d
φT
(

1
2
− V

)
91−

√
2

1− d
φT91

=

√
2

1− d
φT99−1

(
−

1
2
− V

)
91 =

√
2

1− d
φT9

(
−

1
2
−µ

)
1

=

√
2

1− d
φT9

(
−

1
2
+

d
2

)
1 = −

1
√

2
φT91. (3.3)

(In this computation we used the fact that µ1 = (−d/2)1.)

Equations (2.22) and (2.23) imply that on the contour p(L i ) the vector φ is equal

to φ(i)+ Ei , where Ei is some holomorphic function of (ui − λ). Recall also that

(91)k = 1
−

1
2

k . Therefore,
√
ζ

√
2π

∫
p(L i )

dp
dλ
· e(λ−ui )ζdλ =

n∑
k=1

1
−

1
2

k ·
−
√
ζ

2
√
π

∫
p(L i )

φ
(i)
k · e

(λ−ui )ζdλ. (3.4)

Dubrovin shows in [7, Proof of Lemma 5.4] that the second factor in this expression is

(R−1(ζ−1))ik . Thus the right hand side of equation (3.4) coincides with the left hand side

of equation (2.32). This completes the proof of the Theorem.

Remark 3.2. Note that we have not used the specific formula for φ in the proof. We used

only equation (2.16) and the fact that the local expansion of φ for λ→ ui coincides with

the local expansion of φ(i) up to some holomorphic non-branching term. Thus, if we have

a solution for (2.16) satisfying this property, we can use it directly in the formula for the

superpotential (2.24), bypassing the requirement for Gi j to be non-degenerate. This will

be important below in certain applications.

Remark 3.3. Flat identity. Topological recursion satisfies the string equation.

n∑
i=1

Res
p=ci

y(p)ωg,k+1(p, p1, . . . , pk) = −

k∑
j=1

dp j ∂z j

(
ωg,k(p1, . . . , pk)

dx(p j )

)
, (3.5)

where the sum is over the zeros dx(ci ) = 0 and dp j is exterior derivative in the variables

p j . The operator ω 7→
∑

i Resp=ci y(p)ω(p) acts on differentials ω. It is non-zero (and

evaluates to 1) on the auxiliary differential
∑

j a j dξ j corresponding to the flat identity

and annihilates all others. In particular∑
i

Res
p=ci

d
((

d
dx

)d j

ξ i j

)
= 0, d j > 0.

This corresponds to insertion/removal of the identity vector in ancestor invariants.

4. Compatibility between B and y

In this section, we discuss a necessary condition on a spectral curve to be able to apply

the inverse construction of [10], i.e. so that a CohFT can be reconstructed from this

spectral curve.
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More precisely, for a given data of a spectral curve (Σ, x, y, B) (maybe, local)

equations (2.31) and (2.32), (2.30) imply some relation for x , y, and B, and we want

to state this relation in a direct geometric way rather than in terms of the Laplace

transform.

The compatibility condition below is equivalent to differentiation of the potential

of a CohFT by t1 producing the string equation. In the language of [16], δ(y dx) =∫
(dy/dx)(p′) B(p, p′) = d(dy/dx) gives rise to variations of ωg,k corresponding to the

string equation (3.5).

Recall that x defines a local involution σi near each zero ci of dx , i = 1, . . . , n.

Theorem 4.1. If a CohFT can be reconstructed from a spectral curve (Σ, x, y, B) via the

inverse construction of [10] described in § 2.6, then the 1-form on Σ

η(z) = d
(

dy
dx
(z)
)
+

n∑
i=1

Res
z′=ci

dy
dx
(z′)B(z, z′) (4.1)

is invariant under each local involution σi , i = 1, . . . , n.

Proof. The construction of [10] requires equations (2.30)–(2.32) to hold. We prove that

the 1-form (4.1) is invariant under each local involution σi , i = 1, . . . , n if and only if

equations (2.30)–(2.32) are compatible (as equations for the unknown variables R−1 and

1
−

1
2

i , i = 1, . . . , n).

Recall that x = x(ci )−w
2
i /2 in a neighborhood of ci . Note that

Res
wi=ci

dy
dx
(wi )B(z, wi ) = Res

wi=ci

dy
dwi

(wi ) ·
dwi

dx
· B(z, wi )

= − Res
wi=ci

dy
dwi

(wi ) ·
dwi

wi
·

B(z, wi )

dwi
=

dy
dwi

(0) ·
B(z, wi )

dwi

∣∣∣∣
wi=0

. (4.2)

An equivalent way to say that η is σi -invariant is to say that the following Laplace

transform of η is equal to zero:∫
∞

−∞

η(wi )e(x(wi )−x(ci ))ζ = 0. (4.3)

On the other hand,∫
∞

−∞

η(wi )e(x(wi )−x(ci ))ζ = −ζ

∫
∞

−∞

dy
dx
(wi )e(x(wi )−x(ci ))ζ dx

−

n∑
j=1

dy
dw j

(0)
∫
∞

−∞

B(wi , w j )

dw j

∣∣∣∣
w j=0

e(x(wi )−x(ci ))ζ . (4.4)

Thus, equation (4.3) is satisfied if and only if
√
ζ

√
2π

∫
∞

−∞

dy(wi )e(x(wi )−x(ci ))ζ =

n∑
j=1

dy
dw j

(0) ·
−1
√

2πζ

∫
∞

−∞

B(wi , w j )

dw j

∣∣∣∣
w j=0

e(x(wi )−x(ci ))ζ ,

(4.5)

which is precisely the compatibility condition for equations (2.30)–(2.32).
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We can state (4.1) in simpler terms when the spectral curve is connected.

Corollary 4.2. For a connected spectral curve, equations (2.30)–(2.32) are compatible

if and only if the 1-form defined in (4.1) is a pull-back of a 1-form downstairs, i.e.

η(z) = x∗ω.

Proof. If η(z) = x∗ω for ω a differential downstairs then it is invariant under local

involutions hence Theorem 4.1 applies. On a connected spectral curve Σ the converse

is also true. This follows from the more general fact that any η(z) which is invariant

under local involutions defined around simple ramification points of x : Σ → C is the

pull-back of a differential downstairs. Take any regular point of x , p ∈ Σ and a path γ

from p to a zero b of dx . Then x(γ ) is covered by a path γ̃ ⊂ Σ that contains p and

p′ where x(p) = x(p′). The local involution defined by x in a neighborhood of b can be

analytically continued along γ̃ . Since η(z) is invariant under the local involution at b, it

is invariant under the continued involution above a neighborhood of x(γ ). So η(z) agrees

(via identification of cotangent bundles using x) around p and p′. Connectedness of Σ

guarantees that the monodromy of the cover defined by x is transitive and generated

by local involutions. Hence we can find paths γi that can be used to show that η(z)
agrees around p and any point in the fiber over x(p). Hence η(z) = x∗ω locally and this

pieces together to give the global result. The result is not true on disconnected curves,

in particular local curves, because monodromy is not transitive.

Let us show how this compatibility test can be used.

Proposition 4.3. The differential η ≡ 0, hence equation (4.3) is satisfied, when Σ is a

global curve equipped with a canonical bidifferential B normalized so that
∫

p′∈αi
B(p, p′) =

0 for a choice of A-cycles αi , and one of the following holds:

(1) Σ is rational with global coordinate z chosen so that x(z = ∞) = ∞;

(2) dy is a meromorphic differential such that dy
dx has poles only at the zeros of dx, for

example dy is a holomorphic differential.

Note that in case (2) above, we take y to be the (multiply defined) primitive of a

differential which is sufficient for the purposes of topological recursion—see Remark 2.2.

Proof. Recall the property that for any function f on Σ , Resp′=p f (p′)B(p, p′) = d f (p)
(independent of the choice of A-cycles along which B is normalized). For example, in the

rational case B = dz dz′
(z−z′)2 and this property is the Cauchy integral formula. Since dy

dx has

poles only at the zeros of dx
n∑

i=1

Res
p′=ci

dy
dx
(p′)B(p, p′) = − Res

p′=p

dy
dx
(p′)B(p, p′) = −d

(
dy
dx
(p)

)
hence η ≡ 0.

Example 4.4. Consider x = z+ 1/z, y = p(z) a polynomial. Then dy
dx =

z2 p′(z)
z2−1 has poles

at z = ±1 and possibly z = ∞. Hence η(z) = dq(z) where q(z) is a polynomial given
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by the principal part of dy/dx at z = ∞. A non-trivial polynomial has poles only at

z = ∞ so if η 6= 0 it cannot be the pull-back of a differential form downstairs since it

would necessarily require poles at x−1(∞) = {0,∞}. Hence this fails the compatibility

test, unless η(z) ≡ 0 i.e. deg p(z) 6 1. If deg p(z) = 1 then equation (4.3) is satisfied.

Example 4.5. Consider x = z+ 1/z, y = ln z. Then dy
dx =

z
z2−1 has poles only at z = ±1

so equation (4.3) is satisfied.

Example 4.6. Since the compatibility test is a linear condition in y, x = z+ 1/z,

y = ln z+ cz also satisfies the compatibility test and leads to a CohFT with a flat unit.

This was also observed in [19].

5. Superpotential as a global spectral curve in genus 0 case

In this section, we discuss a special case of Dubrovin’s superpotential defined in § 2.4 and

show that it indeed gives a proper spectral curve for the corresponding cohomological

field theory.

More precisely, we start with a homogeneous cohomological field theory. Its genus zero

part without descendants defines a Frobenius manifold that we assume to be semi-simple.

Consider Dubrovin’s construction in § 2.4. Assume that this construction goes through

in such a way that

(1) The form dλ p has no zeros in C \
⋃n

i=1 L i ;

(2) λ(p = ∞) = ∞;

(3) the resulting curve D is a compact curve of genus 0 and p is a global coordinate

on it;

(4) there is exactly one critical point in each singular fiber of function λ.

Theorem 5.1. Under the conditions (1)–(4) above, the correlators of the CohFT are

related by equation (2.35) to the correlator differentials obtained through spectral curve

topological recursion on a curve D with x = λ, y = p and B(p1, p2) = dp1 dp2/(p1− p2)
2.

In other words, in this case the ancestor potential of the CohFT is reproduced by global

topological recursion related to Dubrovin’s superpotential. Note that this identification

happens over an open ball in the underlying Frobenius manifold.

Proof. First of all, note that since p is a global coordinate and λ(p = ∞) = ∞, this

spectral curve satisfies the compatibility condition of Theorem 4.1, which means that

one can reconstruct a CohFT such that equation (2.35) is satisfied. We only need to

prove that this CohFT is the same as the original one.

Theorem 3.1 implies that we have the right function y, so, in particular, the functions

1
−

1
2

i (u) are correctly reproduced on an open ball in the space of parameters u1, . . . , un .

Note that these functions determine completely the structure of Frobenius multiplication,

so we can conclude that the CohFT reconstructed from the spectral curve data coincides

with the original one in genus zero.
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Higher genera correlators of a semi-simple CohFT are determined uniquely by genus 0
data in homogeneous cases [30]. Therefore, it is sufficient to prove that the CohFT

reconstructed from the spectral curve data is homogeneous. We do this by proving the

Euler equation for the corresponding R-matrix. Namely, a CohFT with an R-matrix R(ξ)
is homogeneous if and only if the R-matrix satisfies the Euler equation [21]:(

ξ
d

dξ
+

n∑
i=1

ui
∂

∂ui

)
R(ξ, u) = 0 (5.1)

(or, equivalently, we can consider the same equation for R−1(ξ, u) = R(−ξ, u)T ). Using

equation (2.33), the Euler equation for the R-matrix can be rewritten as(
1+ ξ1

∂

∂ξ1
+ ξ2

∂

∂ξ2
+

n∑
i=1

ui
∂

∂ui

)
B̌ = 0 (5.2)

for B̌ = B̌i j (ξ1, ξ2) given by

e−
ui
ξ1
−

u j
ξ2

2π
√
ξ1ξ2

∫
p(L i )

∫
p(L j )

B · e
λ1
ξ1
+
λ2
ξ2 . (5.3)

Recall that we consider the case when dλ p does not have zeros in C \
⋃n

i=1 L i , and

the Riemann surface D that we get through Dubrovin’s construction has genus 0. The

Bergman kernel B(p1, p2) has the form dp1 dp2/(p1− p2)
2.

Proposition 5.2. Under these conditions equation (5.2) is satisfied.

We prove this proposition below. It implies that the R-matrix associated to the

Bergman kernel in this case satisfies the Euler equation, and, therefore, the corresponding

CohFT is homogeneous. This proposition completes the proof of Theorem 5.1.

For the proof of Proposition 5.2 we need the following technical lemma:

Lemma 5.3. We have: (
λ

d
dλ
+

n∑
i=1

ui
∂

∂ui

)
p(λ, u) =

1− d
2

p(λ, u). (5.4)

Proof. Recall equation (3.3):

dλ p(λ, u) = −
1
√

2
φT dλ91. (5.5)

In the same way we prove that

du p(λ, u) =
1
√

2
φT dU91 (5.6)

(this is [7, equation (5.66)]; note that there is a misprint in this equation in [7]). Combining

these equations, we get(
λ

d
dλ
+

n∑
i=1

ui
∂

∂ui

)
p(λ, u) =

1
√

2
φT (U − λ)91 =

1− d
2

p(λ, u). (5.7)
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Proof of Proposition 5.2. We have:(
1+ ξ1

∂

∂ξ1
+ ξ2

∂

∂ξ2
+

n∑
i=1

ui
∂

∂ui

)
B̌

=
e−

ui
ξ1
−

u j
ξ2

2π
√
ξ1ξ2

∫∫
dλ1dλ2

(p(λ1)− p(λ2))2
dp
dλ
(λ1)

dp
dλ
(λ2)e

λ1
ξ1
+
λ2
ξ2 X, (5.8)

where

X = −
λ1

ξ1
−
λ2

ξ2
− 2 ·

( n∑
i=1

ui
∂

∂ui

)
(p(λ1)− p(λ2))

p(λ1)− p(λ2)

+

( n∑
i=1

ui
∂

∂ui

)
dp
dλ
(λ1)

dp
dλ
(λ1)

+

( n∑
i=1

ui
∂

∂ui

)
dp
dλ
(λ2)

dp
dλ
(λ2)

.

Applying the integration by parts to the terms −λ1/ξ1 and −λ2/ξ2, we can rewrite the

right hand side of equation (5.8) as

e−
ui
ξ1
−

u j
ξ2

2π
√
ξ1ξ2

∫∫
dλ1dλ2

(p(λ1)− p(λ2))2
dp
dλ
(λ1)

dp
dλ
(λ2)e

λ1
ξ1
+
λ2
ξ2 Y, (5.9)

where

Y = 2+

(
λ1

d
dλ1
+

n∑
i=1

ui
∂

∂ui

)
dp
dλ
(λ1)

dp
dλ
(λ1)

+

(
λ2

d
dλ2
+

n∑
i=1

ui
∂

∂ui

)
dp
dλ
(λ2)

dp
dλ
(λ2)

− 2 ·

(
λ1

d
dλ1
+

n∑
i=1

ui
∂

∂ui

)
p(λ1)−

(
λ2

d
dλ2
+

n∑
i=1

ui
∂

∂ui

)
p(λ2)

p(λ1)− p(λ2)
.

Using equation (5.4), we rewrite Y as

Y = 2+

(
−1+

1− d
2

)
dp
dλ
(λ1)

dp
dλ
(λ1)

+

(
−1+

1− d
2

)
dp
dλ
(λ2)

dp
dλ
(λ2)

− 2 ·

1− d
2

p(λ1)−
1− d

2
p(λ2)

p(λ1)− p(λ2)

= 2+
(
−1+

1− d
2

)
+

(
−1+

1− d
2

)
− 2 ·

1− d
2
= 0,

which proves the proposition.
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6. Superpotential as a global spectral curve for arbitrary genus

In this section we extend the result of the previous section to the case of a compact global

curve of arbitrary genus.

Theorem 6.1. Given a conformal Frobenius manifold, construct a superpotential p(λ; u)
which defines the Riemann surface D according to Dubrovin’s construction of § 2.4.

Assume the following:

• D is a compact curve of genus g;

• there is exactly one critical point in each singular fiber of λ : D→ C.

Fix a symplectic basis (Ai ,Bi )
g
i=1 of H1(D,Z) and define B(p1, p2) as the only Bergman

kernel on D normalized by

∀i = 1, . . . , g,
∮

p1∈Ai

B(p1, p2) = 0. (6.1)

Further assume that:

• the pair (p, B(p1, p2)) passes the compatibility test of § 4 in any of its possible forms

(given by Theorem 4.1, Corollary 4.2, or Proposition 4.3).

Then the correlators of the CohFT associated to the Frobenius manifold are related by

equation (2.35) to the correlator differentials obtained through spectral curve topological

recursion on the Riemann surface D with x = λ, y = p and B(p1, p2).

Remark 6.2. This result extends Theorem 5.1 to an arbitrary compact curve. The new

feature is that one needs to normalize the Bergman kernel on an arbitrary basis of cycles.

In particular, for each basis, we recover a total ancestor potential for the same CohFT.

Proof. The proof is very similar to the proof of the genus 0 case presented in the

preceding section. However, it is important to remark that this proof only relies on

Rauch’s variational formula, i.e. it is valid for any compact curve presented as a ramified

cover of the Riemann sphere with simple branch points. It does not require any knowledge

about an auxiliary meromorphic form such as the superpotential.

Let us first show that the (0, 3) correlators are independent of choice of normalization

cycles for B. ω0,3 depends on these choices, but when decomposed into linear combinations

of auxiliary differentials dξ j
= B/ds j (for s j defined by x = (1/2)s2

j + a j ) the coefficients

are independent of A-cycles. By reconstruction, as in the proof of Theorem 5.1, this

means that all correlators are the same. The formula

ω0,3(z1, z2, z3) =

n∑
i=1

Res
p=ci

B(p, z1)B(p, z2)B(p, z3)/dx(p) dy(p)

=

n∑
i=1

B(ai , z1)B(ai , z2)B(ai , z3)/x ′′(ai )y′(ai )

=

n∑
i=1

〈....〉dξ i (z1)dξ i (z2)dξ i (z3)

shows the independence of the coefficients 〈...〉 on the choice of B.
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For the rest of the proof, the only part differing from the genus 0 case is the proof of the

homogeneity of the CohFT, i.e. the fact that the R-matrix satisfies the Euler equation.

The first step consists in proving that there exist a R-matrix. This is due to a lemma

of Eynard [14]:

Lemma 6.3. If dλ is a meromorphic form on D and B the Bergman kernel normalized on

a basis of A-cycles as above, then the Laplace transform of the Bergman kernel satisfies

equation (2.33).

The Euler equation for the R-matrix is then equivalent to the following equation for

the Laplace transform of B:(
1+ ξ1

∂

∂ξ1
+ ξ2

∂

∂ξ2
+

n∑
i=1

ui
∂

∂ui

)
B̌ = 0 (6.2)

for B̌ = B̌i j (ξ1, ξ2) given by

e−
ui
ξ1
−

u j
ξ2

2π
√
ξ1ξ2

∫
p(L i )

∫
p(L j )

B · e
λ1
ξ1
+
λ2
ξ2 . (6.3)

By inverting the Laplace transform and integration by part, this is equivalent to

d1

(
λ1 B(p1, p2)

dλ1

)
+ d2

(
λ2 B(p1, p2)

dλ2

)
+

n∑
i=1

ui
∂

∂ui
B(p1, p2). (6.4)

In order to prove this equation, we recall Rauch’s variational formula which expresses

the variations of the Bergman kernel under deformation of the spectral curve. In

particular
∂B(p1, p2)

∂ui
= Res

r→ai

B(p1, r) B(p2, r)
dλ(r)

(6.5)

which implies that

n∑
i=1

ui
∂

∂ui
B(p1, p2) =

n∑
i=1

Res
r→ai

λ(r)B(p1, r) B(p2, r)
dλ(r)

. (6.6)

Moving the integration contours around the other poles of the integrands and reminding

that the A-periods of B(p, r) are vanishing, this reads

n∑
i=1

ui
∂

∂ui
B(p1, p2) = − Res

r→p1,p2

λ(r)B(p1, r) B(p2, r)
dλ(r)

= −

(
d

dλ1
+

d
dλ2

)
B(p1, p2) (6.7)

proving equation (6.4).

7. Global curves for An singularities

In this section we apply the results of §§ 3–5 in order to construct the spectral curve for

the ancestor potential of An-singularities, n = 1, 2, . . . . The structure of this Frobenius

manifolds is described in terms of Saito’s theory on the space of polynomials

f (p, τ ) = pn+1
+ τ1 pn−1

+ · · · τn . (7.1)
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We refer to [6, 22] for the detailed description of the structure of this Frobenius manifold.

In particular, it is enough to say that λ = f (p, τ ) is a superpotential of this Frobenius

manifold.

The corresponding CohFT is well-studied. It was a subject of Witten’s conjecture [31]

proved in [18]. We refer to [28] for an exposition of this CohFT that includes an overview

of its constructions; the CohFT whose correlators give the ancestor potential at the point

τ of this Frobenius manifold is called there the shifted Witten class of An singularity.

Theorem 7.1. The correlation differentials of the global spectral curve data Σ := CP1,

y := p (the global coordinate), x := f (p, τ ), B := dp1 dp2/(p1− p2)
2 are expressed via

equation (2.35) in terms of the shifted Witten class of An singularity.

Proof. As we have already mentioned, the function λ = f (p, τ ) is known to be a

superpotential of the corresponding Frobenius manifold. We have to show that this

superpotential can be obtained by Dubrovin’s construction in § 2.4. Then it is easy to see

that all conditions of Theorem 5.1 are satisfied, which implies this theorem.

We construct solutions of equation (2.16) in terms of the integrals over the

vanishing cycles. Namely, consider the tangent bundle over the space of polynomials

parametrized by τ ∈ T . It is identified with the space C[p]/(dp f (p, τ )/dp) by the map

v 7→ (dτ f (p, τ ))(v) and equipped with a flat metric given by

(v1, v2) := Res
p=∞

dτ f (v1)dτ f (v2)

dp f (p, τ )/dp
dp. (7.2)

For a cycle β ∈ H0( f −1(λ),C) we denote by Iβ(λ, τ ) the section of the tangent bundle

specified by the following formula:

(Iβ(λ, τ ), v) :=
∫
β

dτ f (v) ·
dp

dp f
. (7.3)

In normalized canonical coordinates Iβ(λ, τ ) is represented by the vector φβ(λ, τ ) with

components given by

φ
β
i (λ, τ ) :=

(
Iβ(λ, τ ),

1
1
2
i
√

2

∂

∂ui

)
(7.4)

is a solution of equation (2.16) (see [22]). Let us discuss the singularities of this solution,

depending on β.

Consider the λ-plane as the image of the map λ = f (p, τ ). Let u1, . . . , un be the critical

values of f (p, τ ). We can alway choose a system of cuts L i , i = 1, . . . , n, from ui to infinity

such that the preimage f −1(C \
⋃n

i=1 L i ) is a union of n+ 1 disks, D0, D1, . . . , Dn , glued

along the boundary cuts in the following way:

– D0 is glued to Di along the boundary that is a double cover of L i ; in particular, their

common boundary contains the critical preimage of ui ;

– All other lifts of the cut L i are just cuts inside D j , j 6= 0, i ; the endpoints of these cuts

are non-critical preimages of ui .
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Figure 1. An-singularities, 1 6 n 6 3.

For n = 1, 2, 3 figure 1 gives the corresponding pictures for a real orientable blowup at

infinity (that is, the boundary circle on the picture corresponds to the infinity point of

the source sphere). The domain D0 is shadowed there.

Consider the vanishing cycles βi ∈ H0( f −1(λ),C) given by βi := p0− pi , where λ =

f (p0, τ ) = f (pi , τ ), and p0 ∈ D0, pi ∈ Di . Then the system of solutions of equation (2.16)

given by φ(i)(λ, τ ) := φβi (λ, τ ) satisfies the properties given by equations (2.18)–(2.21).

In particular, Gi j
= 1/2 for i 6= j and Gi i

= 1. The inverse matrix is given by

Gi i = 2n/(n+ 1) and Gi j = −2/(n+ 1) for i 6= j . Therefore, Dubrovin’s solution φ =∑n
i, j=1 Gi jφ

( j) is equal to φβ0 for

β0 =

n∑
i=1

(
2n

n+ 1
− (n− 1)

2
n+ 1

)
βi = 2p0−

2
n+ 1

n∑
i=0

pi . (7.5)

Recall that for the Frobenius structure An , d = (n− 1)/(n+ 1). Also we recall that for

the Euler vector field E =
∑n

i=1 ui
∂
∂ui

and the unit vector field e =
∑n

i=1
∂
∂ui

so that we

have:

E f (p, τ ) = f (p, τ )−
p

n+ 1
dp f (p, τ )

dp
, (7.6)

e f (p, τ ) = 1. (7.7)

The formula φT (U − λ)91 can be written as (Iβ0(λ, τ ), (E − λe)/
√

2). Therefore,
√

2
1− d

φT (U − λ)91 =
n+ 1

2

∫
β0

(E − λe) f (p, τ ) ·
dp

dp f (p, τ )

=
n+ 1

2

∫
β0

(
f (p, τ )−

p
n+ 1

dp f (p, τ )
dp

− λ

)
·

dp
dp f (p, τ )

. (7.8)

Since the cycle β0 lies in f −1(λ), then ( f (p, τ )− λ)|β0 = 0. Therefore, the last integral

can be rewritten as

n+ 1
2

∫
β0

p
n+ 1

= p0(λ, τ )−
1

n+ 1

n∑
i=0

pi (λ, τ ). (7.9)
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Since
∑n

i=0 pi (λ, τ ) = 0 (recall the form of the polynomial f (p, λ)), we conclude that the

function
√

2
1−d φ

T (U − λ)91 is equal to the branch D0 of p = f −1(λ, τ ).

So, p(C \
⋃n

i=1 L i ) = D0. It is obvious that dλ p has no zeros in C \
⋃n

i=1 L i , so D̂ = D,

and one of the possible analytic continuation of the function λ = f (p, τ )|D0 is its

extension to the polynomial f (p, τ ) defined on CP1. All condition of Theorem 5.1 are

satisfied, so we apply it here to complete the proof.

Remark 7.2 (Relation to Milanov’s spectral curve). The global spectral curve that we

constructed differs from the one constructed by Milanov in [26]. Milanov gets a spectral

curve with the same local behavior as x = f (y, τ ) near the critical points, but, in our

terms, he chooses a different analytic continuation of λ|D. He constructs an analytic

continuation using the action of the Weyl group (we revisit his construction in our terms

in § 10), and obtains a curve where all preimages of the critical points in the x-plane are

critical. In our terms, this can be achieved by gluing n! copies of the curve x = f (y, τ )
along the cuts connecting the non-critical preimages of the points ui , i = 1, . . . , n such

that each point belongs to exactly one cut. This makes all preimages of u1, . . . , un critical

and will produce a curve of genus 1+ n!
2 (

n2

2 −
n
2 − 2) where the function x has degree

(n+ 1)!, and it has n! poles of degree (n+ 1) each (cf. computation in [26] and further

explanation in § 10).

7.1. Bouchard–Eynard recursion

In this section, we discuss an application of Theorem 7.1. There is a more general

formulation of topological recursion that works for functions x with higher order singular

points [3]. Locally, a higher order singularity is given by x = yn+1, B = dy1 dy2/(y1− y2)
2.

Bouchard and Eynard announced a theorem [4] that identifies the coefficients of the local

expansion in y at y = 0 of the correlation differentials of this spectral curve with the

coefficients of the string solution of the (r + 1)-Gelfand–Dickey hierarchy, also known as

the total descendant potential of the Ar singularity. The proof of Bouchard and Eynard

goes through analysis of matrix models. Here we give a new proof of their theorem,

namely, we derive it directly from Theorem 7.1.

Theorem 7.3 [4]. The Bouchard–Eynard recursion applied to x = pn+1, y = p, B =
dp1 dp2/(p1− p2)

2 produces differentials ωg,k , whose expansions near infinity are given

by

ωg,k(p1, . . . , pk) =
∑

06a1,...,ak6n−1
d1,...,dk

〈τd1a1 · · · τdkak 〉g,k

×

k∏
j=1

(
(a j + 1)(a j + 1+ (n+ 1)) · · · (a j + 1+ d j (n+ 1))

(−1)d j (n+ 1)d j+1
dp j

p
(n+1)d j+a j+2
j

)
, (7.10)

where 〈τd1a1 · · · τdkak 〉g,k are the coefficients of the string solution of the (n+ 1)-
Gelfand–Dickey hierarchy [18, 22, 31].
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Note that we do not recall and do not use the definition of the Bouchard–Eynard

recursion. The only property that we are using here is that it is compatible with the usual

recursion on the curves with simple singularities and the limits [3]. In this case, we know

that in the neighborhood of infinity the correlation differentials of the Bouchard–Eynard

recursion are the limits for ε → 0 of the correlation differentials of the usual recursion

applied to x = yn+1
+ εy.

Let us now prove theorem 7.3.

Proof. The flat coordinates t0 = t1, t1, . . . , tn−1 are given on the space of polynomials

f (p, τ ) defined in equation (7.1) by the following formula:

f (p, τ )
1

n+1 = p+
1

n+ 1

(
tn−1

p
+

tn−2

p2 + · · ·+
t0
pn

)
+ O

(
1

pn+1

)
. (7.11)

Recall that the canonical coordinates are the critical values u1, . . . , un of f (p, τ ) and it

is obvious that ∂ui/∂t1 = 1. We denote by c1, . . . , cn the positions of the critical points

of function f (p, τ ); so ui = f (ci , τ ), i = 1, . . . , n.

We perform all computations only on a special curve in the space of polynomials,

namely, f (p, τ ) = pr+1
+ εp, and we are interested in all results only up to O(ε) for

ε → 0. In particular, we note that ta = O(ε), a = 0, . . . , n− 1.

The full Jacobian of the change from the canonical to flat coordinates is then given by

the following computation:

∂ui

∂ta
=
∂ f (ci , τ )

∂ta
= f (ci , τ )

n
n+1

(
1

cn−a
i
+ O(ε)

)
= ca

i
∂ui

∂t0
+ O(ε) = ca

i + O(ε). (7.12)

The correlation differentials, written in terms of a CohFT considered in the normalized

canonical frame in equation (2.35), can be rewritten in terms of the correlators of the

ancestor potential of Givental [22] At ({td,α}) considered at the point t in flat coordinates

td,α, d = 0, 1, 2, . . . ,, α = 0, . . . , n− 1 in the following way:

ωg,k =
∑

i1,...,ik
d1,...,dk

∫
Mg,k

αg,k

(
1

1
2
i1

∂

∂ui1

, . . . ,1
1
2
ik

∂

∂uik

) k∏
j=1

ψ
d j
j d
((

d
dx

)d j

ξi j

)
.

=

∑
α1,...,αk
d1,...,dk

〈τd1α1 · · · τdkαk 〉g,k(t)
k∏

j=1

d
((

d
dx

)d j −1
pα j+1

)
+ O(ε). (7.13)

(by 〈τd1α1 · · · τdkαk 〉g,k(t) we denote the coefficients of the expansion of logAt ). Indeed, let

us expand the vector
∑n

i=1 ξi (p)1
1
2
i
∂
∂ui

near p = ∞. Recall that we denote by c1, . . . , cn
the positions of the critical points of the function f (p, τ ). We have:

n∑
i=1

ξi (p)1
1
2
i
∂

∂ui
=

n∑
i=1

(
1

z− p
dz

d
√

f (p, τ )− ui

)∣∣∣∣
z=ci

1
1
2
i
∂

∂ui

= −

∞∑
k=0

1
pk+1

n∑
i=1

ck
i
∂

∂ui
= −

n−1∑
k=0

1
pk+1

∂

∂tk
+ O(ε). (7.14)

(we use equation (7.12) and the fact that cn
i = O(ε) for the last equality).
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Recall [28] that the correlators of the ancestor potential At are represented in terms

of the correlators of the descendant potential (which is exactly the string solution of the

(n+ 1)-Gelfand–Dickey hierarchy) as

〈τd1α1 · · · τdkαk 〉g,k(t) = 〈τd1α1 · · · τdkαk 〉g,k + O(ε). (7.15)

Thus we see that

ωg,k =
∑

α1,...,αk
d1,...,dk

〈τd1α1 · · · τdkαk 〉g,k

k∏
j=1

d
((

d
dx

)d j −1
pα j+1

)
+ O(ε). (7.16)

In the limit ε → 0 we get exactly equation (7.10).

8. Frobenius manifolds for hypermaps

In this section we construct a global spectral curve for the Frobenius manifold given by

the superpotential λ = f (p, a), where a = (a0, . . . , an+1), n > 1, and

f (p, a) = pn
+ a2 pn−2

+ a3 pn−3
+ · · ·+ an +

an+1

p− a1
. (8.1)

This superpotential defines a semi-simple Frobenius manifold (this Frobenius manifold

is studied in [6, § 5]). Furthermore the spectral curve

(Σ, x, y, B) =
(
CP1, f (p, a), p,

dp1 dp2

(p1− p2)2

)
satisfies equations (2.30)–(2.33) hence it stores the correlators of a CohFT via

equation (2.35). The following theorem answers the question of whether these two

CohFTs coincide.

Theorem 8.1. The CohFT associated to the Frobenius manifold given by the

superpotential λ = f (p, a) coincides with the one reconstructed from the spectral curve

(CP1, f (p, a), p, dp1 dp2/(p1− p2)
2).

Remark 8.2. The correlation differentials for this spectral curve considered for the

particular values of the parameters a enumerate hypermaps on the curves. This is proved
in [11], see also [5], where some special case of that was conjectured.

So, Theorem 8.1 is to be used in the converse way: We start with a combinatorial

problem that is known to be solved by global topological recursion. It appears that the

correlators of this global topological recursion are expressed in terms of a CohFT. This

CohFT appears to be homogeneous, so it is associated to a Frobenius manifold, and this

Theorem describes precisely the underlying Frobenius manifold.

Proof. The proof is completely parallel to the proof of Theorem 7.1. Note that as in the

case of the An-singularity, we claim that the spectral curve is the superpotential itself.

We use Theorem 5.1, so it is enough to show that we can reproduce the superpotential

λ = f (p, a) via Dubrovin’s construction from § 2.4.
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The canonical coordinates u1, . . . , un+1 of this Frobenius manifold are the critical values

of f (p, a); the Euler vector field is given by

E =
n∑

i=1

ui
∂

∂ui
=

n+1∑
i=1

i
n

ai
∂

∂ai
; (8.2)

the unit vector field is equal to

e =
n∑

i=1

∂

∂ui
=

∂

∂an
; (8.3)

and the constant d is equal to (n− 2)/n. Note that

E f (p, a) = f (p, a)−
p
n

d f (p, a)
dp

. (8.4)

As in the case of An singularity, the solutions to the equation (2.16) are given by the

integrals over the cycles β ∈ H0( f −1(λ),C), where the components of the solutions are

given by

φ
β
i :=

∫
β

1
1
2
i
√

2

∂ f (p, a)
∂ui

·

(
d f (p, a)

dp

)−1

. (8.5)

Consider the λ-plane as the image of the map λ = f (p, τ ). Recall that u1, . . . , un+1 are

the critical values of f (p, τ ). We can alway choose a system of cuts L i , i = 1, . . . , n+ 1,

from ui to infinity such that the preimage f −1(C \
⋃n

i=1 L i ) is a union of n+ 1 disks,

D0, D1, . . . , Dn , glued along the boundary cuts in the following way:

– D0 is glued to Di , i = 2, . . . , n, along the boundary that is a double cover of L i ; in

particular, their common boundary contains the critical preimage of ui .

– D0 is glued to D1 along two components of the boundary that are double covers of L1
and Ln+1 and these boundary components have common point p = a1. In particular,

these boundary components contain the critical preimages of u1 and un+1.

– All other lifts of the cut L i are just cuts inside D j , j 6= 0, i for i = 2, . . . , n and j 6= 0, 1
for i = 1, n+ 1; the endpoints of these cuts are non-critical preimages of ui .

For n = 1, 2, 3 figure 2 gives the corresponding pictures for a real orientable blowup at

infinity (that is, the external boundary circle on the picture corresponds to the infinity

point of the source sphere, and the internal circle corresponds to p = a1). The domain

D0 is shadowed.

Consider the vanishing cycles βi ∈ H0( f −1(λ),C) given by βi := pi − p0, where

λ = f (p0, τ ) = f (pi , τ ), and p0 ∈ D0, pi ∈ Di . Then the system of solutions of

equation (2.16) given by φ(i)(λ, τ ) := φβi (λ, τ ), i = 1, . . . , n, φ(n+1)
= φ(1), satisfies the

properties given by equations (2.18)–(2.21). In particular, Gi i
= 1 for i = 1, . . . , n+ 1,

G1,n+1
= Gn+1,1

= 1, and for all other i 6= j Gi j
= 1/2. So, this matrix is degenerate.

However, Remark 3.2 specifies the properties of φ that are sufficient for Theorems 3.1

and 5.1. Note that

φ :=
2

n+ 1

n∑
i=1

φ(i) = φβ0 (8.6)
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Figure 2. Hypermaps zn
+

1
z , 1 6 n 6 3.

for β0 :=
2

n+1
∑n

i=0 pi − 2p0 satisfies all condition of Remark 3.2. With this choice of φ

and, therefore, β0, Dubrovin’s superpotential can be presented as
√

2
1− d

φT (U − λ)91 =
n
2

∫
β0

(E − λe) f (p, a) ·
(

d f (p, a)
dp

)−1

. (8.7)

Using equation (8.4), we have:
√

2
1− d

φT (U − λ)91 =
n
2

∫
β0

(
f (p, a)−

p
n

d f (p, a)
dp

− λ

)
·

(
d f (p, a)

dp

)−1

=

∫
β0

−
p
2
= p0−

1
n+ 1

n∑
i=0

pi =


p0−

λ+ a1

2
n = 1;

p0−
a1

n+ 1
n > 1.

(8.8)

(in the last equality we used that we know the sum of all roots of the equation

f (p, a) = λ).

Let us now discuss the cases that we get. For n > 1 Dubrovin’s function pDub =

pDub(λ, a) is the branch D0 of the inverse function of λ = f (p, a) shifted by a constant.

Obviously, dλ pDub has no zeros in C \
⋃n+1

i=1 L i , and we can choose as the analytic

extension of λ|D0 the function λ = f (p, a) defined on CP1. Then Theorem 5.1 is applied.

We get, therefore, not precisely the statement that we want to prove, but we have instead

y = pDub = p− a1/(n+ 1) (the Bergman kernel is still the same). However, it does not

change anything in topological recursion if we shift y by a constant.

The case n = 1 is even more interesting. One can easily check by direct computation

that Dubrovin’s function pDub = pDub(λ, a) is equal to
√
(λ− u1)(λ− u2)/2. Further

construction of the curve gives the following equation:

p2
Dub−

1
4 (λ− a1)

2
+ a2 = 0.

It is a rational curve, and it has a global coordinate p = pDub+ (λ+ a1)/2, which is

our original coordinate p, that is, λ = p+ a2/(p− a1). Theorem 5.1 cannot be applied
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directly, but in this case we can just check by hand that we get the statement that we

want to prove. See Appendix A.2.

Note that Theorem 3.1 suggests that the right choice of function y is y = pDub =

p− (λ+ a1)/2 rather than y = p. However, it does not change anything in topological

recursion if we shift y by a function of x = λ, so there is no contradiction.

Since in this example we rather start from a combinatorial problem of enumeration

of hypermaps and use Theorem 8.1 in order to clarify the structure of the ELSV-type

formula (2.35) for this combinatorial problem, it is interesting to have a description of the

underlying Frobenius manifolds (given by superpotentials) in terms of their prepotentials.

We know an algorithm which can produce this prepotential for any given n (this algorithm

follows from Dubrovin’s construction found in [6]), but we do not know a general formula

which would describe these prepotentials for all n > 1. Here we list the formulas for cases

n = 1, 2, 3:

n = 1 :
a2

1a2

2
+

a2
2

2
log a2;

n = 2 :
a3

1
6
+ a1a2a3+

a2
3

2
log a3+

a3
1a3

6
−

3a2
3

4
;

n = 3 :
a2

1a4

2
+ a1a2a3−

3a2
2

4
+

a2
2

2
log(a2)+

a2a4
3

4
+

3a2a2
3a4

2
+

3a2a2
4

2
−

3a4
4

8
.

Note that in the case n = 1 the corresponding combinatorial problem has also an

interpretation in terms of the discrete volumes of the moduli space of curves [27]

and discrete surfaces/generalized Catalan numbers [1, 9, 17]. The relation of these

combinatorial problems to a CohFT is also discussed in [2, 19], though it is not

mentioned there that the underlying Frobenius manifold is given by the prepotential

a2
1a2/2+ a2

2/2 · log a2.

9. Elliptic example

In this section, we give an example of a superpotential that satisfies the conditions of

Theorem 6.1.

Consider the spectral curve defined by the Weierstrass ℘-function

λ = ℘(z), p = z, B(z, z′) = (℘ (z− z′)+ b) dz dz′, (9.1)

where b ∈ C and p is only defined locally—it is the primitive of a holomorphic differential

on the curve—which is sufficient for topological recursion. The compatibility condition

(4.1) is satisfied by Proposition 4.3. It is equivalent to the elliptic identity:

℘′′(z)
℘′(z)2

=

3∑
i=1

℘(z−ωi )

℘′′(ωi )
(9.2)

where the sum is over the zeros ωi of ℘′(z). Hence the spectral curve defines a CohFT.

Introduce three parameters ω, ω′ and c into the spectral curve to define the following

superpotential taken from [6]:

λ = ℘(z;ω,ω′)+ c, p =
z
ω

(9.3)

https://doi.org/10.1017/S147474801700007X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801700007X


480 P. Dunin-Barkowski et al.

where

℘(z;ω,ω′) =
1
z2 +

∑
(m,n)6=(0,0)

1
(z− 2mω− 2nω′)2

−
1

(2mω+ 2nω′)2
. (9.4)

The Frobenius manifold structure on M = {(ω, ω′, c)} is given by the formulas

(2.7)–(2.9) where the vector fields ∂ on M are given by, for example ∂ω, ∂ω′ , ∂c. Note

that in (9.2), ω1 = ω, ω2 = ω
′, ω3 = ω+ω

′.

Remark 9.1. Note that we know that the superpotential (9.3) defines a Frobenius

manifold due to the existence of flat coordinates, proven in [6], and also given below.

The CohFT produced by topological recursion applied to (9.1) is homogeneous if we

choose b in (9.1) so that
∫

A B(z, z′) = 0, i.e. b = η/ω where the A and B periods are

2ω =
∮

A dz, 2ω′ =
∮

B dz and

η = −
1
2

∮
A
℘(z) dz, η′ = −

1
2

∮
B
℘(z) dz.

The periods satisfy Legendre’s relation

ηω′− η′ω =
iπ
2
.

The homogeneous CohFT corresponds to a conformal Frobenius manifold which gives

rise to a superpotential via Dubrovin’s construction (actually, since d = 1 it is a variant

of the construction). What needs to be proven is that the two superpotentials agree.

Theorem 9.2. The superpotential (9.3) can be obtained via (a variant of) Dubrovin’s

construction described in § 2.4 applied to the Frobenius manifold M. The conditions

of Theorem 6.1 are satisfied for this superpotential. Hence the two cohomological field

theories—obtained from the superpotential (9.3) and topological recursion applied to the

spectral curve (9.1) with b = η/ω—agree.

Proof. To apply Dubrovin’s construction to M we construct a solution of the

Gauss–Manin system as in the proof of Theorem 7.1.

The flat metric (2.7) for the superpotential (9.3) is given by

(∂, ∂ ′) :=

3∑
i=1

Res
z=ωi

∂λ · ∂ ′λ

℘′
dp. (9.5)

We use this to construct a vector field Iβ(λ; u) on M for any cycle β ∈ H0(λ
−1(pt),C)

specified by:

(Iβ(λ; u), ∂) :=
∫
β

∂(λ)

dpλ/dp
. (9.6)

The elliptic curve (9.3) is built by gluing two copies of the disk D = C \
⋃3

i=1 L i in the λ

plane along L i . Choose β to be the cycle given by p0− p1, for p0 and p1 the preimages

of λ in each of the two disks. In normalized canonical coordinates Iβ(λ; u) is represented
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by a solution φβ(λ; u) =
∑

i φ
β
i (λ; u)∂vi of the Gauss–Manin system (2.16) which has

components given by

φ
β
i (λ; u) =

(
Iβ(λ; u),

1
√

2
1

1
2
i ∂ui

)

=

∫
β

1
1
2
i ∂uiλ

√
2 · dpλ/dp

=

√
2 ·1

1
2
i ∂uiλ

dpλ/dp

where the integral over β simply doubles the integrand since the integrand is skew

symmetric. Since d = 1, we cannot use the inversion formula (2.17) so we directly check

that 1
√

2
φβ = ∇u p as follows.

∇u p = η−1du p =
1
ω

3∑
i=1

1i ·
∂uiλ

℘′(z)
∂ui =

1
ω

3∑
i=1

1
1
2
i ∂uiλ

℘′(z)
∂vi =

1
√

2
φβ .

Using

∂uiλ =
1

2℘′′(ωi )

℘′(z)2

℘(z)−℘(ωi )
+

z℘(ωi )+ ζ(z)
℘′′(ωi )

℘′(z)

which can be proven from the known variations
∑

i uk
i ∂ui , k = 0, 1, 2, we see that the

solution φβ(λ; u) satisfies

1
√

2
φT91 =

1
ω

3∑
i=1

∂uiλ

℘′(z)

=
1
ω

3∑
i=1

1
2℘′′(ωi )

℘′(z)
℘ (z)−℘(ωi )

+
z℘(ωi )+ ζ(z)

℘′′(ωi )

=
1

ω℘′(z)
=

dp
dλ

which is (3.3) and hence via Remark 3.2 we see that the properties of φ are sufficient for

Theorems 3.1 and 5.1. Hence the theorem follows.

Theorem 9.2 states that we can study the CohFT obtained from the superpotential

(9.3) via topological recursion applied to the spectral curve (9.1). We need the three-point

function of this CohFT in calculations below. We calculate it in two ways to demonstrate

the proof, although we know from the theorem that they coincide.

9.1. Three-point function

Superpotential. Introduce the canonical coordinates

ui = ℘(ωi )+ c, i = 1, 2, 3
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where, as usual, ω1 = ω, ω2 = ω
′, ω3 = ω+ω

′. The three-point calculations take place

in the ring C[E]/℘′ = C[℘]/℘′ and we have

∂λ

∂u1
≡

(λ− u2)(λ− u3)

(u1− u2)(u1− u3)
,

∂λ

∂u1

∂λ

∂u j
≡ δ1 j

∂λ

∂u1
, j = 2, 3.

and cyclic permutations of the above. This is quite general and also can be proven via

elliptic identities. Hence the three-point function for the superpotential is〈
∂

∂ui
,
∂

∂ui
,
∂

∂ui

〉
=

〈
∂

∂ui
,
∂

∂ui

〉
=

〈
∂

∂ui

〉
=

3∑
j=1

Res
z=ω j

∂λ
∂ui

℘′(z)
dz
ω2 =

1
ω2℘′′(ωi )

.

Thus 〈
∂

∂vi
,
∂

∂vi
,
∂

∂vi

〉
= ω

√
℘′′(ωi ) (9.7)

where ∂
∂vi
= 1

1
2
i
∂
∂ui

for 1−1
i = 〈

∂
∂ui
, ∂
∂ui
〉 = ω2

·℘′′(ωi ) give the normalized canonical

coordinates.

Topological recursion. The three-point function obtained via topological recursion is

ω0,3(z1, z2, z3) =

3∑
j=1

Res
z=ω j

ω dz
℘′(z)

3∏
i=1

(℘ (zi − z)+ b) dzi

=

3∑
j=1

ω

℘′′(ω j )

3∏
i=1

(℘ (zi −ω j )+ b) dzi

=

3∑
j=1

ω

√
℘′′(ω j )V

j
0 (z1)V

j
0 (z2)V

j
0 (z3)

for

V j
0 (z) =

(℘ (z−ω j )+ b) dz dz j

ds j

∣∣∣∣
s j=0
=
℘(z−ω j )+ b√

℘′′(ωi )
dz

where λ = ℘(z)+ c = 1
2 s2

j +℘(ω j )+ c defines the local coordinate s j . The coefficients of

V j
0 (zi ) define the three-point function of the cohomological field theory which agree with

(9.7).

9.2. Flat coordinates

The cohomological field theory is defined on the three-dimensional vector space C[℘]/℘′
equipped with its natural ring structure and gives rise to a Frobenius manifold structure

on the family M of such rings parametrized by {ω,ω′, c}. It will be convenient to express

the metric on M with respect to a natural basis of vector fields on M corresponding to

the basis {1, ℘, ℘2
} of C[℘]/℘′ since the metric requires knowledge of the variation of ℘

under the action of vector fields on the Frobenius manifold. We see that {ω,ω′, c} are not

flat coordinates and find in Lemma 9.4 flat coordinates {t1, t2, t3} on M , i.e. so that the

metric on M is constant with respect to them.
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Recall that correlation functions of the cohomological field theory arising from

topological recursion applied to a spectral curve appear as coefficients of auxiliary

differentials on the spectral curve. Proposition 9.6 gives the auxiliary differentials that

correspond to the flat basis for the metric.

In the following lemma we calculate the vector fields on M that correspond to the

basis elements 1, ℘, ℘2 of C[℘]/℘′. This uses g2 = g2(ω, ω
′) defined by ℘′(z)2 = 4℘(z)−

g2℘− g3.

Lemma 9.3. Under the map T M → C[℘]/℘′ defined by ∂ 7→ ∂λ(mod ℘′) for λ =

℘(z;ω,ω′)+ c

∂c 7→ 1, − 1
2 (ω∂ω+ω

′∂ω′) 7→ ℘, − 1
2 (η∂ω+ η

′∂ω′)+
1
6 g2∂c 7→ ℘2. (9.8)

Proof. The variation ∂cλ = 1 is obvious. The identity

ω∂ω℘(z)+ω′∂ω′℘(z)+ z℘′(z) = −2℘(z) (9.9)

follows immediately from the expansion (9.4) of ℘ and yields − 1
2 (ω∂ω+ω

′∂ω′) 7→ ℘. The

final identification uses the identity proven in [20]

η∂ω℘(z)+ η′∂ω′℘(z)+ ζ(z)℘′(z) = −2℘(z)2+ 1
3 g2 (9.10)

where ζ(z) is the Weierstrass ζ -function

ζ(z;ω,ω′) =
1
z
+

∑
(m,n)6=(0,0)

1
z− 2mω− 2nω′

+
1

2mω+ 2nω′
+

z
(2mω+ 2nω′)2

which is not an elliptic function [6, C.63]. Note that η = ζ(ω), η′ = ζ(ω′).

The metric

〈℘ j , ℘k
〉 =

3∑
i=1

Res
z=ωi

℘ j+k

℘′(z)
dz
ω2 = −Res

z=0

℘ j+k

℘′(z)
dz
ω2

is given by

1 ℘ ℘2

1 0 0 1/2ω2

℘ 0 1/2ω2 0

℘2 1/2ω2 0 g2/8ω2

Lemma 9.4 Dubrovin [6]. Flat coordinates for the metric are given by

t1 = c−
η

ω
, t2 =

1
ω
, t3 =

ω′

ω
.

Proof. This is [6, (5.95)]. We simply use change of coordinates given by (9.8) and the

metric calculated above. We have ∂c = ∂t1 . From the identity

(ω∂ω+ω
′∂ω′)

η

ω
= −2

η

ω
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which uses the fact that ω∂ω+ω
′∂ω′ is the degree operator, η

ω
is homogeneous of degree

−2 we have ω∂ω+ω
′∂ω′ =

2η
ω
∂t1 −

1
ω
∂t2 . The identity

(η∂ω+ η
′∂ω′)

η

ω
= −

1
12

g2−
η2

ω2

appearing as [6, (C.69)] gives η∂ω+ η
′∂ω′ = (

1
12 g2+

η2

ω2 )∂t1 −
η

ω2 ∂t2 −
iπ

2ω2 ∂t3 . Hence we have

∂t1 7→ 1, −
η

ω
∂t1 +

1
2ω
∂t2 7→ ℘,

(
1
8

g2−
η2

2ω2

)
∂t1 +

η

2ω2 ∂t2 +
iπ

4ω2 ∂t3 7→ ℘2. (9.11)

Hence the metric is given by:

∂t1 ∂t2 ∂t3
∂t1 0 0 2/ iπ
∂t2 0 2 0

∂t3 2/ iπ 0 0

which is constant so that {t1, t2, t3} are flat coordinates.

Remark 9.5. As mentioned in § 1.3.4 we can choose a different (0, 2) term B(z, z′) on

the spectral curve (9.1) which still satisfies the compatibility condition (4.1) by varying

b ∈ C. For each b it gives rise to a CohFT with the same genus 0 three-point function

since ancestor invariants are coefficients of B-dependent differentials. When b is chosen so

that B(z, z′) is normalized along a choice of cycle, e.g. b = η′/ω′ so
∫

B B(z, z′) = 0, then

the CohFT is homogeneous and hence the same CohFT as for b = η/ω. Other choices of

b gives rise to non-homogeneous CohFTs.

Proposition 9.6. The flat coordinates correspond to the following auxiliary differentials:

dt1 ←→ T 1
0 = (ω℘+ b)dz− 2ωd

(
℘2

℘′

)
+ 2ηd

(
℘

℘′

)
+

(
ωg2

4
+
η2

ω

)
d
(

1
℘′

)
dt2 ←→ T 2

0 = −d
(
℘

℘′

)
−
η

ω
d
(

1
℘′

)
dt3 ←→ T 3

0 = −
iπ
2ω

d
(

1
℘′

)
.

Proof. The auxiliary differentials on the spectral curve corresponding to the normalized

canonical basis are straightforward. They are given by V i
k dz where

V i
0 =

℘(z−ωi )√
℘′′(ωi )

and for k > 0, V i
k is the principal part of the kth derivative of V i

0 with respect to

℘(z). We also have the canonical basis U i
0 = ω℘(z−ωi ). The auxiliary differentials T i

k dz
corresponding to flat coordinates are linear combinations of V i

k dz

V i
k = 9

i
µ · T

µ
k
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where we recall that 9 i
µ is the transition matrix from flat coordinates labeled by µ to

normalized canonical coordinates labeled by i . We can calculate 9 via 1 1 1
℘(ω1) ℘ (ω2) ℘ (ω3)

℘ (ω1)
2 ℘(ω2)

2 ℘(ω3)
2

 ∂u1

∂u2

∂u3

 =
 1 0 0

−
η
ω

1
2ω 0

1
8 g2−

η2

2ω2
η

2ω2
iπ

4ω2


 ∂t1
∂t2
∂t3


which we write as M ∂

∂u = T ∂
∂t hence M−1T = 11/29T . The auxiliary differentials

corresponding to 1, ℘, ℘2 in the Landau–Ginzburg model are:

[U 1,U 2,U 3
] ·M−1

= 2ω dz
[
℘(z−ω1)+ b

℘′′(ω1)
,
℘ (z−ω2)+ b

℘′′(ω2)
,
℘ (z−ω3)+ b

℘′′(ω3)

]
℘(ω1)

2
−

1
4 g2 ℘(ω1) 1

℘(ω2)
2
−

1
4 g2 ℘(ω2) 1

℘(ω3)
2
−

1
4 g2 ℘(ω3) 1


=

[
−2ωd

(
℘2

℘′

)
+ (ω℘+ b) dz+

ωg2

2
d
(

1
℘′

)
,−2ωd

(
℘

℘′

)
,−2ωd

(
1
℘′

)]
which is proven using the elliptic identities

℘(z)k

℘′(z)2
=

3∑
i=1

℘(ωi )
k℘(z−ωi )

℘′′(ωi )2
, k = 0, 1, 2

and slight generalizations for k > 2. Hence

[T 1, T 2, T 3
] = [U 1,U 2,U 3

] ·M−1
· T

=

[
−2ω d

(
℘2

℘′

)
+ (ω℘+ b) dz+

(
ωg2

4
+
η2

ω

)
d
(

1
℘′

)
+ 2ηd

(
℘

℘′

)
,

− d
(
℘+ η/ω

℘′

)
,−

iπ
2ω

d
(

1
℘′

)]

The following lemma allows us to apply equation (2.35) to obtain ancestor invariants

for the CohFT.

Lemma 9.7. The following kernels K i
0

K 1
0 = y(z), K 2

0 = −2ωζ(z)+ 2η, K 3
0 =

4
iπ

(
ωz℘(z)2−

(
η2

2ω
+
ω

8
g2

)
z+ ηζ(z)

)
are dual (as linear functionals) to T i

0 for i = 1, 2, 3, i.e.

3∑
j=1

Res
z=ω j

K j
0 (z)T

i
k (z) = δi jδk0.
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Proof. Each kernel is analytic at z = ωi , i = 1, 2, 3 and hence annihilates differentials

analytic at z = ωi . Consider the action of each kernel on d(℘k/℘′) for k = 0, 1, 2.

3∑
j=1

Res
z=ω j

K i
0(z)d

(
℘k

℘′

)
= −

3∑
j=1

Res
z=ω j

d K i
0(z)

℘k

℘′
= Res

z=0
d K i

0(z)
℘k

℘′

so K 1
0 = y(z) = z/ω annihilates d(℘k/℘′) for k = 0, 1 and sends d(℘2/℘′) to −1/2ω.

Similarly K 2
0 = ζ(z) annihilates d(℘k/℘′) for k = 0, 2 and sends d(℘/℘′) to 1/2. Apply

the kernels to T i
0 given in Proposition 9.6 as linear combinations of d(℘k/℘′) (and terms

analytic at z = ωi ) to achieve the result.

The kernels K 1
0 and K 2

0 annihilate exact differentials that vanish to order 2 at z = 0, in

particular T i
k for k > 0 by integration by parts. One can also check that K 3

0 annihilates

T i
k for k > 0.

Remark. One can also produce kernels K i
j dual to each T i

j .

The 3-point function in flat coordinates leads to the prepotential given in [6] (C.87):

F0 =
1

iπ
t2
1 t3+ t1t2

2 −
iπ
2

t4
2

(
1

24
−

∞∑
n=1

nqn

1− qn

)
, q = e2π i t3 .

Proposition 9.8.

exp F1 = t1/8
2 η(q)1/4, η(q) = q1/24

∞∏
n=1

(1− qn).

Proof. Topological recursion—defined in § 2.5—applied to the spectral curve (9.1) uses

the kernel

K (z1, z) =
ω

2

∫ z
σi (z)

(℘ (z1−w)+ b)dw dz1

(z− σi (z))℘′(z) dz

=
ω

4
(ζ(z1+ z)− ζ(z1− z)+ 2ηi + 2b(z−ωi )) dz1

(z−ωi )℘′(z) dz

where σi (z) = 2ωi − z. Hence

ω1,1(z1) =

3∑
j=1

Res
z=ω j

K (z1, z)℘ (2z) =
3∑

j=1

Res
z=ω j

ω

4
(ζ(z1+ z)− ζ(z1− z))

(z−ωi )℘′(z)
℘ (2z) dz dz1

=
ω

8

(
2

3∑
j=1

℘(ωi )℘ (z0−ωi )

℘′′(ωi )
−

3∑
j=1

℘(z0−ωi )
2

℘′′(ωi )

)
dz1

=
ω

8

(
2℘℘′′

(℘′)2
−
(℘′′)3

(℘′)4
+ 10g2

℘

(℘′)2
+ 15g3

1
(℘′)2

+ 11
)

dz1

where ηi ∈ C and b are annihilated by the residues. Integrate the kernels K i
j against ω1,1

to get

ω1,1 = 0 · T 1
0 +

ω

8
T 2

0 +
iηω
4π

T 3
0 +

1
8

T 1
1 +

η

4
T 2

1 +
g2ω

2
− 12η2

48iπ
T 3

1 .
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The primary part uses only T k
0 and yields

F1 =
1
8

log t2+ f (t3), f ′(t3) =
iπ
2

(
1

24
−

∞∑
n=1

nqn

1− qn

)
which is obtained from ω1,1 since ∂F1

∂t2
=

1
8t2
=

ω
8 agrees with the coefficient of T 2

0 and
∂F1
∂t3
=

iπ
2 (

1
24 −

∑
∞

n=1
nqn

1−qn ) =
iηω
4π agrees with the coefficient of T 2

0 .

10. General theory

In the preceding sections, we have investigated the construction of a global spectral

curve producing the ancestor potential of a Frobenius manifold by topological recursion

in some examples or assuming some additional properties of the curve defined by

Dubrovin’s superpotential. In the present section, we begin with the data of a semi-simple

Frobenius manifold, and produce a global curve in a general setup not coming from

the superpotential but rather from a family of curves built out of the reflection group

generated by the monodromies of the solutions of our Fuchsian system. In particular, it

explains how our setup is related to the spectral curve built by Milanov in [26].

10.1. Spectral curves from reflection group

Here we define a family of spectral curves associated to the reflection group defined by

the monodromies of the Fuchsian system given by equation (2.16). The spectral curve

defined by Dubrovin’s superpotential is a particular point in this family.

Definition 10.1. For any γ = (γ1, . . . , γn) ∈ Cn , let us define a function φ[γ ] : C\{L i } → C
by

φ[γ ](λ; u) :=
µ∑

i=1

γiφ
(i)(λ; u) (10.1)

where φ(i) are solutions to equation (2.16) defined as in § 2.4.

We define the corresponding function p[γ ] analytic on C\{L i } by

p[γ ](λ, u) :=

√
2

1− d
(φ[γ ])T (U − λ)91. (10.2)

Finally, let us define the pairing

∀(γ, γ ′) ∈ C2n, (γ |γ ′) := −2
∑
i, j

γi Gi jγ ′j . (10.3)

The main property of these functions is that φ[γ ] has the local behavior

φ
[γ ]

j =

∑n
i=1 γi Gi j√
u j − λ

+ O(1) for λ→ u j , j = 1, . . . , n; (10.4)

φ
[γ ]
a =

n∑
i=1

γi Gi j√u j − λ · O(1) for λ→ u j , a 6= j; a, j = 1, . . . , n (10.5)
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and p[γ ] has a local behavior for λ→ ui given by

p[γ ](λ, u) = p[γ ](ui , u)+
n∑

j=1

γ j G j i9i,1
√

2(ui − λ)+ O(ui − λ), i = 1, . . . , n. (10.6)

Let e1, . . . , en be the standard basis of Cn . We have φ[ei ](λ; u) = φ(i)(λ; u).

Remark 10.2. Dubrovin’s standard superpotential defined in § 2.4 is obtained by

considering the particular case γ j =
∑n

i=1 Gi j .

From now on, we assume that the reflections Ri generate a finite group W . Infinite

families of Frobenius manifolds with finite group W are given in [6].

For any γ ∈ Cn , one can define a Riemann surface D[γ ] as a cover λ[γ ] : D[γ ]→ C where

λ[γ ]( p̃[γ ], u) is the inverse function to p̃[γ ] defined out of p[γ ] by resolving the zeros of

dp[γ ] as in § 2.4. It is important to remark that the construction of D[γ ] as a branched

cover of C\{L i } does not depend on γ but rather on a choice of gluing for the different

sheets—see Remark 10.3 for a discussion of these choices. In this section, we consider the

most naive gluing and the resulting spectral curve.

We consider the reflection Ri as a linear map on the space Cn changing the coordinates

of the vectors by the following rule:

γ j →

 γ j if j 6= i

γi + (γ |ei ) if j = i.
(10.7)

We denote wγ the image of a vector γ under the action of an element w ∈ W .

We build the spectral curve D[γ ] as follows. A point z ∈ D[γ ] is defined by a pair

(λ, p) ∈ D̂×C such that p[γ ](λ, u) = p. By definition of p[γ ](λ, u), this defines a cover

of D̂ with ramification points in the fibers above the critical values u1, . . . , un . We now

glue in the most naive way, meaning that each point in the fiber above any of the ui is

a simple ramification point. Let us now describe this sheeted cover.

Our spectral curve is obtained by analytic continuation of p[γ ] from D̂ through the

(preimages of the) cuts L i . Each copy of D̂ is then viewed as a sheet of a branched cover

of the λ plane. We can analytically continue p[γ ] through L i seen as a cut on a Riemann

surface giving rise to a new function of λ

p[Riγ ](λ) := Ri p[γ ](λ; u) :=

√
2

1− d
(Riφ

[γ ])T (U − λ)91 (10.8)

where

Riφ
[γ ](λ; u) =

µ∑
j=1

γ jRiφ
( j)(λ; u) = φ[γ ](λ; u)+ (γ |ei )φ

[ei ](λ; u). (10.9)

In other terms, we glue along the images of the cut L i the sheets given by p[Ri δ](λ) and

p[δ](λ) for all δ in the W -orbit of the initial vector γ .

The above procedure defines a |W | sheeted cover D of the λ plane such that the fiber

above a point λ is {p[wγ ](λ, u)}w∈W . The different sheets of this cover can thus be labeled
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by elements w ∈ W and we denote by λ[w] the unique point in the fiber above a generic

point λ belonging to the sheet labeled by w. We define by p the unique function on D
such that

∀w ∈ W, p(λ[w]) = p[wγ ](λ, u) (10.10)

for a generic λ.

This cover is branched over all the points in the fibers above the points ui , i = 1, . . . , n,

and a ramification point above ui joins the sheets labeled by w and Riw for some w ∈ W .

This branched cover is our spectral curve. It has |W |/2 simple ramification points over

ui , i = 1, . . . , n. We denote by u[w]i , w ∈ W , the point in the fiber above ui such that

p(u[w]i ) = p[wγ ](ui ). This notation is ambiguous, so we denote by Wi the minimal set

such that

λ−1(ui ) = {uwi |w ∈ Wi }. (10.11)

By definition, one has the important relation

∀w ∈ Wi , p(λ[w])− p(λ[Riw]) =
(wγ |ei )

(γ |ei )
[p(λ[I d])− p(λ[Ri ])]. (10.12)

Thanks to our assumption of finiteness of W , D can be compactified by introducing

ramification points of higher order above ∞.

The order of these ramification points above ∞ deserves some investigation. Since the

reflection group W is finite, then the ramification index of such a point is equal to the

Coxeter number h(W ), i.e. the order of a Coxeter transformation. In such a case, there

exists a longest positive root
∑

i miαi (reminding that the set {αi } is a set of simple roots)

and the Coxeter number is equal to 1+
∑

i mi .

Let us recall as well that a Coxeter transformation is a product of all simple reflections.

The different order for this product leading to different transformations, all with the

same order. The different Coxeter transformations correspond to the different points in

the fiber above ∞. In the case of an infinite group, this order is infinite and the different

ramification points in the fiber above ∞ correspond to different conjugacy classes of

Coxeter transformations.

We now have a Riemann surface Σ which is a branched cover of the λ plane. In our

case, when the group is finite, its genus is given by the Riemann–Hurwitz formula:

2− 2g(Σ) = 2|W | −
|W |

2
n− (h(W )− 1)

|W |
h(W )

. (10.13)

Remark 10.3. We have built a curve using this procedure. There exist two ways of

changing the cover built in this way. First by specifying some particular value for

the vector γ . Second, by choosing a different gluing procedure for building the cover:

for each point in the fiber above a critical value ui , one can decide whether it is a

ramification point or not. We followed here the most naive procedure where all the

points are ramification points, recovering the spectral curve built by Milanov in the case

of simple singularities [26]. This procedure is the most general but gives the highest

possible genus of the curve.

In the preceding sections, we had chosen a particular value of γ prescribed by

Dubrovin’s construction as well as the simplest possible curve by considering covers
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where only one point in the fiber above each critical value is a ramification point. This

leads to the lowest genus spectral curve possible but requires one to study the gluing

procedure carefully case by case.

10.2. Global topological recursion and correlation functions of a CohFT

10.2.1. Global topological recursion. We remark that we are not in the cases

discussed in the preceding sections since the spectral curve has |W |/2 ramification points

in the fiber above one critical value. This implies that the topological recursion has to

be modified a little in order to take the right form.

Definition 10.4. We define the correlation functions defined by the global topological

recursion applied to D as the differential forms defined by induction through

ωg,k(z1, . . . , zk)

=

n∑
i=1

∑
w∈Wi

Res
z→u[w]i

∫ σi,w(z)
z B(z1, ·)

2(ω0,1(z)−ω0,1(σi (z)))

[
ωg−1,k+1(z, σi,w(z), z2, . . . , zk)

+

∑
AtB={2,...,k}

g∑
h=0

ωh,|A|+1(z, Ez A)ωg−h,|B|+1(σi,w(z), EzB)

]
,

where

ω0,1(z) := p(z)dλ(z), (10.14)

ω0,2(z1, z2) =
∑
w∈W

(γ |wγ )B(z1, z2) (10.15)

and σi,w is the local involution exchanging the two sheets meeting at uwi . In the right

hand side, all the contributions involving a factor of ω0,1 are set to 0.

Note that, in this recursion, the recursion kernel does not involve ω0,2 itself but rather

B. This might seem to break the usual symmetry between the different arguments of ωg,k
but, as we shall see in the next section, it is not the case.

10.2.2. From global to local. In [10], the correspondence between topological

recursion and CohFT was discussed only at the local level. In order to match the

correlation functions defined by the global topological recursion with those of the CohFT,

let us translate the global recursion into a local one written in terms of integrals in the

λ-plane around the critical values ui .

Lemma 10.5. The global topological recursion on the spectral curve D with x = λ, y = p
and B(p1, p2) is equivalent to the local recursion with local spectral curve

∀i = 1, . . . n, ω
[i]
0,1(λ) = 1i,λ p(λ[I d])dλ (10.16)

and

∀i, j = 1, . . . n, ω
[i, j]
0,2 (λ1, λ2) = 1i,λ11 j,λ2ω0,2(λ

[I d]
1 , λ

[I d]
2 ) (10.17)
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where

1i,λ f (λ[w]) =
f (λ[w])− f (λ[Riw])

2
(10.18)

for a meromorphic form f on D.

In other words, the discontinuities

ω
[i1,...,ik ]
g,k (λ1, . . . , λk) :=

k∏
j=1

1i j ,λ jωg,k(λ
[I d]
1 , . . . , λ

[I d]
k ) (10.19)

of the correlation functions ωg,k produced by the global recursion satisfy the corresponding

local recursion.

Proof. It is first important to note that

1i,λ1ωg,k+1(λ
[w], λ

[w1]
1 , . . . , λk) =

(wγ |ei )

(γ |ei )
1i,λ1ωg,k+1(λ

[I d], λ
[w1]
1 , . . . , λk). (10.20)

This is proved by induction and follows from the definition of ω0,2 in terms of the Bergman

kernel. This property allows us to rewrite the topological recursion in a local version where

one sums only over one of the ramification points in the fiber above each of the critical

values ui .

Writing z = λ[w], one can rewrite the term Resz→u[w]i
as a residue when λ→ ui in the

following way:

Res
λ[w]→u[w]i

= 2 Res
λ→ui

. (10.21)

This gives

ωg,k(z1, . . . , zk)

=

n∑
i=1

∑
w∈Wi

Res
λ→ui

∫ λ[Riw]

λ[w]
B(z1, ·)

21i,λω0,1(λ[w])
1i,λ1i,λ′

ωg−1,k+1(λ
[w], λ′[w], z2, . . . , zk)

∑
AtB={2,...,k}

g∑
h=0

ωh,|A|+1(λ
[w], Ez A)ωg−h,|B|+1(λ

′[w], EzB)

∣∣∣∣∣∣
λ′=λ

.

Plugging property (10.20) into this equation, the global recursion reads

ωg,k(z1, . . . , zk)

=

n∑
i=1

Res
λ→ui

∑
w∈Wi

(wγ |ei )
(γ |ei )

∫ λ[Riw]

λ[w]
B(z1, ·)

21i,λω0,1(λ[I d])
1i,λ1i,λ′

[
ωg−1,k+1(λ

[I d], λ′[I d], z2, . . . , zk)

∑
AtB={2,...,k}

g∑
h=0

ωh,|A|+1(λ
[I d], Ez A)ωg−h,|B|+1(λ

′[I d], EzB)

]∣∣∣∣
λ′=λ

.
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Finally, using the fact that 2
∑
w∈Wi

=
∑
w∈W in the expression above, one gets

ωg,k(z1, . . . , zk)

=
1
4

n∑
i=1

Res
λ→ui

1i,λ
∫ λ[I d]

ω0,2(z1, .)

1i,λω0,1(λ[I d])
1i,λ1i,λ′

[
ωg−1,k+1(λ

[I d], λ′[I d], z2, . . . , zk)

∑
AtB={2,...,k}

g∑
h=0

ωh,|A|+1(λ
[I d], Ez A)ωg−h,|B|+1(λ

′[I d], EzB)

∣∣∣∣∣∣
λ′=λ

.

Acting with the operators
∏k

j=11i j ,λ j on both sides proves the lemma.

10.2.3. Identification of the local initial data with a CohFT. Now that we

have derived a local topological recursion equivalent to the global one, one only needs

to identify its initial data with the data of a CohFT following the dictionary of [10]. For

this purpose, we follow exactly the same steps as in the preceding sections. Let us first

state precisely the identification that we want to find since it is slightly different from

the usual setup where one has only one ramification point in each fiber and a specific

value for γ .

First of all, let us recall that, according to [14], the Laplace transform of the local

two-point function reads

1
2π
√
ζ1ζ2

∫∫
λ1−ui∈R
λ2−u j∈R

ω
[i j]
0,2 (λ1, λ2)e

λ1−ui
ζ1
+
λ2−u j
ζ2 =

∑n
k=1 f (ζ1)

i
k f (ζ2)

j
k

ζ1+ ζ2
, (10.22)

where

f (ζ )ik := −
1
√

2πζ

∫
λ1−ui∈R

ω
[i j]
0,2 (λ1, λ2)

d
√
−2λ2+ 2u j

∣∣∣∣∣
λ2=uk

e
λ1−ui
ζ . (10.23)

In these terms, the identification consists in showing that

f (ζ )ik =
n∑

j=1

(γ |e j )G j i R(ζ )ik (10.24)

and
n∑

j=1

(γ |e j )G j i

n∑
k=1

R(ζ )ik1
−

1
2

k =
1
√

2πζ

∫
λ−ui∈R

ω
[i]
0,1(λ) · e

λ−ui
ζ , (10.25)

where R(ζ ) is the R-matrix defining the CohFT we started from for deriving our Fuchsian

system.

Note that the proof of equation (10.25) is a simple verbatim of the proof of § 5 by

replacing φ(i) by
∑n

j=1(γ |e j )G j iφ
(i). A corollary of this identification is the following

theorem:
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Theorem 10.6. The correlation functions ωg,k produced by the global recursion generate

the correlation functions of the original CohFT through

ωg,k(λ(z1)
[I d], . . . , λ(zk)

[I d]) =∑
i1,...,ik
j1,..., jk
d1,...,dk

k∏
l=1

[
(γ |e j )G j i

] ∫
Mg,k

αg,k(ei1 , . . . , eik )

k∏
l=1

ψ
dl
l d
((

d
dx

)dl

ξil (zl)

)
.

10.2.4. Compatibility condition and homogeneity. Let us now remark the

compatibility between equations (10.24) and (10.25) can be written as the usual

compatibility condition for the Bergman kernel by considering all the ramification points,

i.e.

η(z) =
n∑

i=1

∑
w∈Wi

Res
z′=u[w]i

dp
dλ
(z′)B(z, z′)+Res

z′=z

dp
dλ
(z′)B(z, z′) (10.26)

is invariant under any local involution
√
λ(z)− ui →−

√
λ(z)− ui .

Finally, it is an easy exercise to prove the homogeneity at the level of ω0,2 by using

Rauch’s variational formula as in § 6.
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Appendix A. Frobenius manifolds of rank 2

In this appendix we explicitly construct global spectral curves for two rank 2 CohFTs.

We begin with the prepotential F(t1, t2) which one uses to produce the structure of

a Frobenius manifold. We follow Dubrovin’s construction to produce a superpotential.

In both cases we need to vary the construction slightly due to degeneracy of the

Gauss–Manin system. The two examples satisfy the conditions of Theorem 6.1 and hence

topological recursion produces the CohFT associated to the Frobenius manifold. Note

that although the two examples are of genus zero, they do not satisfy the conditions of

Theorem 5.1.

A.1. Gromov–Witten invariants of CP1

F =
t2
1 t2
2
+ et2 , E = t1∂t1 + 2∂t2 , E · F = 2F (+t2

1 )
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ηαβ =

(
0 1
1 0

)
, 9 =

1
√

2

(
e−t2/4 et2/4

−ie−t2/4 iet2/4

)
µ =

(
−

1
2 0

0 1
2

)
, V = 9µ9−1

=
i
2

(
0 −1
1 0

)
u1 = t1+ 2et2/2, u2 = t1− 2et2/2

V1 = ∂u19 ·9
−1
=

1
u1− u2

· V = −V2

The vector fields φ given in canonical coordinates satisfy (2.16) which is equivalent to

the Fuchsian system:

(U − λ)∂λφ =
( 1

2 + V
)
φ (A 1)

and

∂uiφ =

(
−

Bi

λ− ui
+ Vi

)
φ, Bi = −Ei

( 1
2 + V

)
, Vi = ∂ui9 ·9

−1. (A 2)

This has general solution

φ =
c1

(u1− u2)1/2


√

u2− λ

u1− λ

−i
√

u1− λ

u2− λ

+ c2

(u1− u2)1/2

(
i
1

)
.

We choose the solution c1 = 1, c2 = 0. Since d = 1 (2.24) does not apply. Nevertheless,

φ is the gradient of p so we can calculate

dp(λ, u) =
1

u1− u2

(√
u2− λ

u1− λ
du1+

√
u1− λ

u2− λ
du2

)
.

In this example, we also go through the equivalent treatment in terms of flat coordinates

for the pencil of metrics. The vector fields φ are gradient vector fields of the flat

coordinates

φi = 9iαη
αβ∂βx(t1− λ, t2, . . . , tn)

for the pencil of metrics g− λη where

gαβ =
(

2et2 t1
t1 2

)
.

The flat coordinates for the pencil are of the form x(t1− λ, t2, . . . , tn) so it is enough to

consider the case λ = 0, i.e. find flat coordinates for the intersection form. These are given

by solutions of the Gauss–Manin system of linear differential equations ((5.9) in [7]):

gαγ ∂βξγ +
∑
γ

(
1
2
−µγ

)
cαγ ξγ = 0, ξβ = ∂βx .

2et2∂2
1 x + t1∂1∂2x + 0 = 0

2et2∂1∂2x + t1∂2
2 x + et2∂1x = 0

t1∂2
1 x + 2∂1∂2x + ∂1x = 0

t1∂1∂2x + 2∂2
2 x + 0 = 0

⇒ x = c1 · arccos
( 1

2 t1e−t2/2
)
+ c2 · t2.
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Choose

p = i arccos
( 1

2 (t1− λ)e
−t2/2

)
λ = t1− 2et2/2 cos(−i p) = t1− et2/2(ep

+ e−p).

Note that the critical points of λ are indeed t1± 2et2/2 = u1/2. It was proven in [10] that the

curve p = ln z, λ = a+ b(z+ 1/z) does indeed produce the CohFT for Gromov–Witten

invariants of CP1.

A.2. Discrete surfaces

The two-dimensional Hurwitz–Frobenius manifold H0,(1,1) of double branched covers of

the sphere, with two branch points and unramified at infinity was defined by Dubrovin [6].

Its potential is

F =
t2
1 t2
2
+

1
2

t2
2 log t2, E = t1∂t1 + 2t2∂t2 , E · F = 4F (+t2

2 )

ηαβ =

(
0 1
1 0

)
, 9 =

1
√

2

(
t1/4
2 t−1/4

2
−i t1/4

2 i t−1/4
2

)

µ =

( 1
2 0
0 − 1

2

)
, V = 9µ9−1

=
i
2

(
0 −1
1 0

)

u1 = t1+ 2t1/2
2 , u2 = t1− 2t1/2

2

V1 = ∂u19 ·9
−1
=
−1

u1− u2
· V = −V2

The general solution of (A 1) and (A 2) is

φ =
c1

(u1− u2)1/2


√

u2− λ

u1− λ

i
√

u1− λ

u2− λ

+ c2

(u1− u2)1/2

(
i
1

)
.

The solutions of Dubrovin described in (2.18)–(2.21) yield φ(1) = φ(2) hence Gi j is

degenerate. We use one of the solutions φ = φ(1) in (2.24) to get

p(λ, u) =
t1/4
2
2

√
(u1− λ)(u2− λ)

(u1− u2)1/2

(
1 i

) ( 1
−i

)
=

1
2

√
(u1− λ)(u2− λ).

This corresponds to the spectral curve λ = t1+ z+ t2/z, p = z− t2/z which arises from the

well-studied Hermitian matrix model with Gaussian potential hence discrete maps [17]

and was shown to correspond to the given CohFT in [2].
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