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Abstract

In the last years, abstract argumentation has met with great success in AI, since it has served to
capture several non-monotonic logics for AI. Relations between argumentation framework (AF)
semantics and logic programming ones are investigating more and more. In particular, great
attention has been given to the well-known stable extensions of an AF, that are closely related
to the answer sets of a logic program. However, if a framework admits a small incoherent part,
no stable extension can be provided. To overcome this shortcoming, two semantics generalizing
stable extensions have been studied, namely semi-stable and stage. In this paper, we show that
another perspective is possible on incoherent AFs, called paracoherent extensions, as they have a
counterpart in paracoherent answer set semantics. We compare this perspective with semi-stable
and stage semantics, by showing that computational costs remain unchanged, and moreover an
interesting symmetric behaviour is maintained.
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1 Introduction

In the last years, abstract argumentation theory (Dung 1995) has met with great suc-

cess in AI (Bench-Capon and Dunne 2007), since it has served to capture several non-

monotonic logics for AI. Recently, relations between abstract argumentation seman-

tics and logic programming semantics has been studied systematically in (Strass 2013;

Caminada et al. 2015). These can be highlighted by using a well-known tool for trans-

lating Argumentation Frameworks (AFs) to logic programs (Wu et al. 2009). In par-

ticular, given an AF F one can build the corresponding logic program, PF as follows:

For each argument a in F , if b1, b2, ..., bm is the set of its defeaters, construct the rule

a← not b1, not b2, . . . , not bm. Intuitively, each of these rules means that an argument

is accepted (inferred as true) if, and only if, all of its defeaters are rejected (false) for

some reason. It is known that the well-founded model of PF (Gelder et al. 1991) corre-

sponds to the grounded extension of F (Dung 1995); stable models (or answer sets) of PF

(Gelfond and Lifschitz 1991) correspond to stable extensions of F (Dung 1995); regu-

lar models (You and Yuan 1994) correspond to preferred extensions; P-stable models

(Przymusinski 1991b) correspond to complete extensions (Wu et al. 2009); and L-

stable models (Eiter et al. 1997) correspond to semi-stable extensions (Caminada et al.

2015). Focusing on the stable semantics, we recall that a stable extension is defined

as a conflict-free set (i.e., no argument in the set attacks another one in the set) that
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Fig. 1. Examples of argumentation frameworks.

attacks every other argument outside of it (Dung 1995). In particular, the labelling-

approach (Jakobovits and Vermeir 1999) implies that no argument is labelled as unde-

cidable (i.e., an argument will be either true or false). This condition yields very solid

solutions. For instance, consider the AF reported in Figure 1(a). As both arguments a

and c are attacked by no other argument, they will be true; so that, b will be false (it

is attacked by a and c); and, finally, d will be true, as it is attacked by b only. Hence,

{a, c, d} is a stable extension. However, this solidity is given at the price of not offer-

ing any solution in many situations. In particular, if the AF includes even a small part

admitting no stable extension, no stable extension can be provided for the entire AF.

This is explained by saying that this semantics is not “crash resistant” (Caminada et al.

2012). For instance, if we consider the AF reported in Figure 1(b), that differs from the

previous one only for an attack from a to itself, then no stable extension exists.

To overcome this shortcoming, argumentation semantics that extend the stable one

have been proposed. More specifically, they coincide with the stable semantics, whenever a

stable extension exists; and provide others solutions, whenever no stable extension exists.

Currently, there are two semantics with these properties: the Stage semantics (Verheij

1996) and the Semi-stable semantics (Caminada 2006). A stage extension is a conflict-free

set of arguments A, such that A ∪ A+ is (subset) maximal with respect to conflict-free

sets, where A+ denotes the set of all arguments attacked by an argument of A. A semi-

stable extension is a conflict-free set A, where each argument attacking an argument of

A, is in turn attacked by an argument of A, such that A∪A+ is maximal. By considering

the AF reported in Figure 1(b), the set {c, d} is both a stage extension and a semi-

stable extension. However, in general, stage semantics and semi-stable semantics are

very different (Caminada et al. 2012).

In this paper, we provide an alternative view on how to generalize the stable semantics,

based on paracoherent semantics introduced in Answer Set Programming (ASP) (Brewka

et al. 2011). Actually, there are two main paracoherent semantics for logic programs. The

first was introduced by (Sakama and Inoue 1995), and it is known as semi-stable model

semantics (not to be confused with semi-stable semantics in argumentation); while the

most recent was introduced by (Eiter et al. 2010) to avoid some anomalies concerning

modal logic properties, and it is known as semi-equilibrium model semantics. As we will

see, these two semantics coincide in our settings, and we refer to them as paracoherent

answer sets.

A distinctive property of the new paracoherent semantics for AF is a symmetric be-

haviour, that is not present in stage and semi stable semantics. To exemplify it, we use a

concrete classic application of AF considered orginally by (Dung 1995), namely the Stable

Roommates Problem (SRP) (Amendola 2018). SRP is a matching problem with several

variants and real-word applications, where persons have to be matched while respecting

their preferences (Gale and Shapley 1962). Suppose that Mark (m) prefers John (j) to
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Fig. 2. Argumentation frameworks for SRP.

Annie (a), and Annie to Shrek (s); John prefers Robert (r) to Mark, and Mark to Shrek;

Robert prefers Annie to John, and John to Shrek; Annie prefers Marc to Robert, and

Robert to Shrek; while Shrek wants to stay alone. The AF Fa in Figure 2(a) models

the problem using arguments for possible matchings that attack each other according to

preferences. Note that Fa admits two stable extensions (i.e., matchings). One solution

pairs John and Mark (jm), Annie and Robert (ar), while Shrek stays alone; and the

other solution pairs Annie and Mark (am), John and Robert (jr), again Shrek stays

alone. Hence “Shrek is alone” is a skeptical argument, as expected. Consider now the

AF Fb in Figure 2(b) with one less person and the following preferences: Mark prefers

John to Annie, and Annie to Shrek; John prefers Annie to Mark, and Mark to Shrek;

Annie prefers Mark to John, and John to Shrek; again Shrek wants to stay alone. Despite

the AF Fb has the same symmetric structure of Fa, it has no stable extension (due to

odd-length cycles). This means that the SRP problem has no solution, and, in practice,

one has to accept a non comfortable solution (i.e., a non stable one). Pragmatically, one

can minimizes the number of persons that have no roommate, and always keep Shrek

(disliking all mates) alone, as in the stable case. Unluckily, the semi-stable semantics

cannot suggest a practical solution to the problem (as the unique admissible set is the

empty one); on the other hand, it can be verified that in stage extensions Shrek is always

paired. Thus, both semantics extending the stable one do not behave as in Fa, where

Shrek is always alone and persons that have no roommate are minimized, i.e., we would

expect to pair Mark with John or John with Annie or Annie with Mark. This symmetric

behavior is kept in the semantics introduced here. As argued in (Baroni et al. 2005)

“it is counter-intuitive that different results in conceptually similar situations depend

on the length of the cycle: symmetry reasons suggest that all cycles should be treated

equally and should yield the same results”. According to this observation, our semantics

provides an approach that is more adherent to this ideal behavior than related propos-

als. Moreover, paracoherent extensions could represent plasible scenarios in several real

world applications of AFs where odd cycles naturally appear, such as legal reasoning

(Prakken and Sartor 1996; Verheij 2003; Gabbay 2016), dialog and negotiation

(Amgoud et al. 2000), planning (Pollock 1998), and traffic networks (Gaggl et al. 2018).

In the paper, we define the paracoherent extensions for AFs that are based on the

concept of stabilizer. Stabilizers capture what is missing to a set of arguments to become

stable. Next, we show that paracoherent extensions can be considered as generalization

of the stable extensions, just like the semi-stable and the stage ones. Then, by using the

direct translation from AFs to logic programs, we show a correspondence between para-

coherent extensions and paracoherent answer sets. Moreover, we prove that credulous
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Fig. 3. Argumentation framework of Examples 2, 5, 6, 7.

and skeptical reasoning for paracoherent semantics are ΣP
2 -complete and ΠP

2 -complete,

respectively (as for semi-stable and stage (Dunne and Wooldridge 2009; Dunne and

Caminada 2008; Dvorák and Woltran 2010)). Finally, we discuss and relate the para-

coherent semantics with several existing ones, showing that paracoherent semantics has

an interesting symmetric behaviour on graphs with odd-length cycles.

2 Preliminaries

We overview basic concepts in argumentation and paracoherent answer set semantics.

2.1 Abstract Argumentation Semantics

An AF F is a pair (Ar, att), where Ar is a finite set of arguments, and att ⊆ Ar ×Ar is

a set of attacks. Hence, an AF can be represented by a directed graph, where nodes are

arguments, and edges are attacks. For instance, concerning the AF in Figure 1(a), we

have Ar = {a, b, c, d}, and att = {(a, b), (c, b), (b, d)}. Let A ⊆ Ar be a set of arguments.

We denote by A+ the set of all arguments in Ar attacked by an argument in A, i.e.

A+ = {b ∈ Ar | (a, b) ∈ att, and a ∈ A}. Then, A is conflict-free in F if, for each

a, b ∈ A, (a, b) �∈ att; A is admissible in F if A is conflict-free, and, given a ∈ A, for each

b ∈ Ar with (b, a) ∈ att, there is c ∈ A such that (c, b) ∈ att (say that a is defended by

A in F ); A is complete in F if A is admissible in F and each a ∈ Ar defended by A

in F is contained in A; A is a stable extension if A+ = Ar \ A (i.e., A is conflict-free,

and for each a ∈ Ar \ A, there is b ∈ A, such that (b, a) ∈ att); A is a semi-stable

extension if A is complete and A ∪A+ is maximal (hereafter, we write just maximal for

maximal w.r.t. subset inclusion); A is a stage extension if A is conflict-free and, for each

B conflict-free, A ∪ A+ �⊂ B ∪ B+ (i.e., A ∪ A+ is maximal with respect to conflict-free

sets). We denote by cf (F ), adm(F ), comp(F ), stb(F ), sem(F ), stage(F ), the sets of all

conflict-free, admissible, complete, stable, semi-stable, and stage extensions, respectively.

Example 1

Let F = ({a, b, c, d}, {(a, b), (c, b), (b, d)} be the AF reported in Figure 1(a). We have

cf (F ) = {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, c, d}}; adm(F ) = {∅, {a}, {c},
{a, c}, {a, d}, {c, d}, {a, c, d}}; comp(F ) = {{a, c, d}}; stb(F ) = sem(F ) = stage(F ) =

{{a, c, d}}.
It is known that cf (F ) ⊇ adm(F ) ⊇ comp(F ) ⊇ sem(F ) ⊇ stb(F ); while cf (F ) ⊇
stage(F ) ⊇ stb(F ). Moreover, both semi-stable and stage semantics coincide with the

stable one, whenever a stable extension exists; and provide others solutions, whenever no

stable one exists (Caminada et al. 2012). The main difference between the two semantics is

that, on the one hand, a stage extension is a maximal conflict-free set, while in general the

semi-stable extension is not; on the other hand, a semi-stable extension is an admissible

extension, while in general the stage extension is not.

https://doi.org/10.1017/S1471068419000139 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000139


692 G. Amendola and F. Ricca

Example 2

The AF reported in Figure 3 has no stable exstension, while it has a unique semi-stable

extension, {a, d}; and 3 stage ones {a, c, e}, {a, c, g}, and {a, d, g}.
Moreover, we also recall the following decision problems corresponding to reasoning

tasks on AFs. Given an AF F , a semantics σ, and an argument a, decide whether a:

(1) is contained in some σ-extension of F (credulous reasoning); (2) is contained in all

σ-extensions of F (skeptical reasoning). It is known that credulous reasoning is NP-

complete for stable semantics, and ΣP
2 -complete for semi-stable and stage semantics;

while skeptical reasoning is coNP-complete for stable semantics, and ΠP
2 -complete for

semi-stable and stage semantics (Dunne and Wooldridge 2009; Dunne and Caminada

2008; Dvorák and Woltran 2010).

2.2 Paracoherent Answer Set Semantics

We concentrate on logic programs over a propositional signature Σ. A rule r is of the

form

a1 ∨ . . . ∨ al ← b1, . . . , bm,not c1, . . . ,not cn (1)

where all ai, bj and ck are atoms (from Σ); l,m, n ≥ 0, and l+m+n > 0; not represents

default negation. The set H(r) = {a1, ..., al} is the head of r, while B+(r) = {b1, ..., bm}
and B−(r) = {c1, . . . , cn} are the positive body and the negative body of r, respectively;

the body of r is B(r) = B+(r) ∪B−(r). If B(r) = ∅, we then omit ←; and if |H(r)| ≤ 1,

then r is normal. A program P is a finite set of rules. P is called normal if each r ∈ P

is normal.

Any set I ⊆ Σ is an interpretation. I is a model of a program P (denoted I |= P ) iff for

each rule r ∈ P , I ∩H(r) �= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅ (denoted I |= r).

A model M of P is minimal iff no model M ′ ⊂M of P exists. Given an interpretation I,

we denote by P I the well-known Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1991)

of P w.r.t. I, that is the set of rules a1∨ ...∨al ← b1, ..., bm, obtained from rules r ∈ P of

form (1), such that B−(r)∩ I = ∅. A model M of P is called answer set (or stable model)

of P , if M is a minimal model of PM . We denote by AS(P ) the set of all answer sets

of P . Next, we introduce two paracoherent semantics. The first one is known as semi-

stable model semantics (Sakama and Inoue 1995). We consider an extended signature

Σκ = Σ ∪ {Ka | a ∈ Σ}. Intuitively, Ka can be read as a is believed to hold. The

semi-stable models of a program P are obtained from its epistemic κ-transformation.

Definition 1 (Epistemic κ-transformation Pκ)

Let P be a program. Then its epistemic κ-transformation is defined as the program Pκ

obtained from P by replacing each rule r of the form (1) in P , such that B−(r) �= ∅,
with:

λr,1 ∨ . . . ∨ λr,l ∨Kc1 ∨ . . . ∨Kcn ← b1, . . . , bm; (2)

ai ← λr,i; (3)

← λr,i, cj ; (4)

λr,i ← ai, λr,k; (5)

for 1 ≤ i, k ≤ l and 1 ≤ j ≤ n, where λr,i are fresh atoms.
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Given an interpretation Iκ over Σ′ ⊇ Σκ, let G (Iκ) = {Ka ∈ Iκ | a �∈ Iκ} denote the

atoms believed true but not assigned true, also referred to as the gap of Iκ. Given a set

F of interpretations over Σ′, an interpretation Iκ ∈ F is maximal canonical in F , if

no Jκ ∈ F exists such that G (Iκ) ⊃ G (Jκ). By mc(F ) we denote the set of maximal

canonical interpretations in F . Semi-stable models are defined as maximal canonical

interpretations among the answer sets of Pκ, and the set of all semi-stable models of P

is denoted by SST (P ), i.e., SST (P ) = {S ∩ Σκ | S ∈ mc(AS(Pκ))}.
The second one is called semi-equilibrium model semantics and was introduced

by (Eiter et al. 2010) to amend anomalies in semi-stable model semantics. Semi-

equilibrium models may be computed as maximal canonical answer sets of an extension

of the epistemic κ-transformation.

Definition 2 (Epistemic HT -transformation PHT )

Let P be a program over Σ. Then its epistemic HT -transformation PHT is defined as

the union of Pκ with the set of rules:

Ka← a, (6)

Ka1 ∨ . . . ∨Kal ∨Kc1 ∨ . . . ∨Kcn ← Kb1, . . . ,Kbm, (7)

for a ∈ Σ, respectively for every rule r ∈ P of the form (1).

Then, the set of all semi-equilibrium models is given by {M ∩Σκ |M ∈ mc(AS(PHT ))}
and is denoted by SEQ(P ). In the following, we refer to semi-stable models or semi-

equilibrium models as paracoherent answer sets, and we will be interested to consider

only the true atoms of each paracoherent answer set. Hence, we denote by SST t(P ) the

set {M ∩ Σ |M ∈ SST (P )}, and by SEQt(P ), the set {M ∩ Σ |M ∈ SEQ(P )}.

3 Paracoherent Extensions

In this section, we formally introduce the paracoherent semantics for argumentation. Our

goal is to provide another reasonable generalization of the stable semantics. Intuitively,

we start identifying what is missing to a candidate set of arguments to become stable.

This intuition is formalized by the basic concept of stabilizer.

Definition 3 (Stabilizer)

Let F = (Ar, att) be an AF. A set of arguments S ⊆ Ar is called a stabilizer, if there

exists A ⊆ Ar, such that A+ ∪ S+ = Ar \A. We will say that S is a stabilizer of A, and

also that A admits S as stabilizer.

Example 3

The AF reported in Figure 4, has the empty set as the unique admissible set of arguments.

Now, let A = {a}. Since a attacks b and d, we have that A+ = {b, d}. Therefore, a set

of arguments S to be a stabilizer of A needs to attack at least arguments c and e, and

is not allowed to attack a. So that, S = {b, d} is a stabilizer of A. Indeed A+ ∪ S+ = {b,
c, d, e} = Ar \A. Similarly, it can be seen that {a, b, d}, {b, d, e} and {a, b, d, e} are the

remaining stabilizers of A.

Note that, in general, there are sets of arguments that do not admit any stabilizer.

E.g., by considering the AF in Example 3, then the set A′ = {a, b} is such. This is due
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Fig. 4. Argumentation framework of the Examples 3, 4.

to the fact that a attacks b, thus b ∈ A+ ⊆ (A+ ∪ S+), for each S ⊆ Ar. In general, we

prove the following results.

Proposition 1

Let F = (Ar, att) be an AF, and let S,A ⊆ Ar be two sets of arguments. Then, (1) if S

is a stabilizer of A, then A is conflict-free; (2) if S is a stabilizer of A, then A ∩ S+ = ∅;
and (3) ∅ is a stabilizer of A iff A is stable.

To define argumentation semantics as close as possible to the stable extension, we

need to select sets of arguments that admit stabilizers of minimal size. Thus, given an

AF F = (Ar, att), let ΣF = {S | ∃A ⊆ Ar s.t. S is a stabilizer of A} be the set of all

possible stabilizers.

Definition 4 (Paracoherent Extension)

Let F = (Ar, att) be an AF. A set of argument A ⊆ Ar is a paracoherent extension of

F , if A admits a minimal stabilizer among ΣF w.r.t. ⊆.

Example 4

Consider the AF of Example 3. Note that ∅ is not a stabilizer, since by Proposition 1 F

does not admit any stable extension. However, for instance, A = {a, e} is a paracoherent

extension. Indeed, S = {b} is a minimal stabilizer of A, as (A+ ∪ S+) = {a, b, e}+ =

{b, c, d} = Ar \A.
Now, we show formally that the introduced argumentation semantics behaves as an

extension of the stable argumentation one such as the semi-stable and the stage semantics.

Theorem 1

Let F = (Ar, att) be an AF. If A ⊆ Ar is a stable extension, then A is also a paracoherent

extension.

Proof

Let A be a stable extension. Then, by Proposition 1(3), ∅ is a stabilizer of A. As ∅ is

minimal among all stabilizers in ΣF , then A is a paracoherent extension.

Theorem 2

Let F = (Ar, att) be an AF. If stb(F ) �= ∅, then para(F ) = stb(F ).

Proof

Assume that stb(F ) �= ∅. Hence, there is a stable extension A. Thus, by Theorem 1, A is

a paracoherent extension. Now, let A′ be a paracoherent extension. Since by assumption

A is a stable extension, we know, by Proposition 1(3), that ∅ is a stabilizer of A. Hence,

∅ ∈ ΣF . Thus, ∅ is the unique minimal stabilizer. Therefore, it is also the minimal

stabilizer of A′. Hence, again by Proposition 1(3), A′ is a stable extension.
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Fig. 5. Taxonomy of some argumentation semantics.

However, paracoherent semantics differs from both semi-stable semantics and stage

semantics.

Example 5

Let F be the AF reported in Figure 3. In Example 2, we have seen that sem(F ) =

{{a, d}}, and stage(F ) = {{a, c, e}, {a, c, g}, {a, d, g}}. Now, it can be checked that

para(F ) = {{a, d}, {a, c, e}, {a, c, g}, {a, d, g}}.
As it will be clearer in Section 6 paracoherent, semi-stable and stage are actually incom-

parable.

In Figure 5, a taxonomy of the argumentation semantics cited in the paper is reported.

An arrow from a semantics σ to a semantics σ′ means that σ(F ) ⊆ σ′(F ), for each AF

F , and there is an AF F ′ such that σ(F ) ⊂ σ′(F ). Note that the paracoherent semantics

is not admissible-based. E.g., the paracoherent extension {a, e} of the Example 4 is

not admissible, as the only admissible set of F is the empty set. Note that, the non-

admissibility property is also shared by the stage semantics.

4 Relation with Logic Programming

In this section, we study the relation of our semantics for AFs with paracoherent seman-

tics for logic programs. In particular, we show that paracoherent extensions of an AF F

correspond to paracoherent answer sets of a logic program associated to F (Wu et al.

2009).

Definition 5

Let F = (Ar, att) be an AF. For each argument a ∈ Ar, we build a rule ra such that

H(ra) = {a}, B+(ra) = ∅, and B−(ra) = {c ∈ Ar | (c, a) ∈ att}. Then, we define PF as

the set {ra | a ∈ Ar}.

Example 6

Consider the AF F reported in Figure 3. Its corresponding logic program is PAF =

{a; b← not a; c← not b, not d; d← not c; e← not d, not g; f ← not e, not f ; g ←
not f}.

Since there are two main paracoherent ASP semantics in logic programming, semi-

stable model semantics and semi-equilibrium model semantics (see Preliminaries), we

start to show that on logic programs having the particular structure of PF , the two

semantics coincide.

Theorem 3

Let PF be the logic program corresponding to an AF F . Then, SST t(PF ) = SEQt(PF ).
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Proof

First, the epistemic κ-transformation of PF , Pκ
F , has a simplified structure. As each

rule r in PF is normal and it has an empty positive body (i.e. r is of the form a ←
not c1, ...,not cn), then rule (2) becomes λr ∨Kc1 ∨ ... ∨Kcn; rule (3) becomes a← λr;

rule (4) becomes ← λr, cj ; while rule (5) becomes irrelevant (it is λ ← a, λ), hence it

can be removed. Moreover, as in PF there is a unique rule having a in the head, then

rules (2)-(3) can be unified in the rule a ∨Kc1 ∨ ... ∨Kcn, and rule (4) is equivalent to

← a, cj . Thus, the program Pκ
F is obtained by replacing each rule r, such that B−(r) �= ∅,

with: (8) a ∨Kc1 ∨ ... ∨Kcn and (9) ← a, cj , for j = 1, ..., n. Concerning the epistemic

HT -transformation of PF , P
HT
F , rule (7) becomes Ka∨Kc1∨...∨Kcn. However, this rule

can be derived by rule (8) and rule (6). Hence, it can be removed. Therefore, the program

PHT
F is obtained by adding to Pκ

F , only rules of the form (6), i.e., Ka ← a. Now, it is

easy to see that if M is a minimal model of Pκ
F , then M ∪{Ka | a ∈M and Ka �∈M} is

a minimal model of PHT
F ; and if M ′ is a minimal model of PHT

F , then there is M ⊆M ′,
where eventually some Ka atoms are removed, such that M is a minimal model of Pκ

F .

As both maps do not change the gap of the models and the true atoms, then {M ∩ Σ |
M ∈ mc(AS(Pκ

F ))} = {M ∩Σ |M ∈ mc(AS(PHT
F ))}, i.e., SST t(PF ) = SEQt(PF ).

Paracoherent extensions of an AF F coincide with paracoherent answer sets of PF .

Theorem 4

Let PF be the logic program corresponding to an AF F . Then, para(F ) = SEQt(PF ).

Proof Sketch

Starting from F = (Ar, att), we construct an AF Fs = (Ars, atts) as follows. For each

a ∈ Ar, such that (a, b) ∈ att for some b ∈ Ar, we consider a new argument sa, and

a new attack (sa, b). So that, Ars = Ar ∪ {sa | ∃b ∈ Ar, s.t. (a, b) ∈ att}, and atts =

att ∪ {(sa, b) | ∃b ∈ Ar, s.t. (a, b) ∈ att}. Now, we compute the stable extensions of Fs.

Then, we consider the minimal stable extensions with respect to the subset inclusion

with respect to the arguments in Ars \Ar, i.e., the set of all A ∈ stb(Fs) for which there

is no A′ ∈ stb(Fs) such that A′ ∩ (Ars \ Ar) ⊂ A ∩ (Ars \ Ar). We denote by mstb(Fs)

the set of all minimal stable extensions of Fs. Finally, by filtering the new atoms, we

can prove that what we obtain is exactly the set of paracoherent extensions of F , i.e.,

para(F ) = {A ∩Ar | A ∈ mstb(Fs)}.
To conclude the proof, we note that the stable extensions of Fs coincide with the

answer sets of PFs
, i.e., stb(Fs) = AS(PFs

) (Dung 1995). Now, in (Amendola et al. 2018)

has been introduced a semantical characterization for semi-stable models in terms of

minimal externally supported (MES) models, by replacing the κ-transformation of P

with the so-called externally supported program of P . That is, rules of the form (2)-(5)

are replaced by rule a1 ∨ . . . ∨ al ← b1, . . . , bm,not c1, . . . ,not cn,not sc1, . . . ,not scn,

and then choice rules of the form {scj} are used to minimize the number of atoms of

the form scj . Since we are dealing with logic programs of the form of PF , the rule

above becomes a ← not c1, . . . ,not cn,not sc1, . . . ,not scn, that is exactly what the

translation from F to Fs has done before. Therefore, it is easy to check that MES (PF )

= {M ∈ AS(PFs
) | �M ′ ∈ AS(PFs

) s.t. s(M ′) ⊂ s(M)} = mstb(Fs). Moreover, by

Theorems 3-4 in (Amendola et al. 2018), we conclude that SST t(PF ) = MES t(PF ), where

MES t(PF ) = {M ∩Σ |M ∈ MES (PF )}. Hence, SST t(PF ) = {A∩Ar | A ∈ mstb(Fs)} =
para(F ).
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Example 7

Consider again the AF F reported in Figure 3. The paracoherent answer sets of PF

(see Example 6) are {a, c, e,Kf}, {a, c, g,Ke}, {a, d, g,Ke}, and {a, d,Kf}. Hence,

SEQt(PF ) = {{a, c, e}, {a, c, d}, {a, d, g}, {a, d}}, that is equal to para(F ), as shown

in the Example 5.

Note that, as it happens in the case of the relationship between the semi-stable and

L-stable semantics (Caminada et al. 2015), if we encode a logic program P into an AF

FP using the association presented in (Caminada et al. 2015), it is not guaranteed that

the paracoherent extensions of FP can be mapped one to one with the paracoherent

answer sets of P . E.g., if we consider the program P = {b ← not a; c ← b,not c},
the paracoherent answer sets of P are {Ka} and {b,Kc}, whereas FP has only one

paracoherent extension corresponding to {b,Kc}.

5 Computational Complexity

In this section we study computational complexity issues. In particular, we prove that

the credulous and skeptical reasoning tasks for the paracoherent argumentation semantics

remain the same as for semi-stable and stage semantics.

Theorem 5

For paracoherent semantics, credulous reasoning is ΣP
2 -complete, and skeptical reasoning

is ΠP
2 -complete.

Proof Sketch

The memberships are a corollary of the Theorem 4. Indeed, credulous and skeptical

reasoning for paracoherent semantics coincide with brave and cautious reasoning for

semi-equilibrium model semantics, resp.; and it is well-known that for semi-equilibrium

semantics on normal logic programs, credulous (brave) reasoning is ΣP
2 -complete, and

skeptical (cautious) reasoning is ΠP
2 -complete (Eiter et al. 2010). Concerning the hard-

ness part, it can be checked that the proof of the hardness for credulous (brave) and

skeptical (cautious) reasoning for semi-equilibrium model semantics in case of normal

logic programs (see Theorem 10 and Appendix C1 in (Eiter et al. 2010)) can be directly

used to prove that also for normal logic programs with an empty positive body and a

single rule for each head atom (as it is PF ) hardness results remain unchanged.

Finally, it is worthy to note that credulous and skeptical reasoning tasks associated

with paracoherent argumentation semantics satisfy the criteria identified by (Gaggl et al.

2015), being at the second level of the polynomial hierarchy.

6 Related Work

In this section we review related works by first mentioning the relation with paracoherent

semantics and, then, comparing in detail with alternative argumentation semantics.

6.1 Paracoherent semantics

The two major paracoherent semantics for logic programs are the semi-stable (Sakama

and Inoue 1995) and the semi-equilibrium semantics (Amendola et al. 2016). These

https://doi.org/10.1017/S1471068419000139 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000139


698 G. Amendola and F. Ricca

semantics emerged over several alternative proposals (Przymusinski 1991a; Gelder et al.

1991; Saccà and Zaniolo 1991; You and Yuan 1994; Eiter et al. 1997; Seipel 1997;

Balduccini and Gelfond 2003; Pereira and Pinto 2005; 2007; Alcântara et al. 2005;

Galindo et al. 2008). However, (Amendola et al. 2016) have shown that only semi-stable

semantics (Sakama and Inoue 1995) and semi-equilibrium semantics (Amendola et al.

2016) satisfy all the following five highly desirable –from the knowledge representation

point of view– theoretical properties: (i) every consistent answer set of a program corre-

sponds to a paracoherent answer set (answer set coverage); (ii) if a program has some

(consistent) answer set, then its paracoherent answer sets correspond to answer sets (con-

gruence); (iii) if a program has a classical model, then it has a paracoherent answer set

(classical coherence); (iv) a minimal set of atoms should be undefined (minimal unde-

finedness); (v) every true atom must be derived from the program (justifiability or found-

edness). The first two properties ensure that the notions of answer sets and paracoherent

answer sets should coincide for coherent programs; the third states that paracoherent

answer sets should exist whenever the program admits a (classical) model; the last two

state that the number of undefined atoms should be minimized, and every true atom

should be derived from the program, respectively. The partial evidential stable models

of (Seipel 1997) are known to be equivalent to semi-equilibrium ones (Amendola et al.

2016). An alternative characterization of semi-stable and the semi-equilibrium semantics

based on the concept of externally supported atoms was given in (Amendola et al. 2018),

that demonstrated to be amenable to obtain efficient implementations.

6.2 Comparison with Argumentation Semantics

In this section, we compare paracoherent semantics with alternative semantics for AFs.

First, we compare paracoherent semantics with semi-stable semantics with respect to

some basic features of admissible-based semantics. Then, we compare paracoherent se-

mantics with stage semantics by focusing on the behaviour on unattacked arguments;

and we give an extensive comparison with many argumentation semantics by focusing

on a specific desirable behaviour that paracoherent semantics exhibits, and other seman-

tics do not. Finally, we provide a discussion concerning the connection with some other

studies on the existence of stable extensions.

6.2.1 Cycles and non-admissibility: Paracoherent Semantics vs Semi-stable Semantics

Great attention to the problem of loops and cycles has been given both in argu-

mentation (Bench-Capon 2016; Gabbay 2016; Dvorák and Gaggl 2016; Arieli 2016;

Bodanza et al. 2016), and in answer set programming (Lee and Lifschitz 2003;

Lin and Zhao 2004; Costantini and Provetti 2005; Gebser et al. 2011). An AF described

by an odd-length cycle admits the empty admissible set only. Hence, admissible-based

semantics, such as complete, grounded, preferred, semi-stable, stable, ideal (Dung et al.

2007), eager (Caminada 2007), and resolution-based grounded (Baroni et al. 2011) can

(eventually) admit the empty set as the unique solution. This is the case, in particular, for

semi-stable semantics. However, in case of AFs described by even-length cycles several ex-

tended solution are possible. For instance, if F = ({a, b, c, d}, {(a, b), (b, c), (c, d), (d, a)})
(the 4-length cycle), we have two stable extensions, {a, c} and {b, d}, that are also semi-

stable extensions.
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The paracoherent semantics is non-admissible, unlike semi-stable. In many situations,

non-admissible semantics allow one to have solutions that are not empty. This is a de-

sirable behavior in practice as noted in (Verheij 1996). Indeed, it is known that a small

initial incoherence might prevents to draw interesting conclusions with the semi-stable

semantics. Intuitively, this happens when the argumentation framework “starts” with an

odd-cycle (i.e., an odd-cycle appears in a strongly connected component of the graph and

no argument of this component is attacked by others).

For example, consider the following argumentation framework:

F = ({a, b, c, d, e}, {(a, a), (a, b), (b, c), (c, d), (d, e)}).
The starting loop on the node a avoids to have a non-empty admissible solution. Hence,

the only semi-stable extension is the empty set. On the other hand, the paracoherent

approach allows to obtain solutions also in case of “initial incoherence”. For instance, in

this example, we have {c, e} as (the unique) paracoherent solution.

The paracoherent semantics, like others non admissible-based semantics (such as

stage), guarantees the relevant feature of ensuring a “symmetric” treatment of odd- and

even-length cycles (Baroni et al. 2005; Baroni and Giacomin 2007; Dvorák and Gaggl

2016). A symmetric behavior is strictly connected with the admissibility property, that

guarantees to each argument in a conflict-free solution to be defended by another ar-

gument. This cannot happen when we are in the presence of odd cycles. Hence, the

unique solution must be the empty one, i.e., we suspend any judgment in the presence

of inconsistencies (as in semi-stable). However, in real scenarios this might not suffice.

Consider for example a person charged with a crime. In practice, it will be punished or

not. A decision will however be made. In such circumstances, we need to keep the argu-

mentation system capable of providing plausible solutions. For these reasons, we believe

that it is necessary to resort to non-admissible semantics. However, to minimize ”non-

admissibility” it is necessary to keep ”as close as possible” to admissible solutions, and,

in particular, to maintain a similar/symmetrical behavior to that of stable solutions.

It is not a case that non-admissible semantics can be considered a natural way of

evaluating argumentation frameworks. This was evidenced by a recent empirical study

concluding that non-admissible semantics “were the best predictors of human argument

evaluation” (Cramer and Guillaume 2019).

6.2.2 Unattacked arguments: Paracoherent Semantics vs Stage Semantics

Paracoherent semantics provides a better behaviour in case of “unattacked arguments”

(see, (Caminada et al. 2012)) when compared with the stage semantics.

For example, consider the following argumentation framework:

F = ({a, b, c, d, e}, {(a, b), (b, c), (c, c), (c, d), (d, e)}),
where argument a attacks b; b attacks c; c attacks itself and d; and d attacks e. Note that,

in particular, a is attacked by no argument. The argumentation framework F has two

stage extensions, namely A1 = {a, d} and A2 = {b, d}. Indeed, A1 ∪A+
1 = {a, b, d, e} and

A2 ∪ A+
2 = {b, c, d, e}, and it can be easily checked that they are maximal with respect

to conflict-free sets.
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Fig. 6. A case of symmetric attacks.

Now, intuitively, it is very strange that the argument a is false in some extension,

namely A2, because a is an argument attacked by no other argument. There is no reason

to consider a false. Hence, one expects to see a as true in each extension, that is a should

be a skeptical argument.

This expected behaviour is maintained by paracoherent extensions. Indeed, it can be

checked that B1 = {a, d} and B2 = {a, e} are all the paracoherent extensions. Thus, a is

a skeptical argument as expected.

6.2.3 A distinguishing feature of Paracoherent Semantics: The Symmetric Behaviour

We now provide an extensive comparison between paracoherent semantics and several

argumentation semantics. We discuss a distinguishing feature of the paracoherent seman-

tics: its symmetric behaviour.

Consider the AF Fn = (Ar, att), where Ar = {a1, ..., an, b1, ..., bn, c}, and att is formed

by the cycle of length n given by (ai, ai+1), for i = 1, ..., n− 1, and (an, a1); the pairs of

attacks (ai, bi), (ai, bi+1), for i = 1, ..., n− 1, and (an, bn), (an, b1); and finally (bi, c), for

i = 1, ..., n. Intuitively, a1, ..., an form a cycle of attacks; each ai attacks two arguments

subscripted as consecutive, bi and bi+1, except for the last an which attacks bn and b1,

by completing a sort of cyclic attack; and each bi attacks the argument c. We will call

this graph the n-radial star polygon. Figure 6 reports what is happening in case of n = 5

and n = 6.

In case of n is even, we obtain two stable extensions: {a1, a3, ..., an−1, c} and

{a2, a4, ..., an, c}. Note that c, in particular, is always inferred, so it is a skeptical argu-

ment. However, as well-known, in case of n is odd, the unique admissible set is the empty

one, whereas no stable extension exists. We stress that no admissible-based semantics

can have a symmetric behaviour with respect to cycles. However, also non admissible-

based semantics have this issue with cycles. This happens, for instance, for cf2 (Baroni

et al. 2005; Gaggl and Woltran 2013) argumentation semantics, as shown by (Dvorák and

Gaggl 2016). In our symmetric example, for cf2, the extensions of F5 are {a1, a3, b5},
{a2, a4, b1}, {a3, a5, b2}, {a4, a1, b3}, and {a5, a2, b4}, thus c does not belong to any of

them. Nonetheless, among the cf2 extensions of F6 there are {a1, a3, a5, c}, {a2, a4, a6, c},
{a1, a4, b3, b6}, {a2, a5, b4, b1}, {a3, a6, b5, b2}, hence c is not skeptically but credulously

accepted, thus resulting in a different behavior for even and odd radial star polygons.
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This non-symmetric behaviour happens also for the stage semantics. Since the stage

semantics is a generalization of the stable semantics, and, whenever a stable extension

exists, c is a skeptical argument, then, to fulfill a symmetric behaviour, the stage se-

mantics should guarantee the skeptical acceptance of c. However, just considering n = 3,

the stage extensions will be {a1, b3}, {a2, b1}, and {a3, b2}. Thus, c is not even a cred-

ulous argument. Note that this holds also for extensions of stage semantics such as the

stagle (Baumann et al. 2016).

Therefore, admissible, complete, grounded, ideal, preferred, stable, semi-stable, eager,

resolution-based grounded, stage, and cf2 semantics do not have a symmetric behaviour

w.r.t. radial star polygons. While, paracoherent semantics on n-radial star polygon infers

c as skeptical argument, for each n. In particular, whenever n is odd, the set of the

paracoherent extensions of Fn is formed by Ai = {c} ∪ {ai−2h(mod n) : h = 0, 1, ..., n−3
2 },

for each i = 1, ..., n.

6.2.4 Further studies on the non-existence of stable extensions

As a final observation, we note that the reasons for non-existence of stable extensions has

been recently investigated in (Schulz and Toni 2018). In particular, the idea of (Schulz and

Toni 2018) is to “fix” preferred extensions that are not stable by applying a structural

revision of the original AF. This revision can be used to make stable some preferred

extensions, no matter whether the AF admits a stable one. This goal is rather different

from the ideas underlying the paracoherent semantics which aims at finding a (minimal)

remedy to missing stable extensions without modifying the original AF. Nonetheless, an

interesting open question is whether stabilizers are in some way related to the concept

of responsible sets of (Schulz and Toni 2018).

7 Conclusion

This paper introduces a different perspective on AFs with no stable extension, by propos-

ing the paracoherent extensions. The new semantics coincides with the stable semantics,

whenever a stable extension exists, and has a natural counterpart in paracoherent se-

mantics for logic programs. Moreover, we studied the computational complexity of the

main reasoning tasks, that remain unchanged in comparison with semi-stable and stage

semantics. Finally, we compared paracoherent semantics with several existing argumen-

tation semantics, by showing an interesting distinctive symmetric behaviour on graphs

that involve odd-length cycles. In the literature of Argumentation frameworks several se-

mantics have been proposed, each one having some distinctive feature. It is difficult, and

probably impossible, to identify an overall winner in this context, where often proposals

are incomparable. However, it can be observed that symmetry is very common property

in nature, and has been often subject of cross-disciplinary studies. Already our running

example demonstrates the desirable symmetric behaviour of our semantics is useful while

modelling a very well known problem (Stable Roommates) with a large number of appli-

cations in real world (Gale and Shapley 1962). Our contribution is also relevant because

it adds a missing link in the panorama of correspondences of AF semantics with logic

programming ones.

As future work, we will deepen the study of the symmetrical behavior and to study

additional properties of our semantics as done in (Baroni and Giacomin 2007). Moreover,
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we plan to implement paracoherent semantics to solve typical reasoning problems consid-

ered in competitions (Gaggl et al. 2016). A possibility would be to exploit the techniques

developed in (Amendola et al. 2017; Amendola et al. 2019a; Amendola et al. 2019b) and

devise an evaluation procedure that works by rewriting AFs in ASP programs.
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Caminada, M., Sá, S., Alcântara, J., and Dvorák, W. 2015. On the equivalence between
logic programming semantics and argumentation semantics. Int. J. Approx. Reasoning 58,
87–111.

Caminada, M. W. A., Carnielli, W. A., and Dunne, P. E. 2012. Semi-stable semantics.
J. Log. Comput. 22, 5, 1207–1254.

Costantini, S. and Provetti, A. 2005. Normal forms for answer sets programming.
TPLP 5, 6, 747–760.

Cramer, M. and Guillaume, M. 2019. Empirical study on human evaluation of complex ar-
gumentation frameworks. In JELIA. Lecture Notes in Computer Science, vol. 11468. Springer,
102–115.

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77, 2, 321–358.

Dung, P. M., Mancarella, P., and Toni, F. 2007. Computing ideal sceptical argumentation.
Artif. Intell. 171, 10-15, 642–674.

Dunne, P. E. and Caminada, M. 2008. Computational complexity of semi-stable semantics
in abstract argumentation frameworks. In JELIA’08. 153–165.

Dunne, P. E. and Wooldridge, M. 2009. Complexity of abstract argumentation. In Argu-
mentation in Artificial Intelligence. 85–104.

Dvorák, W. and Gaggl, S. A. 2016. Stage semantics and the scc-recursive schema for argu-
mentation semantics. J. Log. Comput. 26, 4, 1149–1202.

Dvorák, W. and Woltran, S. 2010. Complexity of semi-stable and stage semantics in argu-
mentation frameworks. Inf. Process. Lett. 110, 11, 425–430.

Eiter, T., Fink, M., and Moura, J. 2010. Paracoherent answer set programming. In KR.
AAAI Press.
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