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Abstract

Particle beams with uniform and well-confined intensity distributions are desirable in some high power beam applications
to prolong the target lifetime or to improve the beam utilization. Three kinds of elements had been proposed for the beam
homogenizing, such as octupole, pole-piece magnet, and step-like nonlinear magnets. In this paper, the new type of
elements called heteromorphic quadrupole and focus sextupole are proposed. The Gaussian-like multiparticle beam
redistribution by the octupole, heteromophic quadrupole, step-like nonlinear magnets, and focus sextupole has been
simulated by the POISSON and LEADS code. The best redistribution result is obtained by the focus sextupole, and
one of the solutions of redistributing beam with big halo can be that of using the focus sextupole and the
heteromorphic quadrupole.
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1. INTRODUCTION

The uniform area densities of charged particle beams with
large spatial dimensions at a given location are essential for
many applications of high power beams, such as the spalla-
tion neutron source, the accelerator driven systems, the accel-
erator for the production tritium, and so on. For the electron
linear collider, the nonlinear magnet is also needed for better
luminosity and lower background (Pitthan, 2000; Brinkmann
et al., 2001). In most cases, the natural distribution of the
beam coming from accelerator is Gaussian-like, and in
some cases even worse. Some kinds of nonlinear elements
are used for the beam redistribution such as octupole
(Blind, 1991), duodecapole, step-like magnet (Tang et al.,
2004), and pole-piece magnet (Barlow et al., 1997). Meot
et al. (1996) gave an analytical treatment of homogenizing
the transverse beam densities by the octupole and duodeca-
pole. However, the density distribution ears always appear
at the edge of the beam spot when the octupole and/or duo-
decapole are used (Blind, 1991; Meot et al., 1996; Varentsov
et al., 2005). So the halo particles have to be collimated in
order to cure the ears on the beam target (Kashy et al.,
1987). At the same time, the high field of the octupole is

difficult to obtain (Pitthan, 2000). The step-like magnet
and pole-piece magnet are somewhat complicate for fabrica-
tion, installation and commissioning, and they are designed
for the special beam profile. When the beam profile change
during the commissioning or running, they are difficult to
be adjusted.

2. THE PRINCIPLE OF REDISTRIBUTION THE
GAUSS-LIKE BEAM

In theory, for any initial beam density distribution, one can
make a redistribution field to obtain the uniform beam den-
sity by the special designed pole-piece magnets (Barlow
et al., 1997), although it is somewhat complicated and diffi-
cult. However, the most popular beam distribution is
Gaussian-like, and the redistribution of this kind of beam is
the most important. The Gauss function should be:

y = 1

σ
���
2π

√ e−
(x−μ)2

2σ2 , (1)

where μ and σ is defined in the Figure 1. For the beam density
curve, μ is always zero.

The curve in the Figure 1 approaches isosceles triangle
curve. As we know, to homogenize the isosceles triangle
beam density curve it is required to fold it from a/2 to a
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into center (where the length of the triangle bottom is 2a and
the triangle is symmetric according to the Y axis) as shown in
Figure 2. So it calls to mind that the same method can be used
for the Gaussian-like. Different with the homogenizing of tri-
angle density curve, the fold point should be at σ instead of
the width of half maximum as shown in Figure 3.
To fold the Gauss curve, the special field is needed as the

yellow line shown in Figure 3 (color online), whose focus
coefficient is defined as:

k = 0 (|x| ≤ σ)
constant (|x|> σ)

{
. (2)

Using this kind of field, the redistribution curve is shown
as a pink curve, and the ratio of the maximum value between
|x|> σ and |x|< σ is about 0.8%.
In order to decrease the coupling between X and Y plane

caused by the nonlinear redistribution field, the beam is

always focused on a spot with a large aspect ratio at the
beam redistribution element, and the phase space of the redis-
tribution plane is represented by a line (Blind, 1991; Jason
et al., 1997). In this case, to simplify the analysis, the
beam can be handled as a parallel beam in the redistribution
plane as shown in Figure 4, and the redistribution philosophy
is researched in one phase plane firstly.

3. THE PROPERTY OF THE HETEROMORPHIC
QUADRUPOLE MAGNETS

The fold beam method had been proposed by Meads (1983),
and the needed field should be as like Eq. (2) (Pitthan, 2000).
To perform the beam fold, one used the octupole with/
without duodecapole, which does not meet the needed field
as shown in Section 5 of this paper. In order to obtain the
field as shown in Figure 3, we designed a new type of
element called heteromorphic quadrupole (HQ) as shown
in Figure 5 (only a quarter of the element is calculated by
POISSON (Billen et al., 1993) code). The HQ is similar to
the common quadrupole except that a couple of poles are in-
serted for shielding the magnet field. The obtained field
along the X axis is shown in Figure 6. Different from the
ideal field in Figure 3, there is an intermediate zone between
the zero zone and linear focus zone.
Using the LEADS (Lu, 1995) code and the field as shown

in Figure 6, the phase space and the beam distribution in the

Fig. 2. The redistribution of triangle.

Fig. 1. (Color online) The Gauss curve and its parameter definition.

Fig. 3. (Color online) Redistribute the Gauss density curve.

Fig. 4. The scheme of beam folding philosophy.
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transverse plane can be obtained as shown in Figures 7 and 8
(Li et al., 2011), where the input beam density of two trans-
verse plane is Gauss-like. The beam density curve of the X
plane is very different from that in Figure 3 because of the
appearance of two ears. The reason is that the HQ field in
the intermediate zone is greater than the ideal field in Figure 3

and the particles experience more focus strength and collect
to shape ears, which can be understood in Figure 4. However,
the intermediate zone can not be cured completely because
the divergence of the magnetic field is zero, and then the
first order derivation of the field curve must be uninterrupted.
The first order derivation of the field in Eq. (2) is interrupted
at the point of |x|= σ, so the field can not be obtained in fact,
although the size of the intermediate zone can be reduced by
decreasing the gap of the HQ poles up to the limit of the
mechanical demand. The magnitude of the ears can be chan-
ged by the space charge effect or other effects, but it can not
be cancelled, because the space charge and other effects
should be perturbation and can not cure the intermediate
zone in Figure 6. So the HQ is not the perfect element for
the beam uniformity.

4. THE PROPERTY OF THE STEP-LIKE
NONLINEAR MAGNETS

Another candidate element for the beam distribution is the
step-like nonlinear magnets (SNM), whose cross-section
and field are shown in Figures 9 and 10 (Tang et al.,
2004). The redistribution philosophy is shown in Figure 11
in brief. The difference from the HQ is that the main manip-
ulating part of the beam should take a translation movement
by the force of the flat field as shown in Figure 10. According
to the calculation result of LEADS code as shown in Figures
12 and 13, there are two pairs of ears on the beam density dis-
tribution, whose reason is that the phase line is folded two
times, as can be shown in Figures 11 and 12. In this situation,
it is difficult to obtain the better uniform beam distribution
than that of using the HQ. This result is very different from
that of reference (Tang et al., 2004). The reason is that the
approximation function is used in the calculation and the de-
manded beam redistribution function is parabolic. However,
the real field is used in the calculation by LEADS (Lu, 1995).
According to Figures 4 and 11, the property of the beam fold
of HQ and SNM is linear. So we name this method the linear
fold.

Fig. 6. (Color online) The one dimensional field of the HQ.

Fig. 5. (Color online) The two dimensional field of the HQ.

Fig. 7. The phase space after HQ and drift space.

Fig. 8. (Color online) The beam distribution in the transverse plane.
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5. THE PROPERTYOF THE OCTUPOLEMAGNETS

The beam redistribution philosophy of octupole is different
from that of HQ and SNM. Although, we can divide the oc-
tupole field into two parts (without considering the inter-
mediate zone) just like the HQ, the length of the zero zone
and focus zone is different as shown in Figure 14. We

Fig. 10. Field distribution of the step-like magnets.

Fig. 9. The scheme of the step-like magnets.

Fig. 11. The beam folding philosophy of SNM.

Fig. 12. The phase space after SNM and drift space.

Fig. 13. (Color online) The beam distribution in the transverse plane.

Fig. 14. The field distribution of octupole.
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suppose that the beam profile is 6 cm in the octupole, and
then the cross point of the axis and the tangent line of the
octupole field curve is lying at about 4 cm. The cross
point position is about two-third of the beam profile.
Moreover, for any point on the octupole field curve, the
cross point should be lying at 2x0/3, which can be
proved:

y0 = Sx30
k = 3Sx20
y = kx+ b

⎫⎬
⎭ ⇒ b = −2Sx30, (3)

where S is any constant and (x0,y0) is the point on the
octupole field curve. The cross point of the axis and
the tangent line ( y= kx+ b) is (x,y)= (2x0/3, 0),
which means that the length ratio of the zero zone and
focus zone is 2.
According to Figure 4, if the field is proper, only about

one-third part of the beam is folded. Moreover, because
the point (x0,y0) is any point on the octupole field
curve, for the fixed octupole magnet, and any given
beam profile, only about one-third of the beam can be
folded for obtaining the good beam distribution. We
name this property the nonlinear fold. In fact, the non-
linear fold should be a kind of non-equidensity com-
pression and the linear fold by HQ should be a kind of
equidensity compression. This is the main difference be-
tween the HQ and octupole.
Due to the octupole property, the beam redistribution den-

sity can be obtained as shown in Figures 15 and 16. The
beam density plumps near the center in Figure15 because
of the shorter drift after the octupole or the weaker octupole
field than the proper that. The beam density appears two ears
at the edge in Figure 16 because of the longer drift or stronger
field than that of Figure 15. Whatever we do, we can not
obtain the beam density without the plumping and the ears
at the same time.

6. THE IDEAL NONLINEAR FOLD FIELD
FOR HOMOGENIZING

Because the field of the linear fold element is impossible to
meet the ideal field as the theory required, we have to take the
nonlinear fold into account for beam redistribution. So the
principle of the beam redistribution introduced in Section 2
should be changed. According to Section 5, the redistribution
result of octupole magnet is not better than that of the linear
fold element, so we need to design a new type of element.
But we should understand the beam redistribution principle
of the nonlinear fold first.

According to Figure 14 and Eq. (3), the reason of bad re-
distribution by the octupole is that the field curve is too steep.
If we suppose the field curve is y= Sx2, the cross point in
Figure 14 should be at (x0/2,0), and this kind of field
should be the ideal redistribution field for the triangle
beam density. This can be proved as follow. We can describe
the function of the triangle density in the Figure 2:

ρ0(x) =
kx+ b (0 ≤ x ≤ a)
b− kx (− a ≤ x< 0)

{
, (4)

where, k< 0, b> 0. For the beam redistribution, the particle
distribution in the phase space should be along a straight line,
and then the phase space coordinate of any particle can be
represent as (x, x′)= (x0,αx0) when it begins to enter the re-
distribution element. We suppose that the field experienced
by the particle is B(x0) and it can be looked as unchanged.
We also suppose that: r>> l. Where r is the rotation radio
caused by the field B(x0) and l is the length of the redistribu-
tion element. The deflection angle is about θ= l/r. So the
phase space coordinate after the redistribution element can
be represented as (x0,αx0+ l/r). And then, after a linear
system, the transformation between x and x0 is (Jason
et al., 1997):

x = x0R11 + (αx0 + l/r)R12 = (R11 + αR12)x0
+ lR12B(x0)/Bρ,

(5)

Fig. 16. (Color online) Growing ears at the edge.

Fig. 15. (Color online) Density plumping in the center.
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where, Bρ is the beam rigidity. And then, one obtains:

dx/dx0 = (R11 + αR12)+ lR12B
′(x0)/Bρ. (6)

It is well known that:

ρ(x)dx = ρ(x0)dx0. (7)

According to Eqs. (6) and (7), one can obtain (Jason et al.,
1997):

B′(x0) = [ρ0(x0)− (R11 + αR12)ρ(x)]Bρ/[lρ(x)R12]. (8)

For the uniform beam obtained at the target, ρ(x), Bρ, R11,
R12, α, and l are constant. If the initial beam density is tri-
angle as shown in Eq. (4), the redistribution field according
to Eq. (8) should be:

B(x0) = S|x0|3/x0. (9)

There must be a relationship between the constants:

b = (R11 + αR12)ρ(x). (10)

The reason of the appearance of the absolute value in Eq. (9)
is that the redistribution field should be antisymmetric respect
to the beam center.

7. THE DESIGN AND SIMULATION OF THE FOCUS
SEXTUPOLE MAGNETS

Because the Gauss curve approaches isosceles triangle curve,
it is somewhat reasonable to use the antisymmetric quadratic
field of Eq. (9) for homogenizing the beam density. The
phase space and the beam density can be obtained by the
ideal antisymmetric quadratic field as shown from Figures
17 to 19. The result is better than that of HQ, SNM, and octu-
pole as shown in Figures 8, 13, 15, 16, and 19, because the
ears of the beam density is almost cured.

As we know, the field of the sextupole is quadratic, but it is
an even function, and the redistribution needs an odd func-
tion as shown in Figure 17. So we change the current direc-
tion of one pair of coils and delete the pair of coils of the up
and down pole as shown in Figure 20, and then the obtained
field compare with the ideal field as shown in Figure 21. We
name this kind of element the focus sextupole (FS). The ob-
tained beam redistribution in Figure 22 is worse than that in
Figure 19, which is because the field of FS near the beam
center is greater than that of the ideal field. So we decrease
the distance of the up and down pole and the obtained field
approaches the ideal field very much as shown in Figures
23 and 24, and then the beam redistribution as shown in
Figure 19 can be obtained.
Obviously, the structure of the FS is simpler than that of

SNM, octupole, and duodecapole. Because of the simpler
structure and the quadratic field, it is easier to obtain the
higher field near the beam center than octupole and duodeca-
pole. Moreover, the beam redistribution performance of FS is
not affected by the beam profile, which is the same as that of
octupole and duodecapole introduced in Section 5. That is,
for the fixed FS magnet and any given beam profile, the
beam can be redistributed as the similar density curve
when its field is proper. But, the beam redistributionFig. 17. The ideal quadratic field.

Fig. 18. After the ideal quadratic field and drift space.

Fig. 19. (Color online) The beam distribution in the transverse plane.
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performance of the HQ and SNM is different and difficult to
be cured when the beam profile is changed, because their
fold point is fixed.
An example of two phase plane homogenizing is also

shown in Figures 25 and 26. In Figure 25, Q means quadru-
ple and S means FS. The beam transport system is similar to
that of Kashy et al. (1987), but there is no beam collimator.
The result means that the more uniform beam can be obtained
by the FS.

Fig. 20. (Color online) The field distribution of the focus sextupole.

Fig. 21. The one dimensional field of the FS.

Fig. 22. (Color online) The beam distribution after the FS.

Fig. 23. (Color online) The field distribution of the modified FS.

Fig. 24. The one dimensional field of the modified FS.

Fig. 25. (Color online) The envelope of the beam homogenizing.

Fig. 26. (Color online) The beam distribution in the two phase plane.
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8. CONCLUSION

According to the calculation result, the modified focus sextu-
pole is the simplest and most effective element for the beam
homogenizing than the other type of elements. It can cure the
ears and easily obtain high field near the beam center. The
better homogenizing result can be obtained without collima-
tor. Also, the performance of beam redistribution is not af-
fected by the beam profile. For convenience, we can also
name the modified focus sextupole the focus sextupole.
Although the result of Figure 19 is not the perfect one, it
can meet the most of applications.
In some fields of high energy and high current beam appli-

cation, the beam halo is very big and it is difficult to clean.
One of the solutions is to use the HQ and FS, because the
HQ has a very good zero zone, which can not change the
state of the particle in the zero zone, and the focus zone
can fold the halo into the beam center. If the focus strength
is not enough, the pole of quadrupole can be replaced by
that of sextupole, octupole, and so on, which depends on
the actual design. However, it must be remembered that the
FS is only effective for the Gauss-like distribution and quasi-
triangle distribution.
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