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REGULARITY AND STABILITY OF
EQUILIBRIA IN AN OVERLAPPING
GENERATIONS GROWTH MODEL
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In an exogenous-growth economy with overlapping generations, the Cobb–Douglas
production, any positive life-cycle productivity, and time-separable constant elasticity of
substitution (CES) utility, we analyze local stability of a balanced growth equilibrium
(BGE) with respect to changes in consumption endowments, which could be interpreted as
a transfer policy. We show that generically, in the space of parameters, equilibria around a
BGE are locally unique and are locally differentiable functions of endowments, with
derivatives given by kernels. Furthermore, those equilibria are stable in the sense that the
effects of temporary changes decay exponentially toward ±∞.
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1. INTRODUCTION

1.1. Motivation and Some Related Literature

Whether the task is to analyze a pension reform, a change in social security
system, or an environmental project with a longer than human life, it is impossible
to conduct the analysis without a model that distinguishes between generations and
does not rely too heavily on an assumption that individual lives are infinite. Policy
analysis in overlapping generations models brings new insights that are lacking
in static or representative agents’ models [as is also stressed in De La Croix and
Michel (2002); Erosa and Gervais (2002)], largely due to the built-in agents’
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heterogeneity: the savings-consumption trade-off varies over the life cycle and
in an overlapping generation model agents of all ages are present at any point
in time. The basic variant of such models was introduced in Allais (1947) and
Samuelson (1958); see De La Croix and Michel (2002); Kotlikoff (2002) for an
overview. Working with overlapping generations models has a cost however, since
they are prone to multiplicity (possibly continua) of equilibria [Kehoe and Levine
(1985); Geanakoplos and Polemarchakis (1991)], even in the presence of capital
accumulation [Muller and Woodford (1988)], therefore potentially invalidating
“comparative dynamics” exercises.

Our main goal is to provide a first step to enable “comparative dynamics” in an
overlapping generations model with production (and capital accumulation). We
show that it is possible to compute the reaction of a competitive equilibrium to
changes in policy when time is taken as a real line, as opposed to the models where
indeterminacy results are established—there time proceeds in discrete jumps and
is being truncated at 0. A particular variant of such a model comes back to Cass
and Yaari (1967), and has experienced some recent development (d’Albis and
Augeraud-Véron 2007, 2009). Probably, the closest contribution (based on the de-
fined objectives) is by Burke (1990), who considers a discrete-time, but “eternal”
economy and establishes determinacy of equilibria, in contrast to the previous lit-
erature, Kehoe and Levine (1985). Burke observes that only in a world where time
is not truncated one can model truly perfect foresight. Fully anticipated policies
in such a model can lead to a predictable “smooth” change in equilibrium. More
positive results in this respect appear in Demichelis and Polemarchakis (2007)
demonstrating that indeterminacy [as in Kehoe and Levine (1985)] disappears in
an exchange model (with no production) when time is extended infinitely far into
the past and the gap in time between transactions tends to zero.1

This is the main reason we work with a continuous time (taken as R) overlap-
ping generations model to perform a classical (à la Debreu) comparative statics
exercise asking when one should expect a smooth response of equilibrium vari-
ables to a “small” change in endowment perturbations, interpreted as a policy
(transfers of consumption goods across individuals, including a net transfer into
the economy). In contrast to the existing literature on overlapping generations,
we do not seek to describe the equilibrium system as a dynamic system (with
a finite memory); rather, we view equilibrium variables as elements of a vector
space, very much like we do in a finite economy. The advantage is the ability
to analyze policy changes enacted over some interval of time, as opposed to just
one-period changes, “impulses,” traditionally dealt with in dynamic systems, and
to identify the speed of convergence of the perturbed equilibrium to the status-quo
(which should eventually yield differentiability of welfare). However, this requires
some ground work, i.e., describing the spaces hosting the policy changes and the
resulting equilibrium responses, done in Mertens and Rubinchik (2014), as well
as characterizing equilibria of the model, done in Mertens and Rubinchik (2013).

The extension of the classical analysis of regularity (as in Debreu, 1970) for
infinite economies based on Sard’s theorem (Sard, 1942) has been focused on
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models with the finite number of consumers. Using Smale’s extension (Smale,
1965) might impose too many restrictions for the overlapping generations (OG)
models where consumption goods are indexed by time, real line, and so is the date
of birth of each consumer. Furthermore, the argument suggested in Chichilnisky
and Zhou (1998) and Covarrubias (2010) who use such an extension is based
on a decomposition property of Fredholm maps, see e.g., Lang, 1969, IX, Sect.
2, Theorem 6. One of the elements in the decomposition should be invertible
(with the other being finite dimensional) and verifying invertibility of a map in
infinite dimensional spaces, in general, is a nontrivial task, which one might hope
to circumvent by appealing to indirect arguments, such as transversality theorems
in the first place. Indeed, it is the invertibility of the derivative of the equilibrium
map with respect to “endogenous variables” that is needed in order to apply the
appropriate implicit function theorem (IFT) which, in turn, yields regularity.

Shannon and Zame (2002) work with another extension of Sard’s theorem
(Shannon, 2006) that does not require the equilibrium map to be as smooth as
in the classical variants of the theorem; rather, they impose just the Lipschitz
continuity property. As a result, generic determinacy is achieved for a wider class
of preferences (of consumers in an exchange economy). However, the analysis
applies only to an economy with a finite number of consumers; besides, only
Pareto equilibria are analyzed. The latter, recall, is a substantial restriction in OG

economies wherein first welfare theorem does not apply.
Instead of extending Sard’s theorem, we use Wiener’s theorem on the spectrum

of convolution operators to assure generic invertibility of the derivative of the
equilibrium map required by the IFT.

Moreover, we use a single IFT to establish both regularity and stability of
balanced growth equilibria: Solutions to the equilibrium fixed point equation are
found to be smooth functions of endowment changes and converge exponentially
back to the baseline equilibrium for a generic set of parameters describing an
OG model. The new approach should help to identify a tractable way to verify
regularity for a wide class of infinite economies.2

The most exciting part of the new approach is the ability to analytically evaluate
the first-order (approximated) response of the equilibrium variables to the policy
change, i.e., we provide a way to calculate it. We work with a fully parameterized
classical model that admits balanced growth: time-separable CES utility, constant-
returns-to-scale Cobb–Douglas production, exogenous growth, and a linear capital
depreciation. The analysis is broken into very small steps and each is generalized
to the extent possible within the scope of a single paper. All the tools presented here
can be used for a wide range of other models except for our proof of genericity that
relies on a specific “trick": yet even that might shed light on a way to generalize.

Let us stress that the approach we offer is in no way competing with a numerical
one; rather, it is complementary to it. Trying to find an equilibrium corresponding
to a change in policy might be futile in the absence of any regularity results,
especially with indeterminacy lurking. But even when regularity is established,
constructing a good algorithm to find a new equilibrium is a challenge, since the
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map that has to be at its fixed point in equilibrium is not necessarily a contraction,
and so starting with a guess for, say, a capital path in the vicinity of an equilibrium
and simply applying the map recursively might lead away from the equilibrium.
On the other hand, some of the steps in the approach we suggest can potentially
be done using numerical methods.

We start in Section 2 by briefly describing the overlapping generations model
from Mertens and Rubinchik (2013). Borrowed from there also is the characteriza-
tion of its equilibria, interior with respect to irreversibility constraints,3 presented
in Section 3. Then, follows Section 4, which contains the outline for the rest of
the paper along with the related definitions. The proofs that are not in the text and
intermediary formal statements with their proofs are in the online appendix.

2. THE MODEL

For the analysis, we use the general variant of the model in Mertens and Ru-
binchik (2013) with the Cobb–Douglas production and the characterization of the
competitive equilibrium there.

The life span of any individual born at x ∈ R is [0, 1].

U(ĉx) =
∫ 1

0
e−βsu(ĉx,s)ds, with u(z) = z1− 1

σ

1 − 1
σ

, for σ �= 1, 4

is his life-time utility defined over the set of individual consumption plans ĉx,s ,
R+-valued Lebesgue-measurable functions of age s for every x.

An individual derives income from renting labor and receiving transfers.5 Effi-
ciency of labor varies with age according to a nonnull integrable function ζs ≥ 0
over the life-span, [0, 1], and zero elsewhere. His time sells for

∫ 1
0 wx+sζsds,

where x is his birth date, and wt is the (per unit efficiency) wage rate at time
t . His initial endowment of consumption goods is ωx,s at age s, ω is locally
integrable.6 So, with the Arrow–Debreu price of consumption goods denoted by
pC , the individual’s lifetime wealth is the value of his endowment (of consumption
goods and of leisure)

Mx
def=

∫ 1

0
(pC

x+sωx,s + wx+sζs)ds,

provided that integral is well defined.7 In the baseline (status-quo) equilibrium,
the endowment is null.

The instantaneous production set is a subset of R5 describing feasible transfor-
mations of contracted productive labor Lt , capital Kt , investment It , consumption
Ct , and an intermediate good Yt called “output," produced using a Cobb–Douglas
technology

Yt = AKα
t L1−α

t , 0 < α < 1, A > 0.
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Aggregate total productive labor available at t is

Lt = N0e
γ t

∫ t

t−1
ζt−xe

νxdx = N0e
(γ+ν)t

∫ 1

0
ζse

−νsds,

where Nxdx
def= N0e

νxdx (N0 > 0) individuals are born in [x, x + dx], ∀x ∈ R,
ν is the rate of the population growth, and γ is the per-capita productivity growth.
Aggregate capital evolves according to the differential equation8 K ′

t = It − δKt

with depreciation factor δ > 0 and is subject to the following assumption.

Assumption 1 (Initial Condition). For any feasible K , eδtKt converges expo-
nentially to 0 at −∞.

The production set is any closed convex cone with free-disposal, containing
the graph of the production function and the activities of transforming output into
consumption and investment, and contained in the closed convex cone spanned
by the production function, free-disposal, and two-way transformations of output
into consumption and investment.

Perfectly competitive firms have finite lives, for profits to be well defined. Price
of output, pY

t , is assumed to be finite. Labor Lt is bought from individuals at
price wt , and capital Kt is rented from investment firms at rate rt . Aggregate
consumption at time t Ct is sold at price pC

t to individuals, and It at price pI
t to

investment firms.9

Notation 1. η = (γ +ν)(1−σ)+βσ , R = γ +ν +δ. Intensive variables: kt =
Kt

Lt
, yt = Yt

Lt
, it = It

Lt
, ct = Ct

Lt
, ϕs = e−νs ζs∫ 1

0e
−νuζudu

, Et,s = Nt−sωt−s,s

Lt
,10 �t =∫ 1

0 Et,sds.

3. THE EQUILIBRIUM SYSTEM

3.1. The Policy Space and the Induced Equilibria

Competitive equilibrium is defined in the classical way. Its characterization, de-
rived in Mertens and Rubinchik (2013), Corollaries 11–12, implies that, first,
it is a solution of the equilibrium system, or a fixed point of the map defined
below as ϒ , and, second, it satisfies inequalities, which assure that the solution
yields nonnegative consumption and does not violate (possible) irreversibility
constraints imposed by technology (hence 0 < it < yt a.e.). The characterization
is summarized below in Proposition 1 with the corresponding references to the
previous results.

Here, we focus on two types of equilibria. The first is the status-quo, prevailing
in the absence of a “policy intervention,” so that E = 0 (cf. Notation 2). We assume
it is a balanced growth equilibrium (BGE), i.e., an equilibrium in which capital
grows exponentially. The second is a (possibly nonstationary) equilibrium that
emerges as a result of a perturbation of consumption endowments, or transfers, E,
which we will refer to as a perturbed equilibrium.

Recall, our task is to represent an equilibrium (in the vicinity of the status-quo)
as a smooth map (� ) from the space of exogenous policy variable, E, into the
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spaces of equilibrium quantities and prices (in case there are multiple equilibria, �
picks one). Naturally, equilibrium conditions as well as assumptions imposed on
the exogenous variable, E, determine the spaces where the equilibrium variables
belong. The transfers, E, specify the “amount” of consumption good given to
(or taken from) a person who is of age s at time t ; hence it, itself, is a map
R × [0, 1] → R. Our very first take on this problem (Mertens and Rubinchik,
2009) was written assuming E is uniformly bounded, which we found restrictive.
To allow for a richer set of transfer policies and yet work with tractable spaces,
we derived and compiled the relevant properties of the so-called “amalgams” in
Mertens and Rubinchik (2014). Here is the definition adapted for the analysis of
this model.

DEFINITION 1 (amalgams). i. Given a relatively compact measurable
subset H of Rn with nonempty interior,

Lp,q
def= {f measurable : Rn→R | ‖f ‖p,q

def= ‖x 
→ ‖1x+H f ‖q‖p < ∞},
mod null functions, for 1 ≤ p, q ≤ ∞.11

ii. For 1 ≤ p ≤ ∞, Cp is the subspace of continuous functions in Lp,∞.

For example, for h : R → R, let H = [0, 1], then ‖h‖∞,1 = supx

∫ x

x−1|h(t)|dt .
The policy variable E is defined on R × [0, 1] and so ‖E‖∞,1 =
supx

∫ x

x−1

∫ 1
0|Et,s |dsdt .

Assumption 2. ‖E‖∞,1 < ∞.

Note that the assumption does not require the volume of transfers to be either
uniformly bounded or even totally summable over time.

3.2. Fixed Points of the Equilibrium Map, ϒ, (Solutions) and Equilibria

Since the technology allows for irreversibility, the prices of consumption, invest-
ment, and output are not necessarily equal in an equilibrium; however the equilibria
that will be characterized for our analysis here12 are interior with respect to such
constraints and so the physical good has the same price, pt , in all its forms
(consumption, intermediate, etc.) at any t .

The first part of the proposition shows that an equilibrium should be a solution
to a fixed point (in k) of the map ϒ defined there. The map is broken into 10 simple
components each having a clear economic meaning. As a result, this necessary
condition for equilibrium is described by a single equation, ϒ(k,E) = k.

PROPOSITION 1. Given an endowment Et,s ∈ L∞,1, define ϒ : (k, E) 
→ k̃,
from C∞ × L∞,1 to C∞ as the composition of

i. k 
→ y : yt = Akα
t ,

ii. k 
→ r : rt = R − αAkα−1
t (= R − αyt

kt
,= γ + ν + p′

t

pt
),

iii. (r, E) 
→ N1 : N1,x = ∫ 1
0 e

∫ x+s

x
rt dtEx+s,sds,
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iv. (y, r) 
→ N2 : N2,x = ∫ 1
0 e

∫ x+s

x
rt dtϕsyx+sds,

v. (N1,N2) 
→ N : N = N1 + (1 − α)N2, N ≥ 0,

vi. r 
→ D : Dx = ∫ 1
0 e−ηs+(1−σ)

∫ x+s

x
rt dt ds,

vii. (N,D) 
→ B : B = N
D

, Bj = Nj

D
(j = 1, 2), B = B1 + (1 − α)B2,

viii. (r,B) 
→ c : ct = ∫ 1
0 e−ηu−σ

∫ t

t−u
rsdsBt−udu,

xi. (y, E, c) 
→ i : it = yt + �t − ct ,

x. i 
→ k̃ : k̃t = e−Rt
∫ t

−∞eRsisds > 0.

The prices then can be computed as follows:

pt = p0e
∫ t

0 (δ−R+rs )ds, (1)

rt = pt(R − rt ), (2)

wt = (1 − α)eγ tpt . (3)

The zeros of F(k,E)
def= ϒ(k,E) − k, i.e., the fixed points of ϒ (with implied

values for y, i, c, etc.) characterize

Interior Equilibria all equilibria where 0 < it < yt a.e., provided the fixed
points satisfy 0 < it < yt ;

BGE if Kt is exponential, all BGE with ω = 0.

Proof. The characterization of each of the equilibria is by Corollary 12.c,e in
Mertens and Rubinchik (2013). kt is uniformly bounded by Proposition 1.a in
Mertens and Rubinchik (2013), it ∈ L∞,1 by Proposition 1.b in Mertens and
Rubinchik (2013) and hence by equation x here, k is continuous, thus the range
and the domain of ϒ are as specified in the claim.

Note that the prices pt , rt , wt are determined fully by the rest of the variables, in
fact, it is enough to know the (adjusted) rate of change of prices, rt , to determine the
three. Moreover, none of the equilibrium variables determined by the conditions
i − x in Proposition 1 are affected by the three prices. Hence, we can easily drop
the three prices from the list of the equilibrium variables to lighten the notation
and the analysis.

By Theorem 3 in Mertens and Rubinchik (2013), the number of BGE is finite
in this economy, and we denote by � an equilibrium selection for a given E.
So, first, at E = 0, � has to return one of the BGE. More generally, we want to
establish existence of solutions

(k, y, c, r, i) ∈ P
def= C4

∞ × L∞,1,

of the equation system i − x in Proposition 1, together with F(k,E) = 0, as
functions of E ∈ L∞,1(R2) (in a neighborhood of 0). By “equation system” we
mean all equations there, but excluding the inequality N ≥ 0 part v.

Furthermore, for a solution to be an equilibrium, it has to satisfy, in addition,
the inequality N ≥ 0, thus assuring that individual consumption is nonnegative,13
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and, for all interior equilibria, the constraints 0 < it < yt , implying that capital
is positive as required by part x. For the BGE with zero transfers, this condition is
satisfied, cf. Mertens and Rubinchik, 2013, Corollary 12.e.

4. THE ROADMAP

4.1. The Notions of Regularity, Stability, and Genericity

We will say that a BGE is regular if in some open ‖·‖∞,1 neighborhood of E = 0,

there is a Fréchet–differentiable map from an endowment E to the correspond-
ing perturbed equilibrium. It is stable if each perturbed equilibrium converges
exponentially to the status-quo path.

Our task is to show regularity and stability of equilibria for a generic economy
in the following sense.

DEFINITION 2. The parameter space, or the space of economies, is

℘ = {(R, α, η, σ, ϕ(ds)) | (R, σ ) ∈ R2
++, α ∈ ]0, 1[, ϕ(ds) ∈ �([0, 1])},

with the weak*-topology on �([0, 1]), the probabilities on [0, 1].

DEFINITION 3. A subset of ℘ is negligible if its section for any fixed proba-
bility distribution ϕ(ds) in �([0, 1]) has the Lebesgue measure 0.

A subset is generic if its complement is contained in a countable union of closed
negligible sets.

4.2. The Building Blocks of the Unified Approach

Our task is to establish regularity and stability with one (implicit function) theorem.
Heuristically, since any equilibrium has to be a solution to the fixed point

problem

F(k,E)
def= ϒ(k,E) − k = 0,

if such a solution is an equilibrium, the derivative with respect to E of, say,
equilibrium capital path, has to be determined by an IFT:

� ′
k = −

(∂F

∂k

)−1
◦ ∂F

∂E
. (1)

Now our task is two-fold: First, prove that F is sufficiently smooth, and second,
show that ∂F

∂k
is generically invertible.

To assure both regularity and stability, we extend the notion of smoothness
used in the IFT. We want to assure that the implicit function � is smooth in a
family (or a range) of spaces. Importantly, the neighborhood where this implicit
function exists should be the same for the whole family. The family is indexed by
a couple: an open interval, � ⊂ R, containing zero, and a set [1,∞]. The second
component provides flexibility to control, using p ∈ [1,∞], the “global” behavior
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of the policy (changes), cf. ft. 11, its role will be clear once the main theorem is
stated. The first component will be shown to indicate the range of the speeds of
exponential convergence, λ ∈ �, of the perturbed equilibrium to the status quo,
thus allowing us to analyze stability.

Recall that the equilibrium variables belong either to L∞,1 or to C∞ ⊂ L∞.
Since the endowment perturbation, E is defined on a subset of R2 (time and age),
we will take Rn as domain for all. Using the definition of an amalgam above, we
say that a function f defined on Rn belongs to Lλ

p,q for some λ ∈ R, if and only
if φλ(f ) is in Lp,q , where φλ(f (t)) = e〈λ,t〉f (t) and λ = (λ, 0, . . . , 0) ∈ Rn

so that only the first component of t ∈ Rn is multiplied by the exponential. The
definition for Cλ

p ⊂ Lλ
p,∞ is similar, thus covering all the cases we need. The

formal definitions of these spaces and the resulting Banach families are in online
Appendix A.1.

The definition of smoothness (S1) that we develop requires existence of
a Gâteaux derivative and this derivative to be locally Lipschitz in all the
spaces of the Banach family, with the common Lipschitz constant, cf. Definition
2, in online Appendix A.1. Although using the definition directly in order
to verify the S1 property might be tedious, we offer an array of sufficient
conditions, basic “building blocks” (Mertens and Rubinchik, 2014, Proposi-
tion 4,5), which are easier to apply. This is the approach used here: Lemma
16(ii) in online Appendix C showing that ϒ is S1 is an example of such
construction.

The IFT for families of Banach spaces based on a general definition of S1 is
formulated and proved in Mertens and Rubinchik (2014), Theorem 3. To apply
it, as we mentioned before, not only the smoothness of the equilibrium map
F(k,E) = ϒ(k,E) − k has to be verified, but also the existence of an inverse of
its derivative, ∂F

∂k
.

For that, in online Appendix A.2, we establish Proposition 1, which is based
on the theorem of Wiener (1932) (also known as Wiener’s lemma), which implies
that the spectrum of a convolution operator (on a Banach space) can be computed
using its Fourier transform. How does it help us?

First, recall that a complex number z ∈ C is in the spectrum of an element A
of a Banach algebra if A − zI is not invertible, where I is the unit element of
the algebra [cf. e.g., Lang, 1969, IV, Section 2, p. 68]. Heuristically, again, notice
that ∂F

∂k
is ∂ϒ

∂k
minus the identity (derivative of k with respect to itself). To apply

the Wiener theorem, we have to first show that the derivative ∂ϒ
∂k

is given by a
convolution kernel, i.e., when applied to a perturbation, δk (from the space of
continuous real-valued functions with sup norm, where k belongs), can be written
as a convolution of some real-valued function kk

k and the perturbation, δk. Then,
we can apply a variant of the theorem of Wiener to explicitly calculate the spectrum
of that operator and check whether z = 1 belongs to it, i.e., whether the spectrum
contains a point whose real part is one and whose imaginary component is zero.
If the answer is yes, then ∂F

∂k
is not invertible, and otherwise it is. In addition, the

same tool provides a way to calculate the inverse of ∂F
∂k

, when it exists.
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We take this idea a little further and ask: “What is the range of real numbers
λ around zero for which the spectrum of the operator with kernel φλ(kk

k) : t 
→
eλtkk

k(t) does not contain unity?” The explicit answer is given in Corollary 7 (online
Appendix E), determining the endpoints of the interval � that was mentioned
before, and the same range gives us the bounds on exponential convergence of the
equilibrium back to the status quo, as will be shown later.

Now, it is clear that we have a plan: (1) prove the equilibrium system is smooth
and calculate the derivative of the key map, ϒ , with respect to the endogenous
variable, capital k, and the endogenous variation in endowments (transfers), E;
(2) find BGE, evaluate the derivative there and show that ∂ϒ

∂k
at a BGE is given

by a convolution kernel; (3) calculate the spectrum of the kernel and show that
generically (in parameters) it does not contain unity, calculate interval � as de-
scribed above, calculate the inverse of ∂F

∂k
, and show it is the same for a family

of spaces, indexed by � and [1,∞]; (4) use the IFT to calculate the response
of the solution [a fixed point of ϒ(·, E)] to the change in transfers for a generic
economy, thus establishing the regularity; (5) use the boundaries of the interval �

to determine the speed of exponential convergence of the solutions to the baseline,
thus establishing stability; (6) show when regularity and stability hold also for
equilibria (solutions that satisfy equilibrium inequality constraints).

With this roadmap in hand, let us start the work.

5. SMOOTHNESS OF THE EQUILIBRIUM SYSTEM

The first step in applying the IFT is to verify the smoothness of the system of
equations that the equilibrium has to satisfy. Recall, the system in our case reduces
to a single equation, ϒ(k,E) = k, where ϒ is defined as a composition of
several maps. The existence of the derivatives and their computation is relegated
to online Appendix C. In Lemma 16 there, we construct the derivative ∂ϒ

∂k
step

by step, showing smoothness of each intermediate map in Proposition 1 using the
elementary properties developed in online Appendix B.2, and then apply the S1

property of the composition (Mertens and Rubinchik, 2014, Proposition 5). The
key elements of the calculation are represented in Figure 1. The figure reveals
several economic insights. First, as one would probably expect, a change in policy
(δE), can have effects beyond the time of its enactment: Its direct effect is on
aggregate consumption (through the income effect) and on investment (through
material balance), both of which affect the path of capital accumulation, thereby
translating into the change in the output and in the net interest rate (r), both of
which, in turn, affect consumption and investment, thus creating the indirect effect
of the policy. The presence of the indirect effect is due to two (possibly related
reasons): capital accumulation and consumption smoothing.

There is no uncertainty in the model, so all the changes are fully anticipated.
Thus, policy change can have an effect both prior and after its enactment. This
brings us to the second insight.
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δk

δy δr δEx,s

δc

δi

δk̃

αAkα−1

α(1 − α)Akα−2

kc
k(t, z)

kc
E(t, x, x − s)

1 [0,1](s)−1

t≥ze
−R(t−z)

kk
k(t, z)

FIGURE 1. A schematic representation of the derivative of the equilibrium map. Exogenous, policy induced, or direct effects are represented by
the two arrows on the right and the rest are indirect (equilibrium) effects. The effect of change in capital, δk, on output (y) and net interest (r)
is immediate, so the derivative is “simple”, e.g., δyt = αAkα−1

t δkt and the same is true about effects of aggregate consumption and output on
investment, the effects are both immediate and one to one. The effect of an aggregate endowment change on investment is immediate too. The rest
of the effects are “smoothed out” and are given by kernels, e.g., δct = ∫∫

kc
E(t, x, x − s)δEx,sds dx + ∫

kc
k(t, z)δkzdz.
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Some of the effects are instantaneous, as is explained in the caption, whereas
others are spread out in time. In the latter case, the effect (the corresponding
derivative) is given by a kernel, denoted by k, representing components of the
partial derivatives of the equilibrium variables (appearing in the superscript) with
respect to other variables (appearing in the subscript).

Roughly, if the derivative of, e.g., aggregate (normalized) consumption, c, with
respect to capital, k, is given by a kernel kc

k(t, z), then the variation in consumption
at time t that is due to the change in capital (the dotted arrow in the graph),
corresponding to the joint effect of the wage income, (1 − α)y, and (the rate of
change in) prices, r, is

∫
kc

k(t, z)δk(z)dz. So, to calculate the full effect of capital
path variation on the change in consumption at a given time t , one has to aggregate
over all the related “times” indexed by z. This, again, brings us to the need to model
time as a real line, rather than truncating it at some arbitrary point “0”: It is up
to equilibrium forces to determine how long in advance the policy’s impact will
be present, any artificial truncation potentially sweeps away anticipation of the
policy change by the forward-looking agents.

The interpretation of the kernel is simple: kc
k(t, z) is the impulse response

of consumption at time t , to a “shock” to capital at time z. At this stage, the
derivatives reflect only partial effects, without taking into account the fixed point
feature of the general equilibrium. To describe the latter, we will appeal to the IFT,
for application of which the kernel kk

k of the derivative ∂ϒ
∂k

will be of particular
interest.

We now proceed to calculating the baseline equilibria and evaluating the deriva-
tives there.

6. THE BASELINE EQUILIBRIA, BGE AND ∂ϒ
∂k AT BGE

6.1. BGE and the Equilibrium Graph

Here, we characterize BGE without transfers, or baseline equilibria. The character-
ization is based on Corollary 13 and Remark 24 in Mertens and Rubinchik (2013),
but it can also be viewed (and proven as) a corollary to Proposition 1.

Notation 6.1. Let �(z)
def= ez−1

z
, �(r)

def= �(−rσ−η)
�(r(1−σ)−η)

.

COROLLARY 1. The set of BGE is the set of constant solutions r of the system

r
(1 − �(r)

∫
ersϕ(ds)

r
(R − r) − α

1 − α

)
= 0, (2)

with the rest of the (constant) quantities determined by

i. k = [
R−r
Aα

] 1
α−1 ,

ii. y = Akα,

iii. i = Rk,

iv. N = (1 − α)y
∫ 1

0 ersϕsds,
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FIGURE 2. R = 11, σ = .5, η = 2, a = .2, b = .75. Two equilibria ∀α.

v. c = �(r)N,

vi. D = �
(
r(1 − σ) − η

)
, B = N

D
.

Remark 1. Recall, the prices pt = p0e
(r−γ−ν)t , wt = (1−α)eγ tpt , rt = pt(R−

r) are fully determined by r and are omitted from the list of the equilibrium
variables.

Remark 2. The number of BGE in this economy is finite by Theorem 3 in
Mertens and Rubinchik (2013), since the production function f (k) = Akα satisfies
Assumption 5 there and is analytic.

Whether the number of BGE is odd or even depends on the relative magnitudes
of three parameters: First, the minimal working age, i.e., the youngest age at which
individual productivity becomes strictly positive, second, the minimal tax/transfer
age, i.e., the earliest age when the individual gets the transfers, and, third, individual
preferences parameter, σ , cf. Mertens and Rubinchik, 2013, Theorem 3. Clearly,
if the number of equilibria is even, a BGE cannot be unique.

Recall, we are interested in the set of parameters for which any BGE is regular
and stable. For that it is convenient to work with an equilibrium graph.

DEFINITION 4. Let G be the cross product of the parameter space, ℘, and P =
C4

∞ × L∞,1, containing the equilibrium variables: (k, y, c, r, i). The equilibrium
graph (restricting attention to BGE) is the subset G of G composed of all points
satisfying Corollary 1.

To illustrate, we borrow (with slight modifications) from Mertens and Rubinchik
(2013) the projection of such graphs into the space of a single parameter α and an
equilibrium variable, 1 − r/R. The graph in these figures contains combinations
of α and r that constitute a BGE (while the rest of the parameters are fixed). So,
for example, to find all BGE for α = 1

3 , one can draw a horizontal line at the level
of α

1−α
= 1

2 , and then each of its intersections with the graph will correspond
to a BGE.

Figures 2–5 show the BGE of economies with ϕ(s) = 1
b−a

1[a,b](s) and reason-
able parameters (time unit being 1 lifetime).

To distinguish “bad” or exceptional points in the graph where equilibrium is
not regular, we proceed by evaluating the derivative of the equilibrium system at
any baseline equilibrium, BGE.
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FIGURE 3. R = 11, σ = .25, η = 2, a = .135, b = .5. Two to four equilibria.

FIGURE 4. R = 10, σ = .25, η = 2.5, a = .25, b = .75. One equilibrium ∀α.

FIGURE 5. R = 15, σ = .24, η = 1.9, a = .24, b = .55. One or three equilibria.

6.2. ∂ϒ/∂k at a BGE

The objective here, according to our plan in Section 4.2, is to first, verify that the
derivative is given by a convolution kernel, i.e., the impulse response depends only
on the distance in time from the shock. For example, the kernel of the derivative
of consumption with respect to capital becomes kc

k : R → R, the function of only
a single variable, i.e., kc

k(t, z) = kc
k(t − z). In this case, it is easy to illustrate its

interpretation as an impulse response. Note that
∫

kc
k(t − x)εz(x)dx = kc

k(t − z),
where εz(x) is a unit mass at x = z.14 So, the response of consumption δc at
time t to a (fully anticipated) shock δk(x) = εz(x), which “happens” at time z, is
kc

k(t − z), which depends only on the difference (in time) between t and z.15

Second, we calculate the Fourier transform16 of the kernel, which will then be
used to determine its spectrum.

The formal result, Lemma 17, is in online Appendix D. Here, again, we resort
to a diagram, Figure 6, to summarize the results. In particular, observe that the
effect of an investment “shock” on capital decays exponentially at a fixed rate R.
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δk

δy δr

δc

δi

δk̃

αAkα−1

α(1 − α)Akα−2

kc
k(t − z)

1 −1

t≥ze
−R(t−z)

kk
k(t − z)

FIGURE 6. The derivative of the equilibrium map with respect to endogenous k, ∂ϒ/∂k

at a BGE. Here, all the kernels become convolution kernels k, so the magnitude of the
effect depends only on the distance in time from the perturbation. By Lemma 17 in online
Appendix D, the convolution kernel kk

k of ∂ϒ/∂k is integrable. Its Fourier transform is
k̂k

k(ω) = 1
R−iω (R − r − k̂c

k(ω)).

−15

−10

−5

0

5

10

15

−4 −2 0 2 4 6 8 10 12

FIGURE 7. BGE of Figure 1 with R−r
R

= 2.

This will be used later to determine the ranges of exponential convergence of the
perturbed equilibrium.

Recall, ∂F/∂k equals ∂ϒ/∂k minus the identity, ∂F/∂k is not invertible if and
only if unity is in the spectrum of ∂ϒ/∂k. Next, we show that unity is not in the
spectrum, which holds generically in the space of parameters of the model.
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FIGURE 8. GRE of Figure 1 with α = .3.

7. GENERIC INVERTIBILITY

As follows from Section 4.2, now the task of identifying points on the equilibrium
graph where the derivative is noninvertible is reduced to finding the points where
the Fourier transform of convolution kernel k̂k

k of the derivative ∂ϒ/∂k at a BGE

returns 1 for some parameter ω ∈ [0,∞]. The range of a Fourier transform is a
subset of complex numbers, C. We are interested in “bad” points for which the
real part of the transform, �(̂kk

k), is unity, whereas the imaginary part, �(̂kk
k), is

zero for some ω.

7.1. Illustrating Spectra of ∂ϒ
∂k at a BGE

Figures 7–14 show the spectra of the derivative of the equilibrium map, or the
range of k̂k

k , for the four example economies as in Figure 2–5 where the life-time
efficiency of labor is zero between 0 and a, unity between a and b and zero
thereafter, i.e., ϕ(s) = 1

b−a
1[a,b](s).

First, note that spectrum is a line (not an “area”) and even if it contains (1, 0) in
the complex plane, it looks like a “rare” occasion: A slight change in parameters
should shift the line away from the problematic (1, 0). This last claim, of course,
has to be proven and will be established in Proposition 2.

As an aside, one could also notice that not all the spectra are in a unit circle;
hence, one should not expect ϒ to be a contraction in k in general, thus making it
difficult to find an equilibrium numerically (cf. the discussion in Section 1).

7.2. ∂ F
∂k is Generically Invertible at a BGE

Recall that one of the parameters of the economy is a life-cycle productivity
measure ϕ, and so a negligible set of parameters (cf. Definition 3) is defined for a
fixed ϕ. The proof of the genericity claim (Proposition 2) is based on a well-known
property of analytic functions on C: Their zeros (points for which the function
returns zero) are isolated, i.e., there is an open neighborhood of any such point
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FIGURE 9. BGE of Figure 2 with R−r
R

= 3.
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FIGURE 10. GRE of Figure 2 with α = .3.

that has no other zeros. An extension of this property for Cn case is in Lemma 21
in online Appendix I and this is indeed all we need for our case. Here, we state
the next result, its proof is in online Appendix E.

PROPOSITION 2. The set G ⊆ ℘ where 1 is not a value of k̂k
k for any BGE is

generic.

Remark 3. The proof of Proposition 2 involves showing that negligibility is
preserved when going from the equilibrium graph to the parameter space. This
problem is reduced to the (trivial) one-dimensional version of a statement that a
C1 map from Rn to Rn preserves negligibility (or, more generally, replacing Rn

above by a n-dimensional manifolds with boundary). Such a statement might be
provable directly from Sard’s theorem and the IFT. That might be the right tool to
handle the above problem in general.

Remark 4. On the other hand, our technique to prove genericity relied on the
fact that the discrete set of FT parameters ω that make the imaginary part of k̂k

k
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FIGURE 11. BGE of Figure 2 with R−r
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= 1
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FIGURE 12. GRE of Figure 3 with α = .3.
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FIGURE 14. GRE of Figure 4 with α = .3.

zero did not depend on one of the parameters (R), whereas the second condition
(that the real part of k̂k

k is unity) was satisfied for a finite set of ω for any given R.
This is where we relied on the specification of the model.

8. SPEED OF CONVERGENCE

8.1. Establishing the Speed of Convergence

We assume here that we are dealing with generic equilibria and investigate the
speed of convergence to 0 of the kernel of ( ∂F

∂k
)−1, which will later be seen to

be also the speed of convergence of perturbed equilibria back to the original
equilibrium, cf. Remark 7.

Corollary 7 (of Proposition 1) from Appendix E defines the interval �: It can
be computed from the primitives of the model for a given choice of a BGE. We
want the kernel kk

k to be invertible not only in L1, but also in Lλ
1. So, the task

then is to determine interval � such that eλtkk
k(t) is invertible for λ ∈ �. We

know by Proposition 2 that for a generic point on the equilibrium graph, λ = 0
is in that set. Corollary 7 establishes that the set is an interval (including zero).
The upper bound of � is the highest λ for which eλtkk

k(t) is not invertible, i.e.,
when its Fourier transform returns unity. But the Fourier transform of eλtkk

k(t) is
a Laplace transform (L) of the original kernel, kk

k . So, to rephrase, in order to find
the upper bound of �, we have to find the root z = λ + iω ∈ C of the equation
(Lkk

k)(z) = 1 with the lowest positive real part λ, and to find the lower bound of
�, we need the highest negative such λ. In addition, of course, the transform has
to exist, i.e., return finite values for any parameter λ in the range. The convolution
kernel kk

k is itself a convolution of several components (as is evident from Figure
6), one of which is 1t≥ze

−R(t−z). Thus, its Laplace transform is the product of the
Laplace transforms of these components. Clearly, if the real part of z is higher than
R, the Laplace transform of 1t≥ze

−R(t−z) diverges. Therefore, the interval � has
to be reduced to ]−∞, R [ even before the computation of the roots mentioned
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FIGURE 15. λ+ and λ−; GRE of Figure 2.
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FIGURE 16. λ+ and λ−; BGE of Figure 2.
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FIGURE 17. λ+ and λ−; GRE of Figure 3.
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FIGURE 18. λ+ and λ−; BGE of Figure 3.

above. The results of the computations for the example economies are illustrated
in Figures 15–22.

Corollary 8 in online Appendix E establishes that the same inverse g − 1 of the
fixed point map that we previously calculated for λ = 0 is also valid for the whole
family of spaces indexed by λ in the interval �.

Next, by Corollary 9, in online Appendix E, the “end points” of the interval
� indicate the speed of exponential convergence of the operator g and, as will
follow from the main result, these are the speeds of convergence of the perturbed
equilibria toward the original equilibrium at −∞ and +∞.
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FIGURE 19. λ+ and λ−; GRE of Figure 4.
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FIGURE 20. λ+ and λ−; BGE of Figure 3.
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FIGURE 21. λ+ and λ−; GRE of Figure 5.
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FIGURE 22. λ+ and λ−; BGE of Figure 5.

8.2. Illustrating the Speed of Convergence

Figures 15–22 illustrate, for example the economies of Section 7.1, the rates of
convergence λ− (below the horizontal axis) and λ+ (above the horizontal axis)
as a function of α for the GRE and of x = 1 − r

R
(= αY

I
) for the other BGE.

Figures 18 and 20 refer to the low and high intervals of x in Figure 3 for which
BGE exists.

It is possible to show by a direct computation that z = r is always a root for
BGE;17 it is the straight line passing through (0, R) and (1, 0), and segments of it
are visible, e.g., in Figures 18 and 22. Another segment of it is λ− after the critical
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720 JEAN-FRANÇOIS MERTENS AND ANNA RUBINCHIK

point in Figure 20, which does not appear since being < −60 it would fall far off
the page, same for the whole of λ− in Figure 16.

Critical points (combinations of parameters where the invertibility fails) corre-
spond to the intersections with the horizontal axis. All but one of them are “trivial,”
in the sense that they correspond to real roots, which indicate the local extrema
of the corresponding BGE curves in Figures 2–5, and the intersection with the
GRE line, as well as α = 1. The one exception is the critical point in Figure 20
(x = 6.768475, z = ±8.07776i).

9. FIRST RESULTS

At this stage, we could have already stated our main result establishing regularity
and stability of solutions, Lemma 18 (in online Appendix F), which certainly can
be viewed as such. This lemma rests on the IFT formulated for the Banach families
(Mertens and Rubinchik, 2014, Theorem 3) and it consists of several statements.

One of them is the standard regularity property assuring that there is a neigh-
borhood B of zero in the space of endowment perturbations E such that there
is an implicit function � from B into the neighborhood of each solution to the
equilibrium fixed point problem, cf. Section 3.2.

Moreover, for any ε > 0, there is a smaller ball Bε around zero and a compact
interval �ε ⊆ � with max{min{0, λ−+ε}, −1

ε
} and (λ+−ε)+ in its interior such

that on Bε and for the whole family of spaces indexed by λ ∈ �ε, the implicit
function � is smooth and differentiable with the derivative that has a Lipschitz
property. In addition, the derivative of F with respect to capital, k, is invertible
when evaluated at point [E,�k(E)] for any E in the ball, where �k is the “capital
component” of the function � .

Remark 5. We could as well have viewed our fixed point map ϒ , e.g., as a
map from i to ı̃, rather than from k to k̃; basically everything still goes through
in the same way. However, then one obtains a weaker “local uniqueness” result
in Lemma 18 in online Appendix F: It would then refer to a δ′ neighborhood of
�i and that would be in L∞,1. The map i → k is continuous and injective, but
the inverse is not at all continuous, so our present result is definitely sharper (and
simpler).

Next step is to present the results in a simpler form: with easier metrics and using
standard differentiability concepts. In addition, we prefer to formulate the results
independently of the fixed-point map used,18 a.o., to get correct bounds for each
variable for its own sake—i.e., “to cover our tracks.”

In order to accomplish this last objective, we will show that the derivatives
(� ′) are mostly given by properly behaving kernels so that the statement of the
main result (based on the IFT) is independent of the fixed-point map used (on i,
on k,. . . ), apart, of course, from the proper specification of the space where the
underlying variable (i, on k,. . . ) lives, cf. Remark 9.
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Remark 6. In the language of dynamic systems, the expression of � ′ by kernels
k(x; t, t − s) is equivalent to the full system of impulse responses for all possible
(small) impulses: k(x; t, t − s), as a function of x, is the response to an impulse
(in E) at (t, s). At this stage, the system of impulse responses incorporates the
full force of the equilibrium effects, as opposed to the partial effects illustrated in
Figure 1.

10. THE KERNEL REPRESENTATION OF THE DERIVATIVE

The kernel representation of the derivative of the implicit function � , done in
online Appendix G (Lemmata 19 and 20), combines several results established
so far. The “nice” properties of the derivative of ϒ (the map that defines the
equilibrium fixed point) with respect to endogenous k and exogenous E (Lemma
16 in online Appendix C) along with the existence of the inverse of ∂F

∂k
in a

neighborhood of the equilibrium point (Lemma 18 in online Appendix F) yield the
“nice” properties of the “building blocks” of � ′ by Lemma 2 in online Appendix
B.1. These “building blocks” are the inverses of the kernels described in Lemma
16. Importantly, this calculation gives the analytic form of the full equilibrium
response to the exogenous changes in transfer policy, E.

Lemma 19 from online Appendix G.1 shows that our results on invertibility
are quite sharp: either the spectrum of the kernel of ∂ϒ

∂k
at a BGE contains 1, i.e.,

for some ω, eiωt , and hence the two-dimensional space of linear combinations of
cos(ωt) and sin(ωt), solves the linearization of the fixed point problem (so, ∂F

∂k
is

not even injective on C∞, the basic space for k), or there exists a full neighborhood
of 0, both for E and for λ, where ∂F

∂k
is invertible, with the same (cf. Appendix H)

inverse h − 1, in all the above operator spaces.
Lemma 20 in online Appendix G.2 is devoted to identifying discontinuous part

of each kernel. This simplifies the numerical problem of finding the inverses to that
of computing their continuous parts (chiefly that of Lemma 19 from Appendix G,
the others are just a matter of integration),19 which are everywhere well defined,
thus turning the problem into a “well-posed problem.” Otherwise, kernels would
just be maps to equivalence classes of measurable functions: quite unrealistic to
compute.

Moreover, this lemma has an interesting economic interpretation. It shows that
the investment is going to absorb part of a “shock” of the endowment (E) directly:
Its derivative is a sum of a kernel operator and a “spike,” whereas the rest of
the variables are responding more smoothly to the change in E with at most one
discontinuity in the corresponding kernel.20

In addition, it becomes possible to translate the smoothness of the implicit
function � (inherited from the smoothness of ϒ by the IFT) into the properties of
the kernels composing the derivative of � . This, in turn, allows one to formulate
the main results in terms of a simpler norm (for the kernels) that expresses directly
the exponential convergence aspect, cf. notation 11.1.
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11. MAIN RESULTS

11.1. Regularity and Stability of Solutions

Here, we finally present our main results, applying Lemma 18 in online Appendix
F that is based on the IFT to a solution of the equilibrium system and derive
the smoothness properties of each solution � as a function of the exogenous E

defined in a neighborhood B of zero (E = 0). For most of what follows, we
write �(E) to indicate this dependence. Recall that �(E) itself is an array of
functions (k, c, y, r, i), where the first four are continuous and bounded and hence
will be referred to as C∞ components, whereas i ∈ L∞,1. To refer to a particular
component, we are going to use a subscript, e.g., (�k(E))(x) denotes the value of
capital (k) at time x of a solution [in the neighborhood of BGE �(0)] corresponding
to endowment path E. The derivative, � ′, too, depends on E, as in Lemma 18.
The derivative itself, recall, maps δE, an element of L∞,1, to the variation in the
solution, i.e., a profile (δk, δc, δy, δr, δi). So, e.g., ((� ′

k(E))(δE))(x) denotes the
change (variation) in capital δk at time x [from the initial level (�k(E))(x)] as a
result of a perturbation δE of endowments from their initial level E.

Recall, again that the set G ⊆ ℘ is, as in Proposition 2, a generic subset of
parameters where ∂F/∂k is invertible. Convolution (�) of two measures is defined
in the usual fashion, cf. online Appendix A.2, Definition 4. The following notation
is used in the statement of the theorem.

Notation 11.1. ψλ,λ′(z) = eλz + eλ′z, and for a compact interval J ⊂ � =
]−∞, R [ , ψJ = ψmin J,max J . For a kernel μ(x, dt), ‖μ‖CC

J = supx

∫
ψJ (x −

t)|μ(x, dt)|, (= supx(ψJ � |μ(x, ·)|)(x)). For a kernel k(x; t, s), let ‖k‖LC
J =

supx ess sups,tψJ (x − t)|k(x; t, s)|.
λε

− = min �ε, and λε
+ = max �ε. ψε = ψ�ε , for a kernel μ(x, dt), ‖μ‖ε =

‖μ‖cc
�ε , and for h(x, t), ‖h‖ε = ‖h(x, t)dt‖ε.

The first statement (i) of the theorem is a standard implication of an IFT,
only this time it is formulated for the “classical” Fréchet-C1 differentiability
concept.

The second part (1), which also follows from the IFT, is a basis for stability.
Here, the hard work of defining families of spaces indexed by λ ∈ �ε pays
off: The implications of the IFT hold for all the spaces in the family, so the
response to the change in endowments diminishes exponentially with time in both
directions (past and future). Moreover, the ground work done when analyzing ϒ

becomes useful here: We proved that the equilibrium map is smooth, which also
includes a Lipschitz property. The inverse of the derivative ∂F

∂k
also inherited this

property and so does the derivative of the implicit function with respect to the
endowment. It follows that the derivative is very smooth itself, thus making it
a “good” first-order approximation to the function around the chosen BGE, as is
shown in part (iia). Also, as a result, we get proximity of two arbitrary equilib-
ria emerging under two different endowments that in the neighborhood of zero,
part (iic).
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THEOREM 1. i. Everywhere in G, ∃δ>0 and an ‖·‖∞,1-open ball B s.t., for
any BGE �(0), ∀E∈B, there is a unique solution �(E)∈P with ‖�k(E)−
�k(0)‖ ≤ δ, and s.t. � is Fréchet-C1 on B.

ii. Furthermore, ∀ε>0 there is an ‖·‖∞,1-open ball Bε ⊆ B s.t., ∀BGE there is
a compact interval �ε ⊆ � with max{min{0, λ−+ε}, −1

ε
} and (λ+−ε)+ in

its interior, s.t., on Bε:
(a) E 
→ � ′

q(E) is Lipschitz from ‖·‖∞,1 to ‖·‖LC
�ε for any component

q ∈ {k, y, c, r, i} of � .
(b) � is differentiable in the strong sense: For any component q ∈

{k, y, c, r, i} of � there is L ∈ R : ∀x,
|(�q(E + δE))(x) − (�q(E))(x) − ((� ′

q(E))(δE))(x)|

≤ L‖δE‖∞,1
[ 1

ψε

�

∫
|δE(·, s)|ds

]
(x).

(c) ∃L : ∀λ ∈ �ε,∀p, ∀E1, E2 ∈ Bε,

‖�q(E1) − �q(E2)‖λ
p ≤ L‖E1 − E2‖λ

p,

for any component q ∈ {k, y, c, r, i} of � .
Moreover, the bound can be tightened: with kq

E the kernel of the deriva-
tive of any component q ∈ {k, y, c, r, i} of � , Kq def= supBε

‖kq
E‖LC

�ε and
δE = E1 − E2, ∀x,

|(�m(E1))(x) − (�m(E2))(x)|

≤ Km
[ 1

ψε

�

∫
|δE(·, s)|ds

]
(x), m ∈ {k, y, c, r},

and for the investment, i-th, coordinate,

|(�i(E1))(x) − (�i(E2))(x) −
∫

δEx,sds|

≤ Ki

[
1

ψε

�

∫
|δE(·, s)|ds

]
(x).

(d) For λ ∈ �ε, δE 
→ �q(E+δE) − �q(E) is sequentially continuous
from (Lλ

1, σ (Lλ
1, L

−λ
∞ )) to Cλ

1 for any C∞-component q ∈ {k, y, c, r} of
� and to (Lλ

1, σ (Lλ
1, L

−λ
∞ )) for the i-th component.

Remark 7. Whereas points iia–iib express the regularity aspect (i.e., C1) in a
sharper way, points iic–iid express a very strong form of stability, or “no hystere-
sis”: that the effects of a perturbation decay exponentially at rates λ+ and λ− at
+∞ and −∞.

But, it is point iia that is the basic one, since point iib follows from it and points
iic and iid follow from iib: regularity and stability are a single theorem!

Remark 8. (iid) is a “weak” analog of Lemma 18.iii in online Appendix F.
Observe that even with λ = 0 and at E = 0, next result cannot extend to Lp,1

instead of L1: shifting δE yields then a sequence converging weakly to 0, while
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the corresponding equilibria are also obtained by shifting, hence cannot converge
to 0 in Cp.

Proof. (i): By Lemma 18 in online Appendix F and (Mertens and Rubinchik,
2014, Proposition 3.v).

(iia): For the C∞-components use Lemma 20 in online Appendix G.2 and
Proposition 4 from Appendix B.4. The result for i follows too, since the non-
kernel part is constant in E and the kernel represents a linear operator from
L∞,1(R2) to C∞ (being the difference of the kernels of � ′

y and � ′
c).

(iib): Denote by kE the kernel of the derivative, �q(E), of a C∞-component q

of the solution21 evaluated at E, each such kernel is well defined by Lemma 20 in
online Appendix G.2. Let

gz
def= (�q(E + zδE))(x) − (�q(E))(x) − z

∫∫
kE(x; t, t − s)δEt,sdsdt,

then, since by point i, � is Fréchet and hence Gateaux differentiable,

g′
z =

∫∫
[kE+zδE(x; t, t − s) − kE(x; t, t − s)]δEt,sdsdt.

Hence, |g′
z − g′

0| ≤ ∫∫ |kE+zδE(x; t, s) − kE(x; t, s)||δEt,s |dsdt . By point iia
and Proposition 4 from online Appendix B.4, ∃L s.t. ∀x, |kE+δE(x; t, u) −
kE(x; t, u)| ≤ L‖δE‖∞,1

1
ψε(x−t)

a.e. Hence, |g′
z| ≤ Lz‖δE‖∞,1

[
1
ψε

�∫ |δE(·, s)|ds
]
(x). Since 1

ψε
∈ L1,∞, convolution with it ∈ L (L∞,1, C∞) by

Theorem 1.xiii in Mertens and Rubinchik (2014); hence, the bound is finite for
any finite z. Integrate now over z ∈ [0, 1].

The result for the i-th component then follows, exactly as in the proof of point
(iia).

(iic): The first claim is from Lemma 18.iii in online Appendix F. For the
pointwise bound, replace kq

E by its upper bound and δE by |δE| in the derivative
and integrate on the segment joining E1 and E2.

(iid): Bε is weakly closed in Lλ
1 by Lemma 15 in online Appendix B.5. For the

C∞-components, (iic) implies, by the “λ-transposition” (Lemma 1 in Appendix B)
of Corollary 6 in Mertens and Rubinchik (2014), that, with E2 = E, E1 = E+δE,
and δE in a weakly compact set in Lλ

1, the |�(E+δE)−�(E)| are majorized by
a compact family in Cλ

1 . Conclude by Lemma 1 in Mertens and Rubinchik (2014)
and Lemma 15 in online Appendix B.5. The result for i follows by Lemma 20 in
online Appendix G.2.

11.2. From Solutions to Equilibria

For the results of the main theorem to apply to equilibria as well, the solution
emerging as a result of a perturbation of policy (δE) has to also satisfy the
interiority constraints, i.e., individual consumption should be positive and the
two inequalities 0 < it < yt should hold. Hence, in addition to the assumptions
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of the previous theorem, one has to assure that in the neighborhood where the
theorem holds, first, the life-time transfers are not too negative for almost all
individuals so that Nx , the normalized individual income, is positive,22 and, second,
the aggregate transfer is uniformly bounded, and hence the last two inequalities
hold.

THEOREM 2. ∃δ1 > 0 such that, ∀ BGE , N of the equilibrium in the neighbor-
hood of a given BGE, {E ∈ B | ess supx

∫
E−

x+s,sds ≤ δ1}, is uniformly bounded
away from 0 on that neighborhood.

δ can be chosen as in Theorem 1 and ∃δ0 > 0, s.t., on the set where
‖∫ E ·,sds‖∞ ≤ δ0 and ess supx

∫
E−

x+s,sds ≤ δ1, ∀BGE, �(E) is the unique
equilibrium of the E-perturbed economy s.t. ‖�k(E) − �k(0)‖ ≤ δ and
‖�c(E) − �c(0)‖ ≤ δ.

Proof. By Proposition 1. iii-v, for sufficiently small δ1, Nx ≥ ε, since �r is
bounded and �k , thus �y , bounded away from 0.

To show that �(E) is an equilibrium, we need, by Proposition 1, that N ≥ 0,
and that, if not in the basic model, 0 < it < yt a.e., since inf kt > 0 by Corollary
10 in online Appendix F.

� is continuous by Theorem 1, so the theorem remains true for any smaller δ, by
adjusting B. By choosing δ, sufficiently small �y(E)−�y(0) and �c(E)−�c(0)

will be uniformly small; hence it = yt+
∫

Et,sds−ct implies that ‖�i(E)−�i(0)‖
will be uniformly arbitrarily small if ‖∫ E ·,sds‖∞ ≤ δ0 for sufficiently small δ0;
in particular, 0 < it < yt will hold: �(E) is an equilibrium.

It remains to show the uniqueness part. Since the equality it = yt +
∫

Et,xds−ct

holds for any equilibrium, the same argument as above shows that, for δ and δ0

sufficiently small the inequality 0 < it < yt will hold; Proposition 1 implies then
that the whole equation system must hold, so the equilibrium must be �(E), by
the uniqueness statement in Theorem 1. And for the basic model, the result follows
from kt > 0 (Corollary 10 in online Appendix F).

Remark 9. Just for p = ∞, since �ε can be taken as a compact interval
approximating � as close as desired from inside (so with 0 in interior), the
theorem implies a very strong form of stability (i.e., uniform convergence to the
status-quo), toward both −∞ and +∞, “at any exponential rate in �.”

11.3. Technical Remarks (On the Choice of the Underlying Spaces)

Remark 10. The usual (strong) definition of a function being Ck on a set is
that the function has a Ck extension to some open set containing the given set.
Using this definition is the only way to distinguish the adequate topologies (for
describing continuity, derivatives, etc.) from the region where the implicit function
exists. Our results are exactly of this sort, the “solutions” of Theorem 1 being the
required extension.
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This approach uses the fact that demand extends naturally and smoothly for
M < 0. Nothing is specific to this example there: We mentioned in Mertens
and Rubinchik (2012) that homogeneity of utility w.r.t. to consumption goods was
essential for balanced growth, and this is indeed a pure implication of homogeneity.
If labor does not enter the utility function, as here, homogeneity implies directly
that demand is positively homogeneous of degree 1 in total income, M .

Remark 11. Conditions for regularity of the BGE’s w.r.t. variations in the pa-
rameters are trivial: It suffices that when restricting all functions in ϒ in Propo-
sition 1 to be constants, at each BGE dk̃

dk
�= 1, i.e., equivalently k̂k

k(0) �= 1. In
particular, on the generic set G, regularity w.r.t. variations in the parameters also
holds.

COROLLARY 2. On the set of E’s described in Theorem 2, the k, y, r compo-
nents of � have values in a τ(C∞,M) compact set. If the ess sup condition in
Theorem 2 were strengthened to ess supx

∫|Ex+s,s |ds ≤ δ0, the whole map � in
Theorem 1 would become compact valued on this domain.

Proof. As seen above, �i are bounded in L∞, so, with the weak*-topology,
they live in a compact metric space. On that space, first k, then y, r, then the others
are, as in the proof of Lemma 15 in online Appendix B.5, continuous functions of
i. If, furthermore, the

∫|Ex+s,s |ds are bounded in L∞, this implies that N1,x are
also thus bounded, and one can then give a similar argument for the remaining
components using in addition the relative compactness of the N1,x .

Remark 12. The second case in the corollary suggests reinterpreting Ex+s,sds

as a measure μx(ds) on [0, 1] (or a single measure on R × [0, 1]), with the weak
topology of the dual of L

C([0,1])
1 (R). The second constraint identifies a ball in this

space, compact and metrisable in this duality; and the first constraint defines then
a closed subset, inducing the σ(L∞, L1) topology on

∫
E ·,sds. The equilibrium

equations obviously still make sense with such endowments, since they imply
prices are even C1, and this would make � a continuous function on a compact
metric space.

12. CONCLUSIONS

We have demonstrated that “comparative statics” around a BGE in an overlapping
generations model in continuous time with respect to a fully anticipated transfer
is feasible. Although tedious, such work has a high payoff: The IFT assures not
only the existence of the one-to-one map between the “policy parameter” (transfer
of endowments) and the resulting equilibrium in the neighborhood of a chosen
BGE, but also the Lipschitz property of its derivative, hence assuring the first-order
approximation of that map given by the derivative is “of high quality.”

Perhaps the most surprising result is the (uniform over �) Lipschitz property of
the derivatives, Theorem 1. iia, yielding exponential convergence of two non-BGE

equilibria in the neighborhood of a BGE to each other (Theorem 1. iic), i.e., the
stability result in its strong form.
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NOTES

1. In addition, there is also recent work analyzing equilibria in continuous-time overlapping gen-
erations models; see d’Albis and Augeraud-Véron (2007, 2009) based on the seminal contributions of
Yaari (1964) and Cass and Yaari (1967).

2. To stress, our choice of taking time as R to index birth- and transaction dates was not dictated
by the choice of tools; rather, the main concern was the indeterminacy results mentioned above. One
can use Wiener’s theorem for “discrete time” models, in fact, one of the textbook examples of its use
is for the space of infinite summable sequences; see (Kolmogorov and Fomin, 1989, p. 603, Appendix
“Banach Algebras” by V. Tikhomirov).

3. With three potentially different physical goods, output, consumption, investment, while we
assume that output can always be transformed into investment and consumption, the opposite trans-
formation might or might not be feasible.

4. u is extended by continuity to [0, +∞].
5. The profits will be null due to constant-returns-to-scale production, defined below.
6. A function is locally integrable on a topological space if every point has a measurable neigh-

borhood where the function is integrable.
7. Since for any consumption bundle ĉ any equivalent function (coinciding with ĉ a.e.) has the

same utility and the same budget, we will think of it as an equivalence class of R+-valued measurable
functions. The same applies to all flows, Yt , It , Ct , labor- and capital services, and to their prices pY ,
pI , pC , w, and r . On the other hand, capital is a stock, so it and its price pt are defined pointwise, and
no measurability restriction has a reason to apply. By the usual convention in measure theory, define
any product of prices and quantities as 0 in the case of a product 0 × ∞ or ∞ × 0. This allows us to
think of either prices or quantities as measures.

8. In its integral form the equation is Kt = e−δ(t−t0)Kt0 + ∫ t
t0

e−δ(t−s)Isds, where the integral is a
Lebesgue integral [without loss of generality in this model, cf. Mertens and Rubinchik 2013, Corollary
2].

9. For the detailed description of the technology available to investment firms and the appropriate
definition of their profits, see Mertens and Rubinchik, 2013, Section 2.2.3.

10. Et,s is the normalized (per unit of productive labor at time t) endowment at time t of all
individuals of age s, and so �t denotes the aggregate normalized endowment at time t .

11. Note that the existence of the inner norm, ‖1x+H f ‖q , limits only the “local” behavior (on H

shifted by x) of the function f , whereas the map from x to the inner norm shifts the “locality” and
thus the existence of the outer norm restricts the global behavior of the function.

12. For an extended characterization, see Mertens and Rubinchik (2013).
13. Bhas the same sign as the equilibrium consumption of an individual at age u, born at t − u [cf.

Mertens and Rubinchik, 2013, Comment 21], which is also the sign of N by part (vii), since D ≥ 0,
which follows from part (vi).

14.
∫

εz(x)dx = 1 and εz(x) = 0 for all x �= z.
15. Note that kc

k as above is also a continuous-time counterpart of the classical impulse response
function used in time-series analysis, e.g., Hamilton, 1994, p. 318, equations 11.4.1,11.4.2.

16. For an integrable function g, its Fourier transform (FT) is ĝ(ω)=∫
eiωtg(t)dt , a complex-valued

function defined on R.
17. Recall, the relevant equation is (Lkk

k)(z) = 1, where z = λ + iω ∈ C, cf. the preceding
subsection.

18. For a given equilibrium equation system: Indeed, the system could be represented, instead of a
map from k to k̃, as a map from i to ĩ, for example.

19. Re-expressing equation (2) in Lemma 19.ii (which defines h) with the continuous part S of
h gives S(x, z) = ∫

S(x, t)k(t, z)dt plus a known continuous function; one can solve that equation
numerically. The ‖·‖LC

�ε bound of Lemma 19.i should prove very useful for the numerical analysis of
this (e.g., local density of a grid); however, to investigate appropriate truncations, it seems “stability”
results for the kernels themselves would be needed. That is beyond our scope here.
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20. Interestingly, it appears to be consistent with the empirical findings, Lee et al. (2011), if one
takes the oil price change as a proxy for the endowment shock.

21. So that q ∈ {k, y, c, r}.
22. Nx has the same sign as consumption of an individual born at x (cf. Section 3.2).
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