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Evaporative instabilities in climbing films
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(Received 5 April 2000 and in revised form 12 February 2001)

We consider flow in a thin film generated by partially submerging an inclined rigid
plate in a reservoir of ethanol– or methanol–water solution and wetting its surface.
Evaporation leads to concentration and surface tension gradients that drive flow up
the plate. An experimental study indicates that the climbing film is subject to two
distinct instabilities. The first is a convective instability characterized by flattened
convection rolls aligned in the direction of flow and accompanied by free-surface
deformations; in the meniscus region, this instability gives rise to pronounced ridge
structures aligned with the mean flow. The second instability, evident when the plate
is nearly vertical, takes the form of transverse surface waves propagating up the plate.

We demonstrate that the observed longitudinal rolls are driven by the combined
influence of surface deformations and alcohol concentration gradients. Guided by the
observation that the rolls are flattened, we develop a quasi-two-dimensional theoretical
model for the instability of the film, based on lubrication theory, which includes the
effects of gravity, capillarity and Marangoni stresses at the surface. We develop
stability criteria for the film which are in qualitative agreement with our experimental
observations. Our analysis yields an equation for the shape of the interface which is
solved numerically and reproduces the salient features of the observed flows, including
the slow lateral drift and merging of the ridges.

1. Introduction
The study of evaporatively driven convection has a rich history dating back to

1855 when Thomson reported ‘On certain curious Motions observable at the Surfaces
of Wine and other Alcoholic Liquors’. Thomson correctly attributed these convective
motions to stresses at the free surface of the fluid associated with variations in surface
tension resulting from evaporatively driven gradients in alcohol concentration. In a
wine glass, evaporation results in relatively low alcohol concentration and thus high
surface tension in the thin film above the meniscus. The wine is drawn up the walls of
the glass and accumulates in a thick band at the upper edge of the film until the band
becomes unstable and releases the ‘tears of wine.’ After Thomson’s treatise, Marangoni
(1865) inferred that convection could be driven by surface tension gradients due to
variations in either composition or temperature and today this mode of convection
bears his name (see historical reviews by Scriven & Sternling 1960; Ross & Becher
1992).

Evaporative convection arises in a variety of natural and industrial settings, and an
extensive review of its manifestations may be found in Berg, Acrivos & Boudart (1966).
Evaporation from the free surface of a homogeneous fluid leads to surface cooling,
and so may drive one of two forms of instability: Marangoni convection, which
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relies on the temperature dependence of the surface tension, or Rayleigh–Bénard
convection which relies explicitly on the generation of buoyancy through the influence
of temperature on the fluid density. In a multicomponent system, such as alcohol
and water, evaporation of the volatile component also leads to gradients in chemical
composition which may further destabilize the system to ‘chemical’ or ‘compositional’
convection which may analogously take either Marangoni or Rayleigh–Bénard forms.

Bénard’s (1900) seminal experimental observations of cellular convection in a hor-
izontal layer of spermaceti heated from below were originally erroneously attributed
to buoyancy-driven thermal convection (Rayleigh 1916), but are now known to have
been due to Marangoni effects (Block 1956; Koschmieder 1967). Pearson (1958) ex-
amined the stability of a horizontal layer of depth H of fluid of viscosity µ, density ρ
and thermal diffusivity κ, driven by a vertical temperature gradient, Θ ≡ dT/dz, with
a non-deformable interface, in which surface tension is a monotonically decreasing
function of temperature, dσ/dT ≡ −γ. If the surface temperature is increased locally,
the resulting surface tension gradient will drive surface divergence and draw warm
fluid up from below. If the timescale of thermal diffusion of the upwelling fluid, H2/κ,
exceeds the convective timescale, µ/τ, where τ = γΘ is the characteristic surface stress,
then the upwelling fluid retains its heat, the surface perturbation is enhanced and
Marangoni convection is sustained. Pearson (1958) deduced the criterion for convec-
tive instability in terms of the Marangoni number: M = γΘH2/µκ > 80. Nield (1964)
extended Pearson’s analysis through considering the combined influence of surface
tension effects and buoyancy on a fluid layer heated from below, and found that the
critical Marangoni number is decreased by the influence of fluid buoyancy. Since the
Marangoni number increases with H2 while the Rayleigh number, Ra = ρgβΘH4/κµ
(where g is acceleration due to gravity and β is the coefficient of thermal expansion)
increases with H3 (since Θ ∼ H−1), the relative importance of Rayleigh–Bénard and
Marangoni convection decreases with decreasing layer depth: Marangoni convection
can operate in fluid layers which are too thin to support Rayleigh–Bénard convection.

Scriven & Sternling (1964) extended Pearson’s analysis to include a deformable
interface and demonstrated that this added degree of freedom renders the system
convectively unstable at all Marangoni numbers. The authors also pointed out a
useful qualitative distinction between Marangoni and Rayleigh–Bénard convection:
under elevations in the free surface, the former is characterized by downwelling and
the latter by upwelling. Smith (1966) demonstrated that the destabilizing influence
of the deformable free surface may be mitigated by the influence of gravity, and
his stability criterion may be expressed as γΘ < 2

3
ρgH; consequently, long-wave

instabilities always become important in sufficiently thin films (Davis 1987). These
previous analyses are summarized in table 1.

An exploratory experimental study of evaporatively forced convection within layers
of both homogeneous and binary fluids was presented by Berg, Boudart & Acrivos
(1966), who observed a variety of flow structures, including hexagonal cellular pat-
terns reminiscent of Bénard’s original experiments, and pronounced linear features,
termed ‘streamers’ and ‘ribs’, which correspond to regions of vigorous convective
upwelling or downwelling. The effect of nonlinear temperature profiles, as may arise
through evaporation from a free surface, on the onset of Marangoni convection was
examined by Vidal & Acrivos (1968), who demonstrated that fluid layers are more
convectively stable if they have nonlinear rather than linear temperature profiles. The
linear instability of a horizontal fluid layer destabilized by evaporation from a flat
free surface has been considered by Yang (1999). A recent experimental study of
evaporatively induced convection in free or thermally forced fluid layers is that by
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Quiescent layer
heated from below Sheared layer

Flat g = 0 Pearson (1958) Smith & Davis (1983a)
interface g 6= 0 Nield (1964) —

Deformable g = 0 Scriven & Sternling (1964) Smith & Davis (1983b)∗
interface g 6= 0 Smith (1966) Present Study

Table 1. A summary of previous analyses of the stability of fluid layers under the influence of
Marangoni forcing. g 6= 0 means gravitational effects were included in the analysis. ∗Here Smith &
Davis consider surface deformations associated with transverse waves not longitudinal rolls.

Chai & Zhang (1998), who propose a modified Marangoni number appropriate for
describing the stability of evaporating fluid layers.

Smith & Davis (1983a, b) examined the convective stability of horizontal shear flows
in zero gravity. The presence of a lateral temperature gradient leads to a surface stress
that drives a shear flow, and the resulting vertical temperature profile is capable of
destabilizing the layer to Marangoni convection. Both the critical Marangoni number
and the form of instability at onset were found to depend on the Prandtl number.
In the limit of low Prandtl number, the layer is most unstable to hydrothermal
waves propagating in, and aligned perpendicular to, the direction of the applied
stress (Smith & Davis 1983b). In the limit of large Prandtl number, the layer is most
unstable to flattened convection rolls aligned with the flow (Smith & Davis 1983a).
For linear flow profiles and Prandtl numbers of order 1000, the fluid layer becomes
unstable to steady convection rolls with a wavelength approximately ten times the
layer depth. Their study was motivated by two particular applications in which the
deformation of the free surface was unimportant; consequently, they did not examine
the potentially destabilizing influence of this added degree of freedom. Motivated
by our observations of longitudinal convection rolls and accompanying free-surface
deformations in an inclined evaporating shear layer, we extend the theoretical model
of Smith & Davis (1983a) through inclusion of the combined influence of gravity and
a deformable free surface.

Our current study was originally motivated by the free-surface instability reported
by Fournier & Cazabat (1992) to exist in the meniscus region in glasses of strong
wine exhibiting the ‘tears of wine’ phenomenon. The instability assumes the form of
ridges aligned perpendicular to the meniscus, as illustrated in figure 1. In a wine glass,
the structures appear from above as a radial spoke pattern around the meniscus,
and so were referred to by the authors as the ‘star-instability’. The phenomenon
was subsequently examined experimentally by Vuilleumier et al. (1995) and Fanton &
Cazabat (1998). Owing to the thinness of the film (20–100 µm), Cazabat and coworkers
were unable to observe convection within the film, and so were led to hypothesize
that the ridges are a surface manifestation of a Rayleigh–Plateau instability driven
by competing curvatures in the free surface of the meniscus. Prompted by these
observations and this conjecture, de Ryck (1999) formulated a theoretical model
which neglected the influence of convection in the thin film. In this study, we re-
examine the system experimentally and clearly demonstrate the presence of vigorous
evaporative convection within the film. Moreover, we demonstrate that the ridges are
the dynamically sustained surface manifestation of streamwise Marangoni convection
rolls.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

50
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005018


220 A. E. Hosoi and J. W. M. Bush
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Figure 1. Schematic of the system. The ridges and tears in (b) are not drawn to scale. Arrows in
the ridges illustrate the two counter-rotating convection cells within each ridge.

The influence of thermally induced surface tension gradients on thin films has been
investigated using lubrication theory, and three comprehensive reviews of these studies
are presented by Davis (1987), Oron, Davis & Bankoff (1997) and Myers (1998). Of
particular interest to our study is that of Burelbach, Bankoff & Davis (1988), who
considered the influence of evaporation on the evolution of thin films. It is important
to note that the lubrication description permits only unidirectional flow within films
constrained by a stress-free surface condition, but permits convection rolls within
films forced by non-uniform surface stresses. This is particularly evident in the study
of Oron & Rosenau (1994) who examined the influence of a quadratic temperature
dependence of surface tension on the evolution of a thin film heated from below.
Here we develop a theoretical framework for describing the flattened convection rolls
observed in our film based on a lubrication approximation.

In § 2, we present the results of an experimental study of the fluid motions observed
when an inclined plate is partially submerged in a reservoir of evaporating fluid.
We describe the form of the instabilities and their dependence on the governing
parameters. In § 3, we provide a qualitative description of the physical mechanisms
responsible for the observed instabilities. In § 4, we develop a mathematical model
describing the observed instabilities, and deduce stability criteria for the film. The
model is based on a lubrication approximation, and results in a fourth-order partial
differential equation for the interface shape which is solved numerically in § 5. In
§ 6, we summarize the experiments and theoretical model, and discuss the broader
relevance of our study.

2. Experiments
Methanol– and ethanol–water solutions were poured into a shallow rectangular

vessel and a glass plate was partially submerged at an inclination angle θ relative to
the horizontal (figure 1). The plate was wet up to several centimetres above the free
surface of the reservoir. The transient phase which follows is noteworthy. Seconds
after the wetting of the glass, an oblong shallow patch forms directly above the
meniscus. The lower edge of the oblong indentation remains fixed on the meniscus,
while the upper edge is swept upwards at approximately 1 mm s−1 in the form of a
front between thin and thick films (figure 2a). The oblong indentation expands until
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Reservoir

(a) Contact line

Tear line

Mature ridges

y

(b)

(c) (d )

Film

Figure 2. Schematic of the transient phase which follows the initial wetting of the plate.

it becomes unstable and breaks into a series of regular indentations which are divided
by the first observable ridges (figure 2b). These ridges are initially marked by relatively
vigorous upflow, but then typically grow in amplitude and broaden until the upflow
ceases and the ridges slump back towards the reservoir (figure 2c). Subsequently, new
ridge structures form throughout the meniscus region, and drift laterally in either
direction with a characteristic speed of 1 mm s−1 leading to occasional ridge merger
(figure 2d). The spacing of the ridges after the breakup of the oblong indentation
is approximately equal to the length of the indentation, and decreases with angle of
plate inclination. However, the subsequent emergence of ridges is more irregular and
their motion suggests that the ridges are not simply a relic of an instability of the
developing meniscus, but are rather a surface signature of the dynamics in the thin
film.

Approximately 10–20 s after the initial wetting of the plate, a quasi-steady state was
established (figure 2d). This state was characterized by ridges meandering, merging and
re-forming and being occasionally disrupted by falling tears. The surface deformations
were visualized using a shadowgraph. By sprinkling Lycopodium powder on the free
surface, it was possible to trace the surface flow, which revealed the ridges as focal
points of upflow in the meniscus region. Figure 3 is a photograph in which the
three-dimensionality of the tears and ridges is clearly evident.

Owing to the thinness of the film, convective motions could not be exposed with
traditional dye techniques, but were revealed by adding to the solution small amounts
of Kalliroscope, which is composed of micron scale platelets (derived from fish scales)
that align with shear. The Kalliroscope revealed a wealth of convective patterns within
the flow, including large-scale polygonal convection patterns within the reservoir, and
finer linear features within the film (figure 4). The crest of each ridge was marked by
a dark line corresponding to a line of surface convergence separating two convection
cells which together comprise the ridge (figure 4). The Kalliroscope also revealed
much finer (< 0.5 mm scale) convective motions within the thin film region far above
the meniscus, and on the edges of the descending tears. This ‘fine structure’ was
typically accompanied by weak surface deformation. It is important to note that the
presence of Kalliroscope did not visibly alter the form of the surface deformation
and so may be thought of as a passive tracer in our studies.
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222 A. E. Hosoi and J. W. M. Bush

Figure 3. Photo of the tears and ridges: an oblique perspective of the meniscus region between the
reservoir (left) and the adjoining thin film (right) on a plate inclined at 4◦ relative to the horizontal.
Note the three descending tears, the surface deformations corresponding to the ridges, and the
forking on the large central ridge which is beginning to exhibit dendritic structure. The horizontal
scale is 8 cm and the fluid is 65% methanol and 35% water.

Figure 4. A plan view illustrating the reservoir (bottom), the thin film region (middle) and the
incipient tear line (top). Kalliroscope reveals convection throughout. The ridges are the four white
triangular structures at the lower right. Each ridge has a clearly visible dark spine which corresponds
to a line of surface convergence and downwelling. The fine-scale convection is marked by light
streaks further up the plate, and the irregular convection in the deep reservoir can be seen in the
lower right corner. The horizontal scale is 6 cm and the fluid is 65% methanol and 35% water.

The ridges were found to align for any non-zero slope angle, and to exist even
when the bounding wall was vertical, which is clear evidence that the convection is
Marangoni rather than Rayleigh–Bénard: if the convective instability were buoyancy
driven, it would disappear on a vertical plate. A series of experiments was also

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

50
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005018


Evaporative instabilities in climbing films 223

9

8

7

6

5

10 15 20 25 30 35 40 45
õ (deg.)

D
en

si
ty

 (
ri

dg
es

 c
m

–1
)

Figure 5. Density of ridges in the meniscus region versus inclination angle for 30% methanol,
70% water solutions.

conducted in order to test our hypothesis that the ridges result from the sheared
Marangoni convection. A thin layer of methanol–water solution was placed on a
horizontal interface, and randomly oriented Marangoni convection cells were evident.
An applied radial wind stress was observed to align the convection rolls. The initially
randomly oriented convection rolls could also be aligned by a radial thermocapillary
stress generated by placing a cool metal cylinder in the centre of the film.

The dependence of the ridge spacing on inclination angle was examined, and the
results are reported in figure 5. The trend of ridge density increasing with slope angle
is commensurate with the observations of Vuilleumier et al. (1995). Conversely, the
wavelength of the convection rolls associated with the fine structure was observed to
weakly increase with θ. When the inclination angle of the plate was sufficiently small
(θ < 3◦), a striking dendritic free surface structure was apparent: the primary ducts
were adjoined by secondary ducts aligned roughly perpendicular to the primary ducts
(figure 6), and occasionally tertiary ducts aligned perpendicular to the secondary
ducts.

For near vertical inclinations, we observed a second type of free-surface deformation
corresponding to waves aligned perpendicular to the flow direction and propagating
up the plate. Similar wave patterns were reported by Volkoviski (1935) who examined
thermocapillary flow from a warm reservoir onto a cool tilted plate. In our experiments
the waves only arose in the upper regions of the plate, at least 3 cm above the meniscus.
The wavelength was observed to be less than 1 mm and the wave speed comparable
to the rate of upflow.

Table 2 summarizes our experimental observations: specifically, when ridges, trans-
verse waves, longitudinal rolls (fine structure) and tears were observed. Such structures
were entirely absent in water. The structures observed in pure ethanol were markedly
less pronounced than those in the binary system and were possibly evidence of
evaporatively driven thermal rather than compositional Marangoni convection. Al-
ternatively, these structures may be driven by compositional variations due to the
absorption of atmospheric water.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

50
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005018


224 A. E. Hosoi and J. W. M. Bush

Flat plate Tilted plate Vertical plate

tears − X X
Ethanol ridges − X X

fine X D N

tears − X X
Methanol ridges − X X
+H2O fine X L,T,D T,L

tears − X X
Ethanol ridges − X X
+H2O fine X L,T,D T,L

tears − − −
H2O ridges − − −

fine − − −
Table 2. A summary of our experimental results. ‘Fine’ refers to the fine-scale structure in the thin
film above the ridges characterized by either transverse waves or longitudinal rolls. X: effect was
observed; −: effect was not observed; N: no thin film (insufficient surface stress); T: transverse
waves; D: dendritic structure; L: stationary rolls, aligned with shear.

Figure 6. Plan view of the dendritic free-surface structure evident in a 50% methanol, 50% water
solution climbing a 3◦ slope. The flow is from bottom to top, and the horizontal extent of the image
is 5 cm. The free surface deformations are rendered visible with a shadowgraph.

Evaporation rates were measured by placing a shallow vessel filled with alcohol
or an alcohol–water solution on a balance. The mass was recorded at intervals of
one minute and the results are summarized in figure 7. This plot illustrates that the
evaporation rate was approximately constant throughout each of our experiments.
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Methanol: slope = –0.066 g min–1Methanol: slope = –0.066 g min–1

Ethanol: slope = –0.043 g min–1

60% Ethanol: slope = –0.021 g min–1

Figure 7. Evaporation rate of various pure alcohols and alcohol–water solutions. The surface area
exposed to the atmosphere is ∼ 10 cm2. All measurements were taken at atmospheric pressure and
room temperature. The evaporation rate remained constant as the thickness varied from millimetres
to microns, well within the range of thicknesses observed in our tilted plate experiments.

3. Physical picture
Apart from the apparent deflection of the free surface, the observed planform

of convection takes precisely the form described by Smith & Davis (1983a) in a
horizontal Marangoni shear layer at large Prandtl numbers. We thus assess the
viability of their mechanism of convection in our system. In the limit of zero surface
conductivity, Smith & Davis (1983a) compute a critical ‘shear Marangoni number’,
Ms = τH2/µκ for two types of velocity profiles: one that is linear in z and a ‘return
flow’ that is quadratic. In the case of linear flow, they find the critical shear Marangoni
number asymptotes to 15 at large Prandtl number. However, for return flow, they
find that the system is stable to longitudinal rolls for all values of Ms. Evaluating
an analogous compositional Marangoni number from our system parameters (see
table 3) yields

Ms =
τH2

µD
∼ 0.5× (2× 10−3)2

10−2 × 10−5
∼ 10. (3.1)

Note that in our system, the surface stress is associated with compositional rather than
thermal gradients (Vuilleumier et al. 1995). Since τ and H are measured experimentally
and the ratio of molecular diffusivity, D, to thermal diffusivity, κ, is D/κ = (1.26 ×
10−5 cm2 s−1)/(1.5 × 10−3 cm2 s−1) ∼ 10−2, the thermal Marangoni number is two
orders of magnitude smaller than Ms. Our flow profile can be written as a linear
combination of the two velocity profiles considered by Smith & Davis (1983a) so
we expect the critical Marangoni number in our system to be finite but greater
than 15. Although the convective instability mechanism of Smith & Davis (1983a) is
potentially significant in our experiments, it is important to note that their theoretical
model neglects gravity as well as the most salient feature of our flows, namely,
surface deflection. Consequently, we develop a model of convective instability in our
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Symbol Value

Film thickness H 20–100 µm†∗
Horizontal length scale L ∼ 1 cm∗
Speed up the plate U ∼ 1 mm s−1†∗
Diffusivity of alcohol in water D 1.26× 10−5 cm2 s−1‡
Thermal diffusivity κ 1.5× 10−3 cm2 s−1‡
Coefficient of thermal expansion β 2.2× 10−4 ◦C−1‡
Viscosity of alcohol/water mixtures µ 0.006–0.01 g cm−1 s−1‡
Evaporation rate E 3.5× 10−5 g s−1 cm−2∗
Surface tension of alcohol/water mixtures σ 25–70 dyn cm−1‡
Density of alcohol/water mixtures ρ 0.8–1 g cm−3

Change in surface tension due to concentration α ∼ 25 dyn cm−1‡
Change in density due to concentration ∂ρ/∂c ∼ 0.2 g cm−3‡
Change in surface tension due to temperature ∂σ/∂T ∼ 0.2 dyn cm−1 ◦C−1‡

Table 3. Estimated values for parameters in experiments. † from Vuilleumier et al. (1995), ∗ from
experiments by the authors, ‡ CRC values (Lide 1974). Concentration is measured by volume
fraction.

h

lower c (h)

c (h)

Figure 8. The mechanism driving the longitudinal rolls. The base concentration profile is set by
evaporation from the free surface, diffusion across the layer and convection up the plane. In certain
parameter regimes, thicker regions have lower concentrations at the free surface; thus surface
tension may be higher in the elevated regions and so render the system unstable to Marangoni
convection.

system which relies explicitly on the interplay between surface deformations and the
destabilizing concentration profile. Our analysis demonstrates that, as in Scriven &
Sternling’s (1964) extensions of Pearson’s (1958) model, the inclusion of free-surface
deformations serves to destabilize the system of Smith & Davis (1983a); however,
as made clear in Smith’s (1966) contribution to the Pearson (1958) model, this
destabilizing influence may be mitigated by the inclusion of gravity.

We proceed by examining a model that relies explicitly on the interplay between
the deformable free surface and the steady-state concentration profile which is set by
balancing diffusion, evaporation, and convection up the plate. The concentration is
depleted near the surface by evaporation; nevertheless the system remains in a quasi-
steady state because the evaporating alcohol is replenished by fresh fluid convected
up from the reservoir. Qualitatively this leads to a vertical concentration profile
similar to that sketched in figure 8. If the surface is locally perturbed upwards and
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the concentration profile adjusts to its basic-state profile faster than the interface
relaxes, the concentration on the bump is lower than in the neighbouring regions.
The resulting surface tension gradient draws fluid into the bump and the film is
destabilized. Similarly, depressions in the free surface lead to local minima in surface
tension which pull fluid away from depressed areas. The resulting flow enhances the
surface deformations and sustains convection (see figure 8). This argument will be
made quantitative in § 4.

This physical picture relies on relatively fast diffusive timescales across the film. If
the interface is perturbed upwards, the concentration profile must adjust to the new
height before the elevated region can relax back to a flat profile. Thus if tdiff/trelax � 1
the system is unstable; trelax can be estimated by balancing pressure and viscous
stresses, ∇p ∼ (µ/H2)U ∼ (µ/H2)L/trelax. The restoring pressure gradient is dictated
by surface tension or gravity, p ∼ σH/L2 or p ∼ ρgH , respectively. Taking the ratio
of the appropriate timescales yields:

surface tension restoring pressure
tdiff

tσrelax

=

(
H

L

)4
σH

Dµ
∼ 10−4,

gravitational restoring pressure
tdiff

t
g
relax

=

(
H

L

)2 H3ρg

Dµ
∼ 10−2.

Since both of these dimensionless groups are substantially less than one, we infer
that our system is potentially unstable to Marangoni convection driven by surface
deformations.

4. Mathematical model
The geometry with relevant coordinates is illustrated in figure 1. We will develop a

simplified mathematical model to describe the dynamics in the thin film. Based on data
from Vuilleumier et al. (1995) and our own experiments, it is reasonable to assume
that gradients along ŷ are much smaller than those along x̂ and ẑ; consequently
we will consider a quasi-two-dimensional film with negligibly small variations in the
ŷ-direction.

4.1. Concentration profile

To establish a base profile, we consider a film being drawn up the plate with no
velocity component or variations in the x̂-direction and negligibly slow variations
along ŷ. Note that although we are restricting ourselves to small gradients in ŷ,
we are not imposing any restrictions on the velocity in the ŷ-direction which is
comparable to the largest velocities in the problem. Let u = (u, v, w) and assume that
u = w = 0 and v = v(z). We solve the steady-state problem of a film being drawn up
a plate where the density, ρ, is constant (not a function of alcohol concentration, c)
and the surface tension, σ, is a linear function of concentration:

σ(c) = σ0 − α(c− c0) (4.1)

where α = −(∂σ/∂c)|c=c0
and c0 is the concentration in the reservoir; α is positive since

surface tension decreases with alcohol concentration. Motivated by the experimental
evidence of Vuilleumier et al. (1995), we consider a constant surface stress, τ, due to
the slowly varying concentration in the y-direction, which drives flow up the plate.
The following analysis will demonstrate that a constant surface stress is consistent
with both the fluid and concentration equations. The steady-state flow profile up
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the plate is then deduced by balancing viscosity and gravity with a constant stress
boundary condition at the free surface z = h:

µvzz = ρg sin θ and µvz|z=h = τ. (4.2)

We note that the influence of capillary pressure has been neglected, an approximation
which is valid sufficiently far from the meniscus (Vuilleumier et al. 1995). The velocity
profile up the plate is given by

µv = ρg sin θ
(

1
2
z2 − hz)+ τz. (4.3)

In the absence of gravity this reduces to the linear shear profile examined by Smith &
Davis (1983a). However if θ 6= 0 gravity resists the upflow causing the velocity profile
to sag. This sagging effect prescribes the maximum film thickness, Hmax, that can be
sustained by the surface stress, τ; the film can exist in steady state only if the flux up
the plate, q, is positive:

q =

∫ h

0

v(z)dz =
τ

2µ
h2 − ρg

3µ
sin θh3 > 0 ⇒ Hmax =

3

2 sin θ

τ

ρg
. (4.4)

Using values from table 3 suggests a maximum film thickness on a vertical plate to
be on the order of 100 µm which is in accord with experimental evidence.

The concentration profile is derived from a steady-state convection–diffusion equa-
tion, u · ∇c = D∇2c where D is the diffusivity of alcohol in water. Since we have
imposed u = w = 0 and τ ∼ cy = constant, we consider

vcy = Dczz. (4.5)

We apply boundary conditions appropriate for a no-flux boundary condition at z = 0

∂c

∂z

∣∣∣∣
z=0

= 0 (4.6)

and a constant flux due to evaporation at the free surface

−∂c
∂z

∣∣∣∣
z=h

= Q (4.7)

where Q is a parameter that depends on the temperature and on the microscopic
properties of the mixture such as heat of vaporization and chemical conductivity
(Carey 1992). Following our experimental data, we choose Q to be constant (see
figure 7), thus neglecting the higher-order influences of vapour pressure, curvature
and concentration on the evaporation rate. Integrating (4.5) with respect to z and
applying the boundary condition at z = 0 yields

c = − τ
α
y − τ

αDµ

[
ρg sin θ( 1

24
z4 − 1

6
hz3) + 1

6
τz3
]

+ c0. (4.8)

Note that in the limit of D → ∞, there is no gradient in c across the layer and the
film is stable to Marangoni convection. Applying the upper boundary condition (4.7)
uniquely prescribes the surface stress τ. In particular, τ is given by

τ = ρgH
sin θ

3
+

√(
ρgH

sin θ

3

)2

+ 2
Dµ

H2
αQ. (4.9)

Note that there are no free parameters in the system: the surface stress is uniquely
determined by the evaporation rate, gravity, average film thickness and fluid proper-
ties.
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4.2. Long-wavelength approximation

Having found a base-state profile, we proceed by considering long-wavelength vari-
ations in the x̂-direction. Since the surface deformations observed in our experiments
are typically millimetric while the layer depth is < 100 µm, it is reasonable to develop
a lubrication or long-wavelength model. Initially we consider a three-dimensional
system, again assuming slow variations, but non-zero velocity, in the ŷ-direction. Since
the reduced Reynolds number, Re(H/L) = ρH2U/(Lµ) = ρτH3/(Lµ2) ∼ O(10−4), is
small we consider an incompressible Stokes flow:

∇p = µ∇2u+ ρg, (4.10)

∇ · u = 0. (4.11)

The boundary conditions at the free surface are given by normal and tangential stress
balances:

n̂ · T · ŝ = ∇sσ,
n̂ · T · n̂ = σ∇ · n̂,

where n̂ is the unit normal to the free surface, ŝ is the unit tangent to the free surface,
∇s = (I − n̂n̂) · ∇ is the surface gradient operator and I is the identity matrix. T , the
stress tensor with y-derivatives neglected, is given by

T =

 −p+ 2µux µvx µ(uz + wx)
µvx −p µwz

µ(uz + wx) µwz −p+ 2µwz

 . (4.12)

We apply no-slip boundary conditions at the plate.
To simplify this system, we rescale the equations above and apply a long-wavelength

approximation. The resulting equations will be solved order by order for velocity and
pressure which will be averaged across the depth of the film. The resulting equation
will be a spatially one-dimensional fourth-order partial differential equation for the
height of the free surface. We will find that gravity and capillarity appear in their
standard lubrication form along with a more unusual destabilizing term due to
evaporatively driven Marangoni forcing.

The variables are rescaled as follows:

(u, v) = U(ũ, ṽ), w = εUw̃,

(x, y) = L(x̃, ỹ), z = H z̃,

p = (Uµ/H)p̃, t = [H/(Uε2)]̃t.

 (4.13)

The resulting non-dimensional groups are listed in table 4. U is a typical velocity
driven by the stress at the free surface in the ŷ-direction, U = τH/µ. Note that the
Prandtl number, Pr = ν/D, is not an independent parameter in our system and can
be defined by Ms = RePr. We are investigating flows at fixed Marangoni number
in the limit Re → 0, thus our analysis is restricted to large-Prandtl-number fluids,
Pr →∞, such as those examined experimentally

Rescaling the fluid equations above using (4.13) and dropping the tildes, we reduce
Stokes equation to

εpx = ε2uxx + uzz, (4.14)

0 = ε2vxx + vzz −S sin θ, (4.15)

pz = ε3wxx + εwzz −S cos θ. (4.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

50
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005018


230 A. E. Hosoi and J. W. M. Bush

Dimensionless group Symbol Definition Order of magnitude

Marangoni number Ms

τH2

Dµ
10

S Hρg

τ
1

Capillary number C ε2 σ

µU
10−3

Prandtl number Pr ν

D
103

Reynolds number Re ρτH2

µ2
10−2

Bond number B ρgL2

σ
10

Aspect ratio ε
H

L
10−3

Table 4. Relevant dimensionless groups evaluated using the parameter values given in table 3.

Here p has been rescaled such that the dominant balance in the ẑ-direction is between
pressure and gravity; thus, hydrostatic pressure will appear at lowest order. The
divergence-free condition becomes

ux + wz = 0. (4.17)

Tangential stress balances in the x̂- and ŷ-directions (at z = h) are

(1− ε2h2
x)(uz + ε2wx) + 2ε2hx(wz − ux) = −cx

√
1 + ε2h2

x, (4.18)

vz − ε2hxvx = −cy
√

1 + ε2h2
x, (4.19)

respectively. Normal stress balance (at z = h) gives

−p+
2

(1 + ε2h2
x)

[ε3h2
xux + εwz − εhx(uz + ε2wx)] = (C− εc) hxx

(1 + ε2h2
x)

3/2
, (4.20)

the no-slip boundary condition at z = 0 becomes

u = v = w = 0, (4.21)

and the concentration equation (4.8) becomes

c = −y − εMs

[S sin θ
(

1
24
z4 − 1

6
hz3
)

+ 1
6
z3
]

+ c0. (4.22)

Dimensionless concentration profiles are plotted in figure 9. Note that if the free
surface is perturbed upwards away from the steady state H = 1, the concentration
decreases if S sin θ < 1. By the physical argument in § 3, we expect this scenario to
be unstable since low concentration leads to high surface tension in the thicker parts
of the film. Thus the film is always stable if S sin θ > 1.

Expanding u and p in powers of ε,

u = u0 + εu1 + ε2u2 · · · , (4.23)

p = p0 + εp1 + ε2p2 · · · , (4.24)
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Figure 9. The variations in surface concentration versus dimensionless film thickness for εMs = 1
and various values of S sin θ. Note that if the film thickness is increased beyond its average value
(H = 1), the concentration decreases only if S sin θ < 1; consequently, convection may be sustained
only if the surface tension gradient is sufficiently large.

equations (4.14)–(4.22) can be solved analytically order by order for the velocities and
the pressures in terms of h(x) (see the Appendix). To O(1), u0 and p0 are given by

u0 = 0, v0 =S sin θ
(

1
2
z2 − hz)+ z, w0 = 0,

p0 =S cos θ(h− z)−Chxx.
}

(4.25)

This lowest-order flow corresponds to the base state derived in § 4.1. The flow is
quadratic and purely parallel to the plate in the ŷ-direction, pulled upwards by
surface stresses and resisted by gravity. The flow is purely up the plate with no
inflection point if S sin θ < 1. At next order, O(ε), the velocities and pressures are
given by

u1 = (S cos θhx −Chxxx) ( 1
2
z2 − hz)+ 1

2
h2Ms(1−Sh sin θ)hxz,

v1 = 0,

w1 = − [(S cos θhx −Chxxx) ( 1
6
z3 − 1

2
hz2
)

+ 1
4
h2Ms(1−Sh sin θ)hxz

2
]
x
,

p1 = (c0 − y)hxx.

 (4.26)

The final step is to calculate the height of the free surface. To find h(x), we
average over the depth and use conservation of mass. The continuity equation for
our quasi-two-dimensional system may be expressed as

εht +

(∫ h(x)

0

u0 + εu1 + ε2u2 dz

)
x

+ ε2E+ O(ε3) = 0 (4.27)

where E = EL2/(εUH2ρ) is the dimensionless mass loss due to evaporation. Using
the velocities from (4.25) and (4.26) and keeping terms to O(ε), we obtain a partial
differential equation for h(x),

ht +
[

1
3
h3(Chxxx −S cos θhx) + 1

4
Msh

4hx(1−Sh sin θ)
]
x

= 0. (4.28)

This equation will be solved numerically in § 5. The first two terms in the brackets
represent capillarity and gravity, respectively, both of which are stabilizing. The third
term represents the potentially destabilizing Marangoni surface stress and the fourth
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is a stabilizing term that appears in the Marangoni forcing owing to the influence of
gravity on the velocity field. Increasing gravity decreases the alcohol transport from
the reservoir and diminishes concentration gradients across the film, thus potentially
stabilizing the film to Marangoni convection.

4.3. Linear stability analysis: longitudinal rolls

Before investigating (4.28) numerically, it will prove instructive to analyse its linear
stability properties. To determine the most unstable wavelength, we perform a linear
stability analysis about the base state h(x) = 1 through examining small perturbations
of the form

h(x) = 1 + δh̄(x, t). (4.29)

Substituting h into (4.28) yields

h̄t +
[

1
4
Ms(1−S sin θ)− 1

3
S cos θ

]
h̄xx + 1

3
Ch̄xxxx = 0. (4.30)

We seek solutions of the form h̄(x, t) = eγt cos (kx) and find an expression for the
growth rate, γ:

γ = 1
4
Ms(1−S sin θ)k2 − 1

3
Ck4 − 1

3
Sk2 cos θ. (4.31)

Perturbations will decay if γ < 0; consequently, the film is stable to perturbations at
any wavelength provided

1
3
S cos θ > 1

4
Ms (1−S sin θ) . (4.32)

If this condition is not met, then there will be some wavenumbers that will grow
exponentially. Notice that the capillary number, C, does not enter into this criterion.
Ultimately gravity determines the cutoff for stability and surface tension only enters
in selecting the most unstable wavelength. The most unstable wavenumber maximizes
γ and can be deduced from the quadratic that results from setting dγ/dk = 0:

kcrit =
√[

3
8
Ms (1−S sin θ)− 1

2
S cos θ

]
/C. (4.33)

Sample plots of wavelength versus average film thickness are given in figure 10,
where parameters correspond to the range relevant in our experiments. The predicted
wavelengths are consistent with those of the rolls observed in the thin film region.
Figure 10 indicates that the minimum ratio of roll width to layer depth is approxi-
mately 5 : 1; thus the convection cells have a skewed aspect ratio (rolls are long and
flat) which is consistent with our long-wavelength approximation. It is important to
note that this result for the most unstable mode predicts increasing wavelength with
inclination angle, a prediction which agrees qualitatively with observations of the fine
structure. This result is not expected to explain the dependence of ridge spacing on θ
(illustrated in figure 5), as the ridges are fully developed nonlinear surface features.
As observed in our experiments and measured explicitly by Fanton & Cazabat (1998),
the ridges undergo a coarsening period in which the initial wavelength evolves and
eventually saturates as the ridges merge. One would not expect the predictions of a
linear analysis to be commensurate with the saturated lengthscales observed experi-
mentally. The disparity in lengthscales between the most unstable wavelength and the
ridge spacing is evident in our numerical study presented in § 5.

Two cases of particular interest are that of a flat plate (θ = 0) and a vertical plate
(θ = π/2). For a flat plate the stability criterion (4.32) becomes S > 3

4
Ms or in
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Figure 10. Most unstable wavelength, λ, as a function of average layer depth, H , for various
realistic values of τ. The dashed-dotted lines represent S sin θ = 1 for each value of τ; we
require that S sin θ < 1 for the film to be unstable to longitudinal rolls. Here θ = 0.35 rad,
D = 1.26× 10−5 cm2 s−1, µ = 0.01 g cm−1 s−1, σ = 27 dyn cm−1 and α = 25 dyn cm−1.

dimensional form
4

3
>

τ2H

Dµρg
(flat plate stability). (4.34)

The film is stabilized by gravity, which acts to resist the surface deformation critical
in driving the instability, and diffusion, which acts to flatten out the concentration
profile. As the film becomes thin, diffusion across the layer dominates convective
transport up the plate in determining the concentration profile. Consequently, the
layer is stable in the limit of H → 0, a result which is markedly different from the
quiescent layer result of Smith (1966). For a vertical plate, the stability criterion
becomes S > 1 and Ms > 0 or

ρgH

τ
> 1 and

τH2

Dµ
> 0 (vertical plate stability). (4.35)

Again the surface is destabilized by surface stresses and stabilized by gravity. Note
that the vertical plate stability criterion corresponds to the criterion for an inflection
point in the flow. Thus flow profiles on a vertical plate with no inflection point are
always unstable to compositional Marangoni convection.

4.4. Transverse waves

Finally, to include transverse waves in our stability framework, we adopt the results
of Smith & Davis (1983b) who analysed transverse surface deformations in thermally
driven horizontal shear flows and deduced the following criterion for stability:(

2

15
vzz +

1

2

µcp

ksH
vz

)
(vzz − vz)

∣∣∣∣
z=h=1

6 0, (4.36)

where cp is the specific heat and ks the thermal surface conductance. Since their
results apply to flow in zero gravity, we expect this criterion to be relevant when the
plate is near vertical; in this case, near the onset of instability, gravitational effects
will be important in determining the basic flow profile but less influential in damping
out normal deformations of the interface. Substituting our velocity profile (4.25) into
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(4.36) yields the stability criterion:

(S sin θ − 1) 6 0. (4.37)

From § 4.1 we know that the film can only be sustained when S sin θ < 3/2. Thus we
expect transverse waves when

1 <S sin θ < 3
2

(unstable to transverse waves). (4.38)

Note that these waves only occur when there is an inflection point in the flow, i.e. when
surface stresses and gravity are comparable. Vuilleumier et al.’s (1995) experimental
data show a gradual decrease in concentration gradients, hence surface stresses, as
one moves up the plate; this suggests, in conjunction with (4.38), that transverse
waves will be most likely to appear far from the meniscus. The stability criterion also
implies that these waves should be most prevalent at large θ. Both of these trends
are consistent with our experimental observations. The complete stability picture is
summarized in figure 14 and will be discussed in § 6.

5. Numerical results
Equation (4.28) was solved numerically using centred finite differences with an

implicit timestep and periodic boundary conditions in x. We used a uniform mesh in
space and controlled the timestep via step-doubling. The fourth-order equation was
rewritten as two second-order equations by defining f = hxx; f and h are both knot-
centred quantities. Fluxes were evaluated at the centre of each interval using averaged
quantities and nonlinear terms were evaluated by averaging first, for example,

h2
i+1/2 =

(
hi + hi+1

2

)2

. (5.1)

5.1. Ridge formation

Computations show that, starting with a small, random perturbation superimposed on
a flat initial state, ridges form rapidly and evolve into a ‘quasi-steady’ state. Figure 11
shows two time series that illustrate the formation and subsequent nonlinear evolution
of the ridges; we show a series of snapshots of the free surface at regular time intervals
where each successive profile has been shifted upwards. Initially the wavelength is in
accord with the linear predictions given by (4.33) (for these parameters, linear stability
predicts eight ridges). However, as the ridges grow, nonlinear effects become important
and the ridge structures may wander sideways and merge. The merging events occur
over a much longer timescale than that of formation so we refer to the intermediary
states as ‘quasi-steady’. The timescale in plot (b) is two orders of magnitude larger
than that in (a). This long timescale allows us to observe the meandering motions of
the mature ridges.

5.2. Ridge structure

The streamlines within one ridge are shown in figure 12. Each ridge is composed
of two counter-rotating vortices with fluid being drawn up the sides and descending
along the ridge centreline. Fluid in the film between the ridges is nearly stationary.
Figure 13 shows the evolution of vorticity during the formation of two ridges. Initially,
there is a very small vorticity component due to shear flow in the ŷ-direction. Surface
deformations are directly correlated with large vorticity.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

50
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005018


Evaporative instabilities in climbing films 235

0.06

0.05

0.04

0.03

0.02

0.01
0 0.2 0.8

x (cm)

z 
+

 c
t (

cm
)

(a)

0.4 0.6 1.0

0.05

0.04

0.03

0.02

0.01

0 0.2 0.8
x (cm)

(b)

0.4 0.6 1.0

Figure 11. A numerical time series illustrating the formation and evolution of the ridges. Time
is increasing in the vertical direction. In (a) and (b) the evolution of the film shape is traced for
approximately 1 s and 1 min, respectively. (a) The initial profile at the bottom is a snapshot of the
free surface at t = 1.4× 10−6 (in rescaled dimensionless time). Profiles are then printed at intervals
of ∆t = 1.0 × 10−7 (= 0.002 s) and are shifted up by c∆t = 5 × 10−4 cm for each time. (b) The
subsequent evolution of the ridges. Profiles are printed at intervals of ∆t = 2×10−5 in dimensionless
time (= 0.375 s). This longer timescale allows us to track the wandering motion of the ridges but it
is not sufficiently fine to resolve the details of the rapidly merging ridges in the centre of the figure.
Parameters used in these simulations are: µ = 0.01 g cm−1 s−1, τ = 3.3 dyn cm−2, σ = 27 dyn cm−1,
α = 25 dyn cm−1, θ = 0.45 and H = 0.003 cm; this corresponds to dimensionless group values of
ε = 0.0004, S = 0.882, C = 4.32 × 10−4 and Ms = 238.1 which are comparable to those in our
experiments.

6
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2

0
0.10 0.14
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0.12 0.16

(×10–3)

Figure 12. Streamlines showing counter-rotating vortices within one ridge. Flow ascends the
sides of the ridge and descends through the centre. Parameters used in this simulation are:
µ = 0.01 g cm−1 s−1, τ = 5 dyn cm−2, σ = 27 dyn cm−1, ∆σ = 25 dyn cm−1, α = 0.45 and H = 0.002 cm;
this corresponds to dimensionless group values of ε = 0.0004, S = 0.392, C = 4.32 × 10−4 and
Ms = 159.

6. Discussion
We have presented theoretical and experimental evidence for a class of convection

which relies explicitly on the combined influence of background shear and surface
deformation. The tendency of shear to align convection rolls in the direction of
the mean flow has been established both theoretically and experimentally (Bénard
1927; Richter & Parsons 1975; Gumerman & Homsy 1974). In our system the shear
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Figure 13. A time series showing the generation of total vorticity, |ω| =
√
v2
z + v2

x + (wx − uz)2

where white represents high vorticity and black low. Each panel uses a separate colour table with
dimensionless vorticities ranging from O(1) in the first few panels to O(104) in the last. The series
starts in the upper left corner and time increases moving to the right and down. The first image
shows the initial vorticity at t = 0 which is almost zero. Subsequently, vorticity is plotted at intervals
of t = 4× 10−7 starting with t = 6× 10−6 in the second image where t is the rescaled dimensionless
time. Parameters in this simulation are the same as those in figure 10 and the x-axis in each image
runs from 0 to 0.1 cm.
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Figure 14. Stability diagram illustrating the transitions between stable states, transverse waves and
longitudinal rolls. Recall that θ is the plate inclination angle, 1/S = τ/(ρgH) and Ms = τH2/(Dµ).
The lower surface is defined by 1/S = (2/3) sin θ, the next by 1/S = sin θ and the top surface
1/S = 4 cos θ/(3Ms) + sin θ. As θ approaches π/2 or as the Marangoni number becomes large, the
top surface asymptotes to 1/S = sin θ and the region of stability between transverse waves and
longitudinal rolls vanishes. Note that the region that supports transverse waves increases with θ;
thus we are more likely to observe this instability when the plate is nearly vertical.

is critical both in aligning the convection rolls and in establishing a convectively
unstable concentration profile across the thin film.

Figure 14 summarizes the results of our theoretical study, which yields criteria for
convection within a climbing film. The criterion for transverse waves, as deduced
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from Smith & Davis (1983b), has been included for the sake of completeness. At a
particular inclination angle and Marangoni number, increasing the surface stress leads
one through three distinct regimes characterized by transverse waves, stable planar
flow, and longitudinal convection rolls with associated surface deformations. Note that
the parameter range characterized by transverse waves is greatly diminished at low θ,
in accord with experimental observations. For any non-zero Marangoni number, there
is a critical surface stress, defined by (4.32), capable of supporting longitudinal rolls
in the thin film. This critical value is greatly diminished at large Marangoni numbers,
where the regime of film stability becomes vanishingly small. Finally, it is instructive
to note that the stability criterion of Smith & Davis (1983a) for a flat horizontal
interface at g = 0 and with Pr → ∞ predicts that as 1/S → ∞, the system will be
stable for all Ms < 15. Our diagram clearly indicates the possibility of instability for
all Ms (at sufficiently large 1/S), and thereby illustrates the destabilizing influence
of the deformable interface.

Quantitative confirmation of the theoretical predictions would require an exper-
imental study which allowed simultaneous measurement of film thickness and concen-
tration profiles. While such a study has not yet been undertaken, there is qualitative
experimental agreement with a number of predicted trends; specifically, the prevalence
of transverse waves only at high inclination angles, and the diminished zone of flow
stability at high Marangoni number. We see from table 4 that our experiments are
characterized by largeMs and moderateS; consequently, the prevalence of the longi-
tudinal rolls in our experiments at small θ is consistent with our theoretical model.

6.1. Three-dimensional effects

The laboratory flows exhibit behaviour which is markedly three-dimensional, but
which nevertheless may be understood in the context of our simplified two-dimensional
model. In accordance with the observations of Vuilleumier et al. (1995), we expect
both film thickness and surface stress to decrease slowly with distance from the
meniscus; consequently, the shear Marangoni number must decrease with distance
from the meniscus. In advancing up the plate, one expects to move from a region
marked by the most vigorous nonlinear convection near the meniscus, through a
region characterized by weakly supercritical convection, to a subcritical region in
which convection is entirely absent. This progression roughly corresponds to that
observed in advancing from the ridge region into the fine structure and beyond. We
note however the potential importance of capillary pressure in the meniscus region
where the ridges are most pronounced. Another clear manifestation of the flow’s three-
dimensionality was the emergence of surface waves only in the upper extremities of
nearly vertical films: only at sufficient distance from the meniscus was the surface stress
diminished to the extent that the criterion for transverse waves (4.38) was satisfied.

Directly after their formation, the ridges were the principal conduits for flow up
the plane; however, the ridges would typically grow in both vertical and horizontal
extent until their surface flow stopped and then reversed. This behaviour, which we
refer to as ‘slumping’, is another manifestation of the three-dimensionality of the flow,
but may again be simply understood in terms of our theoretical model. Specifically,
the ridges can only grow to a critical height Hmax = 3τ/(2ρg sin θ): for H > Hmax, the
flow up the plane cannot be sustained. The resulting reversed or slumping flow will,
according to the stability criterion (4.32) be stable to Marangoni convection.

When the plate inclination is small, the ducts assume a dendritic form (figure 6).
In this case, the primary ducts play the role of the original slope: the trough-to-peak
surface tension gradient supports an adjoining series of secondary ducts. The resulting
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hierarchy of ducts gives the surface its dendritic pattern. Thomson (1855) released a
small quantity of alcohol onto a thin layer of water, and noted the form of the thin
central patch created by the radial surface divergence: ‘the margin of the central patch
is usually seen formed like as of leaves of a plant growing out all round’. This dendritic
structure may be readily reproduced in the laboratory, and may be understood as
being the manifestation of analogous convective motions supported by a combination
of evaporation and vertical shear associated with the radial Marangoni flow.

6.2. Other possible manifestations of fine-scale convection

The shear-alignment of Marangoni convection into longitudinal rolls arises in other
situations involving surface tension gradients generated by either concentration, sol-
uble surfactant or temperature gradients; for example, the fine convection rolls
apparent in thin layers of coffee (Walker 1983), the ridges evident in the boundary
of a film of water flowing down an incline (Hershey 1939), and the ridge structures
evident in the meniscus region in a pan of hot cooking oil. When a candle is
burning, a radial surface tension gradient is generated in the liquid wax owing to the
temperature dependence of surface tension: vigorous convection is typically visible at
the free surface, and is marked by fluid being driven outward along the free surface.
When the flame is extinguished, the wax cools until it solidifies, and is often marked
by radial ridges in the free surface which may be a remnant surface manifestation of
Marangoni convection cells aligned by a radial flow.

The authors thank Michael Brenner and Harvey Greenspan for valuable discus-
sions. This research was partially supported by the National Science Foundation
under Award No. DMS-9705912.

Appendix. Solving the equations order by order
To lowest order, (4.14)–(4.22) become

u0zz = 0, v0zz =S sin θ, p0z = −S cos θ, (A 1a–c)

with boundary conditions

u0z = 0, v0z = 1, −p0 = Chxx at z = h, (A 2)

and u = v = w = 0 at z = 0. Applying these boundary conditions and integrating
(A 1a) and (A 1b) twice and (A 1c) once in z (recall that h is not a function of z),
we obtain the lowest-order solutions (4.25). Using these zeroth-order solutions, the
next-order equations can be written as:

u1zz =Shx cos θ −Chxxx, v1zz = 0, p1z = 0, (A 3a–c)

with boundary conditions

u1z =Ms

(
1
6
h3 − 1

8
h4S sin θ

)
x
, v1z = 0, −p1 = (y − c0)hxx at z = h, (A 4)

and u = v = w = 0 at z = 0. Integrating in z gives the O(ε) velocities and pressures
in (4.26).

REFERENCES

Bénard, H. 1900 Rev. Gen. Sci. Pures Appl. Bull. Assoc. Franc. Avan. Sci. 11, 1261.
Bénard, H. 1927 Sur les tourbillons cellulaires et la théorie de Rayleigh. Compt. Rendue 185.
Berg, J. C., Acrivos, A. & Boudart, M. 1966 Evaporative convection. Adv. Chem. Engng 6, 61–123.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

50
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005018


Evaporative instabilities in climbing films 239

Berg, J. C., Boudart, M. & Acrivos, A. 1966 Natural convection in pools of evaporating liquids.
J. Fluid Mech. 24, 721–735.

Block, M. J. 1956 Surface tension as the cause of Bénard cells and surface deformation in a liquid
film. Nature 178, 650–651.

Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating/condensing
liquid films. J. Fluid Mech. 195, 463–494.

Carey, V. P. 1992 Liquid-Vapor Phase-Change Phenomena. Taylor & Francis.
Chai, A.-T. & Zhang, N. 1998 Experimental study of Marangoni–Bénard convection in a liquid

layer induced by evaporation. Expl Heat Transfer 11, 187–205.
Davis, S. H. 1987 Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403–435.
Fanton, X. & Cazabat, A. M. 1998 Spreading and instabilities induced by a solutal Marangoni

effect. Langmuir 14, 2554–2561.
Fournier, J. B. & Cazabat, A. M. 1992 Tears of wine. Europhys. Lett. 20, 517.
Gumerman, R. J. & Homsy, G. M. 1974 Convective instabilities in concurrent two phase flow: Part

i. Linear stability. AIChE J. 20, 981–988.
Hershey, A. V. 1939 Ridges in a liquid surface due to the temperature dependence of surface

tension. Phys. Rev. 56, 204.
Koschmieder, E. L. 1967 On convection under an air surface. J. Fluid Mech. 30, 9–15.
Lide, D. R. (Ed.) 1974 Handbook of Chemistry and Physics: 72nd Edition 1991–1992. CRC Press.
Marangoni, C. 1865 On the expansion of a drop of liquid floating on the surface of another liquid.

Tipographia dei fratelli Fusi, Pavia.
Myers, T. G. 1998 Thin films with high surface tension. SIAM Rev. 40, 441–462.
Nield, D. A. 1964 Surface tension and buoyancy effects in cellular convection. J. Fluid Mech. 19,

341–352.
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod.

Phys. 69, 931–980.
Oron, A. & Rosenau, P. 1994 On a nonlinear thermocapillary effect in thin liquid layers. J. Fluid

Mech. 273, 316–374.
Pearson, J. R. A. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4, 489–500.
Rayleigh, L. 1916 On convective currents in a horizontal layer of fluid when the higher temperature

is on the under side. Phil. Mag. 32, 529–546.
Richter, F. M. & Parsons, B. 1975 On the interaction of two scales of convection in the mantle.

J. Geophys. Res. 80, 2529–2541.
Ross, S. & Becher, P. 1992 The history of the spreading coefficient. J. Colloid Interface Sci. 149,

575–579.
de Ryck, A. 1999 Instability of a meniscus due to surface tension gradient-driven flow. J. Colloid

Interface Sci. 209, 10–15.
Scriven, L. E. & Sternling, C. V. 1960 The Marangoni effects. Nature 187, 186–188.
Scriven, L. E. & Sternling, C. V. 1964 On cellular convection driven by surface-tension gradients:

effects of mean surface tension and surface viscosity. J. Fluid Mech. 19, 321–340.
Smith, K. A. 1966 On convective instability induced by surface-tension gradients. J. Fluid Mech. 24,

401–414.
Smith, M. K. & Davis, S. H. 1983a Instabilities of dynamic thermocapillary liquid layers. Part 1.

Convective instablities. J. Fluid Mech. 132, 119–144.
Smith, M. K. & Davis, S. H. 1983b Instabilities of dynamic thermocapillary liquid layers. Part 2.

Surface-wave instabilities. J. Fluid Mech. 132, 145–162.
Thomson, J. 1855 On certain curious motions observable at the surfaces of wine and other alcoholic

liquors. Phil. Mag. 10, 330.
Vidal, A. & Acrivos, A. 1968 Effect of nonlinear temperature profiles on the onset of convection

driven by surface tension gradients. I&EC Fund. 7, 53–58.
Volkoviski, V. 1935 Sur les tourbillons en festons. Compt. Rendue 200, 1285.
Vuilleumier, R., Ego, V., Neltner, L. & Cazabat, A. M. 1995 Tears of wine: The stationary state.

Langmuir 11, 4117–4121.
Walker, J. 1983 What causes the ‘tears’ that form on the inside of a glass of wine? Sci. Am. 234,

162–169.

Yang, W.-J. 1999 The third type of Bénard convection induced by evaporation. In Fluid Dynamics
at Interfaces (ed. W. Shyy & R. Narayanan), pp. 31–42. Cambridge University Press.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

50
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005018

