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Abstract. Emission of energetic ions from solid targets irradiated by intense ultra-
short laser pulses is studied in the framework of a one-dimensional self-consistent
hydrodynamical model. The computed ion spectra reproduce well the basic par-
ameters of published experimental results. Optimum conditions are found for the
generation of MeV ions by picosecond laser pulses.

1. Introduction
The plasma produced when a powerful laser pulse is focused onto a target surface
in vacuum can provide an intense source of highly charged energetic ions. Exper-
imental laser ion sources have been investigated for medical physics and particle
accelerator applications (Brown 1989; Sherwood 1992).

The above-mentioned studies have assumed nanosecond or subnanosecond laser
pulses, while the development of T3 (terawatt table-top) lasers has opened up op-
portunities for an extensive research of interactions of high-intensity (I ≈ 1014–
1019 W cm−2) short laser pulses (tL ≈ 100 fs–1 ps) with solid targets. The physics
of this system differs considerably from the conventional interactions of longer
pulses. Plasma density scale lengths are shorter than the laser wavelength, and
high-density plasmas are produced. The nonlinear character of the interaction is
often apparent, and a considerable part of the laser energy is transferred to a group
of very fast electrons and ions. An important advantage of T3 lasers is their rela-
tively high repetition rate, which is usually several hertz, but can easily be increased
up to several kilohertz. Such a system may provide a relatively cheap and compact
source of intense short pulses of very energetic ions, at least for small and medium
ion charges.

Fast ion emission from solid targets irradiated by subpicosecond laser pulses has
been observed (Meyerhofer et al. 1993; Andreev et al. 1996). In these experiments,
MeV ions were detected, and relatively large efficiencies of laser energy transfer to
the energetic ions were found.

Interactions of intense subpicosecond laser pulses with solid targets are now
widely studied, both experimentally and theoretically; see the review article by
Gibbon and Förster (1996). Various types of plasma description, including particle-
in-cell (PIC), Vlasov, Fokker–Planck and hydrodynamical, are used in numeri-
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cal simulations of the interactions. Hydrodynamical and Fokker–Planck simula-
tions cannot avoid a phenomenological treatment of nonlinear regimes of laser
absorption. These types of models are hardly applicable to the interactions of high-
intensity (Iλ2 >∼ 1018 W cm−2 µm2) and/or very short (tL <∼ 100 fs) laser pulses with
matter, when nonlinear and collective effects dominate. However, they are the only
methods enabling global simulations of the interactions of moderate-intensity pi-
cosecond laser pulses with solid targets. Fokker–Planck simulations describe the
heat flux rigorously, and they may be used for the description of X-ray emission in
lines, when a non-Maxwellian electron distribution is present (Matte et al. 1994). On
the other hand, hydrodynamical simulations are computationally less demanding
and can incorporate a description of a broader spectrum of the physical processes
occurring in the interaction.

We have developed a simplified, but self-contained, theoretical model that can,
by means of one-dimensional hydrodynamical simulations, predict the ion energy
spectrum and the efficiency of laser energy transformation to the fast ions. We
assume here p-polarization of laser radiation, since it enhances fast-particle pro-
duction, although the model is capable of accounting for any laser polarization. The
model reproduces well the basic parameters of the published experimental results
(Meyerhofer et al. 1993; Andreev et al. 1996), and it enables us to analyse the impact
of various laser and target parameters on the fast-ion emission.

The model benefits from earlier papers describing the interactions of laser pulses
with solid targets. A remarkably precise description of resonance absorption and
of electron acceleration was developed some time ago (Andreev et al. 1980). A sim-
plified description of nonlinear wavebreaking is added to the model in the way
proposed by Rae and Burnet (1991), which allows us to use it for higher laser in-
tensities and shorter density scale lengths. Our treatment of fast-electron transport
into the target is partly similar to that of Davis et al. (1995), who also studied the
interaction of subpicosecond laser pulses with solid targets in the framework of a
hydrodynamical model. However, their model used ad hoc assumptions about the
energy and number of fast electrons. They did not present any model of ion accel-
eration. The treatment of ion acceleration by an ambipolar electric field is based
here on a semianalytical model due to Gurevich and Mescherkin (1981).

The description of all of the above-mentioned processes is incorporated into a
complex model that enables us to simulate the interactions of picosecond laser
pulses with solid targets in a self-consistent way. The application of the model to
an investigation of fast-ion emission from solid targets is presented here.

2. Theoretical model
The plasma dynamics is described via a one-fluid two-temperature Lagrangian hy-
drocode taking account of electron and ion thermal conductivities, both natural and
artificial ion viscosities, and the impact of the ponderomotive force on the plasma
motion. The system of hydrodynamical equations, including mass, momentum and
energy conservation laws, is written down using the Lagrangian mass coordinate
s =

∫ x
−∞ ρ(x′) dx′, as follows (Dragila and Krepelka 1978):

∂

∂ t

(
1
ρ

)
=

∂

∂ s
U, (1a)
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∂ U

∂ t
+

∂

∂ s
(Pe + Pi + µe + µi) +

Re(ε)− 1
16π

∂ |E|2
∂ s

= 0, (1b)

∂ x

∂ t
= U, (1c)

∂ (Ee + Eion)
∂t

+ (Pe + µe)
∂

∂s
U +

∂

∂s
qe =

1
ρ

(−Qei −Qr +QL +Qf ), (1d)

∂ Ei

∂t
+ (Pi + µi)

∂

∂s
U +

∂

∂s
qi =

1
ρ
Qei. (1e)

Here ρ and U are the plasma density and velocity, Pe,i and µe,i are the electron
and ion pressures and viscosities, Ee,i are the electron and ion thermal energies
per unit mass, qe,i are for the electron and ion heat fluxes, Qei is the electron–ion
relaxation, Eion is the energy spent on plasma ionization, E is the amplitude of the
laser electric field, ε is the complex plasma dielectric constant, Qr is the energy loss
due to X-ray emission, Qf is the energy deposed by fast electrons, and

QL =
ω0

8π
Im(ε) (|El|2 + |E⊥|2)

is the collisional absorption of laser radiation, where the indices l and⊥ indicate the
longitudinal (along the density gradient) and transverse components of the laser
electric field and ω0 is the laser frequency. A very fine spatial grid with typically 200–
500 cells is used to model the shape of the density profile in the expanding plasma in
detail so that the laser fields may be calculated properly. A one-dimensional planar
description is usually sufficient for short pulse interactions with solid targets, since
the diameter of the laser focus is much greater than the scale length of the plasma
expansion during the laser pulse.

A simplified model of atomic physics is included in the code, in order to calculate
the mean ion charge Z and the averaged ion charge squared Z2. The populations
N (z) of the charge states z are described via a set of atomic rate equations

∂

∂ t

(
N (z)

ni

)
=

∂

∂ t
y(z) = Γ(z), z = 1, 2, . . . , znucl, (2)

where the overall rates

Γ(z) = s(z−1)y(z−1) − (s(z) + α(z−1))y(z) + α(z)y(z+1),

Γ(znucl) = s(znucl−1)y(znucl−1) − α(znucl−1)y(znucl)

are expressed via the ionization s(z) and the recombination α(z−1) rates for an ion
in charge state z. The charge state of a fully stripped ion is znucl. The population
of neutrals is denoted by N (0), and is expressed from the normalization condition

ni = N (0) +
znucl∑
i=1

N (i),

where ni is the total concentration of the ionized and the neutral atoms (the ion
density). The populations N (z) of the ion charge states are used explicitly in the
description of the transport of fast electrons into the target. The rates of colli-
sional ionization, and radiative and three-body recombination, taken from Lee et al.
(1984), include the depression of the ionization potential in dense plasmas. The
theory of Ammosov et al. (1986) is used for the rate of tunnelling ionization by
laser radiation. For solid aluminium targets, tunnelling ionization is important
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only in a very thin layer (a few angstroms) on the surface that expand so fast that
collisional ionization is inefficient. Plasma recombination is important when a laser
prepulse is present. Recombination has a significant impact on the time-integrated
X-ray emission from the target, too. However, recombination is not important for
the results presented here.

The energy loss Qr by radiation consists of bremsstrahlung and recombination
emission multiplied by the escape factor, so that only the part of emission that
reaches the plasma–vacuum boundary is included in the energy conservation.

Maxwell’s equations are solved in the presented model, for both s- and p-polarized
laser radiation. As the description of an s-polarized laser wave, absorbed only colli-
sionally, is straightforward, we shall concentrate here on p-polarized obliquely inci-
dent radiation. When a p-polarized wave is incident on an inhomogeneous plasma,
a fraction of its energy is collisionally absorbed and a fraction of its energy is trans-
formed to the longitudinal electron plasma wave. The energy of the longitudinal
wave is fully absorbed in the plasma, either collisionally or by Landau damping or in
a nonlinear way by wavebreaking. While the collisional absorption of the transverse
and longitudinal waves heats the thermal electrons, the remainder of the energy
of the longitudinal wave is deposited in a group of electrons, accelerated to high
energies (fast electrons). Laser absorption and electromagnetic fields are calculated
by numerical solving Maxwell’s equations for a hot plasma:

d2H

dx2 −
d ln ε
dx

dH

dx
+
ω2

0

c2

(
ε− sin2 θ

)
H = −ω

2
0

c2 sin θ (εEl + sin θH) , (3a)

3β2ω
2
p

ω2
0

d2El
dx2 + 2i

ω0

c2 Γ̂El +
ω2

0

c2 εEl = −ω
2
0

c2 sin θH, (3b)

where the plasma dielectric constant is

ε = ε(ω0, k = 0) = 1− ω2
p

ω0(ω0 + iν)
,

ωp and ν are the plasma frequency and the effective electron–ion collision frequency,
and

β2 =
kBTe
mc2 ≡

v2
T

c2

is the dispersion coefficient. Instead of the laser magnetic field By, we use the
quantity H, introduced as follows:

H(x) = By(x) + 3 β2 sin θ
∫ x

−∞
dx′

ω2
p(x
′)

ω2
0

dEl(x′)
dx′

.

These equations are solved together with four boundary conditions: two in the
overdense plasma and two at the plasma–vacuum boundary.

The methodology developed by Lee and More (1984) is used for the calculation
of the collision frequency ν, which describes the collisional part of the laser absorp-
tion. Landau damping of the longitudinal plasma wave is described precisely by an
integral operator (Andreev et al. 1980).

Γ̂El(x) =
∫
γL(k)Fkeikxdk =

∫
dk γL(k)

∫
dx′

2π
El(x′) eik(x−x′),

where the damping rate γL(k) is expressed via the electron distribution function
f (v).
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When a linear plasma density profile is assumed and the effective collision fre-
quency ν is spatially constant, an analytical approximation can be found for the
longitudinal electric field El. This field is expressed through the field H at the
critical surface xc:

El =−i sin θ Lcω0

vT
H(xc)

∫ ∞
0

dτ exp
{
−Lcω0

[
i
x τ

vTLc
+
i τ 3

vT
+
ν

ω0

τ

vT
+
π

nc
fc

(
vT
τ

)]}
,

for any electron distribution fc at the critical surface, where the electron density is
nc and Lc is the density scale length. This approximate formula is in a good agree-
ment with the numerical results for relatively long density profiles with density
scale lengths Lc >∼ 0.1λ.

However, solving an integro-differential equation system at each time step of
the hydrodynamical code is extremely time-consuming. The complex-β2 approxi-
mation, proposed by Andreev et al. (1981), is used in the hydrocode instead of the
integral operator of Landau damping. An imaginary part is added to the dispersion
coefficient β2 to account for Landau damping:

β2 =
kB Te
mc2

1
1 + iνL

,

νL =
ξL
4

max
(
nc
ne
− 1, 0

)
.

The Landau-damping rate νL = 0 for electron densities ne > nc, and νL is large
in a low-density plasma. The coefficient ξL may be modified to ensure that the
longitudinal wave is damped out completely before it reaches the plasma–vacuum
boundary. We have verified numerically that, at least for the typical profiles of
plasma parameters encountered here, the errors introduced into the absorption ef-
ficiency and into the laser fields by the complex-β2 approximation are insignificant.
The scaling of the absorption efficiency for density scale lengths less than the laser
wavelength differs considerably (Andreev et al. 1994) from the well-known scaling
for an extensive plasma expansion.

The plasma resonance is limited in a nonlinear way by so-called wavebreaking
(Estabrook et al. 1975) for high laser intensities, when

vE
vT
> 9

Φ(q)

(
Lc v

2
T

λ3 ω2
p

)1/6

.

Here vT is the electron thermal velocity and vE is the oscillation velocity of an
electron in the laser wave, q = (ω0Lc/c)2/3 sin2 θ and Φ(q) is the Ginzburg func-
tion. A detailed description of the wavebreaking mechanism is possible only in the
framework of a kinetic approximation. In the wavebreaking regime, a resonance
is formed and destroyed in a small number of laser periods. Here the limitation
on the resonance field is described in a phenomenological way, which enables us to
calculate the effective values of the resonance laser fields via the stationary wave
equation. Wavebreaking leads to a nonlinear limitation of the amplitude on the
laser electric field at resonance.

When the resonance absorption is treated without the spatial dispersion, an ef-
fective collision frequency is introduced into the dielectric constant to account for
wavebreaking (Rae and Burnet 1991). However, this has to be modified for a hot
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Figure 1. Profiles of the longitudinal electric field El (the absolute value and the imaginary
component), when wavebreaking is (solid curves) and is not (dashed curves) included. A
p-polarized Nd-laser wave at I = 8.1015 W cm−2 is incident at a 45◦ angle onto an exponential
plasma density profile with scale length Lc = 0.1λ and Te = 0.5 keV. The critical surface is
located at xc, and B0 is the amplitude of the incident wave in vacuum.

plasma, and we introduce an effective damping rate

γB = ω0
vc
c

[(
1 +

ω0Lc
2c

vc
c

)2

− 1
]−1/2

,

vc =
eH(xc)
mω0

sin θ,

into the equation for the longitudinal component El of the high-frequency electric
field. The impact of wavebreaking on the laser fields is demonstrated in Fig. 1.

Vacuum heating (Brunel 1987) is not taken into account here, since the plasma
density scale length is large enough to meet the condition ω0Lc >∼ 0.3 vT . Laser-
induced surface waves may enhance laser absorption (Dragila and Gamaly 1991),
but the contribution of this mechanism to laser absorption is not yet clear. Cor-
rugations and imperfections of the target surface may dramatically enhance laser
absorption at normal incidence, when the absorption efficiency in a target with a
perfect surface is rather low: about 10% (Price et al. 1995). A possible enhance-
ment of laser absorption is much less important for p-polarized radiation, since the
absorption efficiencies are generally much higher (about 50%).

The acceleration of electrons at resonant absorption is treated in each time step
via stationary electron diffusion (Andreev et al. 1980) in velocity space. The average
diffusion coefficient D(v) is expressed through the electron acceleration by the
resonant Fourier component Fk of the longitudinal electric field:

v
∂f

∂x
=

∂

∂v

[
D(v)

∂f

∂v

]
, (4)

where

D(v) = ξD
e2

2m2

1
Lv
|Fk|2k=ω0/v

,

and Fk is the Fourier transform of the longitudinal electric field. Electrons are
assumed to be accelerated in the plasma resonance region of width L ≈ (Lcr2

De)
1/3,

where rDe is the electron Debye radius. The factor ξD ≈ 1 is iterated to reach an
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Figure 2. The Maxwellian distribution fM of the electrons incident from the overdense plasma
(dashed curve) and the distribution fA of the electrons accelerated by resonance absorption
(solid curve). The normalization is f (v = 0) = 1. The velocity vmin is the minimum velocity of
the distribution function δfA of the fast electrons. The electron spectra are displayed at the
peak intensity 1016 W cm2 of a p-polarized Gaussian 400 fs FWHM Nd-laser pulse incident
at a 45◦ angle onto a solid aluminium target.

exact matching between the laser energy flux absorbed into the fast electrons and
the energy flux of the fast electrons.

If wavebreaking is absent and Landau damping is described via the integral
operator then ξD = 1 exactly. The diffusion coefficient D(v) may be then expressed
for linear plasma density profiles via the laser field H at the critical surface xc:

D(v) =
e2

2m2

L2
c

Lv
|H(xc)|2 sin2 θ exp

{
− Lc
rDe

[
2π vT
nc

fc(v) +
ν(v) rDe

v

]}
.

Electrons are accelerated preferentially in the direction towards the underdense
plasma. The energy of the fast electrons matches the difference between the over-
all laser absorption and the integrated local collisional absorption, so that energy
conservation is maintained. We assume here a Maxwellian distribution fM of the
electrons entering the critical region from the overdense plasma, with local temper-
ature Te and concentration ne = αfnc. We typically set the coefficient αf ≈ 1.5.
A typical electron distribution function fA(v) of the accelerated electrons at the
vacuum side of the acceleration region is displayed in Fig. 2 at the laser pulse max-
imum, together with fM . The longitudinal velocity v is oriented in the direction
towards the vacuum. As the electron distribution is not modified for zero velocity
(fA(v = 0) = fM (v = 0)), the distribution functions in Fig. 2 are normalized so that
f (v = 0) = 1.

The electron distribution is split into two parts – thermal and fast electrons –
in order to allow a suitable description of the energy transport into the target.
We introduce the assumption that fast electrons are only those electrons carrying
the net increase in energy flux density due to collisionless absorption (Landau
damping and wavebreaking). The velocity vmin, indicated by the vertical dotted line
in Fig. 2, is determined by the requirement of equal energy fluxes of the electrons
with v 6 vmin for the distribution functions fA and fM :∫ vmin

0
v3 fA(v) dv =

∫ vmin

0
v3 fM (v) dv.
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Thus the distribution function δfA of the fast electrons is defined here, as follows:

δfA =
{

0 (v < vmin),
fA − fM (v > vmin).

When the fast electrons are reflected back from the plasma–vacuum boundary, a
fraction ηi of their energy is lost on acceleration of ions by an ambipolar electric
field. For simplicity, ηi is assumed here to be independent of the electron velocity.
The magnitude of ηi is determined by the requirement of energy conservation; the
total energy lost by the fast electrons has to be equal to the energy gained by the
fast ions.

The flight of fast electrons is a means of fast energy transport over relatively
large distances. No net particle flux is induced, since the return current substitutes
fast electrons by thermal ones everywhere to ensure quasineutrality. Fast electron
transport is described simply as a continuous slowing down. The distribution func-
tion of the fast electrons reflected from the plasma–vacuum boundary, expressed
via δfA, is used as a boundary condition

ff (s(xc), v) =
δfA[v/(1− ηi)1/2]

1− ηi
for solving for the transport of energetic electrons from the critical surface into the
target. The longitudinal velocity v in the distribution ff of the fast electrons in
the overdense plasma is oriented into the target. The stopping power of the fast
electrons is written in the Bethe–Bloch form (Davis et al. 1995)

∂ Ef
∂ s

=
1
ρ

∂ Ef
∂ x

= −2πe4

ρEf

[ znucl−1∑
z=0

Z (z)
v N (z) ln

(
1.16 Ef
χ(z)

)
+ ne ln

(
1.16 Ef
χ0

)]
, (5)

where Ef = 1
2mev

2/2 is the kinetic energy of a fast electron, Z (z)
v and χ(z) are the

number of valence electrons and the ionization potential of an ion in the charge state
z respectively, and χ0 is the effective potential related to the stopping power by
collective processes in the plasma. The distribution function ff is calculated in each
spatial cell. Electrons that are slowed below the minimum speed vm (usually set
equal to the local thermal velocity) are assumed to be stopped within one spatial
cell. The dissipated energy of fast electrons is transferred locally to the thermal
electrons. The power Qf of the thermal electron heating per unit mass is expressed
as follows:

Qf = −dIf
ds

= − d

ds

∫ ∞
vm

vEfff (s, v) dv

= −
∫ ∞
vm

dEf
ds

vff (s, v) dv −
∫ ∞
vm

Ef
d

ds

[
vff (s, v)

]
dv .

Here If is the energy flux and ff (s, v) is the distribution function of fast electrons.
The first term on the right-hand side represents the energy lost by the fast electrons
flying through a spatial cell, while the second term represents the energy of the
fast electrons stopped there. The power Qf leads to a precursor to the thermal
wave, heating the target. The energy of the fastest electrons escaping from the
simulation region into the bulk target is lost for the simulation. It is relevant for
thick solid targets, where practically no fast electrons are reflected back into the
interaction region. The time of flight of the fast electrons inside the simulation box
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(typically ls � 10 µm deep) is not taken into account, since it is short compared
with the laser pulse duration tL ≈ 1 ps. A small energy, lost to Kα emission, is
omitted.

Electrostatic acceleration of ions in the ambipolar field at the plasma–vacuum
boundary is assumed. The fast-ion spectrum is found from the electron spectrum
via the model developed by Gurevich and Mescherkin (1981). It assumes quasineu-
trality (density scale length much greater than the Debye radius) and that the
time of fast-electron round trip in the corona is small compared with the laser
pulse. These conditions are generally met in our simulations, with the exception of
a small proportion of very energetic electrons penetrating far away from the target.
The electron distribution is then symmetric in the longitudinal velocity v, and the
electron concentration is governed by the electrostatic potential:

Zni = ne(ϕ) = 2
∫ ∞

0
fA

((
v2 +

2eϕ
me

)1/2)
dv, (6)

where fA is the above-specified distribution function of the electrons accelerated
by resonance absorption. The electrostatic potential is set to ϕ = 0 at the critical
surface and ϕ→∞ at the vacuum side (x→ −∞). The evolution of ion density and
velocity is then described by collisionless hydrodynamics. A self-similar solution
is then applied to calculate the time-integrated energy distribution of the ions.
The electron distribution fA is averaged over the laser pulse duration to obtain a
constant electron distribution for the model of ion acceleration. The ion velocity u,
sound velocity cs and electrostatic potential ϕ are expressed as implicit functions
of the self-similar variable τ = x/t via the following set of equations:

u = τ + cs(ϕ),

c2
s(ϕ) =

eZne(ϕ)
Mi

(
dne
dϕ

)−1

−τ = cs(ϕ) +
eZ

Mi

∫ ϕ

0

dϕ′

cs(ϕ′)
.

The ion velocity distribution is then expressed via transformation of variables as
follows:

dN

du
= ni

∣∣∣∣dxdu
∣∣∣∣ ≈ nitL ∣∣∣∣dτdu

∣∣∣∣ , (7)

where tL is the laser pulse duration and N is the number of ions emitted per unit
surface of the target.

The function τ (ϕ) is not monotonic, when the ratio of the fast to the thermal
electron temperatures is high (>∼ 10). Consequently two values of ϕ as a function of
τ may be found (Wickens et al. 1978). This is related physically to the formation of a
narrow layer inside the expanding plasma, where the assumption of quasineutrality
no longer holds. A strong electric field inside this layer leads to a nearly stepwise
acceleration of ions, which leads to a minimum in the ion energy spectrum. We
introduce here a step into the function u(τ ), which leads to a solution with the ion
spectrum dN/du = 0 in an interval of ion velocities u corresponding to the rapid
acceleration.
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Figure 3. The spectrum of ions emitted normally from a solid Al target, irradiated by a
p-polarized 1 ps FWHM Gaussian Nd-laser pulse with a peak intensity of 8× 1015 W cm−2,
incident at a 57◦ angle. The calculated data (curves) compared with the experimental spec-
trum (Meyerhofer et al. 1993) (circles).

3. Results and discussion
We have performed simulations for the conditions of the published experiments
(Meyerhofer et al. 1993; Andreev et al. 1996), and the resulting spectra of fast ions
are compared with the measurements. A standard transformation of the ion blowoff
current traces, displayed in Fig. 2 of Meyerhofer et al. (1993), is performed in order to
facilitate the comparison of the ion spectra with our simulations. The experimental
ion spectrum and the simulation result are presented in Fig. 3. The position of the
maximum of the fast-ion spectrum and also the slope of the tail of the ion spectrum
compare well with the experimental data. The fast ions are confined within an angle
of about 5◦ from the target normal in the experiment of Meyerhofer et al. (1993). As
the angular distribution of the thermal ions is much broader, the discrepancy at low
velocities can be explained by the geometrical factor. The total energy of the fast
ions is about 20 % of the incident laser energy in the experiment of Meyerhofer
et al. (1993), while the computed value is 9.6%. The computed laser absorption
efficiency A = 39%, which is lower than the experimental efficiency A ≈ 63±10%,
may partially account for the difference in the energy transformation to the fast
ions.

It should be mentioned that the completely depleted gap in the computed ion
velocity spectrum is caused by the model of ion acceleration employed. This gap
is present when the ratio of the fast-electron temperature Th to the temperature
Te of the thermal electrons exceeds a certain limit. This limit is Th/Te ≈ 9.6 for a
bi-Maxwellian electron distribution (Wickens et al. 1978). No depleted gap in the
ion distribution is observed in simulations of the experiments by Meyerhofer et al.
(1993) with peak laser intensities below 5× 1015 W cm−2.

We have also conducted simulations for the conditions of the experiment by
Andreev et al. (1996). The fast-ion detector was placed 45◦ from the target normal
in this experiment. Our one-dimensional model cannot describe this measurement
correctly. However, the basic parameters of the computed fast-ion spectrum, shown
in Fig. 4, are similar to those of the experiment. As the experimental spectrum is
not absolutely calibrated, i.e. the total energy of the fast ions is not known, we
normalize the experimental spectrum here, so that its maximum is equal to the
maximum of the computed fast-ion distribution. The computed ion distribution is
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Figure 4. The spectrum of ions emitted from a solid Al target, irradiated by a 1.5 ps FWHM
p-polarized Gaussian Nd-laser pulse with a peak laser intensity 1016 W cm−2, incident at
a 45◦ angle. The calculated data (curves) are compared with the experimental spectrum
(Andreev et al. 1996), recorded at a 45◦ angle from the target normal (circles).

qualitatively similar to the measured spectrum. The number of high-energy ions in
the experiment is reduced owing to the 45◦ angle of observation.

The spectrum of ions emitted normally from the target was measured in recent
experiments by Komarov et al. (1997). In these experiments, a 1.5 ps FWHM Nd-
laser pulse was incident at a 45◦ angle onto a plane Al target. The laser intensity
was varied between 1016 and 1017 W cm−2, and the intensity contrast was of the
order of 106–107. The simulation results are presented here in greater detail. At the
maximum of the laser pulse, the computed profiles of the plasma density and electric
fields are plotted in Figs 5 and 6 for laser intensities of 1016 and 1017 W cm−2. It
should be noted that the small-scale oscillations in the density profile in Fig. 5 may
be considered a numerical artefact, since they disappear when an artificial viscosity
is introduced into the corona. On the other hand, the density profile in Fig. 6 shows
a shock wave moving inwards, initiated by a laser-induced ponderomotive force.
The narrow peak in Fig. 6 with a maximum density of about 27nc is only 0.01λ
wide. Similar shock waves were observed earlier in hydrodynamical simulations
of interactions of intense picosecond pulses with solid targets (Kalashnikov et al.
1994).

Comparison of Figs 5 and 6 shows that the increase in laser intensity leads to a
considerable shortening of the electron density scale length at the critical surface.
While the density profile is near to optimum for resonance absorption for the lower
intensity, resonant absorption is less efficient for I = 1017 W cm−2. The structure of
the electric fields should lead to electron acceleration normally to the target for the
lower intensity. A much broader angular distribution of fast electrons is expected
for the higher intensity, since the longitudinal field is decreased by wavebreaking
and the density profile modification (see Fig. 6). A broad angular spectrum of
fast electrons should lead to fast-ion emission into a wide cone. The computed
ion spectrum is presented in Fig. 7 for the respective intensities. The experimental
ion spectrum, measured for the higher intensity, is normalized in the same way
as in Fig. 4. Excellent agreement of the computed fast-ion energy and spectrum
with experiment is obtained. The minimum in the experimental ion distribution
is observed inside the velocity gap in the computed spectrum, which supports the
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Figure 5. Profiles of the plasma density and of the laser fields at the peak I = 1016 W cm−2

of a 1.5 ps Gaussian pulse of p-polarized Nd-laser radiation, incident at a 45◦ angle on a
solid Al target. B0 is the amplitude of the incident laser magnetic field in vacuum.
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Figure 6. Profiles of the plasma density and of the laser fields at the peak I = 1017 W cm−2

of a 1.5 ps Gaussian pulse of p-polarized Nd-laser radiation, incident at a 45◦ angle on a
solid Al target. B0 is the amplitude of the incident laser magnetic field in vacuum.

model of ion acceleration. It also implies a reasonable agreement of the computed
electron distribution with experiment.

As the applicability of our model has been demonstrated above, we now inves-
tigate the basic characteristics of the interactions. The laser absorption efficiency,
plotted in Fig. 8, decreases slowly with laser intensity. The enhanced density pro-
file modification due to the rising ponderomotive force leads not only to a decline
in collisional absorption, but in our case also to a slight reduction in resonance
absorption. However, the dynamics of the plasma corona is very complicated for
the highest intensity studied here. In this case, there are periods when the plasma
density profile changes rapidly and cavitons are formed. This leads to fast tem-
poral variations in the absorption efficiency, and the overall absorption efficiency
is also influenced. In this case, non-negligible variations of the overall absorption
efficiency are observed when the detailed parameters of the simulations are modi-
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Figure 7. The spectrum of ions emitted normally from a solid Al target, irradiated by a 1.5 ps
FWHM p-polarized Gaussian Nd-laser pulse incident at a 45◦ angle. The peak laser intensities
are 1016 W cm−2 (dashed curves) and 1017 W cm−2 (solid curves). The data calculated for the
higher intensity are compared with experiment (Komarov et al. 1997) (circles).
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Figure 8. Laser absorption efficiency A (dashed line) and hot-electron temperature Th (solid
line) versus peak laser intensity. A p-polarized 1.5 ps FWHM Gaussian Nd-laser pulse is
incident at a 45◦ angle onto a solid Al target.

fied. This uncertainty in the absorption efficiency is represented by the error bars
in Fig. 8. The absorption efficiencies, calculated here, are somewhat lower than in
experiments and in some PIC simulations; see the review by Gibbon and Förster
(1996). This implies that it is rather difficult to account precisely for all the ab-
sorption mechanisms of ultrashort laser pulses in the frame of a 1D hydrocode. The
same figure depicts the rise of the hot-electron temperature with laser intensity.
The deduced scaling is Th ∝ Iα, where α ∝ 0.6. This scaling is in good agreement
with the scalings, observed in the PIC simulations (Gibbon and Bell 1992) and
experimentally (Meyerhofer et al. 1993).

The energy of fast-ion emission grows with laser intensity, but the efficiency of
laser energy conversion to fast-ion emission, displayed in Fig. 9, decreases. This
behaviour is explained by the fact that the energy of the fast ions is proportional
to the hot-electron temperature Th ∝ Iα with α < 1. However, if energy transfor-
mation to a group of very fast and rather monoenergetic ions is preferred then the
energy transformation increases very rapidly with laser intensity. Such growth is
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Figure 9. The efficiency ηf of laser energy transformation to the energy of fast ions (solid line)
and the efficiency ηM of energy transformation to ions in the energy range 800–1000 keV
(dashed line) versus peak laser intensity. A p-polarized 1.5 ps FWHM Gaussian Nd-laser
pulse is incident at a 45◦ angle onto a solid Al target.

demonstrated in Fig. 9 for Al ions in the energy range 800–1000 keV. Thus high laser
intensities are preferable for the generation of intense beams of high-energy ions
for applications. However, the validity of our model is limited to laser intensities
Iλ2 < 1018 W cm−2 µm2. For higher laser intensities, the ponderomotive pressure
is expected to induce an inwards motion of the critical surface and of the coronal
plasma during the main part of the laser pulse. This should significantly reduce ion
acceleration by the ambipolar field. Thus we deduce that the optimum intensity
for the ambipolar acceleration of high-energy ions is around I ≈ 1017 W cm−2, and
the transformation efficiency of the laser energy into the emission of high-energy
ions may reach about 1%. Such an efficiency, though not very high, is acceptable
because of unique properties of the source. The target surface emitting ions is very
small, an ultrashort intense pulse of energetic ions is formed, and a high repetition
rate is achievable.

4. Conclusions
A simplified, but self-consistent, one-dimensional hydrodynamical model has been
developed for the description of ion emission from picosecond laser plasmas. It
includes resonance absorption, fast-electron acceleration by resonance absorption,
fast-electron transport into the solid target, and ion acceleration by the ambipo-
lar electrostatic field. Simulations have been performed for the conditions of the
published experiments (Meyerhofer et al. 1993; Andreev et al. 1996; Komarov et al.
1997), where the ion energy spectra were measured. Good agreement of simulations
with the experimental results has been shown.

We have analysed the possibility of efficient laser energy conversion to high-
energy ions, and have found an optimum laser intensity for the generation of MeV
ions by picosecond laser pulses.
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