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Abstract
In this paper, a new hybrid fault-tolerant control (FTC) strategy based on nonsingular fast integral-type terminal
sliding mode (NFITSM) and time delay estimation (TDE) is proposed for a Schönflies parallel manipulator. In order
to detect, isolate, and accommodate actuator faults, TDE is used as an online fault estimation algorithm. Stability
analysis of the closed-loop system is performed using Lyapunov theory. The proposed controller performance is
compared with conventional sliding mode and feedback linearization control methods. The obtained results reveal
the superiority of the proposed FTC based on TDE and NFITSM.

1. Introduction

During the past few decades, robotic systems have found their way into different technological sectors,
especially for high-risk, repetitive, and high-precision tasks. The complex and challenging environment
in which these robotic systems are employed makes them highly sensitive to components failure, either
those happen to sensors, actuators, or the system. In general, conventional control systems cannot
compensate for the detrimental effects of faults and may end up with loss of performance, instability,
or even complete failure. Grave concern for the risks associated with faults, especially those affecting
safety, reliability, and performance, has made the fault-tolerant control (FTC) an indispensable part of
the robotic system design process which can enhance system reliability and ensure the effectiveness of
the control system in the presence of unexpected faults [1]. Successful implementation of this approach
to various applications has proven its effectiveness in diverse fields such as spacecrafts [2, 3], robotics,
[4, 5, 6, 7] and energy [8, 9, 10]. In general, FTC can be categorized into two types, passive FTC
(PFTC) and active FTC (AFTC). In PFTC, a robust control scheme is designed for both normal and
faulty operations. To be able to deal with any unpredicted fault, the controller needs to be highly robust.
On the other hand, PFTC does not rely on fault detection (FD) information, so it is fast in compensating
for the effects of faults [11]. In contrast, AFTC relies on FD, isolation, and accommodation and mostly
shows superior performance over the passive approach. Once the fault is detected, the controller is
reconfigured to adjust the control input and compensate for the effects of fault [12].

Different approaches have been proposed for FD, including intelligent learning techniques [12,
13, 14] sliding mode observer (SMO) [15, 16, 17], or a combination of these approaches [4, 18].
However, intelligent techniques suffer from high computational cost and difficult implementation, and
the SMO method requires the pre-knowledge about bounds of faults which in most practical cases is
not known. Combining these approaches alleviates their problems to some extent, but their difficult
implementation still persists. Time delay estimation (TDE) is a simple, model-free, yet robust approach
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which can be effectively applied for FD [19]. For FTC purpose of robotic manipulators, different strate-
gies have been adopted, mainly based on computed torque control (CTC) [18, 20], backstepping [11],
neural networks,12 model predictive,7 and sliding mode control (SMC) [4, 5].

SMC scheme is robust against uncertainties and external disturbances, and less sensitive to the system
parameter variations. However, it suffers from chattering and infinite-time convergence to equilibrium
point, which can cause serious problem during system operation. These problems are addressed by some
modifications on the conventional method. For finite-time convergence of the states to the equilibrium
point, terminal SMC (TSMC) has been proposed.21 However, there exist two major concerns. First, its
convergence rate is lower than conventional SMC when the system state is far away from the equilib-
rium point. Second, it has singularity problem. As a solution to the first problem, fast terminal sliding
mode (FTSM) control is devised, [22] and the second problem is addressed through nonsingular TSMC
(NTSMC)23 and the nonsingular fast TSMC (NFTSMC) [24].

In robotic literatures, various approaches have been adopted to promote the performance of SMC-
based FTC [25]. Meng et al. [4] designed ASMFTC for an uncertain Stewart platform which does not
require fault diagnosis process. By offline computing or parallel computing based on nominal multi-
body dynamics, the initial upper bound is calculated and a novel adaptive updating law is employed to
reduce the conservativeness and alleviate the chattering. Van et al.11 proposed an adaptive backstepping
NFTSMC which has the robustness, fast transient response, and finite-time convergence of NFTSMC,
as well as globally asymptotic stability of backstepping control strategy. The dependency of the con-
troller on pre-knowledge of the bounds of faults is eliminated by applying an adaptive method. These
researchers also developed a robust controller by integrating a self-tuning fuzzy proportional integral
derivative (PID) control-NFTSMC and a TDE.26 Their proposed controller offers fast transient response
with finite-time convergence, low steady-state error, and chattering elimination. The PID gains are tuned
using a fuzzy logic system and the unknown dynamic model is estimated via a TDE algorithm.

In this paper, a new hybrid FTC strategy is proposed for a Schönflies parallel manipulator with pick-
and-place application in the presence of actuator faults and external disturbances. The key contributions
of this paper are summarized as follows:

(1) A new AFTC is proposed by combining adaptive nonsingular fast integral-type terminal sliding
mode (ANFITSM) and TDE, which can compensate the model uncertainties, especially those
associated with complicated dynamic modeling of the parallel manipulators.

(2) ANFITSM ensures high robustness against uncertainties and disturbances, improves transient
response, and offers fast convergence to the desired states.

(3) By employing adaptive law, the need for excessive high gain is eliminated, which results in lower
control effort and reduced chattering.

(4) For FD, TDE algorithm is applied, which is a model-free approach and eliminates the requisite
bounds of faults and uncertainties.

The rest of the paper is organized as follows. In Section 2, the parallel manipulator is introduced.
Sections 3 and 4 deal with kinematic and dynamic analysis. Trajectory planning is presented in Section
5. Section 6 is devoted to fault diagnosis based on TDE algorithm, and FTC based on ANFITSM.
Simulation results are discussed in Section 7, and the paper is concluded in Section 8.

2. Manipulator description

The mechanism under review is a modification on redundantly actuated Veloce manipulator, [27] com-
prising of four identical R-(SS)2 arms, connecting a base to an end-effector. By shifting the connection
of the two opposite arms to the end-effector along opposite directions of the base frame, and adding two
revolute joints as shown in Fig. 1, the mechanism will be able to generate Schönflies motion, with its
rotation around horizontal axis [28].
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Figure 1. CAD model of Schönflies motion robot.

Figure 2. Coordinate frames and variables of the arm.

3. Kinematics

The structure of one arm of the manipulator is illustrated in Fig. 2. The base frame FO:O − XYZ is
attached to the geometric center of the fixed platform, defined by revolute joints (Ai, i = 1, . . . , 4),
with its X direction pointing towards A1 and its Z direction normal to the plane of the fixed platform.
Similarly, the moving frame FP:P − xyz is set at the geometric center of the moving platform, with its x
direction crossing point C1 and its z direction perpendicular to the plane formed by Ci , (i = 1, . . . , 4),
representing the attaching points of the arms to the end-effector. y is the rotation axis of the end-effector
and it always remains parallel to Y .
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The loop-closure equation for the ith arm is written as

rP + εil4ŵi = rAi + l2ûi + l3̂vi (1)

εi =
{

sec βi i= 1, 4
−sec βi i= 2, 3 (2)

Rearranging this equation and squaring both sides yields the constraint equations of the manipula-
tor as,

f (X ,�)= (rP + εil4ŵi − rAi)
2 + l22 − 2l2 (rP + εil4ŵi − rAi) .̂ui − l23 = 0 (3)

where X = [
rT

P ψ
]T is the end-effector pose, and �= [

θ1 θ2 θ3 θ4
]T is the active joint variables.

For velocity analysis, Jacobian matrix is extracted by differentiating Eq. (1) with respect to time.

ṙP = l2 (ωUi×ûi)+ l3 (ωLi×̂vi)− εil4
(
ψ̇×ŵi

)
(4)

where ωUi and ωLi are the angular velocity of the upper and lower links of the ith arm, respectively.
Taking the dot product of both sides of Eq. (4) with v̂i and considering ωUi = θ̇in̂i, we obtain

ṙP .̂vi = l2θ̇i (̂ni ×ûi) .̂vi − εil4ψ̇
(
ĵ× ŵi

)
.̂vi (5)

This gives a mapping between the velocity of the ith active joint and the end-effector, which can be
written in the following matrix form:

JXẊ = Jθ�̇,

JXi =
[

v̂T
i εil4

(
ĵ×ŵi

)
.̂vi

]
, JX =[

JT
X1 JT

X2 JT
X3 JT

X4
]T ,

Jθ i = l2 (̂ni ×ûi) .̂vi, Jθ = diag
[
Jθ1 Jθ2 Jθ3 Jθ4

]
. (6)

Obviously, the velocity equation for the whole manipulator will be

Ẋ = J�̇, J = J−1
X Jθ . (7)

where �̇= [
θ̇1 θ̇2 θ̇3 θ̇4

]T represents the vector of active joints angular velocity and Ẋ = [
ṙT

P ψ̇
]T is

the velocity of the end-effector.

4. Dynamics

For dynamic modeling of the manipulator, Euler–Lagrange formulation for constrained systems is used.
As the rotational inertia of the lower links is negligible, they are considered as point masses on their
both extreme ends [29].

For modeling a dynamic system using Euler–Lagrange formulation, the first step is determining the
Lagrangian, which is defined by

L(�, �̇,X , Ẋ )= T
(
�, �̇,X , Ẋ )− U(�,X ) (8)

Here, the only conservative force stored in the form of potential energy is gravity.

U(�,X )= Ua(�)+ Up(X ) ,

Ua(�)= −1
2
(mU + mL) gl2

4∑
i=1

sin θi .

Up(X )= −megzp. (9)
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Table I. Parameters of the manipulator.

Parameter Value (m) Parameter Value

l1 0.2 mu 0.4 kg
l2 0.3 mL 0.2 kg
l3 0.8 mp 0.1 kg
l4 0.11 Ipyy 1.56 × 10−3kg·m2

l5 0.11 – –

with subscripts a and p representing arm and moving platform, respectively. Kinetic energy of the
manipulator is obtained from

T
(
�̇, Ẋ )= Ta

(
�̇
)+ Tp

(Ẋ )
,

Ta
(
�̇
)= 1

12
l22 (2mU + 3mL) �̇

T
�̇,

Tp
(Ẋ )= 1

2
Ẋ T MeẊ . (10)

where Me= diag
[
meI3×3 Ieyy

]
, me = mp + 2mL, Ieyy = Ipyy + 2mLl24. It is obvious that the Lagrangian

can be written as the contribution of two subsystems, each one depending on its own variables, though
connected together via constraint equations. The dynamic model of the arms is written as

Ia�̈+ Ga = τ +
(
∂f
∂�

)T

λ (11)

Ia =
(

1
3

mU + 1
2

mL

)
l22I4×4 (12)

Ga = −1
2

l2 (mU + mL) gcos� (13)

where λ4×1 is the vector of Lagrange multipliers. Similarly, the dynamic model of the end-effector is
calculated as

MeẌ + Gp = FE,p +
(
∂f
∂X

)T

λ (14)

Gp = [
0 0 −meg 0

]T (15)

where FE,p is the external wrenches applied to the end-effector. In order to calculate the dynamic model
of the whole manipulator, these two models are combined by cancelling the Lagrange multipliers as
follows:

τ =M�̈+ C�̇+ G +F
M= Ia + JT MeJ, C = JT MeJ̇
G = − (

Ga + JT Gp
)

, F = −JT FE,p. (16)

Parameters of the manipulator are listed in Table I.

5. Trajectory planning

In spite of the fact that capability and efficiency of parallel robots are directly related to their dynamic
characteristics and controller, a proper trajectory planning also plays a crucial role in smooth torques,
low energy consumption, low residual vibrations, and short cycle times.
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Figure 3. Geometric path defined in a local frame.

Based on the approach presented by Li et al. [30] an optimal smooth pick-and-place trajectory is
designed using fifth order B-spline curves which guarantee C4-continuity and ensures jerk-free departure
and arrival. To this end, a geometric path comprising of f = 5 via points is generated in a local frame as
shown in Fig. 3. Any point on the path can be defined in the base frame by coordinate transformation.

A B-spline of degree q and order k = q + 1 is a linear combination of polynomials Ni,q(t) of degree q,
called base or blending functions, weighted by control points, Qi. t represents a normalized independent
parameter here taken as the time. Then, the normalized motion profile, s(t), is formed as

s(t)=
n∑

i=1

Qi.Ni,q(t) , 0 ≤ t ≤ 1 (17)

The base function is defined recursively by means of the De Boor formula [31].⎧⎪⎪⎨⎪⎪⎩
Ni,0(t) =

{
1, ti ≤ t<ti+1

0, elsewhere

Ni,q(t) = t−ti
ti+q−ti

Ni,q−1(t) + ti+q+1−t
ti+q+1−ti+1

Ni+1,q−1(t)

(18)

ti (i= 1, 2, . . . ,m = n + q + 1) is a sequence of nodes on which s(τ ) is built by interpolation. In order
for the control points to coincide with the initial and final via points, the nodes at both ends of the
trajectory must be repeated q + 1 times. Moreover, to obtain trajectories with no jerk at both ends, two
virtual points are introduced at the second and second-last position of the node sequence. With these
considerations, the number of nodes and the number of control points will be m= 2 (q + 1)+ f and
n = q + f + 1, respectively. Therefore, the sequence of nodes is written as⎧⎨⎩0, 0, . . . , 0︸ ︷︷ ︸

6

, t7, t8, t9, t10︸ ︷︷ ︸
3

, t11, 1, 1, . . . , 1︸ ︷︷ ︸
6

⎫⎬⎭ (19)

Accordingly, two time ratios are defined as
k1 = t8/t9, k2 = t7/t8 (20)

where 0< k1 < 1 is the ratio between the time that the end-effector spends to move from P1 to P2 and
the time from P1 to P3. 0< k2<1 represents the ratio between the time that the end-effector spends to
move from P1 to Pv1 and the time from P1 to P2.

The rth derivative of B-spline is calculated from:

drs
dtr =

n−r∑
i=1

Qi,r .Ni,q−r(t) (21)

where Qi,r represents the control points of the rth derivative of s(t) and can be deduced recursively by

Qi,r =
{

Qi, r= 0
q−r+1

τi+q+1−τi+r

(
Qi+1,r−1 − Qi,r−1

)
, 0< r ≤ q (22)
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Imposing boundary conditions for position, velocity, acceleration, and jerk, control points are calculated
which are used to build trajectories along u and v axes. Position vector of any point on the path can be
deduced from:

r(t) = [
u(t) v(t)

]T = [
w su(t) h sv(t)

]T , t = t/T (23)
where subscripts “u” and “v” stand for motion profile along the horizontal and vertical axis in local
frame.

As the peak values and smoothness of the time histories of the active joint torques are directly related
to those of acceleration and jerk of the end-effector at nonsingular configurations, we can optimize the
trajectory in the Cartesian space using appropriate performance indices based on acceleration and jerk
of the end-effector[32]. To ensure that the trajectory has minimum acceleration and jerk, their maximum
amounts are chosen as indices for the optimization problem in which k1 and k2 are taken as variables.

amax (k1, k2)= max
0≤τ≤1

‖a (τ )‖

jmax (k1, k2)= max
0≤τ≤1

‖j (τ )‖ (24)

The multi-objective optimization problem for the smooth trajectory is formulated as:
Minimize f1 (x)= amax

Minimize f2 (x)= jmax

Over x = [ k1 k2 ]

Subject to g1: 0< k1 < 1
g2: 0< k2 < 1 (25)

6. AFTC based on TDE and ANFITSMC

Actuator fault is a serious problem in robotics, since it has the potential to damage both the robot
components and their environment. Evidently, for robotic applications implementing FTC is of high
importance. FD is an indispensable part of AFTC which in most common approaches requires the
bounds of faults. In this work, TDE algorithm, a simple and model-free approach, is applied as a
robust FD scheme to detect, isolate, and estimate the unknown uncertainties and faults. The proposed
ANFITSM offers high accuracy and robustness, fast convergence rate, and eliminated chattering. The
terminal term guarantees finite-time convergence of the tracking error to zero from any initial value,
and the integral term eliminates the reaching phase, ensuring the robustness from the initial state. The
singularity problem of conventional TSMC is eliminated, and the reliance on the prior knowledge of the
upper bound of the uncertainties is removed by introducing an adaptive mechanism.

6.1. FTC based on ANFITSM

The dynamic model of the four-degrees of freedom parallel robot in the presence of uncertainties and
actuator fault is written as [25]

M�̈+ C�̇+ G +F +�+ σ = τ (26)

where σ denotes uncertainties and �= ν
(
t − Tf

)
φ represents actuator fault, in which φ is the fault

vector and ν
(
t − Tf

)
is its time profile, defined by:

νi
(
t − Tf

)=
{

0 t < Tf
1 − e−δi (t − Tf

)
t ≥ Tf

(27)

in which δi is the evolution rate of the unknown fault.
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In order to use time delay control, a positive diagonal gain matrix, M̃, is introduced to the dynamic
equation, which results in

M̃�̈+ H
(
�, �̇, �̈

)= τ ,
H
(
�, �̇, �̈

)= [M (
�, �̇

)− M̃
]
�̈+ C (�, �̇

)
�̇+ G (�)+F (

�, �̇
)

+ ν
(
t − Tf

)
φ
(
�, �̇, τ

)+ σ . (28)

Here, the time variable, t, is not shown for simplicity reason, except for the time profile. Now, the sliding
manifold and its time derivative for ANFITSM control scheme are defined as follows:

S = ė + 2μe +μ2
∫

edt + c1er1/r2 + c2eϕ (29)

Ṡ = ë + 2μė +μ2e + r1

r2
c1e

r1−r2
r2 ė + c2ϕeϕ−1ė = 0 (30)

where e =�−�d is the error vector, and μ, c, and c2 are positive gains. For the controller to have
nonsingular property, ϕ > r1/r2, and r1 and r2 are chosen odd integers satisfying 1< r1/r2 < 2.

Expanding ë and substituting Eq. (28) into Eq. (30), the following equation holds:

M̃−1
(τ − H)− �̈d + 2μė +μ2e + r1

r2
c1e

r1−r2
r2 ė + c2ϕ eϕ−1ė = 0 (31)

The chosen sliding manifold eliminates the reaching phase and provides an ideal sliding motion
(Ṡ = S = 0). Thus, the matched uncertainties are compensated during the entire system response and
the unmatched ones are improved as reported in ref. [33].

The ANFITSM-FTC control law in the presence of actuator faults is chosen as

τ = Ĥ + M̃
[
�̈d + 2μė +μ2e + r1

r2
c1e

r1−r2
r2 ė + c2ϕeϕ−1ė + ρS

]
(32)

in which Ĥ is the estimation of H, and the gain matrix, ρ, satisfies the following gain dynamics:[34]

ρ̇ii = γii |Si| sgn
(

|Si| − ρ2
ii
φi

)
(33)

where γ and φ represent the adaptation gain matrix and the normalizing factor for tracking accuracy
adjustment.

Based on TDE, when the sampling delay, L, is sufficiently small, Ĥ can be approximated by Ht−L
[35, 36]. In practice, the sampling delay, L, is chosen as the sampling time to ensure that L is sufficiently
small. So, Eq. (28) is written as

H
(
�, �̇, �̈

)≈ Ĥ
(
�, �̇, �̈

)= Ht−L
(
�, �̇, �̈

)= τ t−L − M̃�̈t−L (34)

It is noteworthy that the plant does not comprise any time delay. By introducing the time delay to the
dynamic equation, the nonlinear and uncertain terms of the robot dynamics are estimated and cancelled
[33, 35, 36]. The ANFITSM with TDE and gain dynamics is proposed as

τ = τ t−L − M̃�̈t−L + M̃
[
�̈d + 2μė +μ2e + r1

r2
c1 e

r1−r2
r2 ė + c2ϕeϕ−1ė + ρS

]
(35)

In the gain dynamics, Eq. (33), following conditions hold:

(i) if |Si|>ρ2
ii/ϑi:

The gain matrix increases, leading to reduced TDE error as well as tracking error.

(ii) if |Si|<ρ2
ii/ϑi:

The gain matrix decreases, preventing an excessive high gain when the control error is acceptable.
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Fault diagnosis

controller

Figure 4. Block diagram of the proposed AFTC.

The term ρ2
ii/ϑi determines tracking accuracy of the controller and can be regarded as an acceptance

layer. Smaller values for the acceptance layer show better tracking accuracy. The normalizing factor, ϑi,
tunes the size of ρ2

iiwith respect to |Si|, and thus guarantees tracking accuracy with proper magnitude of
control inputs.

Depending on the choice of gain matrix, different previously proposed formulations are derived.
For constant gain matrix, the proposed controller becomes Jin’s formulation [33, 37], and for zero gain
matrix, it becomes Hsia’s formulation [35, 36]. The constant gain matrix is manually tuned by trial-and-
error and is signified as ρ = �I (where � is a positive constant) [33, 37].

Parameter variation is an intrinsic characteristic of the robot manipulators, since their posture is
continually changing during operation. Thus, the gains are posture related, and it is not possible to find
an optimal gain for the entire operation range[38] The adaptive nature of the proposed controller gives
the opportunity to handle these parameter variations, through adaptive auto-tuning of ρ with Eq. (33).

Fig. 4 illustrates the proposed controller. The sliding manifold employed in this controller eliminates
the reaching phase, prevents the singularity problem, and enhances the robustness. The adaptive gain ρ
is tuned as a proper positive value to ensure acceptable tracking accuracy. The nonzero positive value of
this gain can offer instantaneous control action to eliminate the TDE error caused by abrupt disturbances
and faults.

The closed-loop system with the proposed control scheme is uniformly, ultimately bounded.

Lemma 1. If the control gain, M̃, is chosen to satisfy the following inequality:∥∥I −M−1 (�) M̃
∥∥< 1, ∀t ≥ 0

then,
∥∥�̈t−L − �̈t

∥∥→ 0 as L → 0 and the TDE errors are bounded, that is,
∥∥∥Hi − Ĥi

∥∥∥∞
≤ ε+

i .

Lemma 2. The variable control gain, ρii , is bounded by ρ+
ii = √‖S‖∞ϑi for t ≥ 0. The closed-loop

dynamics can be defined as
Si

εi
= 1

M̃ii

1
(d/dt)+ ρii

(36)

Thus, if TDE error, εi, is bounded, Si is bounded by a first-order low-pass filter.
As mentioned earlier, adaptation law can create two ranges, |Si|>ρ2

ii/ϑi and |Si|<ρ2
ii/ϑi.

For the first range, the inequality can be rewritten as ρii <
√|Si| ϑi, in which ρii increases with ρ̇ii =

γii |Si|. Based on Eq. (33), when |Si| is maximum, ρiiis bounded by ρ+
ii = √‖S‖∞ϑi for t ≥ 0.

Theorem. Considering the adaptive control law Eq. (33), the parallel robot system with the proposed
TDE-ANFITSM control law is stable and its states tend to their desired values, if the following condition
is satisfied:
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ϑi‖S‖∞<
∣∣ε+

i − εi
∣∣2

M̃2
ii

(37)

Proof. A positive definite Lyapunov function is chosen as:

V = 1
2

ST S + 1
2

n∑
i=1

1
γii

(
ρii − M̃−1

ii ε
+
i

)2
(38)

and its time derivative is written as:

V̇ = ST Ṡ + 1
γii

(
ρii − M̃−1

ii ε
+
i

)
ρ̇ii

= ST
(
M̃−1

ε− ρS
)

+
n∑

i=1

(
ρii − M̃−1

ii ε
+
i

)
|Si|

≤
n∑

i=1

[
−ρiiS2

i + M̃−1
ii εi |Si| +

(
ρii − M̃−1

ii ε
+
i

)
|Si|

]
≤ −

n∑
i=1

ρiiS2
i +

n∑
i=1

[(
ρii − M̃−1

ii
∣∣ε+

i − εi
∣∣) |Si|

]
(39)

If ρii < M̃−1
ii

∣∣ε+
i − εi

∣∣, it is concluded that V̇ < 0. In other words, the sliding variable, S, varies in the
range defined by |Si|<ρ2

ii/ϑi. Due to the fact that V̇ is indefinite in this range, the sliding variable S
may repeatedly cross the acceptance layer ρ2

ii/ϑi.
When S is in the range |Si|>ρ2

ii/ϑi, the time derivative of Lyapunov function becomes negative
definite (V̇ < 0).

If ϑi is chosen to satisfy the condition defined by Eq. (37), it is inferred that the inequality ρii ≤
ρ+

ii <M̃−1
ii

∣∣ε+
i − εi

∣∣ holds. According to the Lemma 2, ρii is bounded as ρii ≤ ρ+
ii = √‖S‖∞ϑi in the

range ∀ |Si|>ρ2
ii/ϑi. Provided that

√‖S‖∞ϑi<M̃−1
ii

∣∣ε+
i − εi

∣∣, it can be concluded that ρ ii is always
less than M̃−1

ii
∣∣ε+

i − εi
∣∣, and the condition is set as ϑi‖S‖∞<

∣∣ε+
i − εi

∣∣2/M̃2
ii . As a result, the closed-loop

system with ρii is stable.

6.2. Fault diagnosis using TDE

For sufficiently small time delay value (L), the uncertainty (σ ) and fault (�) can be estimated by a
continuous or piecewise continuous function as

σ (�, �̇, τ )t ∼= σ (�, �̇, τ )t−L

�(�, �̇, τ )t ∼=�(�, �̇, τ )t−L (40)

Based on the above assumption, the approximation of σ and � is determined as follows:

σ̂ (�, �̇, τ )t � σ
(
�, �̇, τ

)
t−L

�̂(�, �̇, τ )t ��
(
�, �̇, τ

)
t−L (41)

Then, by merging Eqs. (40) and (41)Error! Reference source not found., the TDE can be shown as

σ̂ (�, �̇, τ )t + �̂(�, �̇, τ )t � σ
(
�, �̇, τ

)
t−L +�

(
�, �̇, τ

)
t−L

= (M�̈+ C�̇+ G − τ
)

t−L

=RTDE (42)
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Table II. Trajectory and controller parameters.

Parameter Value Parameter Value

k1 0.31 M 0.003I4x4
k1 0.12 r1 9
μ 10 r2 7
c1 7 ϕ 1.5
C2 6 ϑ 800000

Figure 5. Active joints trajectories.

By considering the designed TDE as a robust FD observer, the actuator fault can be detected and isolated
in the presence of uncertainties. It is worthy to mention that the FD system not only must be sensitive
against any type of fault but also must be robust to cope with uncertainties. To do this, a threshold should
be chosen. When t<L then �(�, �̇, τ ) = 0, and:

RTDE = σ (�, �̇, τ ) ≤ σ =Zthreshold (43)

which reveals that the system is in normal condition and the residual RTDE is always smaller than
Zthreshold . Thus, if Zthreshold is chosen as a threshold, the robustness of FD system will be guaranteed.
It should be noted that when the residual RTDE overshoots its corresponding threshold, the fault can be
detected and isolated.
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Figure 6. Active joints tracking errors.

7. Simulation results

This section is devoted to some simulations demonstrating the effectiveness of the proposed FTC scheme
by focusing on trajectory tracking. For this purpose, the tracking performance of the proposed AFTC
over a smooth pick-and-place trajectory formed by B-spline is compared with other conventional control
schemes, including CTC and SMC. In all simulations, the actuator saturation is also taken into account.
Control parameters are listed in Table II.

To verify the capability of the controller for FD, isolation, and compensation, a complex fault, as a
combination of actuator bias fault and partial loss of effectiveness, is imposed to the system at Tf = 1.5 s,
defined by

φ =

⎡⎢⎢⎢⎢⎣
2θ2

2 + 5θ̇1θ3 + 14 sin θ̇3

20θ2
1 + 15 θ̇3 + 14 cos θ1

0.3τ3 + 6 cos θ̇3

0.3τ4 + 6 cos θ̇4

⎤⎥⎥⎥⎥⎦ (44)

The results for actuators trajectories, and their errors are demonstrated in Fig. 5 and Fig. 6. As is obvious
from the results, the proposed controller offers the highest level of robustness among the other studied
schemes. Moreover, it provides fast convergence to its desired trajectory. CTC, on the other hand, is
unable to deal with uncertainties and demonstrates poor performance.
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Figure 7. End-effector trajectory tracking.

End-effector trajectories tracking and their errors in task space are depicted in Fig. 7 and 8. Similar
to joint space, the results reveal that the proposed controller offers good tracking accuracy, while other
controllers deviate considerably from the desired trajectory, which is highly noticeable for z and ψ .

Figure 9 shows the desired 3D path and illustrates how it is followed by the robot using different
controllers. As the tracking errors implied, the best path following was performed by the ANFITSM
controller, while SMC and CTC deviate from the path, with the latter showing poor performance even
before fault occurring.

The control commands presented in Fig. 10 reveal a bounded, fluctuation-free pattern of the signal.
As the fault occurred at t = 1.5 s, the system has experienced an abrupt change, but immediately it has
returned to its normal operation.

The FD capability of the AFTC is illustrated in Fig. 11 using extracted residuals. In a normal
operation, TDE acts as an uncertainty estimator. Upon fault occurrence at t = 1.5 s, the residu-
als overshoot theirs corresponding thresholds, showing that the FD and isolation are successfully
performed.

To better compare the tracking performance of the three control schemes, three error criteria are
studied in the presence of faults, namely integral of the time multiplied by the absolute value of the
error (ITAE), integral of the time multiplied by the absolute value of the squared of the error (ITASE),
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Figure 8. End-effector tracking errors.

Figure 9. End-effector path following.

https://doi.org/10.1017/S0263574720001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001319


1532 Pegah Ghaf-Ghanbari et al.

Figure 10. Actuators’ control efforts.
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Figure 11. Residuals.
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Figure 12. Error criteria.

and integral of the absolute value of the squared of the error (IASE). These criteria are defined as
follows:

ITAE =
∫

|e(t).t| dt

ITASE =
∫

t.|e(t)|2dt

IASE =
∫

|e(t)|2dt. (45)

The simulation results for these criteria are depicted in Fig. 12. As can be seen, the proposed controller
has minimum error for all criteria, and the most significant difference is observed for IASE.

8. Conclusion

In this paper, a new AFTC strategy was designed for a Schon̈flies Parallel manipulator by integrating
ANFITSM and TDE. For fault diagnosis, TDE was applied which eliminates the requirement for the
bound of uncertainty and fault and provides robust performance. The AFTC controller was designed
based on ANFITSM, and the stability of the closed-loop system was analyzed using Lyapunov the-
ory. This control scheme ensures high accuracy and robustness, finite-time convergence of the states
and eliminates the chattering associated with conventional SMC. The adaptive nature of the controller
removes the requirement for the bound of uncertainties. Through some simulations, the proposed con-
troller performance was compared with conventional sliding mode and CTC methods. The obtained
results reveal the superiority of the proposed FTC based on TDE and ANFITSM, under uncertainties,
external disturbances, and actuator faults.
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