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Direct numerical simulations (DNS) of two time-dependent, axially homogeneous,
axisymmetric turbulent wakes having very different initial conditions are presented
in order to assess whether they reach a universal self-similar state as classically
hypothesized by Townsend. It is shown that an extensive early-time period exists
during which the two wakes are individually self-similar with wake widths growing
like δ ∝ t1/3, as predicted by classical dimensional analysis, but have very different
growth rates and are thus not universal. Subsequently, however, the turbulence adjusts
to yield, eventually, wakes that are structurally identical and have the same growth
rate (also with δ ∝ t1/3) so provide clear evidence of a universal, self-similar state. The
former non-universal but self-similar state extends, in terms of a spatially equivalent
flow behind a spherical body of diameter d, to a distance of O(3000d) whereas the
final universal state does not appear before O(5000d) (and exists despite relatively
low values of the Reynolds number and no evidence of a spectral κ−5/3 inertial
subrange). Universal wake evolution is therefore likely to be rare in practice. Despite
its low Reynolds number, the flow does not exhibit the sometime-suggested alternative
self-similar behaviour with δ ∝ t1/2 (as for the genuinely laminar case) at large times
(or, equivalently, distances), since the eddy viscosity remains large compared to the
molecular viscosity and its temporal variations are not negligible.
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1. Introduction
The aim of this study is to examine the relationship between the manner in which

a turbulent wake is generated and its later development. We are particularly interested
in the validity or otherwise of the Townsend (1956) hypothesis that, irrespective
of the details of how they are created, all boundary-free turbulent shear flows
eventually reach a universal state, determined solely by the integral constraints of
mass, momentum and energy conservation (Narasimha 1992) (cf. Narasimha & Prabhu
1972; Sreenivasan 1981; Sreenivasan & Narasimha 1982). This hypothesis is based
on the assumption that by the time the turbulence reaches the far field, it will have
been subjected to a universal ‘eddy scrambling’ process that causes it to ‘forget’ the
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near-field characteristics (such as geometry-dependent vortical structures), set by the
initial conditions. Townsend’s hypothesis thus predicts that all free-shear flows of
a given type (e.g. plane jet or axisymmetric wake) will eventually spread at the
same rate, and possess turbulence statistics exhibiting the same self-similar profiles
(Tennekes & Lumley 1972). Although plausible and conceptually attractive, the idea
of universal self-similarity is currently somewhat controversial. Its validity has been
called into question, for example, by the measurements of Bevilaqua & Lykoudis
(1978), who found that the wakes downstream of two axisymmetric bodies (one a
sphere, the other a porous circular disk) were both self-similar but not uniquely so
– despite both bodies producing the same drag (see also Zhou & Antonia 1995’s
plane-wake study). More recently, George and co-authors (George 1989; Johansson,
George & Gourlay 2003; George & Davidson 2004; Ewing et al. 2007; George 2008)
have developed a generalized similarity analysis that accounts for the effect of the
details of the initial conditions, in addition to the net momentum, on the asymptotic
state of various free-shear flows. They point to the growing body of experimental data
and numerical simulation results that show the far-field statistics, such as mean growth
rates, remain marked by the manner in which the near-field turbulence was generated.
Pope’s (2000) summary of far-field axisymmetric wake experiments, each of which
used different bodies (porous and solid disks, spheres and ellipsoids), includes self-
similar behaviour with streamwise turbulence intensities that on the centreline range
from 30 % to over 100 % of the maximum mean velocity deficit Ud, and values of
the mean spreading parameter β = (U∞/Ud)/(dh/dx) (where U∞ is the free-stream
velocity and h the wake half-width) from less than 0.1 to 0.8, for the various cases. It
thus appears that the shape of a body does have a lasting effect on the wake turbulence
far downstream, in regions where self-similarity is present.

However, the possibility that the initial-condition dependence eventually fades
cannot be ruled out. In fact, Bevilaqua & Lykoudis stress the difference
between universality (their ‘equilibrium’) and self-similarity (their ‘self-preservation’),
suggesting non-universal forms of the latter may in time tend asymptotically towards
the former. Moreover, Narasimha (1992) notes ‘conflicting evidence from different
experiments suggests that there may be multiple metastable equilibrium states’ present
in turbulent shear flows.

The question of universality is examined here by comparing ‘far field’ (i.e. late)
results from direct numerical simulation (DNS) of two time-developing axisymmetric
wake flows, initialized such that they contain distinctly different turbulence structures
but the same net momentum defect. In this sense, this study can be viewed as a
computational counterpart of the Bevilaqua & Lykoudis experiments. It is also a
higher-Reynolds-number, larger-domain, version of the DNS of Basu, Narasimha &
Sinha (1992). (Because the present flow spreads laterally with time, not downstream
distance, it is parallel in the mean, and thus, due to Galilean invariance, is equivalent
to a time-developing axisymmetric co-flowing jet. The term ‘wake’ will be used
henceforth in a generalized sense, to include flows with ‘deficits’ of either sign.)
In what follows, evidence is presented for the existence of Narasimha’s metastable
states, characterized by non-universal (initial-condition-dependent) self-similarity, that
eventually give way to the universal self-similarity anticipated by Townsend.

In § 2, the major features of self-similarity and universality for the present flow
are addressed. Section 3 describes the numerical approach and the two initialization
strategies. Section 4 contains the results, where wake features are examined for the
periods over which the flows are self-similar but not universal (early times, § 4.1) and
universal (late times, § 4.2). Conclusions are summarized in § 5.
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2. Self-similarity and universality
Since the time-dependent axisymmetric wake is homogeneous in both the azimuthal

and axial directions, the continuity equation leads directly to a zero mean radial
velocity, vr = 0. (An overbar is used throughout to indicate a streamwise and
azimuthal average, such that all mean quantities depend on both radial distance r
from the symmetry axis and time t.) Volume integration of the streamwise momentum
equation shows that the volume-flux deficit Id = 2π

∫∞
0 Ur dr is constant with time,

where the mean streamwise velocity vx(r, t) = −U(r, t), with U = Ud at r = 0 and
U→ 0 as r→∞. In a spatially developing wake, U would be the difference between
the free-stream velocity V∞ and vx(r). Self-similarity is possible in such wakes only if
this deficit velocity is very much smaller than V∞, so it is in that sense (in contrast to
some other classical shear flows) only an asymptotically correct solution. (Recall that
another consequence of the Ud� V∞ condition for the spatial case is that the constant-
momentum constraint is equivalent to conservation of Id.) The spatial wake is thus
the exact converse of the asymptotic jet in a co-flowing stream, which has a negative
Ud. The common case of an axisymmetric jet issuing into still air does not have a
homogeneous time-dependent equivalent; it is only the jet in a co-flow that does (for
small jet velocity excess), and all time-dependent parallel-flow idealizations of it are,
just like their spatial equivalents, wake-like. Because the mean velocity of the time-
developing wake is parallel, the magnitude of the free-stream velocity is irrelevant; we
choose V∞ = 0. The present case can thus be viewed as a time-developing analogue to
the far wake generated by an axisymmetric body moving into quiescent fluid. Whether
or not this flow can be self-similar depends only on whether the scaled equations
of motion allow it and whether there is enough time for any crucial ‘non-wake-like’
features of the initial conditions to be forgotten. We return to this latter point in due
course.

For the present idealization, the mean axial momentum equation is given by

∂vx

∂t
= 1

r

∂

∂r

[
r

(
−v′xv′r + ν

∂vx

∂r

)]
, (2.1)

where ν is the kinematic molecular viscosity and primed quantities denote, as usual,
deviations from the mean. Assuming self-similarity and thus writing, in the usual way,

U = Ud(t)f (η), (2.2)
−v′xv′r = Rs(t)g(η), (2.3)

where η = r/δ(t) is the radial similarity coordinate and δ a measure of the wake width,
(2.1) becomes[

δ

U2
d

dUd

dt

]
f −

[
1

Ud

dδ
dt

]
ηfη =−

[
Rs

U2
d

](
gη + g

η

)
+
[
ν

Ud δ

](
fηη + fη

η

)
, (2.4)

where fη = df /dη, fηη = d2f /dη2 and gη = dg/dη. Similarly, Id can be expressed by

Id

2π
= [Ud δ

2
] ∫ ∞

0
fη dη, (2.5)

showing that (since Id is constant) Ud ∝ δ−2.
In (2.4) the square-bracketed terms contain all the explicit time-dependence.

Following Johansson et al. (2003) (hereinafter referred to as JGG), and Moser, Rogers
& Ewing (1998), the shear-stress scaling parameter Rs is not assumed to be U2

d , as was
usual in some of the early classical analyses (Tennekes & Lumley 1972, for example),
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although Townsend (1976) did not make this assumption. If it is assumed that the
Reynolds number Re is sufficiently large that the viscous terms can safely be ignored,
then (2.4) requires that [

δ

U2
d

dUd

dt

]
∝
[

1
Ud

dδ
dt

]
∝
[

Rs

U2
d

]
. (2.6)

The constant-Id condition ensures that the first two terms are automatically
proportional to each other. JGG point out that the third term is proportional to
the first two provided Rs ∝ βU2

d , where β = (1/Ud) dδ/dt is (the time-developing
version of) the mean growth/spreading rate of the wake. Consequently, the axial
Reynolds-averaged Navier–Stokes (RANS) equation will exhibit universal form only
if the Reynolds shear stress −v′xv′r scales in a universal manner with βU2

d (see also
Moser et al. 1998). This reveals how mean-flow profiles from wakes with different
growth rates can (and suggests why they often do) show the same, universal variation
when plotted in traditional similarity coordinates (i.e. scaled by Ud and δ), while the
Reynolds-stress profiles, scaled by U2

d alone, do not (cf. George 1989; Moser et al.
1998).

Writing δ ∝ tn and Rs ∝ tm (so that Ud ∝ t−2n and Rs ∝ t−(n+1)), then assuming β

is constant, leads (since β ∝ t3n−1) to the classical solution in which n = 1/3 and
m = −4/3. If constant β is not assumed a priori, the n = 1/3 solution can also be
obtained by neglecting the viscous terms and considering the Reynolds-stress equations
(JGG); these imply that the normal Reynolds stresses (e.g. v′xv′x) are all proportional to
U2

d ∝ t−4/3.
The n = 1/3 solution also follows directly from the Townsend hypothesis, which

amounts to assuming that the Ud(t) evolution solely depends on Id and t, leading via
dimensional analysis to the condition Ud ∝ I1/3t−2/3, or

Ud = CTI1/3
d (t − tvo)

−2/3, (2.7)

where CT is (within this assumption) a universal constant and tvo a (non-universal)
virtual offset time. Determining the validity of (2.7) – and in particular whether, and if
so under what conditions, CT is universal – is a central objective of this study.

The mean local Reynolds number Ud δ/ν is proportional to t−n, while the ratio
of the time-dependent coefficients of the Reynolds- and viscous-stress terms in (2.4),
[Rs/U2

d]/[ν/Ud δ], scales as t2n−1. With n = 1/3, both quantities decrease with time.
(Note that if n = 1/2, the latter ratio would be constant in time; this possibility is
considered below.) Eventually therefore viscous effects must become significant.

It could be argued that the nature of the turbulence within the wake is controlled
by a Reynolds number based on the turbulence quantities. Defining a turbulence
velocity scale by k1/2 and an appropriate large-eddy scale by `= k3/2/ε, where k is the
turbulence kinetic energy and ε is its dissipation rate, a common turbulence Reynolds
number is Re` = k2/εν. For high Reynolds number, this quantity varies like t−1/3, so,
again, one would expect the finite/low-Reynolds-number solution (n = 1/2,m = −3/2)
to appear eventually. (The Reynolds number based on the Taylor microscale, Reλ,
varies like (Re`)

1/2, and therefore also falls, but more slowly, as t−1/6.)
If the analysis is repeated for finite Re, the momentum equation on its own is

sufficient to give n = 1/2 (by adding the fourth of the square-bracketed terms in (2.4)
to the similarity conditions (2.6)). There are two possibilities: (a) the turbulence and
viscous terms are of the same order (as assumed in JGG) and (b) the flow is purely
laminar (such that Rs ≡ 0). The former will presumably first be encountered as the
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flow leaves the high-Re n = 1/3 regime. (An n = 1/2 solution characterized by large
turbulence-to-viscous stress ratio, such that νt/ν > O(1), is also possible, but only if
the eddy viscosity νt ≡ −v′xv′r/(∂vx/∂r) is constant with respect to time; see below.
The DNS results presented here do not support this possibility, except as an anomalous
and early temporary state for one of the cases.)

There is a qualitative difference between the large-Reynolds-number and the first
n = 1/2 solutions, associated with the t2n−1 scaling found above for the ratio of the
time-dependent coefficients of the turbulent and viscous terms in (2.4). This shows
that νt is also proportional to t2n−1, such that νt/Ud δ ∝ t3n−1. For high Re (n = 1/3),
νt/ν will thus decrease as t−1/3, while for n = 1/2 it will be constant. Therefore, if
the shear-stress similarity function g(η) (and thus (2.4)) were to maintain its form
for all time after the flow entered the first n = 1/2 similarity regime, an initially
fully turbulent axisymmetric wake would, as Ud→ 0, always possess turbulent stresses
that are never identically zero, and therefore would never become purely laminar.
JGG argue that this will happen. We will not be able to settle the question here.
(When run long enough, the present simulations eventually become fully laminar at
very late times – corresponding to millions of diameters downstream of a virtual
wake-generating body – but this is solely a consequence of the very late wake’s size
becoming too large for the streamwise domain. We cannot at present say whether the
turbulence would completely die if it were in a domain that was much larger than the
ones used here.) Our primary focus will instead be upon the n = 1/3 regime, which
turns out to be unexpectedly robust and long lived.

3. Numerical approach and parameters
In order to distinguish between the detailed and bulk/integral characteristics

of the initial conditions, and thereby allow a straightforward test of Townsend’s
hypothesis, we compare two incompressible axisymmetric wake flows with distinctly
different initial turbulence structure but identical initial mean-velocity deficit profiles
(corresponding to wakes downstream of two distinctly shaped axisymmetric bodies
with identical drag). The objective is not, per se, to mimic specific wake flows (by
for example using particular laboratory measurements to define the initial conditions),
but rather to perform a numerical experiment involving two flows whose initial states
contain significant well-defined structural differences. The streamwise homogeneity
associated with the use of the parallel-flow idealization to create wakes that develop in
time, rather than space, allows efficient DNS with a standard triply periodic FFT-based
pseudo-spectral method (Gottlieb & Orszag 1977).

The pressure variable in the Navier–Stokes equations is eliminated using a
velocity–vorticity formulation (Kim, Moin & Moser 1987). A low-storage third-order
temporal discretization (Spalart, Moser & Rogers 1991) is applied to the nonlinear
terms, while the viscous terms are treated analytically (Rogallo 1981). In what follows,
x = x1 corresponds to the streamwise direction, along the wake axis, while y = x2 and
z= x3 are the two lateral coordinates (for illustration purposes, z will be aligned in the
vertical direction, while x–y planes are horizontal).

The first initialization strategy (denoted VR) induces a nonlinear/bypass transition,
by specifying a series of vortex rings and perturbing them slightly, via radial/geometric
displacement of the core location. The initial Case VR field is illustrated by the
vorticity contours in figure 1(a) and the streamwise velocity spectrum in figure 2(a)
(dotted line). This initial field corresponds to the time just after a virtual body has
‘passed’ through the domain, with the ensuing flow (conceptually) ‘straightened’ to
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FIGURE 1. Initial vorticity contours for (a) Case VR, and (b) Case SD. Vorticity component
into the page in the vertical plane containing the wake centreline, non-dimensionalized by the
maximum mean velocity in the plane and the vortex-ring diameter. Plots show the full initial
lateral domain for both cases, but only one quarter of the streamwise domain for Case VR,
and one eighth for Case SD.
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FIGURE 2. Initial conditions. (a) One-dimensional streamwise energy spectra Exx at r = h:
· · · · · ·, Case VR; - - - -, Case SD; – – – –, κ−5/3

x behaviour. Results non-dimensionalized
by ho and Ur = 1.86Udo. (b) Velocity profiles: – ·–, U/Ud for Cases VR and SD; —,
U/Ud = exp(− ln(2) (r/h)2); - - - -, (v′xv′x)

1/2
for Case VR; · · · · · ·, (v′rv′r)1/2 for Case VR.

Velocity fluctuations for Case SD are too small to be visible in this plot.

produce streamwise homogeneity, thus allowing convective changes to be replaced by
temporal ones.

Following Shariff, Verzicco & Orlandi (1994), each ring in the sequence is
represented as a Gaussian distribution of azimuthal core vorticity ωθ , such that ωθ =
(Γ/πδ2

ω) exp[− (s/δω)2], where s2 = (x− xc)
2+(r − R)2, with r2 = (y− yc)

2+ (z− zc)
2

and R the radius of the ring measured from (xc, yc, zc) (the location of the centre of the
ring in question, on the wake axis), and δω is a length scale defining the thickness of
the vortex core (chosen as δω = 0.4R). The circulation Γ = ∫ ωθdS, where S is in an
x–r plane that bisects the ring. The rings are spaced uniformly every 16πR/27 along
the wake axis (figure 1a). They induce the mean streamwise profile U(r) shown by
the chained-dotted curve in figure 2(b), such that the net defect Id = 3.395Udoh2

o, where
Udo and ho are, respectively, the initial centreline velocity and the initial mean-velocity
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half-width (more accurately ‘half-radius’) ho, which is the radial distance from the
wake axis to the point at which U(r) = 0.5Ud. Note that ho is equivalent to the
radius of the individual rings. (Consider the net streamwise velocity induced by the
vorticity within a rectangular r–x contour extending from r = 0 to r = R.) The U(r)
variation differs somewhat from the Gaussian idealization (shown as the solid curve in
figure 2b). The corresponding velocity-fluctuation profiles given by the chain of rings
are shown in figure 2(b) (dashed and dotted curves). The initial mean wake Reynolds
number Udh/ν is 2950.

This initialization leads to turbulence by way of the azimuthal instability of each
ring, which is triggered by a 0.004R maximum displacement of the ring radius for
each of the azimuthal modes 5–32, with random azimuthal phases (with different
random-number seeds for each ring). (Including modes 1–4 causes the rings to diverge
away from the wake centreline, preventing the formation of a coherent wake flow;
neglecting these lower modes allows each ring to interact with its neighbour such that
when they break down, the turbulent structures shed into the individual vortex-ring
wakes pass into the centre of the following ring.) For the present slenderness ratio,
δω/R = 0.4, modes 5–7 are most amplified (Shariff et al. 1994). The ensuing ring
breakdown is reminiscent of results in Archer, Thomas & Coleman (2008), although
the breakdown process is modified, compared to the isolated ring case, because of the
influence of the neighbouring rings (both because of the ejection of vortical structures
by each ring and the alterations to the total strain field (Archer et al. 2008)). Here the
breakdown of the vortex rings is quicker than the isolated ring case. Nevertheless, as
for the isolated ring, mode 6 is most amplified. (See figure 5a, below.)

The other initialization strategy (Case SD, for ‘small disturbances’) adds very low-
level random-phase velocity fluctuations to the axisymmetric mean-velocity profile
taken from Case VR, so that the ensuing wake turbulence is the result of growth
and interaction of the linearly unstable modes of the parallel-flow axisymmetric shear
layer. Each non-zero Fourier mode for each velocity component was assigned the
value 10−3 Ur/(κ

2
x + κ2

y + κ2
z )h

2
o, where the reference velocity Ur = 1.86Udo and κx, κy

and κz are the components of the cartesian wavevector. This is not consistent with
a divergence-free field but, although producing such a field would be possible, there
is nothing to be gained since continuity is immediately enforced by the code. This
approach is similar to that employed by Gourlay et al. (2001) and Dommermuth
et al. (2002), apart from the fact that they used large-amplitude disturbances, which
triggered a (synthetic) nonlinear bypass transition. (The large-eddy simulations (LES)
of Dommermuth et al. (2002) utilized initial disturbances with maximum root-mean-
squared velocity fluctuations of 0.055Ud. The initial energy levels for the Gourlay
et al. (2001) DNS can be inferred from the cross symbols shown in figure 11a, below.)
Here the maximum turbulence kinetic energy of the radial initial-disturbance profile is
3×10−6 U2

do. The differences and similarities of the Case VR and SD initializations are
summarized in figures 1 and 2. Note that while the mean profiles U(r) are identical for
the two cases, the initial velocity fluctuations for Case SD are negligible compared to
those for Case VR, shown in figure 2(b).

One of the computational challenges associated with this flow is defining an
appropriate domain. The domain size directly affects the quality of the mean statistics,
which for this time-developing parallel flow are obtained by sampling over the
streamwise direction 0 6 x 6 Λx, and azimuthally over 0 6 θ 6 2π at fixed radius r.
(Ensemble averages of multiple realizations are also possible, although not employed
in the present study.) As the wake ages and spreads, the size of the ‘large-eddy
sample’ will decrease, causing greater uncertainty in statistics. Consequently, we use
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a relatively large (fixed) streamwise domain, with Λx/ho = 64π ≈ 201 for Case VR
(comparable to Gourlay et al.’s 245) and Λx/ho = 128π ≈ 402 for Case SD. Choosing
a larger Λx for Case SD (which, as we shall see, contains larger eddy structures
during its early development relative to those found in Case VR) produces statistics
whose uncertainty for both cases is comparable (see figure 15b). It also allows a
straightforward demonstration that the results are not affected by Λx. These streamwise
domains are large enough to accommodate the full range of times given in tables 1
and 2 without artificially altering the wake evolution. Even at the latest times
considered (t/t∗ ≈ 31 000, where t∗ = ρ∗o/Udo and ρ∗o is the initial value of the integral
width scale defined in (4.1)), Λx contains 8.5 and 17 streamwise integral length scales
for Cases VR and Case SD, respectively; see § 4.2 for details. (Case VR and SD
results at t/t∗ ≈ 31 000 were the latest that are deemed to be physically meaningful.
Case VR was continued until t/t∗ = 5.5 × 106, but only to illustrate the constraining
influence of the streamwise domain, which eventually leads to a numerically induced
fully laminar state (cf. figure 16a).)

Of even greater concern is the possibility that the wake will outgrow the
periodic lateral domain. To avoid this problem without unduly wasting computational
resources, the lateral domain size Λz = Λy is dynamically increased by projecting
the periodic solutions onto a domain of greater extent with the same grid spacing
(i.e. maximum wavenumber). Following T. S. Lund (personal communication), we
place the dependent variables from the smaller domain at the centre of the new one,
surrounded by reference values from the original boundaries. This involves defining
the variables u in physical space using a windowing function fl such that their new
values qi(j, l,m) = ui(xj, yl, zm) (with xj = jΛx/Nx, yl = lΛy/Ny and zm = mΛz/Nz, for
j = (1, 2, . . . ,Nx), l = (1, 2, . . . ,Ny) and m = (1, 2, . . . ,Nz)) are given by qi(j, l,m) =
(q?i − q̂i) fl fm + q̂i, where fl = (1/2)[tanh((al + N?

y/2)/5) − tanh((al − N?
y/2)/5)], with

al = l − (Ny + 1)/2, and where Ny = Nz = 3My/2 = 3Mz/2 is the number of lateral
collocation/grid points, l = (1, 2, . . . ,Ny) is the lateral grid-point index, and ? denotes
the old variable or grid size; the edge values q̂i are defined as the average of u?i
over the streamwise-lateral (x, y and x, z) faces of the old domain. This procedure sets
the dependent variables at the edges of the new domain to constant reference values,
thereby maintaining their lateral periodicity.

The changes made to Λz = Λy for Cases VR and SD are shown in tables 1 and 2.
The value of Λz below which the wake evolution would be compromised is a
surprisingly small multiple of the wake width. This can be deduced from figure 3(a),
where Case VR results beginning from a fresh domain expansion (at t/t∗ = 183)
are compared to those from an otherwise identical simulation for which Λz = Λy

remained fixed at its earlier, smaller value, imposed at t/t∗ = 136. The time at which
the results diverge (contrast the lines and symbols) indicates that the critical value is
Λz ≈ h/0.17 ≈ 5.9h (based on the time at which the streamwise velocity fluctuations
at the edge of the wake, r = 2h, from the fixed domain (open square symbols) first
deviate from the larger-domain benchmark). As shown in tables 1 and 2, apart from
two brief exceptions during the beginning of Case SD (t/t∗ < 60), the lateral domain
size is above (usually well above) this value for the entire history of both cases.

Throughout this paper overbars (as in v′xv′x) denote quantities that have been
averaged both axially and azimuthally, angle brackets (as in 〈vi〉) denote quantities
averaged only axially (such that 〈vi〉 =

∫ Λx
0 vi dx/Λx) and braces (as in {P̃k}) denote

(axially averaged) quantities integrated over the entire lateral (y, z) domain. So, for
example, the usual turbulence kinetic energy k is (1/2)v′iv′i , while its area-integrated
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t/t∗ Mx 1x/ηmin Mz 1z/ηmin Λz/ho h/Λz Id/Ido

0 2048 0.5 128 0.3 2.0π 0.159 1
21 4.8 2.4 0.161 1.0000
32 7.2 192 2.4 0.146 1.0000

32 256 2.67π 0.110
35 2560 5.3 2.2 0.119 1.0000
37 3072 4.2 192 2.8 0.124 1.0000
39 3.9 2.6 0.129 1.0000

39 256 3.56π 0.097
45 3.5 192 3.1 0.105 1.0000
51 3.2 2.9 0.112 1.0000

51 256 4.74π 0.084
89 2.1 192 2.5 0.120 1.0001

89 256 6.32π 0.090
102 2560 2.3 2.3 0.096 1.0001
136 2048 2.3 192 2.4 0.113 1.0001

136 256 8.43π 0.085
183 1.9 192 2.7 0.098 1.0001

183 256 11.24π 0.073
837 1536 0.9 192 1.3 0.139 1.0002

837 256 14.98π 0.104
1507 1024 0.9 192 1.2 0.129 1.0005

1507 256 19.88π 0.097
2242 768 0.9 192 1.2 0.113 1.0005

2242 256 26.64π 0.085
4545 512 0.9 192 1.0 0.119 1.0006

4545 256 35.52π 0.089
6961 384 0.9 192 1.0 0.103 1.0006

6961 256 47.35π 0.077
15542 256 0.8 192 0.8 0.097 1.0007

15542 256 63.14π 0.073
20272 192 1.0 192 1.0 0.076 1.0007
30964 0.7 0.7 0.093 1.0007

TABLE 1. Case VR numerical parameters. The numbers of streamwise Mx and
lateral Mz = My Fourier-expansion coefficients are two-thirds of the corresponding
collocation/quadrature grid points: Nx = 3Mx/2 and Nz = Ny = 3Mz/2= 3My/2. Streamwise
1x and lateral 1z = 1y grid spacings given by Λx/Nx and Λz/Nz, respectively.
Minimum Kolmogorov length scale ηmin = (ν3/εmax)

1/4, where εmax is the maximum of
the streamwise/azimuthal-mean rate of dissipation of turbulence kinetic energy at each time.
The length Λx of the streamwise domain is fixed at 64πho, while the size Λz = Λy of
the square lateral domain increases at times shown (indicated by vertical gaps between
rows). Values remain unchanged until a new entry is given. Times non-dimensionalized by
t∗ = ρ∗o/Udo. Initial volume-flux defect Ido = 3.395Udoh2

o.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.371


428 J. A. Redford, I. P. Castro and G. N. Coleman

t/t∗ Mx 1x/ηmin Mz 1z/ηmin Λz/ho h/Λz Id/Ido

0 4096 0.7 128 0.4 2.0π 0.159 1
25 5120 1.6 192 0.7 0.158 1.0000
40 6144 2.6 1.3 0.167 0.9999
43 2.8 1.4 0.178 0.9999

43 256 2.67π 0.133
49 3.1 192 2.1 0.160 1.0019

49 256 3.56π 0.120
58 3.5 192 3.1 0.195 1.0027

58 256 4.74π 0.146
63 3.3 192 3.9 0.170 1.0028

63 256 6.32π 0.127
90 5120 2.4 192 3.1 0.160 1.0029

90 256 8.43π 0.120
154 4096 1.8 192 2.5 0.150 1.0030

154 256 11.24π 0.113
242 1.3 192 2.4 0.131 1.0030

242 256 14.98π 0.099
366 3072 1.3 1.8 0.107 1.0031
453 2560 1.3 1.5 0.110 1.0031
552 2048 1.4 192 1.8 0.113 1.0031

552 256 19.98π 0.085
1025 1536 1.3 192 1.6 0.104 1.0031

1025 256 26.64π 0.078
2105 1024 1.3 192 1.4 0.099 1.0031

2105 256 35.52π 0.074
4417 768 1.1 192 1.2 0.089 1.0031

4417 256 47.35π 0.067
8413 512 1.2 192 1.2 0.084 1.0030

8413 256 63.14π 0.063
15671 384 1.1 192 1.1 0.081 1.0031

15671 256 84.18π 0.061
27146 256 1.2 192 1.0 0.071 1.0031

27146 256 112.25π 0.053
30920 1.1 0.9 0.055 1.0031

TABLE 2. Case SD numerical parameters. The length Λx of the streamwise domain is fixed
at 128πho. See table 1 for variable definitions.

value K is (1/2){〈v′iv′i〉} = (1/2)
∫ Λz

0

∫ Λy
0 〈v′iv′i〉dy dz). (For convenience, a prime is used

to indicate deviations from both (full) axial–azimuthal and (partial) axial averages,
which in the Λx→∞ limit are identical.)

Because the Reynolds number falls continuously, the resolution requirements for this
flow become less stringent with time, as the highest-wavenumber modes contain less
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FIGURE 3. (a) Comparison of results from Cases VR and VRfd (fixed-lateral-domain run
beginning from Case VR field at t/t∗ = 183, with Λz = Λy maintained at Λ136 = 8.43πho;
see table 1): lines, Case VR; symbols, Case VRfd (- - - -/�, Ud; —/•, h; · · · · · ·/�,
[(v′xv′x)1/2r/h=2]/Umax (i.e. root-mean-square streamwise velocity fluctuations near the edge of
the wake, at r = 2h), where Umax is the maximum over the lateral (y–z) plane) of the
axially averaged velocity 〈u〉. (b) Histories of rate of change of area-integrated turbulence
kinetic energy K = (1/2){〈v′iv′i〉} and net production minus dissipation {P̃k} − {ε̃k}, where
P̃k =−〈v′iv′j〉∂〈vi〉/∂xj, ε̃k = ν〈s′ijs′ij〉 with s′ij = (1/2)(∂v′i/∂xj + ∂v′j/∂xi). Case VR: ◦, −dK/dt;

•, −({P̃k} − {ε̃k}). Case SD: �, −dK/dt; �, −({P̃k} − {ε̃k}). Reference velocity Ur used in (b)
given by Ur = 1.86Udo.

and less energy. Therefore, as the wake develops, some of the highest Fourier modes
are removed (see tables 1 and 2). The number of modes that can be removed is greater
than the amount added as a result of the domain expansion, so the simulation becomes
less costly as time passes. A summary of the number of streamwise Mx and lateral
Mz = My expansion coefficients used at each time is included in tables 1 and 2. To
avoid aliasing errors, the number of physical-space grid (i.e. collocation or quadrature)
points in each direction, Nx and Nz = Ny, is one-and-a-half times the corresponding
number of expansion coefficients.

The validity of the numerical parameters used here is supported by the premultiplied
one-dimensional streamwise energy spectra in figure 4, for the streamwise velocity
fluctuations v′xv′x at r = h, at times ranging from the beginning to the end of both
Cases VR and SD. The low-wavenumber behaviour reflects the initially very small
ratio of the size of largest turbulent scales to that of the streamwise domain. The
tendency for this ratio to increase in time (corresponding to the increased statistical
uncertainty mentioned earlier), and for the turbulence Reynolds number to decrease,
can be seen in the relatively more rapid erosion of the energy at higher wavenumbers.

The fall-off of the high-wavenumber end of the figure 4 spectra (spanning as
many as ten orders of magnitude) underlines the suitability of the streamwise spatial
resolution. This is borne out by the fact that the streamwise 1x and lateral 1z = 1y
grid spacings are of the order of the minimum Kolmogrov length scale (defined
by the maximum rate of (streamwise–azimuthal) mean turbulence kinetic energy
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FIGURE 4. Pre-multiplied one-dimensional streamwise energy spectra Exx at r = h: —, initial
condition, t = 0 (shaded in c and d); – – – –, κ−2/3

x behaviour. Results non-dimensionalized by
ho and Ur = 1.86Udo. Symbols denote t/t∗ values. (a) Case VR: ♠, 22; �, 29. (b) Case SD:
♠, 32; �, 40. (c) Case VR: ©, 334; �, 1299; �, 2135; �, 4386; H, 20 272; •, 30 964.
(d) Case SD: ©, 366; �, 1272; �, 1962; �, 3930; H, 19 947;•, 30 920.

dissipation); see tables 1 and 2. Only during the very early phase (21 < t/t∗ < 37)
of Case VR does 1x/ηmin briefly exceed 5 (the nominal resolution threshold for
DNS of non-wall-bounded turbulence; cf. Sandham 2002), but not by enough to
suggest the present (fully spectral) discretization does not capture all relevant scales of
motion.

A more direct test of the spatial (and temporal) resolution is provided by figure 3(b),
which presents histories of the lateral-area-integrated rate of change of the turbulence
kinetic energy (open symbols) and the rate of net (production minus dissipation)
resolved by the simulations (closed symbols), for both Cases VR (circles) and SD
(squares). The good agreement between the two, indicated by the tendency for the
closed symbols to overlie the open ones, over the course of both simulations, provides
confidence in the numerical solutions presented below.

The final column in tables 1 and 2 shows the history of the local volume-flux defect
Id, which for this flow should remain constant; the very small deviation from the initial
value Ido, even at very late times, is a further indication of the reliability of the DNS
results.
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Case VR Case SD
Symbol t/t∗ Ud/Udo h/ρ∗ Ud δ∗/ν t/t∗ Ud/Udo h/ρ∗ Ud δ∗/ν

0 1.0000 1.156 2171 0 1.0000 1.156 2171
♠ 22 0.9991 1.162 2170 32 0.9951 1.152 2166
� 29 0.9777 1.025 2147 40 0.8659 1.129 2020
♣ 39 0.6909 1.038 1805
~ 127 0.1917 1.089 951
� 219 0.1093 1.108 718
© 334 0.0706 1.118 577 366 0.0323 1.040 391
4 708 0.0403 1.092 436 622 0.0247 1.011 342
O 960 0.0335 1.049 397 936 0.0190 1.015 300
� 1299 0.0267 1.041 355 1272 0.0156 1.001 272
� 2135 0.0170 1.045 283 1962 0.0117 1.012 236
C 2832 0.0133 1.040 251 2544 0.0104 1.023 221
B 3591 0.0111 1.082 229 3218 0.0091 1.021 208
� 4386 0.0093 1.098 210 3930 0.0082 1.008 197
N 9308 0.0053 1.080 159 9437 0.0047 1.059 148
H 20272 0.0036 1.028 130 19947 0.0029 1.069 118• 30964 0.0025 1.060 108 30920 0.0023 1.067 103

TABLE 3. Symbol convention and corresponding mean-flow results for times shown in
figures 4–19. Wake half-width h ranges from h/ho = 1 at t/t∗ = 0 to 18.4 at t/t∗ = 30 964
for Case VR, and to 19.4 at 30 920 for Case SD. Integral thickness δ∗ = ρ∗/ (2 ln 2)1/2 (as
in JGG).

4. Results
A summary of the mean-flow characteristics for the various times considered in this

paper, along with the symbols associated with each time, can be found in table 3.

4.1. The non-universal self-similar regime
The temporal development of the vortex-ring-initialized flow, Case VR, is illustrated
by the vorticity contours in figure 5. The breakdown of the individual rings (figure 5a),
which is triggered by the geometric perturbation described in § 3, and the rings’
interaction with each other, quickly leads to a fully developed turbulent wake. As
early as t/t∗ = 29 (figure 5b), the turbulence structure shows no obvious trace of
the vortex-ring initialization (see also spectra in figure 4a). The lateral spreading of
vortical fluid into the initially irrotational background, associated with the growth of
the wake width, is also apparent in figure 5, as is the increased lateral domain size
needed to capture it.

The qualitatively different process by which Case SD becomes fully turbulent is
revealed in figure 6. In contrast to Case VR’s nonlinear/bypass transition, the broad-
band low-amplitude initialization of Case SD triggers exponential growth and eventual
breakdown of a linear helical-mode instability (figure 6a,b). Since it incorporates the
entire transition process, the time required for Case SD to become fully turbulent is
larger than it is for Case VR (highlighting the advantage of the latter’s initialization
scheme for making optimal use of finite computational resources when simulating fully
turbulent wakes). But while both cases eventually become fully turbulent, their final
states in this first time period (i.e. up to around t/t∗ = 1300) are not equivalent,
in terms of their large-scale structure and their interaction with the surrounding
irrotational background. This can be seen from the vorticity contours in figures 5(d)
and 6(d). Paradoxically, Case VR – born from a streamwise chain of discrete vortex
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FIGURE 5. Instantaneous vorticity contours for Case VR at t/t∗ = 17, 29, 334, 1299 for
(a–d) respectively: (a) vorticity magnitude |ω| iso-surfaces, corresponding to 0.01 (light)
and 1.0 (dark) of the local maximum of the axially averaged |ω| within the domain, and
(b–d) vorticity component into the page in the vertical plane containing the wake centreline.
Vorticity normalized with local Umax and local wake width L = 2h. Axial flow in the free
stream from right to left. Plots show the full lateral domain at each time, but only selected
streamwise regions of the full Λx = 64πho ≈ 200ho domain. Symbols in labels correspond to
times shown in figures 4 and 7–12 (see table 3).

rings (figure 1a) – exhibits a less varicose structure (i.e. with less streamwise
‘clumpiness’) than does Case SD, whose initial flow had essentially no streamwise
variation (figure 1b).

The structural differences seen in figures 5 and 6 are quantified by the intermittency
profiles γ (r) in figure 7, which illustrate the fraction of vortical fluid at various radial
locations across the wake. In this and other profiles to follow, the radial coordinate r
has been normalized by ρ∗, an integral length scale given by

ρ2
∗ =

ln 2
π

Id

Ud
, (4.1)
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FIGURE 6. Instantaneous vorticity contours for Case SD at t/t∗ = 37, 40, 366, 1272 for (a–d)
respectively: (a) vorticity magnitude |ω| iso-surfaces, and (b–d) vorticity component into the
page in the vertical plane containing the wake centreline. See figure 5 caption for information
regarding normalization and symbols shown in labels. Plots show the full lateral domain at
each time, but only selected streamwise regions of the full Λx = 128πho ≈ 400ho domain.

defined so that ρ∗ = h for a Gaussian mean-velocity profile. This differs from the
length scale δ∗ used by JJG, with δ∗ = ρ∗/ (2 ln 2)1/2. (For a Gaussian mean, δ∗ is
equivalent to the Lc used by Bevilaqua & Lykoudis 1978.) For ease of comparison, δ∗
will be used to define the mean wake Reynolds number Udδ∗ν.
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FIGURE 7. Intermittency profiles: · · · · · ·, Case VR; - - - -, Case SD. Symbols correspond to
times shown in figures 10 and 11: (a) ©, t/t∗ = 334 (VR) and 366 (SD); (b) �, t/t∗ = 1299
(VR) and 1272 (SD). The threshold between vortical and irrotational flow is defined as 0.01 of
maximum local/instantaneous vorticity magnitude.
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FIGURE 8. Early mean-flow evolution for Case VR: (a) similarity diagnostic for Ud with n=
1/2. Symbols added in (a) indicate times for which mean profiles are shown in (b): t/t∗ =: ♣,
39; ~, 127; �, 219; ©, 334. – ·–, Initial profile (t = 0); —, U/Ud = exp(−ln(2) (r/ρ∗)

2).

The tendency for γ to fall below unity at smaller r for Case SD is evidence of the
irrotational fluid near the centreline apparent in figure 6(d). However, a comparison
of figures 7(a) and 7(b) (corresponding respectively to t/t∗ ≈ 350 and 1300, the last
two times shown in figures 5 and 6), reveals that as time passes, the intermittency
profile for Case SD (dashed line) approaches that for Case VR (dotted line) near the
centreline.

We now turn to the question of self-similarity of the mean velocity. Surprisingly,
the very early state of Case VR (when the Reynolds number is highest) clearly
demonstrates n = 1/2 (low-Reynolds-number) behaviour. This is apparent from
figure 8(a), which shows the early history of the mean centreline defect Ud. For
all the results to follow, both the magnitude of Ud and the location y0, z0 about
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FIGURE 9. Early evolution of Case VR profiles of (a) shear-stress v′xv′r and (b) eddy-viscosity
diagnositic ν̃t = [−v′xv′r/(∂G/∂r)], where G is the Gaussian mean-velocity profile, such that
∂G/∂r = (2 ln 2 Udr/ρ2

∗) exp(− ln 2 (r/ρ∗)
2), at t/t∗ =: ♣, 39; ~, 127; �, 219; ©, 334; 4, 708

(in b); O, 960 (in b); �, 1299 (in b); N, 9308 (in b).

which azimuthal averages have been taken were defined as the values at the centroid
of the axially averaged mean velocity 〈u〉 at each time, with y0 =

∫
y

∫
z y〈u〉dy dz/Id,

where Id =
∫

y

∫
z〈u〉dy dz, and similarly for z0. (Other approximations for Ud, such as

the maximum 〈u〉 over the y–z plane, or along horizontal or vertical cuts through
the geometric centreline (used by Gourlay et al. and JGG), can, as we shall see,
cloud interpretation of the data, especially at later times.) The linear variation of
U−1

d , combined with the close agreement between the mean profile and the Gaussian
idealization near the centreline seen in figure 8(b), point to the presence of the n= 1/2
solution. Further evidence is given in figures 9(a) and 9(b), which respectively show
profiles of the −v′xv′r shear stress and ν̃t, a measure of the eddy viscosity. For the latter,
the actual mean velocity gradient ∂vx/∂r from the DNS has been replaced by the
analytic Gaussian profile, in order to minimize statistical uncertainty associated with
this quantity. (Recall that determining νt involves averaging over a single finite-domain
realization, then forming the ratio of one statistic and the derivative of another, both
of which approach zero near the centreline.) The ν̃t data points closer to the axis than
those shown are not included because of the inevitably much larger scatter there. Both
the shear-stress and the eddy-viscosity diagnostic are consistent with the similarity
analysis, which predicts −v′xv′r/U2

d ∝ t3n−1 and νt/ν ∝ t2n−1, in that the former grows
and the latter tends to remain fixed with time. Note also the magnitude of ν̃t and
its approximately constant radial variation for r < ρ∗ (such that the core of the flow
evolves as if it were laminar) for these times. Therefore, as pointed out in § 2, we find
that n = 1/2 behaviour does not require νt and ν to be of the same order, provided
temporal variations of νt are negligible. This in turn implies that the n = 1/2 solution
is not necessarily associated with low Reynolds number, since here the uniformity
and steadiness of νt, rather than the magnitude of Re, causes the Reynolds-stress and
viscous terms in (2.1) to share the same profile.

After t/t∗ = 334, ν̃t/ν begins to decrease with time, as Case VR enters the n = 1/3
regime. The linear variation of the U−3/2

d history shown in figure 10(a) (and the
U−1

d history shown in figure 8a) suggests that the Case VR mean defect satisfies the
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FIGURE 10. Mean-flow evolution for t/t∗ < 1300. (a) Similarity diagnostic for Ud: · · · · · ·,
Case VR; - - - -, Case SD; —, linear curve-fit A (t/t∗ − tvo/t∗) with (A, tvo/t∗) = (0.18, 55.5)
and (0.38,−65) for Cases VR and SD, respectively. (b) Mean Reynolds number Ud δ∗/ν:
· · · · · ·, Case VR; - - - -, Case SD; —, power-law C (t/t∗ − tvo/t∗)

−1/3 implied by curve-fit in
(a), where C = 3833 (VR) and 3000 (SD), and tvo/t∗ as in (a). Symbols in (a) and (b) indicate
times for which mean profiles are shown in (c) and (d) (and elsewhere): (c) Case VR, t/t∗ =:
©, 334; 4, 708; O, 960; �, 1299. (d) Case SD, t/t∗ =: ©, 366; 4, 622; O, 936; �, 1272. – ·–,
Initial profile (t = 0); —, U/Ud = exp(−ln(2) (r/ρ∗)

2); - - - -, JGG’s equation (C7).

high-Re similarity condition (2.7) for t/t∗ greater than ∼300. Incidentally, although
it is tempting to define an equivalent momentum thickness θ for the present time-
dependent homogeneous wake, to allow a direct comparison with results from the
spatially developing experiments (as JGG did), this cannot be done unambiguously,
since it would involve the product of the volume-flux deficit Id and a free-stream
velocity V∞ – which here can only be represented by an arbitrary Galilean reference
velocity. (JGG appear to have assumed V∞ = Udo.)

Figure 10(c,d) confirms that to a good approximation the entire mean profile
is self-similar. For both flows, U(η)/Ud is closer to the (uniform-νt) Gaussian
idealization (solid line) than the interpolant used by JGG for their n = 1/3 data
(dashed line), especially at later times. The most significant message of figure 10(a)
is that although the mean profiles from both wakes collapse to approximately the
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FIGURE 11. Histories of (a) root-mean-squared streamwise velocity fluctuation v′x at
the centreline and (b) area-integrated turbulence kinetic energy K = (1/2){〈v′iv′i〉}: · · · · · ·,
Case VR; - - - -, Case SD; + (in a only), Gourlay et al. (2001). Inset plot in (b) shows ratio
of area-integrated rates of turbulence kinetic energy production {P̃k} to dissipation {ε̃k} (see
figure 3 for definitions). Symbols in (a) and (b) correspond to times for which Case VR and
SD profiles are shown in other figures.

same r/ρ∗ variation, the U−3/2
d histories have very different slopes – and thus

different growth rates – indicating their similarity is not universal. In other words,
the Townsend coefficient CT in (2.7) is not constant, and thus the Townsend universal-
behaviour hypothesis is not satisfied over the time period considered. (Since time
has been normalized by the initial ρ∗/Ud[= (ln 2 Id/πU3

do)
1/2], the slope of the

U−3/2
d history is directly related to CT .) The time-developing version of the non-

dimensional mean spreading parameter β = (dh/dt)/Ud can be calculated for both
wakes using the linear interpolant in figure 10(a). Cases VR and SD respectively
have β ≈ 0.06 and β ≈ 0.13, where we have used ρ∗ to estimate h. (Written in
terms of the non-dimensional slope A = d (Ud/Udo)

−3/2 /d(t/t∗), the mean spreading
rate β = (1/3) (ln 2/π)1/2 A ζ 1/2 and the Townsend coefficient CT = A−2/3ζ−1/3, where,
for both VR and SD, ζ = Id/Udoρ

2
∗o = 4.536.) The Case SD wake thus spreads at about

the same rate as the Gourlay et al. flow, for which β ≈ 0.15. We therefore observe,
following Bevilaqua & Lykoudis (1978) and JGG, that differences in turbulence
structure introduced into the wake by the initialization (or body shape), can lead to
long-lasting non-universal behaviour. However, we emphasize that this non-universal,
though self-similar behaviour does not continue indefinitely, as will be shown in § 4.2.

The differences between the two cases in this non-universal period are even
more pronounced in the second-order statistics. Although involving the more gentle
(low-level, linear-disturbance) perturbation, the SD initialization eventually produces
turbulence with not only a larger rate of spreading and more large-scale intermittency
(figure 7), but also with kinetic energy that is a larger fraction of the mean
defect Ud. Contrast the dotted and dashed lines in figures 11(a) and 11(b), which
respectively illustrate histories of (v′xv′x)

1/2
c /Ud, the root-mean-squared streamwise

velocity fluctuations at the wake centreline y0, z0 (as defined above), and the area-
integrated turbulence kinetic energy. On the other hand, the net rate of (area-integrated)
production of turbulence kinetic energy is a smaller fraction of its rate of dissipation
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for Case SD (see figure 11b inset). The other results (crosses) in figure 11(a) are from
Gourlay et al.’s time-developing axisymmetric-wake DNS, which was initialized with
large-amplitude disturbances superimposed on a Gaussian mean profile. The Gourlay
results were obtained by finding the maximum (rather than the centreline) streamwise-
mean of the streamwise velocity fluctuations along horizontal and vertical lines (in the
lateral plane) through the geometric centre of their domain, and normalizing by the
corresponding horizontal- or vertical-line maximum streamwise-mean velocity (hence
the two separate traces in their paper, evident particularly at later times; see figure 16a
below). Computing the same two quantities for Cases VR and SD showed that the
plane-maximum ratio is consistently about 15–20 % larger than the (v′xv′x)

1/2
c /Ud

defined here, which suggests that for the period considered the energy levels for
the Gourlay et al. flow and Case SD are quite similar. The distinct strategies used to
initialize the Gourlay et al. and Case SD simulations (finite and infinitesimal random
disturbances, respectively, added to Gaussian and vortex-ring-induced means) thus both
lead to comparable states, in terms of the magnitudes, relative to Ud, of the streamwise
velocity fluctuations.

Comparing the evolution of the Reynolds-stress and Ud profiles confirms Tennekes
& Lumley’s (1972) observation that the mean flow becomes self-similar before the
second-order statistics do. While the t/t∗ ≈ 350 profiles of U(η)/Ud are fairly close
to those at t/t∗ ≈ 1300 for both cases (figure 10c,d), the same cannot be said about
−v′xv′r/U2

d (figure 12a,b): note the difference between the t/t∗ ≈ 350 (open circles) and
t/t∗ ≈ 1300 (dotted circles) results, which is especially pronounced for Case SD at
larger r/ρ∗ (where the azimuthal average is more certain and the contribution to the
area integral is greater). This large difference is reflected in the persistent downward
drift with time of the Case SD area-integrated kinetic energy seen in figure 11(b).

Using the scaling defined by the second proportionality in (2.6), which shows that
mean-flow universality requires −v′xv′r ∝ βU2

d (JGG), leads to the results presented in
figure 12(c,d). The reasonably good agreement between the two flows is consistent
with the tendency for the shape of the Case VR and SD mean profiles to be the same
(figure 10c,d).

The U and −v′xv′r profiles have been used to compute the viscous Tv and turbulence
Tt contributions to the right-hand-side of the RANS equation (2.1), the sum of which,
Ts, is plotted with the similarity scaling in figure 12(e,f ). Also shown, as the solid-
diamond symbol at r = 0, is dUd/dt defined by the two Ud curve-fits from figure 10(a).
In view of the increased uncertainty as r→ 0 of azimuthally averaged quantities, the
compatibility, for both flows, of the r = 0 value with the r > 0 portion of the Tv + Tt

profile is encouraging.
The relatively insignificant contribution the viscous term makes to the RANS

balance during this phase of the wake development is clear (compare, in figure 12e,f,
the small and large dotted-circle symbols, which respectively correspond to the
viscous and total (viscous plus turbulence) terms at t/t∗ ≈ 1300). High-Re n = 1/3
behaviour is observed here even though Ud δ∗/ν becomes significantly smaller than
500, the threshold below which JGG propose n = 1/2 evolution will be found. Near
t/t∗ = 1300, it is roughly 350 and 270, for Cases VR and SD respectively (figure 10b
and table 3). We shall see below that n = 1/3 behaviour persists at even smaller Re,
as low as Ud δ∗/ν ≈ 100. Using the disappearance of a κ−5/3 region in the spectrum
as the criterion for the critical Reynolds number (as JGG did) is apparently not
appropriate.
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FIGURE 12. Profiles of shear stress and terms in the RANS equation: (a,c,e) Case VR, t/t∗ =:
©, 334; 4, 708; O, 960; �, 1299. (b,d,f ) Case SD, t/t∗ =: ©, 366; 4, 622; O, 936; �, 1272.
In (e) and (f ), the large symbols indicate Ts, the sum of the Reynold-stress Tt and viscous Tv
terms in the RANS equation, where Tt =−(1/r)∂(r v′xv′r)/∂r and Tv = (1/r)∂(r ν ∂vx/∂r)/∂r,
while the smaller symbols (�) show Tv at t/t∗ = 1299 (VR) and t/t∗ = 1272 (SD), and the
larger symbol (�) at r = 0 is dUd/dt from a linear curve-fit of the U−3/2

d history shown in
figure 10(a), which implies dUd/dt = −(2A/3)U2

d/ρ∗, with A = 0.18 for Case VR and 0.38
for Case SD.
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The Case VR wake (β ≈ 0.06) is analogous to that downstream of Cannon &
Champagne (1991)’s disk-shaped screen with 49 % blockage (for which β = 0.064
and (v′xv′x)

1/2
c /Ud = 0.3). The SD and Gourlay et al. flows, on the other hand, are

characterized by spreading rates (β ≈ 0.15) and centreline fluctuations ((v′xv′x)
1/2
/Ud ≈

0.6) lying between those found in wakes generated by e.g. Chevray’s (1968) 6:1
ellipsoid (β ≈ 0.1, (v′xv′x)

1/2
/Ud ≈ 0.3), and by Cannon & Champagne’s less porous

(84 % blockage) disk (β ≈ 0.3, (v′xv′x)
1/2
/Ud ≈ 0.75); see Pope (2000).

Before considering the wake evolution at very long times, we attempt to place
the present results in context by determining the effective downstream distance
associated with the time period considered thus far. A standard control-volume
analysis of the incompressible spatially developing wake far downstream of a spherical
body of diameter d immersed in a fluid stream of density ρ and speed V∞ gives
CD ≈ 8Id/πV∞d2, where CD = FD/(πρV2

∞d2/8) and FD is the drag force experienced
by the body. In terms of the initial variables for the time-developing problem,
we have V∞/Udo = (2/πCD) (2ho/d)

2 (ρ∗o/ho)
2 ζ , where ζ = Id/Udoρ

2
∗o. The effective

downstream distance x= V∞t can thus be written

x

d
= ζ

πCD

(
2ho

d

)3(
ρ∗o
ho

)3( t

t∗

)
. (4.2)

If we equate the virtual-body radius d/2 to the initial half-width ho of the time-
developing flow (cf. figure 2 of Bevilaqua & Lykoudis 1978), and assume, say,
CD = 0.4, then (since ζ = 4.536 and ho/ρ∗o = 1.156) the latest (self-similar but non-
universal) Cases VR and SD results, at t/t∗ ≈ 1300, correspond to a downstream
distance x/d ≈ 3000. For a 2.5 cm diameter body, this implies x = O(75 m) (!), which
demonstrates the long-lasting nature of the initial-condition dependence found here
(contrast Bevilaqua & Lykoudis’s 1978 experiments, for which maximum x/d = 120).

4.2. The universal self-similar regime
The question to be addressed in this section is whether or not the initial-condition
dependence, which yields the self-similar but non-universal behaviour explored in the
previous section, lasts as long as the wake does (i.e. during the entire period before
νt→ ν), or if instead the turbulence structure eventually becomes universal, such that
Townsend’s hypothesis is satisfied.

The late-time vorticity contours in figure 13 tend to support the latter option, in
that the qualitative differences between Cases VR and SD are much less obvious than
they were at earlier times (compare with figures 5d and 6d). This is quantified by
the temporal development of the intermittency profiles γ (r) in figure 14. The radial
spread with time of the region of agreement between γ for Cases VR (dotted lines)
and SD (dashed) is striking. Figure 14(d) indicates that at the latest time, the fraction
of vortical flow is identical for r 6 ρ∗.

This move towards increasing structural similarity is accompanied by a period of
universal mean-flow development. The collapse of the mean velocity to identical
similarity profiles (figure 15c,d) is no surprise, since, as shown by JGG, the mean-
flow similarity variable f (η) is unaffected by the structure of the wake turbulence.
(Note the reasonable agreement with the Gaussian profile, which is again somewhat
better than that for the JGG interpolant.) What could not be anticipated is the presence
of identical slopes for the two Ud-similarity diagnostics in figure 15(a), which
corresponds to identical mean spreading rates for Cases VR and SD, with β ≈ 0.10,
and thus equivalent values of the Townsend coefficient in (2.7), with CT ≈ 1.35.
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FIGURE 13. Vorticity contours for Case VR at t/t∗ =: (a) 2135 (�); (c) 4386 (�); (e) 20 272
(H); and Case SD at t/t∗ =: (b) 1962 (�); (d) 3930 (�); (f ) 19 947 (H). Vorticity component
shown is into the page in the vertical plane containing the wake centreline, normalized with
respect to local Umax and `= 2h. Axial flow is from right to left. For Case VR, regions shown
correspond to the full lateral domain Λz and either (a,c) one half or (e) the full streamwise
domain Λx. To aid visualization, Case SD plots (b,d,f ) show subregions of Λz equivalent
to Case VR’s Λz at a comparable time (see table 2), while the streamwise extent is either
(b,d) one quarter or (f ) one half of Λx. Symbols in labels coincide with times shown in
figures 15–19 (see table 3).

It may at first glance appear that the agreement of β for Cases VR and SD
seen in figure 15(a), and thus the late-time universal behaviour, is an unphysical
numerical artefact of the wake turbulence beginning to ‘outgrow’ the fixed streamwise
domain. (See § 3 for discussion of the sufficiency of the size of the lateral
domain.) The relative magnitude of the streamwise integral scale Lx (defined
as the minimum-separation zero-crossing of the streamwise two-point correlation
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FIGURE 14. Intermittency profiles: · · · · · ·, Case VR; - - - -, Case SD. Symbols correspond to
times shown in figures 15 and 16 (and elsewhere): (a) �, t/t∗ = 2135 (VR) and 1962 (SD);
(b) �, t/t∗ = 4386 (VR) and 3930 (SD); (c) H, t/t∗ = 20 272 (VR) and 19 947 (SD); (d) •,
t/t∗ = 30 964 (VR) and 30 920 (SD). The threshold between vortical and irrotational flow is
defined as 0.01 of the maximum local/instantaneous vorticity magnitude.

v′x(x)v′x(x+ rx)/v′x(x)v′x(x)), suggests this is not the case, since for Cases VR and
SD it remains, respectively, less than 6 % and 3 % of Λx for t/t∗ less than about
4000 (corresponding to the dotted squares in figure 15a); even at the end of the
simulations, near t/t∗ ≈ 31 000 (solid circles), the domain remains large enough that
Lx/Λx ≈ 12 % for VR and 6 % for SD. Another argument follows simply from
the Ud(t) evolution observed in the universal regime, in that t−2/3 behaviour is
incompatible with dependence on an externally imposed length scale. (If Ud were
to depend on Λx in addition to Id and t, (2.7) would be altered such that CT is
replaced by a function of Λ/ (Id(t − tvo))

1/3, implying Ud would not scale with t−2/3 if
Λx were to affect the spreading rate.) And finally, that the same β appears at about
the same time in domains whose Λx differ by a factor of two also argues against any
spurious numerical influence.

The universal growth rate defined by the linear interpolant in figure 15(a) is
extended to later times in figure 15(b), and compared to the DNS. Also shown is
the history of the ratio of the maximum Umax to the centroid Ud values of the axially
averaged mean velocity 〈u〉 over the lateral y,z plane. This ratio is always greater
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FIGURE 15. Mean-flow evolution including t/t∗ > 1300: (a) Similarity diagnostic for Ud:
· · · · · ·, Case VR; - - - -, Case SD; —, linear curve-fit A (t/t∗ − tvo/t∗) with A = 0.30 and
tvo/t∗ = +670 and −600 for Cases VR and SD, respectively. (b) Mean defect Ud: · · · · · ·,
Case VR; - - - -, Case SD; —, power-law Ud/Udo = B (t/t∗ − tvo/t∗)

−2/3 implied by curve-fit
in (a), where B = 2.23 and tvo/t∗ as in (a). Symbols in (a,b) indicate times for which mean
profiles are shown in (c) and (d) (and elsewhere): (c) Case VR, t/t∗ =: �, 1299; �, 2135; C,
2832; B, 3591; �, 4386; N, 9308; H, 20 272; •, 30 964. (d) Case SD, t/t∗ =: �, 1272; �,
1962; C, 2544; B, 3218; �, 3930; N, 9437; H, 19 947; •, 30 920; – ·–, initial profile (t = 0);
—, U/Ud = exp(−ln(2) (r/ρ∗)

2); - - - -, JGG’s equation (C7).

than or equal to unity, and its closeness to unity can be interpreted as a measure
of the statistical reliability of the Ud history. We observe that Umax/Ud tends to drift
upwards with time, and is consistently smaller (and therefore infer that its statistics are
more accurate) for Case SD than for VR – a symptom of the larger averaging sample
afforded by Case SD’s larger Λx.

The agreement with the universal interpolant (solid line in figure 15b) is good for
both wakes, for times before Umax/Ud (and thus the statistical uncertainty) becomes
large. The present findings therefore imply that the wake turbulence eventually reaches
the universal state predicted by Townsend’s hypothesis. The major collective evidences
for this are, first, the t−2/3 mean velocity behaviour and, second, the similarity of the
turbulence structure – hinted at by the vorticity contour plots and quantified by the
intermittency profiles. The agreement of the second-order statistics for Cases VR and
SD, presented below, also points strongly to universality.
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FIGURE 16. Histories of (a) root-mean-squared streamwise velocity fluctuation v′x at the
centreline and (b) area-integrated turbulence kinetic energy K = (1/2){〈v′iv′i〉} and (inset) ratio
of area-integrated rates of production {P̃k} and dissipation {ε̃k} (see figure 3 for definitions):
· · · · · ·, Case VR; - - - -, Case SD. The + symbols in (a) are data from Gourlay et al. (2001),
with their different definition of v′x and Ud (see text). The other symbols in (a) and (b)
correspond to times for which Cases VR and SD profiles are shown in other figures (see
table 3).

However, the time required for the universal similarity to appear is large enough
to imply that it will rarely if ever appear in flows of practical interest (except for
the special case in which the flow’s initial structure were to closely coincide with
that associated with the universal state). Using (4.2) and the previous assumptions
about a virtual body (i.e. CD ≈ 0.4, d ≈ 2ho), we find that the earliest indication of
the universal t−2/3 regime (at t/t∗ ≈ 2000) corresponds to a downstream distance of
x/d ≈ 4700! (Note the dotted circles in figure 15a, from t/t∗ ≈ 1300, near the end of
the non-universal self-similar regime discussed earlier.) In other words, of the order of
the first 100 m of a wake generated by a 2.5 cm diameter sphere would not exhibit
universal behaviour.

Nevertheless, despite its possible absence in real-world flows, the universal regime
seen here does possess some noteworth characteristics. One is the persistence of the
high-Re, n = 1/3, behaviour, even though Ud δ∗/ν is quite small for both VR and SD:
at t/t∗ ≈ 31 000 it is approximately 100 (table 3) – much less than the threshold of
500, below which JGG proposed n= 1/2 should be found. The continuing dominance,
for the times examined here, of the turbulence term over the viscous term in the
RANS equation will be illustrated below.

The Case SD histories of centreline streamwise-velocity fluctuation v′x and lateral-
area-integrated turbulence kinetic energy in figure 16(a,b) (dashed lines) reveal the
extent to which these quantities can deviate from non-self-similar behaviour without
affecting the self-similarity of the mean flow. Examined over a longer time, the
significant downward drift, in units of Ud(t) and ρ∗(t), of |v′x| and especially K during
its early β ≈ 0.13 period (between t/t∗ ≈ 300 and 1300, corresponding respectively to
the open and dotted circles in figure 16a,b) is more apparent than when the period
is limited to the 0 6 t/t∗ 6 1300 range shown in figure 11. The relative speeds with
which the v′x magnitudes become a fixed ratio of Ud also suggest that the Case VR
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initialization leads more quickly to a flow with (non-universal) self-similar normal
Reynolds stresses than do Case SD’s low-level random disturbances or Gourlay et al.’s
finite-amplitude perturbations of a Gaussian mean.

The figure 16 histories demonstrate that the second-order statistics require much
more time to become universal than the mean flow does. While the universal β
appears near t/t∗ = 2000, the normal stresses do not become the same fraction of U2

d
until after t/t∗ ≈ 10 000 (solid symbols in figure 16); the area-integrated production-to-
dissipation ratio {P̃k}/{ε̃k} arguably takes even longer (figure 16b inset).

In terms of the centreline turbulence intensity (|v′x|/Ud ≈ 0.3) and mean spreading
rate (β ≈ 0.10), full (second-order) universal self-similarity roughly corresponds to the
wake downstream of the 6:1 ellipsoid (for which (v′xv′x)

1/2
/Ud = 0.3 and β = 0.11),

studied by Chevray (1968). Figure 16(b) shows that for the universal state, the area-
integrated (axially averaged) turbulence kinetic energy K is roughly 1.0U2

d ρ
2
∗ , and

{P̃k}/{ε̃k} about 0.5. The latter implies that the wake turbulence is still far from the
state of homogeneous-isotropic decay, for which {P̃k}/{ε̃k} ≡ 0.

To confirm the expectation that the wake simulation will eventually become laminar,
as the turbulence structures outgrow the streamwise domain, Case VR was continued
until t/t∗ > 5× 106. The eventual laminarization of the Case VR flow, characterized by
|v′x|/Ud→ 0 for t/t∗ > 106, is apparent from figure 16(a) (dotted curve). We stress that
this behaviour, which is also seen in the Gourlay et al. DNS, is a purely numerical
phenomenon, due to the largest scales of the wake turbulence becoming too large for
the (fixed) streamwise size of the DNS domain. (Analogous behaviour has been seen
in the plane-channel DNS of Jiménez & Moin (1991), who also found that turbulence
cannot survive when a periodic dimension of the domain is smaller than some critical
value.)

The normal Reynolds-stress profiles are given in figure 17, for times spanning their
full n = 1/3 period beginning from the start of the non-universal self-similar regime,
t/t∗ ≈ 350. These show that for Case VR, the velocity fluctuations induced by the
vortex-ring initialization (chain-dotted lines) quickly mature such that their magnitude,
in terms of local Ud, and self-similar radial shape, are essentially invariant over the
entire evolution of this flow, with perhaps a slight tendency to decrease with time
upon entering the period of full (second-order) universality (a finding anticipated
by the relatively flat centreline and area-integrated velocity-fluctuation histories in
figure 16). This quasi-equilibrium between the mean flow and the turbulence energy
exists despite the significant change of mean spreading rate β experienced by Case VR
(figure 15a). For Case SD, the velocity-fluctuation magnitude relative to Ud decreases
monotonically. Evidently, the Case SD transition process produces ‘extra’ kinetic
energy that does not immediately impact on the evolution of the mean flow.

While changes of the normal stresses only affect the mean flow to the extent that
they influence the −v′xv′r component, changes of the latter are directly linked to the
mean-flow evolution through the RANS equation (2.1). The convergence towards a
universal −v′xv′r profile for Cases VR and SD observed in figure 18(a,b) is thus a
necessary and sufficient condition for the convergence of the mean spreading rates
β seen in figure 15(a). The corresponding convergence of the profile of net ∂U/∂t,
given by the sum Ts of the viscous Tv plus turbulence Tt RANS terms, is shown in
figure 18(c,d). The move towards universality involves a gradual increase with time of
|Ts|/(U2

d/ρ∗) for Case VR, and a more rapid decrease for Case SD, such that for both
cases the net ∂U/∂t profile near the centreline is consistent with the (identical) dUd/dt
defined by the two Ud histories (solid diamond).
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FIGURE 17. Velocity fluctuation profiles: – ·–, initial profile, t = 0 (negligible in (b,d,e,f ));
(a,c,e) Case VR, t/t∗ =: ©, 334; 4, 708; O, 960; �, 1299; �, 2135; C, 2832; B, 3591; �,
4386; N, 9308; H, 20 272; •, 30 964. (b,d,f ) Case SD, t/t∗ =: ©, 366; 4, 622; O, 936; �,
1272; �, 1962; C, 2544; B, 3218; �, 3930; N, 9437; H, 19 947;•, 30 920.

The smallest (solid) symbols in figure 18(c,d) illustrate the contribution of the
viscous term to the total RANS balance at the latest time shown. Its relatively small
size (of order 1/10 of Tt) is at first glance rather surprising, given the magnitude of
the mean centreline defect (Ud/Udo ≈ 0.002), the smallness of the Reynolds number
(Ud δ∗/ν ≈ 100) and the deviation from κ−5/3 inertial-subrange behaviour (figure 4c,d)
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FIGURE 18. Profiles of shear stress and terms in RANS equation: (a,c) Case VR, t/t∗ =:
©, 334; 4, 708; O, 960; �, 1299; �, 2135; C, 2832; B, 3591; �, 4386; N, 9308; H,
20 272; •, 30 964. (b,d) Case SD, t/t∗ =: ©, 366; 4, 622; O, 936; �, 1272; �, 1962; C,
2544; B, 3218; �, 3930; N, 9437; H, 19 947; •, 30 920. The upper and lower symbols
in (a,b) respectively show the Reynolds −v′xv′r and viscous ν ∂vx/∂r stress profiles. In (c)
and (d) the larger symbols indicate Ts, the sum of the Reynold-stress Tt and viscous Tv
terms in the RANS equation (as in figure 11), while the smaller symbols (•) show Tv at
(c) t/t∗ = 30 964 (VR) and (d) t/t∗ = 30 920 (SD), and the larger symbol (�) at r = 0
is dUd/dt from linear curve-fit of U−3/2

d history shown in figure 15(a), which implies
dUd/dt =−A (ln 2/π)1/2(2/3ρ∗o) (Id/Udo)

1/2(U2
d/ρ∗) with A= 0.30.

at these times. However, Tv/Tt being small is consistent with, and in fact required for,
the n= 1/3 mean-flow behaviour seen in figure 15(a,b).

Perhaps it should also be mentioned that the U−1/2n
d histories considered by JGG,

who for the Ud δ∗/ν < 250 range chose n = 1/2 (see their figure 14b,d), would be
only marginally less linear if n = 1/3 had been chosen instead. In view of the present
findings it is conceivable that the late-time Gourlay et al. data would agree more
closely with the high-Reynolds-number (n = 1/3) solution if a less uncertain measure
of Ud had been used for their comparison. (It must be admitted that the present
n = 1/3 fits would also be only marginally worse if n = 1/2 were used, but such
behaviour would not be consistent with other aspects of the data, nor the analysis
of § 3.) Moreover, note that (v′xv′x)

1/2
/Ud ≈ 0.2 (identified by JGG as characteristic
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of n = 1/2 similarity) is only present in one of the two Gourlay traces (crosses) in
figure 16(a) (from vertical and horizontal planes through the domain centreline) and
that this only appears at very late times when (as noted above) the flow is susceptible
to being unphysically laminarized by the too-small domain. Laminarization is also
suggested by the apparently perfect Gaussian behaviour of the mean velocity profile
displayed in JGG’s figure 15, and also found here (but not shown) for Case VR for
t/t∗ > 106.

Despite these misgivings, we find that the central claim of the JGG equilibrium
similarity analysis – that self-similarity need not be universal – is unambiguously
supported by the present results, in that wakes created with the same net momentum
defect but different initial structure (corresponding to generating bodies of different
geometries) exhibit non-universal self-similarity, characterized by different mean
spreading rates and energy levels that retain their initial-condition dependence. But
we emphasize that the present DNS data reveal that eventually the two wakes both
reach the classical universal state.

Finally, we consider the eddy-viscosity profiles in figure 19. The variation in (a)
and (b) is consistent with the n = 1/3 state, in that ν̃t/ν � 1 throughout the period
of universal behaviour. The n = 1/3 solution is also indicated by the history of ν̃t

at r = ρ∗, denoted ν̃∗, which is plotted for Case SD (for which the statistics are
most reliable) in the inset in figure 19(b). Since νt/ν ∝ t2n−1, the linear variation
with time of (ν̃∗)

−3 confirms that despite its low Reynolds number, the flow is
still within the n = 1/3 regime. When the eddy viscosity is scaled by Ud ρ∗ rather
than ν (figure 19c,d), it again favours n = 1/3 over n = 1/2 (albeit in a less
compelling manner), since it comes closer to remaining constant in time than it
does to increasing (recall that the similarity theory predicts νt/Udρ∗ ∝ t3n−1). We
also observe from figure 19(c,d) that for the universal regime, in the core region,
νt/Udρ∗ ≈ 0.06, which corresponds to a turbulence Reynolds number RT = Ud δ∗/νt of
(δ∗/ρ∗)/(0.06) ≈ 14 – remarkably close to Tennekes & Lumley’s (1972) proposal of
RT = 14.1 for axisymmetric wakes. Profiles of k2/ε, which can also be interpreted as
an eddy viscosity, are presented in figure 19(e,f ); these indicate that in the core region
during the universal state k2/εUdρ∗ ≈ 0.3, which in turn implies (when compared
to the νt/Udρ∗ profiles) that Cµ, a crucial coefficient in the well-known k–ε RANS
turbulence model, is roughly 0.2. This is over twice the value typically used, so on
that basis alone ‘classical’ k–ε would not return the universal wake identified here.

5. Summary and closing remarks
The major conclusion is that axisymmetric turbulent wakes with very different

initial conditions eventually reach a universal, self-similar state that matches the well-
known solution (for which, for example, the wake width grows like t1/3). This was
Townsend’s classical hypothesis. Evidence for the final universal form appears first
in the mean-defect history, as the universal structure develops first near the central
region of the wake, growing slowly towards its outer edge. Once this growth towards
universality is complete it is not possible to discern from any feature of the wake
what the initial conditions were – the flow has genuinely lost all memory of how
it was initiated. However, such universality only appears here after very long times
(when the maximum velocity is only about 1 % of its initial value) or, equivalently,
extremely long distances downstream – so far, in fact, as to suggest such a wake
may in general not be seen in practice, unless its initialization is very close to the
universal state. This is illustrated by the fact that, in the spatially developing equivalent
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FIGURE 19. Profiles of (a–d) eddy viscosity diagnostic ν̃t = [−v′xv′r/(∂G/∂r)], where G
is the Gaussian mean-velocity profile, such that ∂G/∂r = (2 ln 2 Udr/ρ2

∗) exp(−ln 2 (r/ρ∗)
2),

and (e,f ) k2/ε: (a,c,e) Case VR, t/t∗ =: ©, 334; 4, 708; O, 960; �, 1299; �, 2135; C, 2832;
B, 3591; �, 4386; N, 9308; H, 20 272;•, 30 964. (b,d,f ) Case SD, t/t∗ =: ©, 366; 4, 622; O,
936; �, 1272; �, 1962; C, 2544; B, 3218; �, 3930; N, 9437; H, 19 947;•, 30 920. Inset plot
in (b) shows the history for Case SD of ν̃∗, the value of ν̃t at r = ρ∗.

of our time-dependent wakes, a 2.5 cm generating body would not reach universality
until nearly 100 m downstream. (The question of the precise relationship between the
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details, e.g. low-wavenumber content, of the initial conditions and the time required
for the universal state to develop is deferred to a future study. Factors such as the size
of the streamwise domain may affect the development time, although not we presume
by enough to alter the general conclusions drawn from the present results.)

At earlier times (or distances) non-universal self-similar behaviour appears; this
has the same mean growth-rate behaviour (δ ∼ t1/3), but the proportionality constant
is dependent on initial conditions, as found by other authors (e.g. Bevilaqua &
Lykoudis 1978; Johansson et al. 2003). In general, the present DNS results support
Johansson et al.’s conclusions, for example their prediction that the Reynolds-stress
profiles scale with U2

dβ, with the growth rate β = (1/Ud) dδ/dt different for different
initial conditions. In the eventual universal regime, however, β is independent of initial
conditions, with β ≈ 0.10.

The time required for both non-universal and universal versions of self-similarity
to appear depends, not surprisingly perhaps, on the initial conditions. When a vortex-
ring structure is imposed at t = 0, the non-universal self-similar state (corresponding
to what Narasimha (1992) called ‘metastable equilibrium’) is reached earlier and at
higher Reynolds number than when using low-level random-phase disturbances. In
the non-ring case, transition and wake turbulence arise from the development of
linearly unstable (helical) modes, rather than from the azimuthal instabilities arising
in the vortex rings. The vortex-ring initialization yields β = 0.06, compared with the
significantly faster growth rate, β = 0.13, found for the less structured initial condition.
The latter value is, interestingly, close to that found by Gourlay et al. (2001), who
used much larger-amplitude initial perturbations so that the initial transition was via
nonlinear perturbations. Paradoxically, universal self-similarity is achieved at about the
same time by both wakes, although one takes longer to become turbulent, and to
experience (non-universal) self-similarity.

The universal wake behaviour appears and is maintained at unexpectedly low values
of the wake Reynolds number, Ud δ∗/ν, down to at least 100 (much less than
the 500 suggested by Johansson et al. (2003) as the value below which n = 1/2-
type behaviour would appear). It turns out that β is sufficiently constant to imply
the n = 1/3 behaviour directly from dimensional analysis (based on Townsend’s
hypothesis), and we have shown that a fully turbulent wake (for which νt/ν � O(1))
cannot yield n = 1/2 behaviour unless the eddy viscosity is constant with respect to
time, which here it is not (cf. JGG). Even at times corresponding to O(105) diameters
downstream of an equivalent virtual body, the viscous term in the Reynolds-averaged
Navier–Stokes equation remains an order of magnitude smaller than the Reynolds-
stress term, and νt/ν decreases according to the n = 1/3 scaling. Very much later,
when the streamwise size of the computational domain becomes too small, the flow
becomes purely laminar (due to constraint of the large-eddy structures) and a genuine
n = 1/2, Gaussian wake appears. (We believe this may be the cause of the n = 1/2
behaviour in the late-time Gourlay et al. (2001) data, presented in JGG.) It is worth
recalling here that n = 1/2 behaviour was seen at very early times in the vortex-ring
case; this was a result of the essentially radially uniform and steady eddy viscosity in
the central part of the wake, consistent with the argument above. However, it quickly
disappeared as the self-similar turbulence structure developed, leading to unsteady νt,
and the wake entered the more long-lasting n = 1/3 self-similar but non-universal
state.

Comparison of figure 12(e,f ) with figure 18(c,d) reveals that as time passes the
viscous stress becomes increasingly significant relative to the turbulent stress. This
leads one to consider the final state of the flow in the extreme t→∞ limit. It is
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conceivable that eventually the viscous and turbulent terms in the RANS equation
become of the same order, allowing the n = 1/2 regime to emerge. Computational
constraints have not allowed us to pursue the question of whether or not the flow
could ever naturally (that is, not as a result of a too small numerical domain) become
purely laminar, and move from the first to the second n = 1/2 solution discussed in
§ 2.

Another issue that has not been pursued concerns the way that the non-universal
self-similar flows are slowly ‘pulled away’ from their initial-condition-dependent states
towards the universal behaviour. This would require examination of the evolution
of the different terms in the shear-stress transport equation. It might also be
worth examining whether more physically based turbulence modelling approaches
(e.g. detached or large-eddy simulation) can reproduce the non-universal wake
behaviour. What seems certain is that classical RANS closures will not.
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