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This paper extends the resolvent analysis of McKeon & Sharma (J. Fluid Mech.,
vol. 658, 2010, pp. 336–382) to elucidate the drag reduction mechanisms for the
suboptimal control laws proposed by Lee, Kim & Choi (J. Fluid Mech., vol. 358,
1998, pp. 245–258). Under the resolvent formulation, the turbulent velocity field is
expressed as a linear superposition of propagating modes identified via a gain-based
decomposition of the Navier–Stokes equations. This decomposition enables targeted
analyses of the effects of suboptimal control on high-gain modes that serve as
useful low-order models for dynamically important coherent structures such as the
near-wall (NW) cycle or very-large-scale motions. The control laws generate blowing
and suction at the wall that is proportional to the fluctuating streamwise (Case
ST) or spanwise (Case SP) wall shear stress, with the magnitude of blowing and
suction being a design parameter. It is shown that both Case ST and SP can suppress
resolvent modes resembling the NW cycle. However, for Case ST, the analysis reveals
that control leads to substantial amplification of flow structures that are long in the
spanwise direction. Quantitative comparisons show that these predictions are broadly
consistent with results obtained in previous direct numerical simulations. Further, the
predicted changes in mode structure suggest that suboptimal control can be considered
a modified version of opposition control. In addition to the study of modes resembling
the NW cycle, this paper also considers modes of varying speed and wavelength to
provide insight into the effects of suboptimal control across spectral space.

Key words: drag reduction, flow control, turbulent flows

1. Introduction
In recent years, many attempts have been made to control fluid flows in order

to reduce drag and improve energy efficiency. In the absence of wave drag, the
total drag consists of pressure drag and skin friction. To reduce the pressure drag,
extensive shape optimization has been performed. This can be seen, for instance,
in the historical evolution of the nose shape of bullet trains. In contrast, there are
few practical control techniques to reduce skin friction. One notable exception is the
polymer injection technique used in the Trans Alaska Pipeline System. While polymer
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injection has been successful for internal flows with liquids, there are few practical
friction reduction techniques for external air flows. This fundamental limitation is
especially important given the fact that skin friction contributes significantly to total
drag (>50 %) for commercial aircraft (Gad-el-Hak 1994, 2000). As a result, skin
friction reduction has been, and continues to be, the subject of extensive research
(Kim 2003; Kasagi, Suzuki & Fukagata 2009; Abdulbari et al. 2013).

Skin friction reduction techniques can be broadly classified into active control,
which requires energy input for actuation, and passive control, which involves the use
of textured surfaces such as riblets (e.g. Walsh & Weinstein 1979). Active control
can be further classified into predetermined control and feedback control, depending
on whether the actuation is based on real-time sensor information or determined a
priori. Examples of predetermined control include wall oscillation as reviewed, e.g.
by Karniadakis & Choi (2003) and Quadrio (2011), travelling-wave-like blowing
and suction (Min et al. 2006; Lieu, Moarref & Jovanović 2010; Mamori, Fukagata
& Hoepffner 2010; Moarref & Jovanović 2010; Mamori, Iwamoto & Murata 2014)
and travelling-wave-like wall deformation (Hoepffner & Fukagata 2009; Nakanishi,
Mamori & Fukagata 2012; Tomiyama & Fukagata 2013). Extensive studies have been
conducted on the efficacy and drag reduction mechanisms of these predetermined
control techniques. For further detail, readers are referred to the references provided
above.

1.1. Feedback control for drag reduction
Feedback flow controls have also been studied extensively in the past twenty years.
The simplest feedback control scheme is the opposition control technique proposed
by Choi, Moin & Kim (1994), in which blowing and suction are generated at
the wall to counteract the wall-normal velocity component detected at a virtual
detection plane above the wall. Choi et al. (1994) achieved approximately 25 %
drag reduction using opposition control in their direct numerical simulation (DNS)
of low Reynolds number turbulent channel flow. The performance of opposition
control has been studied using DNS under a range of different conditions, e.g. at
moderate Reynolds numbers (Iwamoto, Suzuki & Kasagi 2002) for various blowing
and suction amplitudes (Chung & Talha 2011) and in pipe flow (Fukagata & Kasagi
2003). Motivated by the simulation results above, experimental attempts at feedback
control have also been made (Kasagi et al. 2009). For instance, Yoshino, Suzuki
& Kasagi (2008) constructed an experimental feedback control system, in which
local wall deformations were generated to suppress streamwise vortices based on the
streamwise wall shear stress signal. This technique succeeded in reducing drag by
6± 3 % after taking measurement uncertainty into account.

Although conceptually simple, opposition control is very difficult to put into practice
because it requires sensors located above the wall. To overcome this problem, Lee,
Kim & Choi (1998) proposed theoretical control laws based on suboptimal control
theory, which require information measurable at the wall alone, i.e. the wall pressure,
the spanwise wall shear stress or the streamwise wall shear stress. DNS conducted
by Lee et al. (1998) showed a 16 %–22 % drag reduction when the wall pressure or
the spanwise shear stress were used as the input signal or control objective. However,
drag increased when the streamwise wall shear stress was used. Iwamoto et al. (2002)
confirmed the results obtained by Lee et al. (1998), and found that the efficacy of
control deteriorates slightly as the Reynolds number increases. Fukagata & Kasagi
(2004) extended these suboptimal control techniques by setting a cost function based
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on the near-wall Reynolds shear stress, which is directly related to the friction drag
(Fukagata, Iwamoto & Kasagi 2002), and succeeded in reducing drag using only the
streamwise wall shear stress as a sensor input. We will introduce the details of these
suboptimal control laws in § 2.2.

1.2. Coherent structures in wall turbulence
Many of the active control techniques mentioned above target the suppression
of coherent structures known to be dynamically and energetically important in
wall-bounded turbulent flows. Since the pioneering experimental work by Kline et al.
(1967) and DNS by Kim, Moin & Moser (1987), such coherent structures have been
studied extensively in both experiments and numerical simulations (Robinson 1991;
Adrian 2007).

It is widely accepted that, at low Reynolds number, wall turbulence is dominated by
the streaks and quasi-streamwise vortices characteristic of the near-wall cycle, which
have streamwise length and spanwise spacing of approximately 103 and 102 wall units,
respectively. The generation of these near-wall coherent structures is approximately
periodic, as explained in the cyclic models proposed by Hamilton, Kim & Waleffe
(1995), Waleffe (1997) and Schoppa & Hussain (2002). Kawahara & Kida (2001) have
also visualized this periodic process in a low Reynolds number turbulent Couette flow.

Recent efforts show that, as Reynolds number increases, larger coherent structures
emerge in the logarithmic and outer regions of the flow (e.g. the so called
very-large-scale and large-scale motions) and become increasingly important from
an energetic and dynamic point of view (see e.g. Hutchins & Marusic 2007a; Monty
et al. 2009; Marusic, Mathis & Hutchins 2010; Smits, McKeon & Marusic 2011).
For instance, Hutchins & Marusic (2007b) show that the peak magnitude of the
streamwise turbulence intensity increases with the Reynolds number due to the
influence of the very-large-scale motions (VLSMs). Further, the VLSMs also appear
to modulate the amplitude of the near-wall cycle (Marusic et al. 2010). As such,
flow control at higher Reynolds number must consider the effect of these larger-scale
coherent structures as well. For more information regarding the scaling and structure
of VLSMs, readers are referred to Smits et al. (2011).

Over the past two decades, it has become increasingly clear that linear processes
play an important role in dictating the dynamics of these coherent structures, and
hence, in determining the efficacy of any control technique. Kim & Lim (2000)
studied the role of linear and nonlinear processes in a turbulent channel flow by
carrying out numerical experiments that eliminated either the linear or nonlinear
coupling term. These experiments demonstrated that the near-wall turbulence decays
without the presence of the linear coupling term (which enhances non-normality of
the linearized Navier–Stokes system). At the same time, the near-wall streamwise
vortices could not be reproduced with the proper length scales without the nonlinear
convective terms. Thus, the formation of the near-wall structures requires the nonlinear
term, but the maintenance of these structures relies on linear interactions. Based on
these insights, Lim & Kim (2004) conducted a singular value decomposition (SVD)
analysis of the linearized Navier–Stokes system, modified to account for opposition
control (Choi et al. 1994), and obtained results similar to those found in DNS or
large eddy simulation (LES). These results, among others, imply that analyses based
on the linearized Navier–Stokes equation give useful insights, even if they cannot
entirely reproduce the coherent structures found in turbulent flows.

Despite this limitation, such linearized analyses offer significant advantages
over DNS in the preliminary design and development of control methods as
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well as understanding the underlying mechanisms due to their low computational
expense. This is especially true at higher Reynolds numbers, for which DNS can be
prohibitively expensive.

1.3. Resolvent analysis and the objective of the present study
The resolvent formulation proposed recently by McKeon & Sharma (2010) is
conceptually similar to the SVD analysis of Lim & Kim (2004). However, it has
some important differences in that the linearized system is continuously forced by the
nonlinear term, and that it enables an evaluation of control in wavenumber–frequency
space (i.e. spatio-temporal modes) at low computational cost. More specifically,
the resolvent analysis treats the Fourier transformed Navier–Stokes equations as
a forcing–response system: the nonlinear convective terms are considered as the
forcing (input) to the system and the turbulent velocity is the response (output).
The turbulent velocity and pressure fields are expressed as a linear superposition of
propagating Fourier modes, identified via a gain-based decomposition (i.e. SVD) of the
forcing–response transfer function: the resolvent operator. This decomposition enables
targeted analyses of the effects of control on spatio-temporal modes resembling
important coherent structures, such as the near-wall (NW) re-generation cycle and
VLSMs. Details of the resolvent analysis are provided in § 2.1 below.

Previous studies have demonstrated that the resolvent formulation captures many of
the key statistical and structural features of wall turbulence (see e.g. McKeon, Jacobi
& Sharma 2013; Moarref et al. 2013; Sharma & McKeon 2013). In addition, the
resolvent formulation is also emerging as a powerful tool for the analysis of specific
control techniques for skin friction reduction. For example, Luhar, Sharma & McKeon
(2014) investigated the effect of opposition control in turbulent pipe flow, while Luhar,
Sharma & McKeon (2015) and Luhar, Sharma & McKeon (2016) studied the effect
of compliant surfaces in turbulent channel flow. These studies demonstrated that the
resolvent analysis is able to reproduce trends observed in DNS and LES with minimal
computation (although there are quantitative differences).

The present work is an extension of the study carried out by Luhar et al. (2014):
we investigate the effect of suboptimal control on coherent structures. The remainder
of this paper is organized as follows. Outlines of the resolvent analysis and the
suboptimal control theory proposed by Lee et al. (1998) are presented in § 2. The
effect of suboptimal control on modes resembling the NW cycle and VLSMs is
considered in § 3. Further discussion is presented in § 4. In particular, we compare
the present results with those obtained in previous DNS. We also compare and
contrast the effects of suboptimal control and opposition control within the resolvent
framework. Finally, conclusions are drawn in § 5.

2. Approach
2.1. Resolvent analysis

In this section, we briefly review the resolvent formulation proposed by McKeon &
Sharma (2010) and the procedure used by Luhar et al. (2015). The problem under
consideration is a fully developed incompressible turbulent channel flow governed by
the continuity equation and Navier–Stokes equation, i.e.

∇ · u= 0, (2.1)
∂u
∂t
=−∇p− u · ∇u+

1
Reτ
∇

2u, (2.2)
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where u = [u v w]T represents the velocity with u, v and w being the streamwise
(x), wall-normal (y) and spanwise (z) components, p is the pressure, t is the time
and Reτ = u]τh

]/ν] is the friction Reynolds number, Here, the quantities are made
dimensionless using the channel half-width h] and the friction velocity u]τ . Note that,
a superscript ] represents dimensional variables and a superscript + is used to denote
normalization with respect to u]τ and the kinematic viscosity ν].

For a fully developed turbulent channel flow, the velocity and pressure fields can
be expressed as a superposition of Fourier modes with streamwise wavenumber kx,
spanwise wavenumber kz and temporal frequency ω:[

u(x, y, z, t)
p(x, y, z, t)

]
=

∫ ∫ ∫
∞

−∞

[
uk(y)
pk(y)

]
ei(kxx+kzz−ωt)dkx dkz dω, (2.3)

where i = (−1)1/2 and [ukpk]
T
= [ukvkwkpk]

T are Fourier coefficients for the
velocity and pressure fields, which vary in the non-homogeneous y direction. Each
wavenumber–frequency combination k= (kx, kz, ω) (or wavenumber–propagating speed
combination k = (kx, kz, c)) indicates a flow structure with streamwise wavelength
λx = 2π/kx and spanwise wavelength λz = 2π/kz propagating downstream at speed
c=ω/kx.

Based on this Fourier transformation, at each k, we can express the Navier–Stokes
equations for turbulent channel flow as

∇k · uk = 0, (2.4)
(−iω+ ikxU)uk + (∂U/∂y)vkex +∇pk − Re−1

τ ∇
2
k uk = f k. (2.5)

Here, ∇k= [ikx ∂/∂y ikz]
T and ∇T

k represent the gradient and divergence operators, and
f k= (−u ·∇u)k represents the Fourier transformed nonlinear term. U(y) represents the
mean velocity profile.

These equations can be rearranged into the following forcing–response (or input–
output) relationship:[

uk
pk

]
=

(
−iω

[
I

0

]
−

[
Lk −∇k
∇

T
k 0

])−1 [I
0

]
f k (2.6)

= Hk︸︷︷︸
resolvent operator

f k, (2.7)

where

Lk =

−ikxU + Re−1
τ ∇

2
k −(∂U/∂y) 0

0 −ikxU + Re−1
τ ∇

2
k 0

0 0 −ikxU + Re−1
τ ∇

2
k

 , (2.8)

∇
2
k =−k2

x − (∂
2/∂y2)− k2

z . (2.9)

Here, the nonlinear term f k is identified as a forcing term to the linear Navier–Stokes
system and the resolvent operator Hk, which depends on the linear operator Lk,
translates this forcing into a velocity and pressure response: [uk pk]

T.
A singular value decomposition (SVD) of the resolvent operator Hk identifies an

ordered set of orthonormal forcing and response modes for each wavenumber–speed
combination k under an L2 energy norm:

Hk =
∑

m

uk,mσk,m f k,m
∗. (2.10)
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Forcing Forcing

Response Response

t t

t t

FIGURE 1. A conceptual illustration of the resolvent analysis.

where

σk,1� σk,2 > · · ·>σk,m > · · ·> 0, (2.11)∫ 1

−1
f ∗k, l f k,m dy= δlm, (2.12)∫ 1

−1
u∗k,luk,m dy= δlm. (2.13)

Here, δ denotes the Kronecker delta and a superscript of ∗ denotes the complex
conjugate.

From (2.10)–(2.13), it is evident that the mth forcing mode yields the mth
velocity–pressure response mode, amplified by the singular value σk,m, as conceptually
illustrated in figure 1. For instance, forcing f k,1 leads to a response σk,1[uk,1 pk,1]

T.
It is worth noting that for k combinations relevant to real flows the resolvent
operator is often low rank: the first singular value tends to be much larger than
the rest (2.11). In other words, the first singular mode (rank-1 mode) is expected to
dominate the turbulent flow field. Indeed, previous studies (McKeon & Sharma 2010;
McKeon et al. 2013; Moarref et al. 2013) have shown that models based on this
rank-1 approximation yield predictions for turbulent statistics and coherent structure
consistent with observations. Following these findings, Luhar et al. (2014) and Luhar
et al. (2015) consider only these rank-1 modes to analyse the effect of control on
wall turbulence. Similarly, we only consider rank-1 modes and singular values at each
k in the remainder of this manuscript: [uk pk]

T
= [uk,1 pk,1]

T and σk = σk,1.
Note that the resolvent analysis procedure presented in (2.6)–(2.13) does not

consider just the linearized Navier–Stokes equations. The analysis assumes that the
nonlinearity supports the base flow (i.e. the mean velocity profile in the resolvent
operator) via the mean Reynolds stress, and forces the fluctuating velocity and
pressure responses via the time-varying Reynolds stresses. Consistent with the
findings of Kim & Lim (2000), this means that a complete quantitative description
of the turbulent velocity and pressure fields requires knowledge of the nonlinear
interaction between modes. However, even without this information, the resolvent
framework permits analysis of control techniques on a mode-by-mode basis, in a
forcing-normalized sense. This is discussed in greater detail in § 2.3.
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Detection plane
(Opposition control)

Streamwise vortex

Blowing Suction

Wall

Detection plane
(Suboptimal control)

y

z

FIGURE 2. Schematic of the suboptimal control method.

2.2. Suboptimal control laws
As shown in figure 2, the opposition control technique proposed by Choi et al. (1994)
generates blowing and suction at the wall to oppose the wall-normal velocity measured
at a ‘virtual detection plane’ located above wall in order suppress the quasi-streamwise
vortices associated with the NW cycle. At low Reynolds numbers, this yields more
than 20 % drag reduction in DNS.

Recognizing that the requirement of sensor information away from the wall may
be impractical, Lee et al. (1998) sought to develop control laws similar to opposition
control that only required sensor information at the wall, i.e. the shear stress or
pressure. These control laws were determined by analytical solutions that minimized
physically intuitive cost functions for discretized versions of the governing equations.
Based on observations that opposition control led to an enhancement of the fluctuating
spanwise shear stress at the wall, the following cost function was used for the case
where (∂w/∂y)w was used as the sensed quantity,

JSP(φ)=
`

2A1t

∫
S

∫ t+1t

t
φ2 dt dS−

1
2A1t

∫
S

∫ t+1t

t

(
∂w
∂y

)2

w︸ ︷︷ ︸
spanwise wall–shear

dt dS. (2.14)

Here, φ represents the wall-normal velocity at the wall used as the control input, A
is the area of wall, 1t is the short time span for optimization and ` is the relative
cost of the actuation. The derived control law was expressed in the Fourier domain
as

φk = α
ikz

K

(
∂wk

∂y

)
w

, (2.15)

where K = (k2
x + k2

z )
1/2 and α is a coefficient determining the blowing and suction

magnitude. Lee et al. (1998) carried out DNS of channel flow at Reτ = 110,
and obtained 22 % drag reduction using this control law. For the case where the
streamwise wall shear (∂u/∂y)w was used as the control input, the control law,
derived using the same procedure as (2.15), was expressed as

φk =−α
ikx

K

(
∂uk

∂y

)
w

. (2.16)
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However, the friction drag was reported to increase with this control law. Note that,
for both cases, the magnitude of the blowing and suction (α) was tuned to ensure that
the root-mean-square value (r.m.s.) of φ matched the r.m.s. of the wall-normal velocity
at y+ ≈ 10.

In this paper, we assess the suboptimal control laws shown in (2.15) and (2.16),
which are hereafter denoted as Case SP and Case ST, respectively. The effect of
suboptimal control is included in the resolvent operator Hk as a boundary condition
for the upper (y=+1) and lower (y=−1) walls. The no-slip condition is employed for
the uncontrolled case. The complete boundary conditions for the suboptimal control
laws at a wavenumber–speed combination k are expressed as follows:

[Case SP] : (uk)w = (wk)w = 0, (vk)w = φk = α
ikz

K

(
∂wk

∂y

)
w

, (2.17a,b)

[Case ST] : (uk)w = (wk)w = 0, (vk)w = φk =−α
ikx

K

(
∂uk

∂y

)
w

. (2.18a,b)

Finally, it is worth mentioning that the blowing and suction magnitude α is essentially
a length scale (i.e. α+ = αReτ ).

2.3. Resolvent-based assessment of suboptimal control
As mentioned in §§ 2.1 and 2.2, we follow the procedure used by Luhar et al. (2015)
to assess how suboptimal control affects resolvent modes that serve as models for
the dynamically important coherent structures. In the framework of resolvent mode
analysis, there are two primary measures to assess the effectiveness of control. The
first measure is the forcing–response gain, i.e. the singular value σk, itself. If the
singular value in the controlled case decreases relative to that in the no-control case,
the mode is suppressed by the control; if it increases, the mode is amplified. The
second measure is the Reynolds shear stress contribution (Luhar et al. 2015):

Rk =

∫ 1

−1
σ 2

k Re(uk
∗vk)(+y) dy, (2.19)

(where Re(··) denotes the real component), which is based on the Fukagata–
Iwamoto–Kasagi (FIK) identity (Fukagata et al. 2002). Note that (2.19) represents a
forcing-normalized quantity; it assumes that the velocity response at a wavenumber–
propagating speed contribution k is given by σkuk.

Of course, both these measures neglect the effect of control on the nonlinear
forcing term, which arises from mode–mode interactions. As noted in § 1.2, while
linear mechanisms are essential for maintaining near-wall turbulence, the nonlinear
term plays an important role in the formation of the near-wall cycle (e.g. Kim &
Lim 2000). However, due to its conservative nature, the nonlinear term does not
dissipate or generate turbulent kinetic energy, but merely serves to transfer energy
across spectral space. Turbulent kinetic energy is generated via the action of the
vertical fluctuating velocity on the mean shear vk(dU/dy) (e.g. Chernyshenko & Baig
2005); this is a linear mechanism that is captured by the resolvent operator as shown
in (2.6)–(2.9). In other words, energy transfer from the mean flow to the turbulence
is reflected in the forcing–response gain singular value σk. Therefore, the conservative
nature of the nonlinearity suggests that if a control technique suppresses singular
values and Reynolds stress contributions across spectral space, then it is likely to be
effective in suppressing turbulence regardless of nonlinear effects.
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2.4. Numerical details
The Chebyshev collocation method (Weideman & Reddy 2000) is used for discreti-
zation in the wall-normal direction. The mean velocity profile U(y) in the linear
operator Lk (in the resolvent operator Hk) is obtained by using the turbulent viscosity
model proposed by Reynolds & Tiederman (1967). To test whether the exact form
of the mean profile led to a substantial difference in results, we also repeated the
analysis for a limited subset of modes with uncontrolled and controlled (for Case
SP) mean profiles obtained in DNS. The results obtained using the mean profiles
from DNS were in good agreement with the results obtained using the mean profile
computed using the eddy viscosity model. For example, singular values with and
without control changed by less than 6 % for modes resembling the near-wall cycle.
These results suggest that the model predictions reported below are not very sensitive
to the exact form of the mean velocity profile.

Luhar et al. (2015) conducted the resolvent mode analysis in the lower half-channel
only to avoid the so-called pairing (Moarref et al. 2013) and to make the computation
more efficient. In turn, one must carefully specify the symmetry of each mode. In the
present study, in contrast, we compute the whole channel to avoid this complexity.
We have confirmed excellent agreement for rank-1 modes (which are of interest in
the present work) in the uncontrolled case between the results computed in the whole
channel and the half-channel using the user-specified symmetry.

Investigation on the grid number (N) dependency in the uncontrolled case showed
that the relative error of the Reynolds shear stress contribution Rk between the cases
with N = 240 (= 2× 120) and N = 1000 (2× 500) was of the order of 10−4 per cent.
Further, for the controlled case, the relative difference of Rkc/Rk0 between N = 240
and N= 1000 depends on the blowing and suction magnitude α+: the difference is of
the order of 0.1 %, approximately 1 % and 2 % for α+ = 1, 10 and 100, respectively.
Therefore, we use N= 240 and N= 400 in the rest of the paper. We use N= 400 only
when we plot the wall-normal profiles (e.g. figure 4). Note that this is comparable to
typical DNS resolutions for Reτ <O(1000).

3. Results
In the present study, we focus on how control affects resolvent modes resembling

the near-wall coherent structure (NW cycle) and VLSMs. As mentioned in § 1.2, the
dynamic importance of these structures has been highlighted in many previous studies,
which suggests that targeting such modes is central to the development of effective
control.

Following prior resolvent-based analyses (McKeon & Sharma 2010; McKeon et al.
2013; Sharma & McKeon 2013; Luhar et al. 2015), we consider the wavenumber–
propagating speed combination k = (kx, kz, c+) ≈ (12, 120, 10) at Reτ = 2000 or
k = (kx, kz, c+) ≈ (0.66, 6.6, 10) at Reτ = 110, corresponding to wavelengths
λ+x = 2πReτ/kx ≈ 103 and λ+z = 2πReτ/kz ≈ 102, as the modes that represent the
near-wall cycle (NW modes). Note that k+z >0 represents oblique waves that propagate
in the positive z direction, while k+z < 0 represents oblique waves that propagative in
the negative z direction. Apart from this directionality, both modes are structurally
similar due to the spanwise homogeneity of the flow.

To capture the dynamics of VLSMs, we consider the wavenumber–propagating
speed combination k= (kx, kz, c+)≈ (1, 10, 16) at Reτ = 2000. This mode represents
flow structures with λ+x ≈ 6h+, λ+z ≈ 0.6h+, and a propagation speed approximately
two thirds of the centreline velocity. These length and velocity scales were chosen
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FIGURE 3. Relationship between the blowing and suction magnitude α+ and the ratio of
controlled to uncontrolled cases for NW modes: (a) singular value σkc/σk0; (b) Reynolds
shear stress contribution Rkc/Rk0. Solid lines, Case SP (Reτ = 2000); dashed lines, Case
ST (Reτ = 2000). Triangle, Case SP (Reτ = 110); circle, Case ST (Reτ = 110).

based on previous experimental measurements and modelling results. For example,
the boundary layer measurements made by Hutchins & Marusic (2007a) showed the
presence of a local peak in the streamwise velocity spectrum for structures of length
λx ≈ 6h near wall-normal location y ≈ 0.06h at Reτ = 1910. Resolvent modes tend
to localize near their critical layer, which is defined as the location where the mode
speed matches the local mean velocity (McKeon & Sharma 2010). For propagation
speed c+ = 16, this corresponds to y+c ≈ 105, or yc/h≈ 0.05 at Reτ = 2000.

3.1. Effect of control on the near-wall modes
First, we focus on the NW modes. Figure 3 shows the relationship between the
blowing and suction magnitude α+ and ratio of controlled to uncontrolled singular
values (figure 3a) and Reynolds shear stress contributions (figure 3b). Consistent with
previous studies (Luhar et al. 2014, 2015), there is close correspondence between
the singular value and the Reynolds shear stress contribution. Solid lines in figure 3,
which represent Case SP (i.e. control based on spanwise shear) at Reτ = 2000,
show that the maximum reduction of σk is achieved at α+ ≈ 2 (σkc/σk0 ≈ 0.61,
Rkc/Rk0 ≈ 0.40), maximum reduction of Rk is achieved at α+ ≈ 4 (σkc/σk0 ≈ 0.72,
Rkc/Rk0≈0.35) and drag increases for α+>101. Case ST (control based on streamwise
shear; dashed lines) shows drag reduction too, but there is little dependency on
blowing and suction magnitude α+ once the effects of control become significant
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(α+ > 101). Surprisingly, Case ST was reported to increase the drag in DNS at
Reτ = 110 by Lee et al. (1998). We will discuss this discrepancy in detail in § 4.1.2.

Note that there is close correspondence between the lines and the markers (triangle
or circle) in figure 3, which suggests that the predictions are not very sensitive to
Reynolds numbers, at least within the range tested (Reτ = 110–2000). In other words,
the effect of control on the NW coherent structures does not change with increasing
Reτ . At first glance, this appears to contradict many previous studies which show that
control performance deteriorates with Reynolds number. However, as discussed in later
sections (see §§ 4.1.3 and 3.4), the deterioration in performance may be attributed
to the fact that as Reynolds number increases, additional regions of spectral space
become energetic, where control can have a harmful influence.

For both cases, the ratios σkc/σk0 and Rkc/Rk0 approach a constant value as α+
increases in the figure 3. This is simply because the dynamics associated with the
(large) feedback component dominates over the dynamics emerging from the original
(uncontrolled) resolvent operator as α+ increases. In other words, for low α+, the
blowing and suction interacts with and modifies the natural dynamics of the flow.
However, for high α+, blowing and suction overwhelms the natural dynamics. The
magnitude of α+ that effectively suppresses NW coherent structures is discussed
further in § 4.1.1.

Based on the trends observed in figure 3, we focus on values of α+ for Case SP
at Reτ = 2000 that show salient behaviour (i.e. maximum drag reduction/increment)
and consider the effect of control on mode structure. Figure 4 shows the profile of
velocity amplitudes and Reynolds shear stress. The effects of control start to appear
at α+ = 0.44. For this case, the peak of controlled wall-normal velocity (|vkc|) is a
little larger than that for the uncontrolled case (see figure 4a,b). At the same time, the
well-known ‘virtual wall’ starts to form, which mitigates vertical momentum transport
and reduces the effect of linear coupling (Kim & Lim 2000). Here, the presence of
virtual wall is indicated by the sudden fall of the magnitude of wall-normal velocity.
Maximum suppression of singular value is attained at α+=2.0, at which point, we can
clearly observe the establishment of a virtual wall. The peak location of streamwise
velocity is shifted above the critical layer y+c , where the mode speed matches the local
mean velocity U+(y+c ) = c+ (figure 4c). Despite the strong suppression of singular
value, the normalized Reynolds shear stress increases relative to the uncontrolled case
(figure 4d). However, the Reynolds shear stress contribution, as defined in (2.19), is
suppressed because it is proportional to σ 2

k . The Reynolds shear stress contribution is
suppressed most at α+= 4.0. For this case, we can observe a virtual wall-like velocity
drop at y+ ≈ 10 (figure 4e, f ) and the wall-normal velocity at the wall (i.e. control
input) is as high as the peak value. The peak normalized Reynolds shear stress is also
substantially lower. Based on these observations, we suggest that the effect of Case SP
is essentially similar to that of opposition control. Note that the controlled streamwise
velocity is shifted further toward the wall as the actuation amplitude increases from
α+ = 2.0 to α+ = 4.0: we discuss this point further in § 4.2. Figure 4(g,h) shows
velocity and Reynolds stress profile for the case of drag increment at α+ = 102; the
peak locations of controlled streamwise velocity and Reynolds shear stress are shifted
toward the wall, from which we can assume more shear stress is generated at the wall
when the control is applied. This is also consistent with our earlier observation that,
for large blowing and suction, the natural dynamics of the mode is overwhelmed by
the actuation.

Figure 5 shows predicted velocity fields in the spanwise wall-normal plane. Here,
the velocity structure includes contributions from both oblique modes (kz > 0 and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

51
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.519


Assessment of suboptimal control by resolvent analysis 507

5 10

20

40

60

80

0

20

40

60

80

0
10 2–1–2

5 10

20

40

60

80

0

20

40

60

80

0
10 2–1–2

5 10

20

40

60

80

0

20

40

60

80

0
10 2–1–2

5 10

20

40

60

80

0

20

40

60

80

0
10 2–1–2

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

FIGURE 4. Profiles showing wall-normal variations in structure for resolvent modes
resembling the NW cycle at Reτ = 2000: (a,c,e,g) amplitude of streamwise velocity
(black lines) and wall-normal velocity (grey lines); (b,d, f,h) Reynolds shear stress. Dashed
lines, uncontrolled; solid lines, controlled (Case SP). (a,b) α+ = 0.44; (c,d) α+ = 2.0;
(e, f ) α+ = 4.0; (g,h) α+ = 102. Black horizontal line indicates the location of critical
layer, y+c ≈ 16.

kz < 0). Note that these figures show the cross-section where the magnitude of the
streamwise velocity is maximum: since the resolvent formulation yields periodic flow
structures, maxima and minima occur at intervals of λ+x /2 in the streamwise direction.
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FIGURE 5. (Colour online) Velocity structure for NW modes in the spanwise wall-normal
plane at Reτ = 2000: (a,c,e,g) wall-normal velocity amplitude; (b,d, f,h) wall-normal and
spanwise velocity field. (a,b) no control; (c,d) α+= 2.0; (e, f ) α+= 4.0; (g,h) α+= 102.
The horizontal dashed lines show the critical layer location, y+c ≈ 16.

Figure 5(a,b) shows the uncontrolled case. The presence of periodic sweeps and
ejections and counter-rotating streamwise vortices is consistent with known features of
the NW cycle, confirming that this resolvent mode serves as a useful model for these
dynamically important coherent structures. For control with α+ = 2.0 (figure 5c,d), a
virtual wall (v≈ 0) is clearly observed at y+≈ 10 in accordance with figure 4(c). On
the other hand, figure 5(e, f ) reveals that a virtual wall-like velocity drop observed
in figure 4(e) was not a virtual wall, even though this case (α+ = 4.0) corresponds
to the maximum reduction of Reynolds shear stress contribution: we discuss this
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FIGURE 6. Relationship between the blowing and suction magnitude α+ and drag
contribution of the mode resembling VLSMs at Reτ = 2000. Black lines, Case SP; grey
lines, Case ST. Solid lines, σkc/σk0; dashed lines, Rkc/Rk0.

point further in § 4.2. Figure 5(g,h) shows the case where performance deteriorates
(α+= 102). Due to the strong blowing and suction, the magnitude of the wall-normal
velocity is highest at the wall and structure in the spanwise wall-normal plane
suggests that the quasi-streamwise vortices are partially ‘absorbed’ into the wall.

3.2. Effect of control on the very-large-scale motions
Next, we investigate the effect of suboptimal control on resolvent modes resembling
VLSMs. Figure 6 shows the relationship between the blowing and suction magnitude
α+ and the two ratios that quantify the effect of control, i.e. the singular value ratio
σkc/σk0 and the ratio of Reynolds shear stress contribution Rkc/Rk0. For Case SP (black
line), Rkc/Rk0 increases after the control effect appears at α+ > 10−1 and reaches a
maximum value at α+ = 7.0. As α+ increases further, Rkc/Rk0 begins to decrease.
Large reduction of Rk (≈50 %) is achieved for α+ ≈ 102. These observations contrast
sharply with the α+ dependence observed for the NW modes. For similar values of
α+, suboptimal control seems to have the opposite effect on modes resembling the
VLSMs compared to modes resembling the NW cycle. This is discussed in greater
detail below. Note that Case ST (black line) leads to a monotonic increase in the
Reynolds shear stress contribution, and there is little dependence on the magnitude
of blowing and suction above α+ > 101.

Figure 7 shows wall-normal profiles of each velocity component for VLSM-type
modes at Reτ = 2000 for (i) the uncontrolled case, (ii) Case SP with blowing and
suction amplitude α+ = 7, which leads to an increase and drag, and (iii) Case SP
with α+ = 102, which leads to a drag decrease. Figure 8 shows the velocity structure
associated with this mode in the y–z plane (cf. figure 5 for the NW modes). As
expected, the peak of the streamwise velocity is located slightly above the critical
layer y+c ≈ 105 for this mode (uncontrolled case in the figure 7a,c). As shown in
figure 8(a), the flow structure associated with this mode comprises velocity fields that
are periodic over the prescribed length scales λ+x ≈ 6h+ and λ+z ≈ 0.6h+, and give rise
to large streamwise roll cells. Although the wall-normal velocity associated with this
mode is much smaller than the streamwise velocity, the motions are clearly active in
the sense that they contribute Reynolds shear stress (uncontrolled case in figure 7a,b).
All of these characteristics are consistent with previous studies (e.g. Hutchins &
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FIGURE 7. Wall-normal profiles for VLSM-type modes at Reτ = 2000: (a,c) amplitude
of streamwise velocity (black lines) and wall-normal velocity (grey lines); (b,d) Reynolds
shear stress. Dashed lines, no control; solid lines, controlled. (a,b) α+ = 7.0; (c,d) α+ =
102. Black horizontal line shows the location of critical layer, y+c ≈ 105.

Marusic 2007a; Smits et al. 2011), confirming that this large-scale resolvent mode
can serve as a useful model in the evaluation of flow control for VLSMs.

In figure 7(a,b), for which the Rk increment is maximum (i.e. α+≈ 7), the profiles
of velocities amplitude and Reynolds shear stress remain nearly unchanged near
and above the critical layer, although a virtual wall looks to be formed near the
wall (y+ ≈ 50). This observation suggests that there is little control effect near and
above the critical layer (y+c ≈ 105), which is the region considered important for drag
reduction since localization around the critical layer leads to high singular values.
Instead, blowing and suction simply generate additional turbulence near the wall. This
is also evident in the predicted flow structure shown in figure 8(b). For the case where
large Rk reduction is observed (α+= 102), the peak magnitudes of the streamwise and
wall-normal velocity are shifted towards the wall (figure 7c). Further, the normalized
Reynolds shear stress is successfully suppressed near the critical layer, indicating a
change in the phase relationship between the streamwise and wall-normal velocity
components, but amplified close to the wall (figure 7d). From these observations, it
can be postulated that effective control for VLSMs suppresses the Reynolds shear
stress near, or above, the critical layer. Figure 8 shows that, for both α+ = 7 and
α+= 102, blowing and suction lead to the generation of a strong wall-normal velocity
field that extends to y+6 30. For conditions in which drag is reduced (i.e. α+= 102),
the wall-normal velocity close to the critical layer is suppressed, and the streamwise
roll cells are substantially weakened (figure 8c).
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FIGURE 8. (Colour online) Velocity structure for VLSMs in the spanwise wall-normal
plane at Reτ = 2000: contour, wall-normal velocity amplitude; arrows, wall-normal and
spanwise velocity field. (a) no-control; (b) α+= 7; (c) α+= 1× 102. The horizontal dashed
lines show the critical layer location, y+c ≈ 105.

As noted earlier, for a given value of α+, suboptimal control has the opposite effect
on NW modes and VLSMs. Together, the model predictions from §§ 3.1 and 3.2
suggest the following interpretation. For weak blowing and suction with α+ < 1,
control effectively suppresses structures located very close to the wall (figure 4a) but
has little effect on larger-scale structures resembling VLSMs present far from the wall.
For moderate values of blowing and suction, α+ ≈ 1–7, control suppresses the NW
modes further but leads to harmful effects on larger-scale modes, i.e. the generation
of additional turbulence near the wall. Finally, powerful blowing and suction (e.g.
α+ ≈ 100) successfully suppress modes resembling the VLSMs, but overwhelms
structures close to the wall (see figures 5h and 7d).

Recall that the design parameter α+ is essentially a length scale that translates the
sensed wall shear stress into a blowing and suction velocity. As a result, it is not
altogether surprising that large values of α+>O(10) are required to effectively interact
with modes resembling VLSMs whose critical layer is located at y+c ≈ 105, while
smaller values of α+ = O(1) are sufficient for modes resembling the near-wall cycle
with critical layer location y+c ≈ 16. Unfortunately, this also suggests that, for control
to be effective across spectral space, a value of α+ that varies with mode speed (or
critical layer location) may be required. We consider such mode speed effects in the
following section.

3.3. Effect of propagation speed
In this section, we investigate the effect of propagation speed c+ to provide further
insight into the effects of suboptimal control. Since high-gain resolvent modes
tend to localize near the critical layer (McKeon & Sharma 2010), for modes with
identical wavelengths, an increase in propagation speed also indicates an increase
in the distance from the wall, where the sensing and actuation take place. Figure 9
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FIGURE 9. (Colour online) The normalized change in the Reynolds shear stress
contribution relative to the uncontrolled case as a function of blowing and suction
magnitude α+ and propagation speed c+ for resolvent modes with length scales
comparable to the NW cycle at Reτ = 2000. (a) Case SP; (b) Case ST.

shows the normalized change of the Reynolds shear stress contribution relative to
the uncontrolled case as a function of blowing and suction magnitude α+, for modes
with similar length scales as the near-wall cycle, (λ+x , λ

+

z )≈ (103, 102), but different
propagation speeds. Since the energetic contribution of structures with convection
velocities larger than channel centreline U+CL is known to be negligible in real
turbulent flows, in the present study we focus on the modes with 0< c+ 6 U+CL. For
reference, the centreline velocity obtained using the eddy viscosity model proposed
by Reynolds & Tiederman (1967) is U+CL = 23.8 at Reτ = 2000.

For Case SP, figure 9(a) suggests that large drag reduction (1− (Rkc/Rk0)≈ 0.5) can
be achieved at low magnitudes of blowing and suction for modes with low propagation
speeds, especially in the ranges 6 6 c+ 6 11 and 1 × 100 6 α+ 6 4 × 100 (A in
the figure). In contrast, there is a significant increase in the Reynolds shear stress
contribution from slower modes with c+612 when the blowing and suction magnitude
becomes larger, α+ > 101. For the fast propagating modes (c+ > 15), there is little or
no control effect.

For Case ST, figure 9(b) shows an approximately 40 % drag reduction for slow
propagating modes with c+ 6 12 when the blowing and suction magnitude is strong
(α+ > 101; C in the figure), while drag increases for α+ 6 3 × 100 and c+ 6 5.
In addition, modes with c+ ≈ 12–14 show drag increment over the entire range
of blowing and suction magnitude studied in the present study. For even faster
propagating modes with c+ > 15, there is little or no control effect, similar to Case
SP (figure 9a).

For this wavenumber–frequency combination, previous studies (McKeon & Sharma
2010; Luhar et al. 2014) classify slower-moving modes with c+ 6 10 as being
‘attached’ to the wall since the peak wall-normal velocity associated with these
modes is located at a roughly fixed position (20 6 y+ 6 30). On the other hand, as
the propagation speed increases to c+> 10, the location of peak wall-normal velocity
shifts away from the wall and tracks the critical layer, where U+(y+c ) = c+. These
faster-moving modes are termed ‘critical’ modes, and can be further classified into
‘attached critical’ or ‘detached critical’ depending on whether they have a substantial
velocity signature in the near-wall region. Luhar et al. (2014) reported that wall-based
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FIGURE 10. Wall-normal profiles for length scales comparable to the NW cycle with
faster propagating speed c+ = 13.5 at Reτ = 2000: (a) amplitude of streamwise velocity
(black) and wall-normal velocity (grey); (b) Reynolds share stress. Dashed lines, no
control; solid lines, Case SP at α+≈ 5× 101. The horizontal dashed lines show the critical
layer location, y+c ≈ 39.

control can be effective for attached modes but not necessarily for detached critical
modes. Further, the transition region from attachment to criticality often tends to be
harmful to control performance.

With these arguments in mind, the present results can be reviewed as follows.
Suboptimal control has little effect on detached critical modes far from the wall
(c+ > 15), while strong effects (both good and harmful) can be seen for attached
modes. In addition, similar to Luhar et al. (2014), the transition from attached to
critical behaviour leads to a reversal in the control effect; sudden drag reduction
(figure 8a) or temporary drag increment (figure 8b) is observed in the range of mode
transition (c+ ≈ 12–15).

For modes with length scales comparable to the NW cycle, the present analysis
shows that large Reynolds shear stress reductions are observed for α+ > 3× 101 and
c+ ≈ 13–14 (B in figure 9a). However, the normalized change in singular values,
1 − (σkc/σk0)

2, shows further amplification in this region. In other words, the two
measures used to evaluate control efficacy in this study show contradictory behaviour
for this range of α+ and c+ (elsewhere, they are in good agreement). To provide
further insight into this inconsistency, we consider how control under Case SP
with α+ = 50 affects rank-1 mode structure for wavenumber–frequency combination
(λ+x , λ

+

z , c+)≈ (103, 102, 13.5). Figure 10 shows that control leads to the development
of a large near-wall peak in velocity and Reynolds stress (y+ < 10), and a significant
suppression around the critical layer, y+c ≈ 39. This observation suggests that, for
region B, large-amplitude blowing and suction changes the structure of the rank-1
response mode completely compared to the uncontrolled case. Unlike the results
shown in figure 4 for lower-amplitude blowing and suction, the rank-1 mode is not
a modified version of the uncontrolled mode. Further, the first singular value under
control is not significantly larger than subsequent singular values (i.e. σkc,1/σkc,3≈ 1.4,
while σk0,1/σk0,3 ≈ 4.1). Thus, we suggest that for modes that are transitioning from
being attached to detached, large values of α+ weaken the rank-1 approximation, and
trigger a ‘new’ kind of amplified flow structure close to the wall without influencing
the original mode. The magnitude of α+ that leads to effective suppression of NW
modes is discussed further in § 4.1.1.
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FIGURE 11. (Colour online) The normalized change in the Reynolds shear stress
contribution relative to the uncontrolled case as a function of blowing and suction
magnitude α+ and propagation speed c+ for modes with length scales similar to VLSMs
at Reτ = 2000. (a) Case SP; (b) Case ST.

Figure 11 shows the normalized change of the Reynolds shear stress contribution
for resolvent modes with similar length scales to the VLSMs, (λ+x , λ

+

z )≈ (0.6h+, 6h+)
at Reτ = 2000, for varying c+ and α+. For Case SP, figure 11(a) shows beneficial drag
reduction is achieved at slow propagation speeds (c+< 14) for 10−1 6 α+6 100 (D in
the figure). As blowing and suction amplitude increases (α+ > 2× 100), a significant
drag increment is observed. In contrast, for slightly higher speeds (c+ ≈ 14–16), drag
reduction is observed over a wide range of blowing and suction magnitude, α+> 101

(E in the figure). For critical modes with 16 6 c+ 6 20, significant drag increases are
predicted over a wide range of blowing and suction magnitude.

A comparison of figures 9(b) and 11(b) shows that Case ST has a similar effect
on both the VLSM- and NW-type modes. The major difference is that the preferable
control effect (i.e. drag reduction) is observed over a wider range of propagation
speeds: c+6 15 (F in figure 11b) compared to c+6 12 in figure 9(b). This difference
is explained by the fact that modes with larger streamwise and spanwise length scales
also tend to have a larger wall-normal footprint (Luhar et al. 2014). As a result, the
transition from attachment to criticality occurs at a higher propagation speed: c+≈ 15
for modes with length scales similar to the VLSMs, compared to c+ ≈ 12 for modes
with length scales comparable to the NW cycle.

3.4. Effect of control in spectral space
Up to here, we have discussed the effect of suboptimal control on modes resembling
typical coherent structures in wall turbulence (§§ 3.1 and 3.2), considered the effect
of phase speed c+ (§ 3.3) and confirmed that control can lead to drag increment as
well as reduction. Next, we consider the effect of control across wavenumber space.
For a given wavenumber combination (kx, kz) corresponding to wavelength (λ+x , λ

+

z ),
real turbulent flows are likely to involve many frequency components (i.e. many
propagation speeds c). To account for this effect, we assume that the forcing for
the resolvent operator is broadband over wave speed (Moarref et al. 2013). More
specifically, we assume that there is unit forcing over the range of mode speeds
0 6 c 6 1, where c is normalized by the centreline velocity, and predict the effect of
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FIGURE 12. (Colour online) Normalized change of squared singular value relative to the
uncontrolled case at Reτ = 2000: (a) Case SP (α+ = 2.0); (b) Case ST (α+ = 10).

control on modes with wavelengths in the range of 101 6 (λ+x , λ
+

z ) 6 105 by simply
integrating squared singular values:

σ̃ 2
k (kx, kz)=

∫ 1

0
σ 2

k (kx, kz, c) dc. (3.1)

Note that the broadband forcing assumption does not weight all frequency components
equally. The resolvent operator itself acts as a strong filter on what frequency
components, or mode speeds, are likely to be energetic in real turbulent flows.
For example, only modes around c+ = 10–18 are highly amplified (i.e. have high
σk) for modes with wavelength λ+x ≈ 103 and λ+z ≈ 102. The remaining frequency
components do not contribute significantly to the integrated measure shown above.

Figure 12(a) shows the result for Case SP at α+ = 2.0 (Reτ = 2000). Consistent
with the results presented above, the resolvent analysis predicts large drag reductions
(1 − (σ̃kc/σ̃k0)

2 > 0.3) for λ+x > 103 and λ+z = 3 × 101–3 × 102 (G in the figure),
which is close to the wavenumber set of NW modes, i.e. (λ+x , λ

+

z ) ≈ (103, 102). In
contrast, a slight increase in drag is indicated in the spectral region representative
of VLSMs (H in the figure). Further, the drag reduction effect deteriorates at shorter
spanwise wavelength (λ+z < 3 × 101: I in the figure). Although not shown, we have
also investigated the effect of Case SP with different blowing and suction magnitudes
(α+ = 0.5, 1.0, 4.0 and 10). We have found that as the magnitude of blowing and
suction increases, the region of drag reduction G diminishes, while the harmful region
H widens. Region I, which represents drag increment, does not exist for α+ = 0.5.
However, after this region appears, it becomes wider and wider as blowing and suction
magnitude increases. In other words, the detrimental effects of suboptimal control
at lower spanwise wavelengths increase as the blowing and suction magnitude α+

increases above α+> 0.5. These observations suggest that α+≈ 0.5 represents a good
design choice, since it yields some drag reduction for modes that resemble the NW
cycle but avoids detrimental effects elsewhere in spectral space. Below, we show that
the magnitude of blowing and suction employed in previous DNS (Lee et al. 1998)
corresponds closely to this value.

Figure 12(b) shows the effect of control across spectral space for Case ST at
α+= 10 (Reτ = 2000). Substantial drag reduction (1− (σ̃kc/σ̃k0)

2 > 0.2) is indicated in
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the region corresponding to NW modes (J in the figure). On the other hand, shorter
streamwise wavelengths (λ+x < 102) are adversely affected by the control (K in the
figure). Unlike Case SP, as the magnitude of blowing and suction increases, the
spectral region of drag increment (or drag reduction) does not significantly change in
Case ST. However, the magnitude of the drag increment or reduction becomes larger.
Note that, for modes with relatively long wavelengths (λ+x , λ+z > 103), Case ST has
almost no effect. In other words, Case ST is unlikely to affect modes resembling
VLSMs.

In sum, the above results indicate that suboptimal control has a positive effect
around the wavelengths of the NW modes for Case SP with α+ = 2 and Case ST
with α+ = 10, but a detrimental (Case SP) or negligible (Case ST) effect around
the wavelengths corresponding to VLSMs. At first glance, the fact that Case ST is
predicted to have no detrimental effects on structures resembling VLSMs suggests
that suboptimal control based on the streamwise shear stress may be useful for
application at high Reynolds number. However, in the following section, we show
that Case ST also leads to substantial amplification of structures that are long in the
spanwise direction, which is detrimental to the overall performance of control.

4. Discussion
4.1. Comparison with previous DNS studies

In this section, we compare the present resolvent-based predictions with previous
DNS studies (Lee et al. 1998; Choi & Sung 2002; Iwamoto et al. 2002). To
provide further insight into the difference between Case SP and Case ST, we also
conduct additional channel flow DNS using an in-house code (Fukagata, Kasagi &
Koumoutsakos 2006) for representative values of α+. Briefly, these simulations have
following key properties: the code is based on energy conservative finite difference
method for the channel flow; the time integration is done by using the third-order
Runge–Kutta/Crank–Nicolson scheme; the bulk mean velocity is kept constant and
the friction Reynolds number is Reτ ≈ 180 for uncontrolled flow; the computational
domain is (Lx, Ly, Lz) ≈ (7, 2, 3.5); finally, grid number dependencies for the time
scale and spatial space have been well verified.

4.1.1. Case SP
For a fair comparison between the present predictions and the DNS results, the

parameter α+ should be related to the blowing and suction amplitudes used in the
DNS. In the DNS studies, the root-mean-square value of the control input φ+rms was
kept constant, at a value corresponding to the wall-normal velocity at y+ ≈ 10. In
contrast, the present analysis considers α+ to be a design parameter.

As a first step, we estimate a realistic value for the magnitude α+ for Case SP
based on values of φ+rms from previous DNS studies. As mentioned in § 2.2, suboptimal
control aims to suppress the quasi-streamwise vortices associated NW cycle (this is
generally true for most active control techniques). For the relative long modes
resembling the NW cycle, the streamwise wavenumber is an order of magnitude
smaller than the spanwise wavenumber, kx� kz, such that kz/K ≈ 1 (Lee et al. 1998).
For example, kz/K = 120/

√
122 + 1202 ≈ 0.995 for NW modes at Reτ = 2000 in the

analysis employed here. Assuming kz/K ≈ 1 in (2.15), we can derive the following
relationship between the amplitudes of the control input and the spanwise wall shear
stress: ∣∣φ+k ∣∣' α+ ∣∣(∂w+k /∂y+

)
w

∣∣ . (4.1)
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Reference Reτ R.m.s. of the control input (Case SP)

Lee et al. (1998) 110 φ+rms ≈ 0.155
Iwamoto et al. (2002) 110–650 φ+rms ≈ 0.075–0.125
Choi & Sung (2002) 100 φ+rms ≈ 0.125(optimum)–0.3

TABLE 1. The information of root-mean-square values from previous DNS studies.

Thus, the magnitude of α+ can be estimated from φ+rms and
(
∂w+rms/∂y+

)
w obtained

in DNS. Based on results from the in-house DNS at Reτ = 180 (Fukagata et al. 2006),
the magnitude of the spanwise wall shear stress is estimated to be(

∂w+rms/∂y+
)

w ≈ 0.2, (4.2)

although any database of turbulent channel flow at similar low Reynolds numbers
should yield similar values. As shown in table 1, the blowing and suction amplitude
used in the DNS studies (Lee et al. 1998; Choi & Sung 2002; Iwamoto et al. 2002)
is

φ+rms ≈ 0.1. (4.3)

Combining these two estimates, α+ for Case SP in the DNS studies is approximately

α+ ≈
φ+rms(

∂w+rms/∂y+
)

w

≈
0.1
0.2
= 0.5. (4.4)

The full range of φ+rms employed in previous DNS (0.075–0.3) yields α+ ≈ 0.375–1.5.
As discussed in § 3.4, this range of α+ corresponds closely to the qualitative
optimum where the NW modes are suppressed due to the blowing and suction,
but the damaging effects elsewhere in spectral space are limited. Further, figure 3(b)
indicates that the Reynolds stress contribution from the NW modes is suppressed
by approximately 25 % for Case SP with α+ ≈ 0.5. This is in good agreement with
the 22 % drag reduction obtained by Lee et al. (1998). These observations suggest
that α+ ≈ 0.5 represents a reasonable estimate for the conditions tested in previous
DNS, and that the resolvent analysis is able to successfully reproduce the effects of
suboptimal control based on the spanwise shear stress.

Since the r.m.s. value of φ was set to equal that of the wall-normal velocity at
y+≈ 10 in the original DNS of Lee et al. (1998), as another quantitative comparison,
we attempt to find the value of α+ that leads to |φk| = |vk(y+ = 10)| for the NW
modes. As shown in figure 13(a), |φk|= |vk(y+≈ 10)| when α+= 1.0. This observation
confirms that α+ ≈ 0.5–1.0 represents a reasonable estimate for the conditions tested
in DNS. Importantly, an estimate for α+ also allows us to compare Case SP with
the opposition control of Choi et al. (1994). Figure 13(b) shows that there are many
similarities between Case SP with α+= 1.0 and opposition control with the detection
plane at y+d ≈ 10. The phase of wall-normal velocity is reversed between y+= 10 and
the wall for both Case SP and the opposition control. Namely, φk and vk(y+ = 10)
have opposite signs. These features have also been confirmed in figure 5(c,d) (Case
SP, α+ ≈ 2.0). The trajectory of the phase from y+ = 10 to the wall, however, is
somewhat different: for the opposition control, the phase decreases towards the wall,
while it increases in Case SP. Figure 13(b) also shows that the phase angle between
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FIGURE 13. Profiles showing wall-normal variations in structure for resolvent modes: (a)
amplitude |vk| and (b) phase 6 vk of wall-normal velocity. Dashed lines, uncontrolled; circle
markers, Case SP (α+= 1.0); triangle markers, opposition control (y+d ≈ 10). In (b), phase
of spanwise wall shear stress is also shown: cross, (∂wk0/∂y)w; asterisk, (∂wkc/∂y)w. Each
figure considers NW modes at Reτ = 2000.

the spanwise wall shear stress and the control input is about π/2, although a slight
phase shift is observed from the uncontrolled to controlled, as highlighted by the
arrow annotation. In summary, Case SP can essentially be regarded as a modified
version of opposition control. We will further compare the resolvent-based predictions
of suboptimal control and opposition control in § 4.2.

4.1.2. Case ST
Next, we consider the discrepancy for Case ST between the present study and the

previous DNS. Recall that Lee et al. (1998) observed an increase in drag for Case
ST, while the resolvent-based predictions shown in figure 3 indicate drag reduction.
In addition, figures 9(b) and 11(b) indicate that Case ST has positive effects around
the wavelengths of both NW modes and VLSMs when we consider modes that are
attached (i.e. slow propagating modes).

The key to explaining the discrepancy between DNS and the present analysis for
Case ST is the rise of flow structures that are detrimental to control performance.
As shown in figure 12(b), resolvent analysis suggests that quasi-two-dimensional
structures that are long in the spanwise direction, with streamwise wavelength
λ+x ≈ 102 (region K), are amplified substantially under control. To test whether
such structures emerge in real flows, we conducted DNS using the in-house code
mentioned earlier (Fukagata et al. 2006). Figure 14 shows contours of the control
input (i.e. the blowing and suction) at the lower wall for Case SP with α+ ≈ 1 and
for Case ST with α+≈ 5. Here, the control input is computed using the uncontrolled
velocity field, which corresponds to the control input at the initial time instant when
the control is applied. For Case SP (figure 14a), the velocity contours are long in the
streamwise direction and exhibit alternating regions of positive velocity (i.e. blowing)
and negative velocity (i.e. suction) in the spanwise direction. These qualitative
observations confirm that Case SP targets the quasi-streamwise vortices associated
with the NW cycle. On the other hand, for Case ST (figure 14b), the blowing and
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FIGURE 14. (Colour online) Contours show the snapshot of the control input φ+ at the
lower wall calculated by in-house DNS code (Reτ = 180): (a) Case SP; (b) Case ST.

suction contours are more elongated in the spanwise direction and much shorter in
the streamwise direction. In other words, the control input does not appear to be
targeting or interacting with the NW cycle. Snapshots taken at regular intervals show
that these quasi-two-dimensional structures that are long in the spanwise direction
persist under control based on the streamwise velocity.

As an additional quantitative test, we also generated wavenumber spectra for the
control input (for 1000 snapshots acquired at intervals of t+ ≈ 100). Note that the
distributions of control input, used for the time-average operation, are computed
from different snapshots of uncontrolled (i.e. no-slip condition) DNS field. These
spectra (not shown here) indicated the presence of an energetic peak in the range
of λ+x ≈ 1.5 × 102 – 4 × 102 and λ+z ≈ 3 × 102 – 6 × 102 for Case ST. In contrast,
there was a peak near length scales corresponding closely to the NW cycle for
Case SP, i.e. (λ+x , λ

+

z ) ≈ (103, 102). The length scales for the structures that are
highly actuated initially under Case ST do not correspond exactly to the region
of highest amplification (K) in figure 12(b). However, these results suggest that
streamwise shear-based control sets up a detrimental feedback loop whereby the
actuation preferentially targets structures that are short in the streamwise direction
and long in the spanwise direction (i.e. high kx/kz), which corresponds to the region
of spectral space that exhibits very high amplification under control.

In summary, while suboptimal control based on the streamwise velocity (Case ST)
may suppress the NW cycle, it also leads to the emergence of energetic structures
that are long in the spanwise direction. Such energetic spanwise structures could
be responsible for the drag increase reported in previous studies (Lee et al. 1998).
Further, the present study suggests that it may be possible to reduce drag under
Case ST if the control is applied selectively in spectral space. Specifically, actuation
must be limited to regions of spectral space where the resolvent analysis predicts a
reduction in gain or Reynolds stress (e.g. for wavenumber–frequency combinations
corresponding to the near-wall cycle, as shown in figures 9(b) and 12(b)). Further
simulations that test this hypothesis are currently underway.

4.1.3. Interpretation of Reynolds number effect
Finally, we consider the deterioration of control effect at high Reynolds numbers.

Iwamoto et al. (2002) investigated the effect of suboptimal control (Case SP) at
several friction Reynolds numbers (Reτ = 110, 150, 300, 400 and 650) and
reported that the drag reduction rate decreases with increasing Reτ . Assuming that the
near-wall velocity fluctuations are ideally damped, Iwamoto et al. (2005) also derived
a theoretical expression capturing the Reynolds number dependence of the drag
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reduction rate. According to this theory, the drag reduction rate mildly decreases with
the Reynolds number even if the large-scale structures are not taken into account.
As we have observed in figure 3, the Reynolds number has little influence on the
singular values and the Reynolds shear stress contributions for NW modes in the
range where the drag is predicted to decrease, i.e. 100 6 α+ 6 5 × 100. On the
other hand, as illustrated in figure 6, the singular value ratios and Reynolds stress
contributions for VLSMs in the same range of α+ indicate drag increase. Therefore,
the deterioration of control at high Reynolds numbers is likely due to a combination
of the fundamental Reynolds number effect considered by Iwamoto et al. (2005) and
the detrimental effect of control on longer wavelength structures.

4.2. Comparison with the opposition control
Here, we compare resolvent-based predictions for suboptimal control and opposition
control in turbulent channel flow, focusing on modes resembling the NW cycle at
Reτ = 2000. As mentioned previously, the suboptimal control of Lee et al. (1998)
stems from the opposition control of Choi et al. (1994). Previous DNS and LES
studies of opposition-controlled channel and pipe flows (Hammond, Bewley & Moin
1998; Chang, Collis & Ramakrishnan 2002; Fukagata & Kasagi 2003) report that
maximum drag reduction is achieved when the detection plane is located at y+d ≈ 15,
and drag increases significantly above y+d > 25. This trend was successfully reproduced
by Luhar et al. (2014) for a turbulent pipe flow.

In the present study, we have also performed resolvent analyses of opposition-
controlled channel flow. Although the results are not reproduced here for brevity,
these analyses show that opposition control for NW modes achieves significant
suppression of Rk near y+d ≈ 20. Consistent with the pipe flow predictions of Luhar
et al. (2014), the drag contribution (σk) is minimized at y+d ≈ 16. We also observe
that the drag contribution from VLSMs increases under opposition control, regardless
of the detection plane location. Hereafter, we focus on the opposition control for
NW-type modes with y+d ≈ 16 and y+d ≈ 20 in order to compare with the results
obtained for suboptimal control. Note that y+d ≈ 16 corresponds to the case where the
detection plane and the critical layer are co-located.

Figure 15 shows profiles of velocity amplitude and Reynolds shear stress for both
suboptimal and opposition control. The blowing and suction magnitude is set at
α+ = 2.0 for suboptimal control (Case SP), while the detection plane for opposition
control is assumed to be y+d ≈ 16. These profiles show substantial similarities between
the two control methods. Further, the present results for opposition control (circle
markers) are very similar to the those of pipe flow (Luhar et al. 2014).

Figure 16 compares the predictions for Case SP at α+ = 4.0, which maximizes
suppression of the Reynolds shear stress contribution, with predictions for opposition
control with y+d ≈ 20. The streamwise velocity profiles are quite similar for both
controlled cases, particularly near the wall. However, the wall-normal velocity above
the critical layer shows some important differences; |vk| is slightly reduced under
suboptimal control but enhanced under opposition control (figure 16b). Interestingly,
despite the significant suppression of Reynolds shear stress, figure 16(a) shows that
the peak location of controlled streamwise velocity moves between the critical layer
and the wall for Case SP with α+ = 4.0. This is in contrast to the results shown in
figure 15(a) for α+ = 2.0. Luhar et al. (2014) reported that the displacement of peak
of |uk| away from the critical layer may weaken the critical layer mechanism.
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FIGURE 15. Wall-normal profiles for modes resembling the NW cycle at Reτ = 2000:
(a) amplitude of streamwise velocity; (b) amplitude of wall-normal velocity; (c) Reynolds
shear stress. Dashed lines, uncontrolled; solid line, suboptimal control (α+ = 2.0); circle
marker, opposition control (y+d ≈ 16). The solid horizontal lines indicate the critical layer
location y+c . The detection plane is located at the same y value as the critical layer.
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FIGURE 16. Wall-normal profiles for modes resembling the NW cycle at Reτ = 2000:
(a) amplitude of streamwise velocity; (b) amplitude of wall-normal velocity; (c) Reynolds
shear stress. Dashed lines, uncontrolled; solid line, suboptimal control (α+ = 4.0);
circle marker, opposition control (y+d ≈ 20). The solid horizontal lines show the critical
layer location y+c . The dashed horizontal lines indicate the detection plane location for
opposition control.

Now, we define a new measure which focuses only on the Reynolds stress
contribution in the region between the wall and the critical layer:

Rk,attached =

∫
−1+yc

−1
σ 2

k Re(uk
∗vk)(+y) dy+

∫ 1

1−yc

σ 2
k Re(uk

∗vk)(+y) dy. (4.5)

Here, the first term in (4.5) considers the region attached to the lower wall and the
second term considers the region close to the upper wall. As shown in rightmost
column of table 2, this near-wall Reynolds shear stress contribution exhibits different
trends compared to the total contribution. Rk,attached is strongly suppressed for Case
SP at α+ = 2.0 and for opposition control with y+d ≈ 16. However, for Case SP with
α+ = 4.0 and the opposition control with y+d ≈ 20, the ratios are recovered toward
unity.
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Control method y+d α+ σkc/σk0 Rkc/Rk0 (Rkc/Rk0)attached

Opposition 16 — 0.55 0.32 0.19
Suboptimal — 2.0 0.61 0.40 0.23
Opposition 20 — 0.54 0.23 0.29
Suboptimal — 4.0 0.72 0.35 0.54

TABLE 2. The ratio of controlled to uncontrolled σk and Rk for each control method.
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FIGURE 17. Evaluating the turbulent drag contribution in different ways. Case SP at
Reτ = 2000 (NW modes).

Figure 17 shows (Rkc/Rk0)attached as a function of blowing and suction magnitude
α+, which helps further clarify the drag reduction mechanism for NW modes under
suboptimal control based on spanwise wall shear stress (Case SP). The slope is
negative (i.e. towards reduced drag contribution) up to α+ = 2.0 and positive
(i.e. towards increased drag contribution) above this value. The channel-integrated
Reynolds shear stress contribution Rk still decreases between 2.06α+6 4.0. However,
the Reynolds shear stress contribution in the near-wall region Rk,attached begins to
increase at that point.

Further explanation is provided in figure 18. The peak location of controlled
streamwise velocity shifts up above the critical layer up to α+ = 2.0. For larger α+,
the peak in streamwise velocity shifts downwards and localizes between the critical
layer and the wall when blowing and suction magnitude is α+ > 3.0. In addition, the
peak value of wall-normal velocity is larger than that for the uncontrolled case in
the range of α+ 6 2.0, while smaller in the range α+ > 3.5. These trends confirm
that, beyond a certain threshold, an increase in the magnitude of blowing and suction
only serves to generate additional turbulence near the wall. This increase in near-wall
velocities with increasing α+ is also evident in figure 5(e, f ).

In summary, σkc/σk0 and Rk,attached are minimized for α+ = 2.0, which resembles
opposition control with y+d ≈ 16. The channel-integrated Reynolds shear stress
contribution Rk is minimized at a slightly larger value of α+ due to the suppression
above the critical layer.

5. Conclusions
Following previous studies (Luhar et al. 2014, 2015, 2016), the results presented

above show that the resolvent formulation has the potential to serve as a powerful
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FIGURE 18. Wall-normal profiles for modes resembling the NW cycle at Reτ = 2000
for varying blowing and suction magnitudes (Case SP): Grey, uncontrolled; solid lines,
α+ = 2.0; dashed lines, α+ = 4.0; cross markers, α+ = 103. The arrows indicate the
directions of velocity components movements, which depend on blowing and suction
magnitude.

predictive tool for the design and evaluation of (linear) control laws for wall-bounded
turbulent flows. In addition, the formulation also provides fundamental physical
insights into the effects of control on dynamically important features of wall
turbulence.

For the suboptimal control laws proposed by Lee et al. (1998), resolvent analysis
predicts that the effect of control across spectral space depends strongly on whether
the streamwise shear (Case ST) or spanwise shear (Case SP) is used as the control
input. Relative to the uncontrolled flow, Case SP suppresses modes resembling the
NW cycle and further amplifies modes resembling the VLSMs when the blowing and
suction parameter ranges from 1 6 α+ 6 5. As the blowing and suction magnitude
increases such that α+ > 10, the effects of control on these structures are reversed.
For Case ST, the analysis predicts that NW-modes are suppressed across all α+,
while modes resembling the VLSMs are further amplified. However, the maximum
suppression possible for the NW modes is lower under Case ST compared to Case
SP, and requires larger α+. In other words, Case SP leads to a larger reduction in
gain, and for less intense actuation. An increase in Reynolds number from Reτ = 110
to Reτ = 2000 does not appreciably change the above trends.

We also investigated the effects of mode speed on control efficacy (§ 3.3).
Consistent with previous resolvent-based predictions for opposition control (Luhar
et al. 2014), suboptimal control has the largest effect on slower-moving modes that
are localized closer to the wall (i.e. attached modes). The gain and structure of
faster-moving modes (i.e. critical or detached modes) found farther from the wall do
not change significantly under control. Physically, this can be explained as following:
faster-moving detached modes do not have an appreciable signature at the wall, and so
any control technique that employs wall-based sensing and actuation cannot interact
such modes. Importantly, note that attached large-scale structures such as VLSMs do
interact with and influence the NW region (Marusic et al. 2010). As a result, it may
be possible to design wall-based control that suppresses such structures. There are
also close similarities between the mode structures predicted for opposition control
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and for suboptimal control based on spanwise shear. In particular, the predicted
mode structures suggest that suboptimal control is essentially a modified version of
opposition control (Choi et al. 1994), with a phase lag that depends on mode speed
and the magnitude of blowing and suction (i.e. the design parameter α+).

In addition to considering the gain and structure for individual modes resembling
the NW cycle and VLSMs, we also compared the effect of suboptimal control across
spectral space. Both Case SP and Case ST favourably affect (i.e. suppress) structures
with length scales comparable to the NW cycle. Case SP is predicted to detrimentally
affect (i.e. further amplify) structures with length scales comparable to the VLSMs,
while Case ST is predicted to have little or no effect on these larger structures.
For Case SP, control performance is very sensitive to the magnitude of blowing
and suction. As α+ increases, the spectral region over which modes are suppressed
diminishes, while the region over which modes are further amplified widens.

To allow for a quantitative comparison between resolvent-based predictions and
previous DNS, we estimated the design parameter α+ from previous databases.
Specifically, a comparison of r.m.s. values for the turbulent spanwise shear and the
wall-based blowing and suction suggests that α+ ≈ 0.5–1.0 in previous DNS for
suboptimal control (Lee et al. 1998; Choi & Sung 2002; Iwamoto et al. 2002). For
this range of α+, resolvent analysis suggests that Case SP reduces the Reynolds shear
stress contribution from NW modes by approximately 25 %, which is consistent with
the 22 % reduction in drag observed in DNS.

For Case ST, resolvent analysis predicts that control leads to a small, but
meaningful, reduction in gain for modes resembling the NW cycle. However, Lee
et al. (1998) observed an increase in drag in their DNS. The results presented in
§ 4.1.2 provide a clear explanation for this discrepancy. Specifically, resolvent analysis
reveals that Case ST can lead to a substantial increase in amplification for structures
that are relatively long in the spanwise direction. High actuation of such energetic
spanwise structures was confirmed in a limited DNS investigation at Reτ ≈ 180, both
via instantaneous snapshots of the flow field and time-averaged statistics.

Finally, we developed a new measure which focuses only on the Reynolds stress
contribution very close to the wall, Rk,attached. This measure provides insight into why
the resolvent analysis occasionally yields differing predictions for changes in gain
(σkc/σk0) and the Reynolds shear stress contribution (Rkc/Rk0) due to control.
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