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TOPOLOGICAL DYNAMICS OF STABLE GROUPS

LUDOMIR NEWELSKI

Abstract. AssumeG is a group definable in amodelM of a stable theory T .We prove that the semigroup
SG (M ) of completeG-types overM is an inverse limit of some semigroups type-definable inMeq .We prove
that the maximal subgroups of SG (M ) are inverse limits of some definable quotients of subgroups of G .
We consider the powers of types in the semigroup SG (M ) and prove that in a way every type in SG (M ) is
profinitely many steps away from a type in a subgroup of SG (M ).

§1. Introduction. Assume H is a group and X is a compact topological space
upon which H acts by homeomorphisms. In this case X is called an H -flow. We
call an H -flow X point-transitive if X contains a dense H -orbit. This is the basic
set-up of topological dynamics [1,2].
In several papers [12 – 14] I proposed to apply the language and tools of topo-

logical dynamics in model theory. Specifically, assume T is a complete theory in
language L, C is a monster model of T , G is a group 0-definable in C, andM ≺ C
is a (small) model of T . Then the group G(M ) acts by left translation on the space
SG (M ) of complete G-types overM and SG (M ) is a point-transitive G(M )-flow.
In the stable case the crucial role is played by generic types in SG(M ). In general,

generic types may not exist. Topological dynamics provides us with a natural surro-
gate for this notion, namely that of an almost periodic and of weakly generic type
in SG(M ). Also, the Ellis semigroup of the flow SG,ext(M ) of complete external
G-types overM has interesting model-theoretic connotations.
Although [12 – 14] contain some applications of topological dynamics in model

theory, the topological-dynamic set-up seems too general for model theory. So, for
example, [3] proposes a modified approach of tame topological dynamics. I think
that topological dynamics may suggest meaningful dividing lines in model theory,
just as it was the case with stability theory. Thus far it is not clear what these dividing
lines could be.
Stability theory is the core of model theory. The goal of this paper is to investigate

the topological dynamics of G in the stable case. This may bring the topological-
dynamic approach closer to the core notions of model theory, like forking of
types, and suggest the correct additional assumptions to impose on the topological
dynamics of G to make it a meaningful tool in model theory.
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So in this paper we assume T is stable (unless specified otherwise). The main
results of this paper heavily rely on the interpretation of complete (local) G-types
overM as certain functions. Namely, we consider the semigroups End(DefG(M ))
and End(DefG,Δ(M )) of endomorphisms of the Boolean algebras of (Δ)-definable
subsets ofG , where Δ are some finite subsets ofL. There are well-behaved bijections
d : SG(M ) → End(DefG(M )) and d : SG,Δ(M ) → End(DefG,Δ(M )). Using d we
can regard the types in SG (M ) and SG,Δ(M ) as functions—endomorphisms of
the corresponding G-algebras DefG(M ) and DefG,Δ(M )). An important part of
the paper is analysis of definability (in Meq)) of various objects arising in the
topological dynamics of G .
In the stable case the Ellis semigroup of the G(M )-flow SG(M ) is naturally iso-
morphic (as a G(M )-flow) to the flow SG (M ) itself, inducing on it a semigroup
structure. The semigroup operation inSG (M ) is the freemultiplication of types [11].
We prove that the semigroup SG (M ) is an inverse limit of an inverse system of semi-
groups SG,Δ(M ),Δ ∈ Inv, that are type-definable inMeq (the notation is explained
later). The bijections d mentioned above are also semigroup isomorphisms.
The main results of the paper concern the structure of the semigroups SG (M )
and SG,Δ(M ),Δ ∈ Inv. We describe the maximal subgroups of SG,Δ(M ),Δ ∈ Inv,
proving that they are definable inMeq and are definably isomorphic to the groups
NG(M )(H )/H for Δ-definable Δ-connected subgroups H of G(M ). We describe
also the maximal subgroups of SG (M ) as inverse limits of definable inverse systems
of the groups NG(M )(H )/H .
The functional interpretation of types p in SG(M ) and SG,Δ(M ),Δ ∈ Inv, pro-
vides us with some new objects related to p, namely the kernel and image of the
endomorphism dp corresponding to p. The size of these kernels and images may
be used to measure the size of types p. We compare this new way of measuring p
to forking in the particular case of ∗-powers p∗n of p. In this case we prove that
the growth of the local Morley ranks of p∗n is strictly correlated with the growth
of kernels and shrinking of images of the functions dp∗n . We prove that for every
p ∈ SG,Δ(M ),Δ ∈ Inv, there is amaximal subgroupS of SG,Δ(M ) such that eventu-
ally the ∗-powers of p belong to S. In particular, there is a Δ-definable Δ-connected
subgroup H of G(M ) such that eventually the ∗-powers of p are left translates of
the generic type ofH in SG,Δ(M ) by elements ofNG(M )(H ). This may be rephrased
by saying that regarding raising to ∗-power, every type in SG,Δ(M ) is finitely many
steps away from a translate of a generic type of a subgroup of G(M ).
Since SG(M ) is an inverse limit of the semigroups SG,Δ(M ),Δ ∈ Inv, for every
type p ∈ SG(M ) there is a (unique) connected M -type-definable subgroup H
of G , say with the generic type q ∈ SG(M ), such that for every finite set Δ ⊆
L eventually the ∗-powers of p|Δ belong to the maximal subgroup of SG,Δ(M )
containing q|Δ, hence are some left translates of q|Δ. This may be rephrased by
saying that, regarding raising to ∗-power, every type in SG (M ) is profinitely many
steps away from a translate of a generic type of an M -type-definable connected
subgroup H of G . Recall that in the 1-based case every type p ∈ SG (M ) itself is
a translate of the generic type of anM -type-definable subgroupH of G (provided
M is |T |+-saturated) [6].
The paper is organized as follows. In Section 2 we recall the basic notions of
topological dynamics and set up the model-theoretic context wherein they are used
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in this paper. In Section 3 we describe the semigroup SG(M ) as an inverse limit
of semigroups SG,Δ(M ),Δ ∈ Inv and prove that the semigroups SG,Δ(M ) are type-
definable in Meq . In Section 4 we describe the maximal subgroups of SG (M ) and
SG,Δ(M ),Δ ∈ Inv. In Section 5 we deal with ∗-powers of types.

§2. Preliminaries. In this section we recall the basic notions of topological
dynamics and put them into a model-theoretic context. The general references
are [1,2,12]. In our model-theoretic notation we follow [15].
In particular, we regard formulas of L as formulas with separated variables. This

means that given a formula ϕ of L we separate its free variables into a tuple of
object variables x and a tuple of parameter variables y and write it down as ϕ(x, y).
By an instance of ϕ we mean a formula ϕ(x, a), where the variables y are substi-
tuted by parameters a from C. We will be freely working inMeq , an Leq-structure
obtained by adjoining toM its imaginary elements. The next definition essentially
appears in [11].

Definition 2.1. For p, q ∈ SG (M ) we define p ∗q as the type tp(a ·b/M ), where
a |= p, b |= q and a�| Mb.
So ∗ is the free multiplication of types induced by the group operation of G(M )

and (SG (M ), ∗) is a semigroup, with ∗ continuous in each coordinate separately.
This semigroupwas considered already in [11].Here wewill consider it in the context
of topological dynamics.
AssumeH is a group andX is a point-transitiveH -flow. In topological dynamics

of particular interest are minimal subflows of X , their elements are called almost
periodic (in X ). Any h ∈ H determines a homeomorphism �h : X → X given by
�h(x) = hx. LetE(X ) be the topological closure of the set {�h : h ∈ H} in the space
XX with the Tychonov product topology. E(X ) with the operation of composition
of functions is a semigroup, called the Ellis enveloping semigroup of X . E(X ) is
also anH -flow itself: for h ∈ H and f ∈ E(X ), (hf)(x) = h · f(x).
A set I ⊆ E(X ) is called a left ideal if I is nonempty and closed under left

multiplication by elements ofE(X ). It turns out that the minimal subflows ofE(X )
are exactly the minimal left ideals I ⊆ E(X ). Every minimal left ideal I ⊆ E(X )
splits into a disjoint union of groups, called ideal subgroups of E(X ). All ideal
subgroups of E(X ) are isomorphic.
If X,Y areH -flows, then we say that a continuous function f : X → Y is anH -

mapping, if f respects the action ofH .H -flows form a category, withH -mappings
as morphisms.
The largest point-transitive H -flow is the space �H of ultrafilters on H . The

action of H on �H is the left translation. It turns out that the Ellis semigroup of
�H is isomorphic (as anH -flow) to �H itself.
In [12–14] these topological-dynamic notions were applied in a model-theoretic

setting. While in model theory it is natural to consider the G(M )-flow SG (M ),
the role of the maximal point-transitive G(M )-flow there is played by the space
SG,ext(M ) of complete externalG-types overM (instead of �(G(M )). SG,ext(M ) is
also isomorphic to its Ellis semigroup (as a G(M )-flow). This induces a semigroup
operation on SG,ext(M ) itself. In this paper we will consider several G(M )-flows
isomorphic to their Ellis semigroups. Below we present a general setting for this.
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AssumeH is a group andA is an algebra of sets. We say thatA is anH -algebra if
there is an action ofH on A by Boolean automorphisms. By anH -endomorphism
of anH -algebraAwemean a Boolean endomorphism ofA respecting the action of
H . Let End(A) denote the semigroup of H -endomorphisms of A (the semigroup
operation is composition of functions).
The action of H on A induces an action of H on the Stone space S(A) by
homeomorphisms, making S(A) anH -flow.
In this paper we will consider H -algebras A of subsets ofH , where the action of
H onA is induced by left translation in the groupH (this means just thatA is closed
under left translation). For example, A = P(H ) is an H -algebra and S(A) = �H
is an H -flow. Ellis proved [2] that the Ellis semigroup E(�H ) is isomorphic to
End(P(H )) (as a semigroup) and to �H (as anH -flow).
In the model-theoretic setting let A = DefG,ext(M ) be the algebra of externally
definable subsets ofG(M ), that is, sets of the formU∩G(M ), whereU is a definable
subset ofC. DefG,ext(M ) is closed under left translation by elements ofG(M ), hence
it is a G(M )-algebra of subsets o G(M ). The space of external G-types SG,ext(M )
is just the Stone space of ultrafilters on DefG,ext(M ).
Following Ellis we proved that also the Ellis semigroup E(SG,ext(M )) is isomor-
phic to End(DefG,ext(M )) as a semigroup [13] and to SG,ext(M ) as a G(M )-flow
[12]. Here we will generalize this result.

Definition 2.2. Let H be a group and A be an H -algebra of subsets of H
(invariant under left translation).

1. For p ∈ S(A) we define a function dp : A → P(H ) by
dp(U ) = {g ∈ H : g−1U ∈ p}.

Clearly dp : A → P(H ) is a homomorphism ofH -algebras.
2. We say thatA is d -closed if A is closed under dp for every p ∈ S(A), that is,
dp[A] ⊆ A. Notice that in this case dp ∈ End(A).

3. If A is d -closed, then let d : S(A) → End(A) be the function mapping p
to dp.

Remark 2.3.

(1) The H -algebra P(H ) is d -closed.
(2) The G(M )-algebra DefG,ext(M ) is d -closed.

Proof. (1) is obvious. (2) is [13, Lemma 1.2]. �
Proposition 2.4. Assume H is a group and A ⊆ B ⊆ P(H ) are d -closed
H -subalgebras of P(H ).
(1) Assume p ∈ S(A), q ∈ S((B)) and p ⊆ q. Then dp = dq |A.
(2) The function d : S(A)→ End(A) is a bijection.
(3) The function d : S(A) → End(A) induces on S(A) a semigroup operation ∗
so that d becomes an isomorphism of semigroups. So for p, q ∈ S(A) we have
dp∗q = dp ◦ dq . Also, for U ∈ A we have

U ∈ p ∗ q ⇐⇒ dq(U ) ∈ p.

https://doi.org/10.1017/jsl.2014.25 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.25


TOPOLOGICALDYNAMICS OF STABLE GROUPS 1203

(4) The restriction function S(B) → S(A) is an H -mapping and an epimorphism
of semigroups. The following diagram commutes

S(B) ��

d

��

S(A)
d

��
End(B) �� End(A)

where the horizontal arrows are restrictions.
(5) For p ∈ S(A) let lp : S(A) → S(A) be the function mapping q ∈ S(A) to
p ∗ q. Then E(S(A)), the Ellis semigroup of S(A), equals {lp : p ∈ S(A)}.

(6) Let l : S(A) → E(S(A)) be the function mapping p to lp. Then l is an
isomorphism ofH -flows and of semigroups.

Proof. (1) is obvious.
The proof of (2) is analogous to the proof of [13, Proposition 1.6]. To see that d

is 1-1 consider p �= q ∈ S(A). Choose U ∈ p with Uc ∈ q. Then 1 ∈ dp(U ) and
1 �∈ dq(U ), hence dp(U ) �= dq(U ) and dp �= dq .
To see that d is “onto” consider any f ∈ End(A). Let

p = {U ∈ A : 1 ∈ f(U )}.
Clearly p ∈ S(A) and it is easy to see that f = dp (or see the proof of [13,
Proposition 1.6]).
(3) Let U ∈ A. Since dp∗q = dp ◦ dq , we have that

U ∈ p ∗ q ⇔ 1 ∈ dp∗q(U )⇔ 1 ∈ dp(dq(U ))⇔ dq(U ) ∈ p.
(4) follows from (1)–(3).
(5) Let �g : S(A) → S(A), g ∈ H, be the family of homeomorphisms given by

the action ofH onA. SoE(S(A)) is the topological closure of the set {�g : g ∈ H}
in the topology of pointwise convergence in the space of functions S(A) → S(A).
For an ultrafilter U ∈ �H let �U = limU �g . This means that for q ∈ S(A) and
U ∈ A we have

(∗) U ∈ �U(q) ⇐⇒ the set X := {g ∈ H : U ∈ �g(q)} belongs to U .
Hence E(S(A)) = {�U : U ∈ �H}. Notice that the set X appearing in (∗) equals
dq(U ), hence for U ∈ A we have that

U ∈ �U(q)⇔ dq(U ) ∈ U ⇔ dq(U ) ∈ p ⇔ U ∈ p ∗ q,
where p = U ∩ A ∈ S(A) (here we use the assumption that A is d -closed). Hence
�U = lp and E(S(A)) = {lp : p ∈ S(A)}.
(6) By (5) we have that the function l : S(A) → E(S(A)) is “onto”. To see

that l is 1-1 consider p �= q ∈ S(A). For g ∈ H let Ug = {U ∈ A : g ∈ U}. So
Ug ∈ S(A). Notice that for g = 1, dU1 : A → A is the identity function, hence

dp = dp ◦ dU1 = dp∗U1 and dq = dq ◦ dU1 = dq∗U1 .
By (3), p = p ∗ U1 = lp(U1) and q = q ∗ U1 = lq(U1), hence lp �= lq .
To see that the function l : S(A) → E(S(A)) is a homeomorphism, consider

U ∈ A and the basic open set [U ] = {p ∈ S(A) : U ∈ p}. For p ∈ S(A) we
have that

U ∈ p ⇔ U ∈ p ∗ U1 ⇔ U ∈ lp(U1),
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hence l maps the set [U ] onto the open set {f ∈ E(S(A)) : f(U1) ∈ [U ]}. Since
both spaces S(A) and E(S(A)) are compact, l is a homeomorphism.
For every g ∈ H and p ∈ S(A) we have gp = Ug ∗ p, hence for every q ∈ S(A)
we have

lgp(q) = �g ∗ p ∗ q = �g(lp(q)) = glp(q).
Therefore lgp = �g ◦ lp. It is obvious that l is a semigroup isomorphism. �
In particular, byRemark 2.3, Proposition 2.4 applies to theH -algebraA = P(H )
and the G(M )-algebra A = DefG,ext(M ).
Since in the stable case externally definable subsets ofM are internally definable,
the above picture is simplified: DefG,ext(M ) equals DefG(M ), theG(M )-algebra of
definable subsets ofG(M ), andSG,ext(M ) = SG(M ).Also, the semigroupoperation
on SG (M ) defined in Proposition 2.4(3) is just the free multiplication of types from
Definition 2.1. Hence (SG (M ), ∗) is the Ellis semigroup of the G(M )-flow S(G)
and d : SG (M )→ End(DefG(M )) is an isomorphism of semigroups. We will apply
Proposition 2.4 to several G(M )-subalgebras of DefG (M ).
Assume Δ is a set of formulas of L (with separated variables). By a Δ-definable
subset of G(M ) we mean a set of the form G(M ) ∩ U , where U ⊆M is definable
by a Δ-formula (in the sense of [15]), meaning that U is a Boolean combination of
subsets ofM definable by instances of formulas from Δ with parameters fromM .
Besides the algebra DefG (M ) we will consider also its subalgebras DefG,Δ(M ),
consisting of the Δ-definable subsets of G(M ). Also, SG,Δ(M ) denotes the set of
complete Δ-types of elements of G , overM . So SG,Δ(M ) is just the Stone space of
the algebra DefG,Δ(M ).

§3. The semigroup SG (M ). In this section we will prove that the semigroup
SG (M ) is an inverse limit of a definable inverse system of some semigroups 0-type-
definable inMeq .

Definition 3.1. Assume Δ ⊆ L.
(1) We say that Δ is left-invariant if the family of subsets of G(M ) definable by
instances of formulas from Δ is invariant under left translation in G(M ).
Similarly we define the notion of a right-invariant set Δ.

(2) We say that Δ is invariant if it is both left- and right-invariant.

It is well-known how to modify a given set Δ ⊆ L to make it invariant. Given a
formula ϕ(x, y) let

ϕ′(x, yz) = ϕ(z · x, y) and ϕ′′(x, yzv) = ϕ(z · x · v, y).
Here · denotes the group operation in G . For Δ ⊆ L let Δ′ = {ϕ′ : ϕ ∈ Δ} and
Δ′′ = {ϕ′′ : ϕ ∈ Δ}. Clearly, Δ′ is left-invariant and Δ′′ is invariant.
Remark 3.2. Every subset of G(M ) definable by an instance of a formula from
Δ is definable by an instance of a formula from Δ′ and an instance of a formula
from Δ′′. So DefG,Δ(M ) ⊆ DefG,Δ′(M ) ⊆ DefG,Δ′′(M ).
Assume Δ ⊆ L is left-invariant. Then DefG,Δ(M ) is closed under left transla-
tion in G(M ), hence it is a G(M )-subalgebra of DefG(M ). The left translation
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in DefG,Δ(M ) makes SG,Δ(M ) a G(M )-flow and the restriction function rΔ :
SG (M )→ SG,Δ(M ) is an epimorphism of G(M )-flows.
Given a family U of uniformly definable subsets of G(M ) we regard U as a

definable subset of Meq , identifying elements of U with their canonical names,
uniformly.
Assume Δ ⊆ L is finite. We may consider SG,Δ(M ) as a 0-type-definable subset

ofMeq . Namely, for every ϕ(x, y) ∈ Δ we pick a formula dϕ(y, z) such that every
type p(x) ∈ SG,ϕ(M ) has a ϕ-definition that is an instance of dϕ(y, z). This means
that for some cp,ϕ ⊆M we have that

dϕ(M, cp,ϕ) = {a ⊆M : ϕ(x, a) ∈ p(x)}.
We may assume that cp,ϕ ∈Meq is a canonical name of dϕ(M, cp,ϕ).
Let Zϕ be the set of canonical names of subsets of M definable by instances of

dϕ(y, z) (where z is the tuple of parameter variables). For c ∈ Zϕ let
p0ϕ,c = {ϕ(x, a) : a ⊆M andM |= dϕ(a, c)} ∪ {¬ϕ(x, a) : a ⊆M andM �|= dϕ(a, c)}.
Let Z0 =

∏
ϕ∈ΔZϕ and for c = 〈cϕ〉ϕ∈Δ ∈ Z0 let p0c =

⋃
ϕ∈Δ p

0
ϕ,cϕ . For n < � let

Zn = {c ∈ Z0 : p0c is n-consistent with G(x)} and let Z =
⋂
n<� Zn .

Remark 3.3. Assume Δ ⊆ L is finite.
(1) The sets Zϕ,ϕ ∈ Δ, Z0 and Zn, n < �, are 0-definable in Meq and Z is
0-type-definable inMeq .

(2) The function p �→ 〈cp,ϕ〉ϕ∈Δ is a bijection SG,Δ(M )→ Z.
(3) For c ∈ Z the set of formulas p0c generates a type in SG,Δ(M ), denoted by
pc . The mapping c �→ pc is a bijection Z → SG,Δ(M ) inverse to the bijection
from (2).

By Remark 3.3 we regard SG,Δ(M ) as a 0-type-definable subset of Meq . The
presentation of SG,Δ(M ) as a 0-type-definable subset ofMeq is uniform inM .
Let Invl denote the family of finite left-invariant sets Δ ⊆ L, directed by inclusion.

For Δ1,Δ2 ∈ Invl with Δ1 ⊆ Δ2 let rΔ2Δ1 : SG,Δ2(M ) → SG,Δ1(M ) be restriction. We
consider the inverse system D = (SG,Δ(M ))Δ∈Invl of G(M )-flows, with connecting
functions rΔ2Δ1 for Δ1,Δ2 ∈ Invl with Δ1 ⊆ Δ2.
Remark 3.4.
(1) For Δ1,Δ2 ∈ Invl with Δ1 ⊆ Δ2, the functions rΔ2Δ1 : SG,Δ2(M ) → SG,Δ1(M )
are definable G(M )-mappings.

(2) SG (M ) with restriction functions rΔ : SG (M ) → SG,Δ(M ),Δ ∈ Invl , is an
inverse limit of D.

Proof. Straightforward. �
In [5] the space of global generically stable types is treated as a pro-definable set in

exactly the same way as the space SG (M ) here.
Assume X is a compact topological space. A closed nonempty subset of X is

called perfect if it has no isolated points. We call X scattered if X contains no
perfect subset. In this case the Cantor–Bendixson rank CBX on X has ordinal
values. The next remark follows from basic stability theory. It justifies our interest
in scattered flows.
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Remark 3.5. Assume Δ ∈ Invl . Then the G(M )-flow SG,Δ(M ) is scattered and
its CB-rank is finite.

Lemma 3.6. AssumeH is a group and X is a scatteredH -flow.

(1) If Y ⊆ X is a minimal subflow, then Y is finite.
(2) If X is point-transitive, then the denseH -orbit in X is unique.

Proof. (1) Choose p ∈ Y with maximal CBX -rank. The orbit Hp is dense in Y
andCBX (q) = CBX (p) for every q ∈ Hp (sinceH acts onX by homeomorphisms).
If Hp is infinite, then it has an accumulation point p′ ∈ Y \ Hp and CBX (p′) >
CBX (p), a contradiction.
(2) The denseH -orbit in X consists of all isolated points. �
By Remarks 3.4 and 3.5 we see that the G(M )-flow SG (M ) is proscattered, that
is, it is an inverse limit of scattered flows. In SG (M ) there is a unique minimal
subflow GenG (M ), consisting of the generic types of G . We know that GenG (M )
is a profinite closed subgroup of SG (M ). More generally, if H is a group and
X is a proscattered H -flow, then by Lemma 3.6 every minimal subflow of X is
profinite. However, even if X is additionally point-transitive, there need not be a
unique denseH -orbit contained inX . Such an orbit is unique in themodel-theoretic
setting, providedM is sufficiently saturated.

Proposition 3.7. Assume p ∈ SG (M ) and let X = cl(G(M )p) be the subflow
of SG(M ) generated by p. For Δ ∈ Invl let pΔ = p|Δ and XΔ = cl(G(M )pΔ) ⊆
SG,Δ(M ).

(1) (X, (rΔ)Δ∈Invl ) is an inverse limit of the system (XΔ)Δ∈Invl with the connecting
functions rΔ2Δ1 , whereΔ1,Δ2 ∈ Invl andΔ1 ⊆ Δ2. In particular,X is proscattered.

(2) If M is |T |+-saturated, then the set G(M )p is the unique dense G(M )-orbit
in X .

Proof. (1) is obvious.
(2) Choose q ∈ X and for Δ ∈ Invl let qΔ = q|Δ. Assume the orbit G(M )q is
dense in X . Then for every Δ ∈ Invl we have that the orbit G(M )qΔ is dense in XΔ,
just like the orbit G(M )pΔ. Hence by Lemma 3.6, both orbits coincide and there is
a gΔ ∈ G(M ) with qΔ = gΔpΔ.
Since SG,Δ(M ) is a type-definable subset of Meq , we can use pΔ and qΔ as
parameters in formulas of Leq . The set of formulas

Φ(x) = {qΔ = x · pΔ : Δ ∈ Invl} ∪ {G(x)}
is a type over |T |-many parameters, hence by the saturation ofM it is realized by
some g ∈ G(M ). We see that q = g · p, hence the orbits G(M )p and G(M )q are
equal. �
A special feature of topological dynamics of a stable group G is the existence of
generic types in SG(M ). More generally, we define the notion of a generic point in
an arbitrary point-transitive H -flow X [12]. Then the existence of a generic point
in X is equivalent to there being just one minimal subflow of X [12, Corollary 1.9].
One could wonder if there is a topological property of the flow SG (M ) (in our
stable setting) responsible for existence of generic types in SG(M ). We do not
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know any such property and the next example shows that the property of being
proscattered would not work.
Let M = G(M ) = (Z,+,≤) be the ordered group of integers. Every definable

subset ofM is a Boolean combination of co-sets of the groups kZ, k > 0, and the
≤-intervals in Z. For k > 0 let Δk be the set of formulas {k|(x − y), x ≤ y} in the
language ofM . Then every Δk is invariant and the Z-flow SG,Δk (M ) is scattered, of
CB-rank 1. There are two minimal subflows of SG,Δk (M ), at +∞ and −∞, both
of size k. There are no generic types in SG,Δk (M ). SG(M ) is an inverse limit of the
flows SG,Δk (M ), so it is proscattered. There are no generic types in SG (M ).
Now we return to the stable setting. It turns out that SG (M ) is proscattered

not just as a G(M )-flow, but also as an Ellis semigroup. We have already used
definability of types in a stable theory to interpret SG,Δ(M ),Δ ∈ Invl , as a type-
definable set inMeq . We shall need the following deep result on definability of types
in local stability theory.

Lemma 3.8 ([15, Lemma I.2.2]). Suppose �(x, y) is a stable formula. Let M be
a model and let p(x) ∈ S�(M ). Then there is a formula �(y) which is a positive
Boolean combination of formulas 	(c, y), c ∈ M , such that �(y) is a �-definition of
p(x), meaning that

�(M ) = {b ⊆M : �(x, b) ∈ p(x)}.
By compactness we get the following remark.

Remark 3.9. Assume �(x, y) is a stable formula. Then there is a natural number
n such that for every modelM and p(x) ∈ S�(M ) the set {b ⊆M : �(x, b) ∈ p(x)}
isM -definable by an instance of the formula

�(y, z) =
∨

i<n

∧

j<n

�(zij , y),

where z = 〈zij〉 is the tuple of parameter variables in �(y, z).
Let D′ be the subsystem of the inverse system D = (SG,Δ(M ))Δ∈Invl consisting

of the flows SG,Δ(M ),Δ ∈ Inv. Notice that since essentially Inv is co-final in Invl ,
still SG(M ) is an inverse limit of D′. The next lemma explains the reason why we
restrict ourselves to Δ ∈ Inv.
Lemma 3.10.

(1) Assume p ∈ SG(M ) and U ⊆ G(M ) is definable. Then dp(U ) is a positive
Boolean combination of some right translatesUc, c ∈ G(M ), of U .

(2) Assume Δ ⊆ L is invariant. Then DefG,Δ(M ) is a d -closed G(M )-subalgebra
of DefG(M ).

Proof. (1) Choose a formula ϕ(x) overM , defining U . Let 	(x, y) = ϕ(y · x).
So for every g ∈ G(M ) we have that g−1U = 	(M,g). Hence

dp(U ) = {g ∈ G(M ) : g−1U ∈ p} = {g ∈ G : 	(x, g) ∈ p(x)}.
By Lemma 3.8, the set dp(U ) is defined by a formula �(y) that is, a positive
Boolean combination of formulas 	(c, y), c ∈ G(M ). But for c ∈ G(M ) we have
that 	(c,M ) = Uc−1, so we are done.
(2) follows from (1). �
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Assume Δ ∈ Inv. By Lemma 3.10 the G(M )-algebra DefG,Δ(M ) is d -closed,
hence byProposition 2.4 the setSG,Δ(M ) carries a semigroup operation ∗defined by:

U ∈ p ∗ q ⇐⇒ dq(U ) ∈ p
and the function d : SG,Δ(M )→ End(DefG,Δ(M )) mapping p to dp is a semigroup
isomorphism. Also SG,Δ(M ) is isomorphic to the Ellis semigroup E(SG,Δ(M )), as
a semigroup and as a G(M )-flow. In this way we can treat types p in SG (M ) and in
SG,Δ(M ) as functions—G(M )-endomorphisms dp of the respectiveG(M )-algebras
DefG (M ) and DefG,Δ(M ).
By Proposition 2.4, the connecting functions rΔ2Δ1 : SG,Δ2(M ) → SG,Δ1(M ) of the
inverse system D′ and the functions rΔ : SG (M ) → SG,Δ(M ),Δ ∈ Inv, respect the
semigroup operations, henceD′ is an inverse system ofG(M )-flows and semigroups
and SG(M ) is an inverse limit of D′ as a G(M )-flow and as a semigroup. The next
proposition is the main result of this section. Its proof relies on the functional
interpretation of types in SG,Δ(M ).

Proposition 3.11. Assume Δ ∈ Inv. Then the semigroup operation ∗ in SG,Δ(M )
is 0-definable inMeq . Hence the semigroup SG,Δ(M ) is 0-type-definable inMeq .

Proof. First we put the algebra DefG,Δ(M ) within the context of definable sets
inMeq . Let XΔ be the family of subsets ofG(M ) definable by instances of formulas
from Δ. Hence XΔ is a family of uniformly definable subsets of G(M ) and we may
consider XΔ a definable subset ofMeq . Clearly XΔ is invariant under both left- and
right-translation in the group G(M ). So XΔ generates DefG,Δ(M ) as an algebra
of sets.
For 0 < n < � let Bn(XΔ) be the family of sets in DefG,Δ(M ) of the form 
(ā),
where 
(x̄) is a Boolean term of length ≤ n and ā is an n-tuple of elements of
XΔ. Clearly, the sets in Bn(XΔ) are uniformly definable, hence we regard Bn(XΔ) as
a 0-definable subset of Meq . Also DefG,Δ(M ) =

⋃
n Bn(XΔ), hence DefG,Δ(M ) is∨

-definable in Meq . Notice that the Boolean operations on Bn(XΔ) are definable
in Meq , with values in B2n(XΔ). Also every Bn(XΔ) is closed under translation in
G(M ) and this translation is an operation definable inMeq .
Since XΔ generates DefG,Δ(M ) as an algebra of sets, every f ∈ End(DefG,Δ(M ))
is determined by its restrictionf|XΔ . ByRemark 3.9 and the proof of Lemma 3.10(1)
there is an n < � (independent ofM ) such that for every p ∈ SG,Δ(M ), the function
dp|XΔ has values in Bn(XΔ). Also, dp|Bn(XΔ) maps Bn(XΔ) to Bn2 (XΔ).
To see this, consider U ∈ Bn(XΔ). Hence U = 
(V1, . . . , Vn) for some
V1, . . . , Vn ∈ XΔ and a Boolean term 
(x̄) of length ≤ n, where x̄ = 〈x1, . . . , xn〉.
We have that dp(U ) = 
(dp(V1), . . . , dp(Vn)). Since dp(V1), . . . , dp(Vn) ∈ Bn(XΔ),
there are Boolean terms 
1(x̄1), . . . , 
n(x̄n) of length ≤ n such that

dp(Vi) = 
i(Vi,1, . . . , Vi,n) for some Vi,j ∈ XΔ.
Hence dp(U ) = 
′(Vi,j)1≤i,j≤n, where 
′ = 
(
1(x̄1), . . . , 
n(x̄n)). We see that
dp(U ) ∈ Bn2 (XΔ).
The functions dp|XΔ : XΔ → Bn(XΔ) and dp|Bn(XΔ) : Bn(XΔ) → Bn2(XΔ) are
definable (in Meq , uniformly in p ∈ SG,Δ(M )). Identifying f ∈ End(DefG,Δ(M ))
with f|XΔ we have that the set End(DefG,Δ(M )) is 0-type-definable in Meq (since
every suchf is of the form dp, hence f mapsXΔ intoBn(XΔ)) and also the bijection
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d : SG,Δ(M )→ End(DefG,Δ(M )) is definable inMeq . To finish the proof it is enough
to show that composition of functions in End(DefG,Δ(M )) is definable inMeq .
Assume f1, f2 ∈ End(DefG,Δ(M )) and f = f1 ◦ f2. The function f|XΔ is

uniformly definable inMeq from f1|XΔ and f2|XΔ as follows.
For U ∈ XΔ we have a uniform description of f1(f2(U )) as an element of

Bn2 (XΔ). Also we know that f1(f2(U )) belongs to Bn(XΔ). So we define f|XΔ(U )
as the unique V ∈ Bn(XΔ) equal to f1(f2(U )). �
Corollary 3.12. The Ellis semigroup SG (M ) is an inverse limit of the definable

inverse system D′ = (SG,Δ(M ))Δ∈Inv of semigroups 0-type-definable inM
eq .

In this way in the stable case we have located the Ellis semigroup SG (M ) in
the definable realm ofM . Unfortunately, in general, the type-definable semigroups
SG,Δ(M ),Δ ∈ Inv, need not be definable. However, Anand Pillay pointed out to
me that if T does not have the finite cover property (fcp), then the semigroups
SG,�(M ),Δ ∈ Inv, are definable. Definability of the semigroup operation inSG,Δ(M )
has been proved using the functional interpretation ofG-types. An alternative proof
may be given using local forking instead.
Notice that the definition of the inverse systemD′ = (SG,Δ(M ))Δ∈Inv is uniform

in M . If we go to an elementary extension M ′ of M , then the system D′(M ′) =
(SG,Δ(M ′))Δ∈Inv is related to D′ as follows.
There are natural embeddings jΔ : SG,Δ(M )→ SG,Δ(M ′), mapping p ∈ SG,Δ(M )

to its heir in SG,Δ(M ′). These embeddings are monomorphisms of semigroups and
commute with the connecting functions of the systems D′ and D′(M ′). They yield
a ∗-monomorphism j : SG (M ) → SG (M ′) mapping p to p|M ′, its nonforking
extension toM ′.

§4. Subgroups of semigroups of types. This section contains the main results
of this paper. These results concern subgroups of the semigroups SG,Δ(M ),Δ ∈
Inv, and SG(M ). These semigroups are isomorphic (via the functions d ) to the
semigroups End(DefG,Δ(M )) and End(DefG (M )) and there is a nice description of
subgroups of End (A) for any groupH and anH -algebra A. This will be crucial in
our analysis.
Every subgroup of SG,Δ(M ),Δ ∈ Inv, and SG (M ) is contained in a unique

maximal one (this holds for any semigroup). We describe completely the maxi-
mal subgroups of SG,Δ(M ),Δ ∈ Inv, proving in particular that they are definable
in Meq and are definably isomorphic to some quotients of subgroups of G(M )
(Proposition 4.12). Also we describe the maximal subgroups of SG (M ) as inverse
limits of definable inverse systems of maximal subgroups of SG,Δ(M ),Δ ∈ Inv.
When M is sufficiently saturated we show that the maximal subgroups of
SG (M ) are definably isomorphic to some quotients of subgroups of G(M )
(Corollary 4.13).
We start with a general background on subgroups of End(A) for an H -algebra

A and then proceed with a more specific description in our stable model-theoretic
context.
Assume H is a group, X is a point-transitive H -flow and E(X ) is its Ellis

semigroup. Subgroups of E(X ) are interesting on their own. Indeed, the minimal
subflows I ⊆ E(X ) split into disjoint unions of isomorphic “ideal groups”.
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Assume A is a d -closed H -subalgebra of P(H ) and X = S(A). We consider X
as an H -flow, the action being left translation. By Proposition 2.4, S(A) carries
a semigroup structure isomorphic (via the function d ) to the semigroup End(A).
S(A) is isomorphic to its Ellis semigroup (both as a semigroup and as anH -flow).
The next lemma appears in [13, Lemma 1.8]. By anH -ideal in A we mean an ideal
in A closed under the action of H .
Lemma 4.1. AssumeA is anH -algebra of sets and S is a subgroup of End(A).
(1) There is anH -ideal K ⊆ A, the common kernel of all f ∈ S.
(2) There is anH -subalgebra B ⊆ A, the common image of all f ∈ S.
(3) K ∩ B = {∅}, B is a section of the family of K-cosets in A, A/K ∼= B and for
every f ∈ S we have that f|B is anH -automorphism of B.

(4) The mapping f �→ f|B is a group monomorphism S → Aut(B) ∼= Aut(A/K).
The next corollary describes the maximal subgroups of End (A).
Corollary 4.2. AssumeA is anH -algebra of sets and S is a subgroup of End(A).
Let K and B be the common kernel and image of all f ∈ S. Let

SK,B = {f ∈ End(A) : K = Ker(f),B = Im(f) and f|B ∈ Aut(B)}.
ThenSK,B is a uniquemaximal subgroupof End(A) containingS. Also, every maximal
subgroup of End(A) is of this form.
Proof. We need only to see that SK,B is a group. It is obviously closed under
composition of functions and has a neutral element (namely, the neutral element of
S). We need to check that every f ∈ SK,B has a group inverse in SK,B .
So letf ∈ SK,B. Letf′

0 ∈ Aut(B) be the inverse off|B in the groupAut(B). Since
B is a section of the family of cosets of K in A, we can define f′ ∈ End(A) putting
f′(U ) = f′

0(U
′), where U ′ ∈ B belongs to the K-coset of U . Clearly f′ ∈ SK,B is

the group inverse of f. �

Assume S is a subgroup of End(A) and e ∈ S is its neutral element. Then e is
an idempotent (that is, e2 = e). Vice versa, every idempotent e ∈ End(A) forms a
trivial subgroupS = {e} of End(A), hence it belongs to a uniquemaximal subgroup
SK,B of End(A), where K = Ker(e) and B = Im(e). The fact that B = Im(e) for
an idempotent e ∈ End(A) yields additional properties of B.
Assume A is a Boolean algebra. We say that B is a complete subalgebra of A
if B is a subalgebra of A and for every set X ⊆ B, if X has the supremum in A,
then this supremum belongs to B (and is the supremum of X in B). Also, At(A)
denotes the set of atoms ofA. Assume B is an atomic subalgebra of A. We say that
U ∈ A is compatible with At(B) if for every V ∈ At(B) we have that V ≤ U or
V ≤ Uc .
Lemma 4.3. Assume A is a Boolean algebra, e is an endomorphism of A, and
e2 = e. Let B = Im(e). Assume B is atomic and ΣAAt(B) = 1A.
(1) B consists of the elements of A compatible with At(B). In this way B is
determined by At(B).

(2) B is a complete subalgebra ofA.
Proof. We regard A as an algebra of subsets of a set Z.

https://doi.org/10.1017/jsl.2014.25 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.25


TOPOLOGICALDYNAMICS OF STABLE GROUPS 1211

(1) Clearly, every V ∈ B is compatible with At(B). Assume V ∈ A is compatible
with At(B). Let A = {U ∈ At(B) : U ⊆ V }. We claim that

(∗) V = ΣAA =
⋃
A.

Indeed,
⋃
A ⊆ V . Suppose U ∈ A meets V . Since ΣAAt(B) = 1A, we have that

U ∩ V meets an atom of B, necessarily from A (as V is compatible with At(B)).
This proves (∗).
Using the fact that e|B = idB one can prove similarly that e(V ) = ΣAA =

⋃
A.

Hence V = e(V ) ∈ B.
(2) Assume X ⊆ B, V ∈ A, and V = ΣAX . By (1) it is enough to show that V

is compatible with At(B). So let U ∈ At(B). IfU is contained in a set from X , then
clearly U ⊆ V . If U is disjoint from any set in X , then U ⊆ V c . So we are done. �

In our model-theoretic setting the semigroup SG (M ) is an inverse limit of
the semigroups SG,Δ(M ),Δ ∈ Inv, and since the corresponding G(M )-algebras
DefG(M ) and DefG,Δ(M ) are d -closed, SG(M ) and SG,Δ(M ) are isomorphic with
the semigroups End(DefG(M )) and End(DefG,Δ(M )), respectively (via the func-
tions d ). We denote by rΔ both the (surjective) restriction functions SG (M ) →
SG,Δ(M ) and End(DefG(M )) → End(DefG,Δ(M )). Also, for Δ1,Δ2 ∈ Inv with
Δ1 ⊆ Δ2, rΔ2Δ1 denotes both the restriction functions SG,Δ2(M ) → SG,Δ1(M ) and
End(DefG,Δ2(M ))→ End(DefG,Δ1(M )).
Assume S is a maximal subgroup of End(DefG(M )). So S = SK,B for some

G(M )-ideal K andG(M )-subalgebra B of DefG(M ). For Δ ∈ Inv let SΔ = SKΔ ,BΔ,
where KΔ = K ∩DefG,Δ(M ) and BΔ = B ∩ DefG,Δ(M ). So every SΔ is a maximal
subgroup of End(DefG,Δ(M )).

Remark 4.4. rΔ[S] ⊆ SΔ for every Δ ∈ Inv. Also, S is an inverse limit of the
groups SΔ,Δ ∈ Inv.
One could wonder when the restriction functions rΔ : S → SΔ are surjective. This

is partially clarified in the next lemma.

Lemma 4.5. Assume L is countable. The following conditions are equivalent.

(1) The functions rΔ : S → SΔ are surjective for all Δ ∈ Inv.
(2) The functions rΔ2Δ1 : SΔ2 → SΔ1 are surjective for all Δ1,Δ2 ∈ Inv with Δ1 ⊆ Δ2.
Proof. (1) ⇒ (2) is obvious. (2) ⇒ (1): Clearly K =

⋃
Δ∈InvKΔ and B =⋃

Δ∈Inv BΔ. Let Δ ∈ Inv and f ∈ SΔ. Choose an increasing cofinal sequence Δn ∈
Inv, n < �, with Δ0 = Δ. By (2) we find an increasing sequence fn ∈ SΔn , n < �,
with f0 = f. Let f′ =

⋃
n<� fn. Clearly

Ker(f) =
⋃

n<�

Ker(fn) =
⋃

n<�

KΔn = K, Im(f) =
⋃

n<�

Im(fn) =
⋃

n<�

BΔn = B

and f′|B =
⋃
n<� fn|Bn is an automorphism of B. So f′ ∈ S and rΔ(f′) = f. This

shows that rΔ[S] = SΔ. �

Later in this section we will prove that Lemma 4.5 holds also in some other cases.
This will follow from our description of the maximal subgroups of SG (M ).
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The maximal subgroups of SG(M ) and SG,Δ(M ),Δ ∈ Inv, are determined by
the idempotents in SG(M ) and SG,Δ(M ). These idempotents are related to each
other.

Remark 4.6. Assume p ∈ SG (M ) is an idempotent and Δ ∈ Inv. Then p|Δ ∈
SG,Δ(M ) is also an idempotent. Conversely, every idempotent in SG,Δ(M ) extends
to an idempotent in SG (M ).

Proof. Immediate. To see the second clause, consider an idempotent q ∈
SG,Δ(M ). Let X = {q′ ∈ SG (M ) : q ⊆ q′}. Hence X is a closed subsemigroup
of SG (M ). By [2], every closed subsemigroup of an Ellis semigroup contains an
idempotent, hence we are done. �

Assume Δ ∈ Inv. Subgroups of SG,Δ(M ) are related to G(M )-subalgebras of
DefG,Δ(M ). In the next lemma we describe some properties of G(M )-subalgebras
of DefG,Δ(M ).

Lemma 4.7. Assume Δ ∈ Inv and B is a G(M )-subalgebra of DefG,Δ(M ).
(1) B is atomic.
(2) For g ∈ G(M ) letUg,B = {U ∈ B : g ∈ U}. ThenUg,B is a principal ultrafilter
on B, generated by the atomUg,B of B containing g.

(3) U1,B is a definable subgroup ofG(M ), denoted byGB, and the atomsUg,B, g ∈
G(M ), are the left cosets of GB in G(M ).

(4) GB equals {g ∈ G(M ) : gU1,B = U1,B}, the stabilizer of U1,B.
Proof. (1) The restriction function SG,Δ(M )→ S(B) is surjective and SG,Δ(M )
is scattered, so also S(B) is scattered. B is isomorphic to the algebra of clopen
subsets of S(B), hence B is atomic.
(2) Let U ∈ B be an atom and let g ∈ U . Then U generates Ug,B. For h ∈ G(M )
the set hg−1U is an atom of B containing h and generating Uh,B.
(3), (4) is [14, Remark 3.2]. �

Let RMΔ,MltΔ denote the local Morley Δ-rank and Δ-multiplicity. The next two
lemmas describe further properties of the idempotents in SG(M ) and SG,Δ(M ).

Lemma 4.8. Assume p ∈ SG(M ) is an idempotent and for Δ ∈ Inv let pΔ = p|Δ ∈
SG,Δ(M ).

(1) p is the generic type of anM -type-definable connected subgroup S0 of G .
(2) S0 ∩M = Stab(p), where Stab(p) = {g ∈ G(M ) : gp = p}.
(3) S0 ∩M = ⋂

Δ∈Inv Stab(pΔ), where Stab(pΔ) = {g ∈ G(M ) : gpΔ = pΔ}.
(4) For Δ ∈ Inv, Stab(pΔ) is a definable subgroup of G(M ), in fact Stab(pΔ) ∈
DefG,Δ(M ).

Proof. (1) is by [11], (2) is by [15], and (3) is obvious.
(4) Choose U ∈ pΔ(x) with RMΔ(U ) = RMΔ(pΔ) and MltΔ(U ) = MltΔ(pΔ).
Then

Stab(pΔ) = {g ∈ G(M ) : U ∈ gpΔ} = dpΔ(U ) ∈ DefG,Δ(M ). �
The implication in Lemma 4.8(1) is in fact an equivalence: every generic type of
anM -type-definable connected subgroup S0 of G is an idempotent.
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Lemma 4.9. Under the assumptions of Lemma 4.8, let B = Im(dp) and forΔ ∈ Inv
let BΔ = Im(pΔ) = B ∩DefG,Δ(M ).
(1) pΔ ∩ BΔ = U1,BΔ .
(2) Stab(pΔ) = GBΔ .
(3) RMΔ(pΔ) = RMΔ(GBΔ) andMltΔ(pΔ) =MltΔ(GBΔ) = 1.
(4) GBΔ is Δ-connected, that is, it has no proper Δ-definable subgroup of finite
index.

(5) pΔ is the only generic type of GBΔ in SG,Δ(M ).
Proof. (1) By Remark 4.6 pΔ is an idempotent, hence dpΔ is an idempotent in

End(DefG,Δ(M )) and dpΔ |BΔ is the identity. So for every U ∈ BΔ with U ∈ pΔ we
have that 1 ∈ dpΔ (U ) and U = dpΔ(U ), hence 1 ∈ U . Therefore pΔ ∩ BΔ ⊆ U1,BΔ.
The equality follows since pΔ ∩ BΔ ∈ S(BΔ).
(2) By Lemma 4.7(4), GBΔ = Stab(pΔ ∩ BΔ), hence Stab(pΔ) ⊆ GBΔ . By

Lemma 4.8(4), Stab(pΔ) ∈ DefG,Δ(M ). By Lemma 4.6(3), GB� is an atom of BΔ,
hence Stab(pΔ) = GBΔ .
(3) First notice that
(∗) if qΔ ∈ SG,Δ(M ) and GBΔ ∈ qΔ, then qΔ ∗ pΔ = pΔ.
Indeed, qΔ ∗ pΔ = limqΔ gpΔ = pΔ, because GBΔ ∈ qΔ and for g ∈ GBΔ we have
gpΔ = pΔ (see the proof of Proposition 2.4).
Now we prove thatRMΔ(pΔ) = RMΔ(GBΔ). Let q ∈ SG (M ) be a generic type of

GBΔ and let qΔ = q|Δ ∈ SG,Δ(M ). By (∗) we have (q ∗ p)|Δ = qΔ ∗ pΔ = pΔ, hence
GBΔ ∈ q ∗ p.
By [11] we have that RMΔ(q ∗ p) ≥ RMΔ(q), but RMΔ(q) = RMΔ(GBΔ ) and

also RMΔ(GBΔ) ≥ RMΔ(q ∗ p), hence RMΔ(q ∗ p) = RMΔ(GBΔ). Hence also
RMΔ((q ∗ p)|Δ) = RMΔ(GBΔ).
Since (q ∗ p)|Δ = pΔ, we get RMΔ(pΔ) = RMΔ(GBΔ).
By [15, Lemma I.2.11], MltΔ(pΔ) = 1. Suppose for a contradiction that

MltΔ(GBΔ) > 1. Then there is a generic type q ∈ SG,Δ(M ) of GBΔ with
qΔ := q|Δ �= pΔ. Choose a generic type p′ ∈ SG(M ) of GBΔ with p

′|Δ = pΔ.
Let r ∈ SG (M ) be the generic type of the connected component of GBΔ . By [11],

the set of generic types of GBΔ is a subgroup of SG(M ), with neutral element r. Let
rΔ = r|Δ. We consider two cases.
Case 1. rΔ = pΔ. We have that q ∗ r = q, hence by (∗) we get qΔ = qΔ ∗ rΔ =

qΔ ∗ pΔ = pΔ, a contradiction.
Case 2. rΔ �= pΔ. Then we may assume q = r. Let p′′ be the group inverse of p′ in

the group of generic types of GBΔ in SG (M ) and let p
′′
Δ = p

′′|Δ. Then p′′ ∗ p′ = q,
hence p′′Δ ∗ pΔ = qΔ and by (∗) we have p′′Δ ∗ pΔ = pΔ, again a contradiction.
ThereforeMltΔ(GBΔ) = 1.
(4),(5) follow from (3), since the generic types ofGBΔ in SG,Δ(M ) haveRMΔ-rank

equal to RMΔ(GBΔ). �
Corollary 4.10. Under the assumptions of Lemmas 4.8 and 4.9 (and with their

notation) we have the following.
(1) p ∩ B = U1,B := {U ∈ B : 1 ∈ U}.
(2) Let GB =

⋂U1,B. Then GB =
⋂
Δ∈InvGBΔ = Stab(p).

(3) For Δ ∈ Inv, pΔ is the only idempotent q ∈ SG,Δ(M ) with BΔ = Im(dq).
(4) p is the only idempotent q ∈ SG (M ) with B = Im(dq).
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Proof. (1), (2) are easy. (3) If q ∈ SG,Δ(M ) is an idempotent with BΔ = Im(dq),
then by Remark 4.6 there is an idempotent q′ ∈ SG(M ) extending q. By
Lemma 4.9(5), q is the only generic type of GBΔ in SG,Δ(M ), hence q = pΔ.
(4) A similar proof. �
In general, consider a group H and an H -algebra of sets A. Let B be an H -
subalgebra of A. If there is a maximal subgroup S of End(A) with B being the
common image of all f ∈ S, then S = SK,B, where K is the common kernel
of all f ∈ B. However in this situation there may be many H -ideals K ⊆ A
yielding distinct groups SK,B (although, for a fixed B these groups are isomorphic).
This may happen also in the model-theoretic context, where H = G(M ), A =
DefG,ext(M ) and S(A) = SG,ext(M ), for example, if there are no generic types in
SG,ext(M ).
However, stable groups do have generic types. In the stable case Corollary
4.10 says more. Assume SK,B is a maximal subgroup of End(DefG (M )) (or
End(DefG,Δ(M )), where Δ ∈ Inv). Then K in SK,B is determined by B. Namely,
K = Ker(dp) for the unique idempotent p ∈ SG (M ) (SG,Δ(M ), respectively) with
Im(dp) = B.
Assume Δ ∈ Inv. Now we are going to describe the maximal subgroups of
SG,Δ(M ). So let p ∈ SG,Δ(M ) be an idempotent and let B = Im(dp) and K =
Ker(dp). Let Sp be the maximal subgroup of SG,Δ(M ) containing p. So

Sp = {q ∈ SG,Δ(M ) : dq ∈ SK,B}.
Let X = cl(G(M )p) be the G(M )-subflow of SG,Δ(M ) generated by p. Let GB =
Stab(p). So GB is the atom of B containing 1. Notice thatK andX are determined
by each other as follows.

Lemma 4.11 ([13, Lemma 1.9]). Assume q ∈ SG,Δ(M ). Then for every U ∈
DefG,Δ(M ) we have that

U ∈ Ker(dq) ⇐⇒ [U ] ∩ cl(G(M )q) = ∅,
where [U ] = {r ∈ SG,Δ(M ) : U ∈ r}.
Proposition 4.12.

(1) Sp = {gp : g ∈ NG(M )(GB)}. In particular, Sp is definable in Meq (as a
group).

(2) The function f : NG(M )(GB) → Sp mapping g to gp is a definable group
homomorphism, with kernel GB. Hence Sp is definably isomorphic to the
quotient groupNG(M )(GB)/GB.

Proof. (1) Assume q ∈ Sp. In particular, K = Ker(dq) = Ker(dp). By
Lemma 4.11, cl(G(M )q) = cl(G(M )p) = X , hence the orbit G(M )q is dense
in X . By Remark 3.5 and Lemma 3.6(2), there is a unique dense G(M )-orbit
contained in X , hence G(M )q = G(M )p and q ∈ G(M )p.
We see that the group Sp is contained in the set {gp : g ∈ G(M )}. Assume

g ∈ G(M ). We identify g with tp(g/M ). Then gp = g ∗ p. We shall prove that the
following conditions are equivalent.

(a) gp ∈ Sp
(b) Im(dgp) = B
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(c) gBg−1 = B
(d) g ∈ NG(M )(GB)
(a) ⇔ (b): Since for g ∈ G(M ) we have that Ker(dgp) = Ker(dp) = K , we

see that (a) is equivalent to the conjunction of (b) and the statement that dgp|B
permutes B. So (a)⇒ (b) is clear.
For (b)⇒ (a) notice that the function dgp|B is the composition of the functions

dp|B and dg |B. The function dg : DefG,Δ(M ) → DefG,Δ(M ) maps U ∈ DefG,Δ(M )
to Ug−1, hence it is a bijection. So if Im(dgp) = B, then dgp|B permutes B.
(b)⇔ (c): Since dgp = dg ◦ dp, we have that

Im(dgp) = dg [Im(dp)] = dg [B] = Bg−1 = gBg−1.
The last equality holds since B is a G(M )-algebra.
(c) ⇔ (d): By Lemmas 4.3 and 4.7, B is determined by the set of atoms At(B),

and in turn At(B) is determined by GB as the set of left cosets of GB in G(M ).
Likewise gBg−1 is determined by gGBg−1. So we are done.
This proves the first clause of (1). The second clause is immediate.
(2) To see that f is a group homomorphism consider g, h ∈ NG(M )(GB). Since

p is the neutral element of Sp and hp ∈ Sp, we have that p ∗ hp = hp. Hence
f(g) ∗ f(h) = gp ∗ hp = ghp = f(gh).

Since GB = Stab(p) we get that GB = Ker(f). �
By Lemma 4.9 the group GB is Δ-definable and Δ-connected and p is the generic

type of GB in SG,Δ(M ). Proposition 4.12 shows that the maximal subgroup Sp
of SG,Δ(M ) containing p consists of the left translates of p by the elements of
NG(M )(GB). Conversely, if H is a Δ-definable Δ-connected subgroup of G(M ) and
N = NG(M )(H ), then the quotient group N/H is definably isomorphic to the
maximal subgroup of SG,Δ(M ) containing the generic type pH ∈ SG,Δ(M ) of H
and consisting of the left translates of pH by the elements of N/H .
Next we describe the maximal subgroups of SG(M ). Assume p ∈ SG (M ) is an

idempotent and for all Δ ∈ Inv let pΔ = p|Δ ∈ SG,Δ(M ). Let Sp be the maximal
subgroup of SG(M ) containing p and SpΔ be the maximal subgroup of SG,Δ(M )
containing pΔ. For Δ ∈ Inv let HΔ = Stab(pΔ) and NΔ = NG(M )(HΔ). Let H =
Stab(p) and N =

⋂
Δ∈InvNΔ. SoH =

⋂
Δ∈InvHΔ and N = NG(M )(H ).

Corollary 4.13.
(1) The group Sp is an inverse limit of the groups SpΔ .
(2) AssumeM is |T |+-saturated.Then the function g �→ gp is a group epimorphism
N → Sp with kernel H , inducing a group isomorphism N/H → Sp.

(3) Assume T is totally transcendental. Then for some Δ ∈ Inv we have that
N = NΔ and H = HΔ. Consequently the conclusion of (2) holds and Sp ∼=
N/H ∼= SpΔ .

Proof. (1) is easy. For (2) it is enough to prove that Sp = {gp : g ∈ N}.
⊇ is obvious, since by (1) Sp = invlimΔ∈InvSpΔ and by Proposition 4.12, SpΔ ={gpΔ : g ∈ NΔ}.
For ⊆ consider any q ∈ Sp and for Δ ∈ Inv let qΔ = q|Δ. By (1), qΔ ∈ SpΔ , hence

there is a gΔ ∈ NΔ with qΔ = gΔpΔ. By the saturation ofM we find g ∈ N such that
qΔ = gpΔ for every Δ ∈ Inv. Hence q = gp.
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(3) If Δ1,Δ2 ∈ Inv and Δ1 ⊆ Δ2, then HΔ2 ⊆ HΔ1 and NΔ2 ⊆ NΔ1 . By the
descending chain condition for definable groups in a totally transcendental theory
we get a Δ ∈ Inv such thatH = HΔ andN = NΔ. By Proposition 4.12,SpΔ = {gpΔ :
g ∈ NΔ}. The types gpΔ, g ∈ NΔ, are the generic Δ-types of their HΔ-cosets. They
extend uniquely to the generic types in SG (M ) of these cosets. So the restriction
Sp → SpΔ is an isomorphism. �
Notice that every connected type-definable subgroupH ofG(M ) corresponds in
this way to the group Sp, where p ∈ SG(M ) is the generic type ofH .
Earlier in this section we discussed when the restriction functions Sp → SpΔ ,Δ ∈
Inv, are surjective. In Lemma 4.5 we provided a criterion for this in the case where
L is countable. Here we extend this result, using our description of the groups Sp
and SpΔ . We keep the notation from Corollary 4.13.

Lemma 4.14. Assume T is totally transcendental orM is |T |-compact. Then the
following conditions are equivalent.
(1) The restriction functions Sp → SpΔ are surjective for every Δ ∈ Inv.
(2) The connecting maps of the inverse system of groups (SpΔ )Δ∈Inv are surjective.

Proof. (1)⇒ (2) is obvious.
(2)⇒ (1): If T is totally transcendental, then we are done by Corollary 4.13(3).
Next, assume M is |T |+-saturated. Let Δ0 ∈ Inv. We want to prove that the
restriction function Sp → SpΔ0 is surjective.
So let qΔ0 ∈ SpΔ0 . Let κ = |T |. For Δ ∈ Inv let NΔ = NG(M )(Stab(pΔ)). By
Proposition 4.12, SpΔ = {gpΔ : g ∈ NΔ}.
Extend 〈Δ0〉 to an increasing continuous sequence 〈Δα, α < κ〉 of invariant
subsets of L with |Δα | < κ and

⋃
α<κ Δα =

⋃
Inv. For α < κ let pα = p|Δα and

Nα =
⋂{NΔ : Δ ∈ Inv and Δ ⊆ Δα}.

We find recursively elements gα ∈ Nα, α < κ, such that for every α < κ
(∗) the types g�p�, � ≤ α, are compatible.

We begin the construction with a g0 ∈ N0 such that qΔ0 = g0pΔ0 . g0 exists by
Proposition 4.12.
Next suppose α < κ and for every α′ < α we have picked gα′ such that (∗) holds
with α′ in place of α. Let Φ(x) consist of the following formulas:

• x ∈ NΔ (for all Δ ∈ Inv with Δ ⊆ Δα),
• g�pΔ = xpΔ (for every � < α and Δ ∈ Inv with Δ ⊆ Δ� ).
We see that Φ(x) is a type overMeq of power < |T |. By the compactness ofM
we find gα ∈ Nα realizing Φ(x). It is clear that (∗) holds.
Let q(x) be the union of the types gαpα, α < κ. By (∗) we have that q|Δ ∈ SpΔ
for every Δ ∈ Inv, hence q ∈ Sp. q|Δ0 = qΔ0 by the choice of g0. �
Lemmas 4.5 and 4.14 resemble the situation that occurred around two-cardinal
theorem for stable theories. Assume ϕ(x) is a nonalgebraic formula of L. Recall
that ϕ(x) has Vaught property if there are models M ≺ N of T with M �= N
and ϕ(M ) = ϕ(N). We say that a model M of T has the extension property
(with respect to ϕ(x)) if there is a proper elementary extension N of M with
ϕ(M ) = ϕ(N). Lachlan proved [8] that if ϕ(x) has Vaught property, then every
M |= T has the extension property, provided L is countable (and T is stable).
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There was a question if this result really needs the countability assumption. Harnik
removed the countability assumption from it, instead adding the assumption that
M is |T |-compact [4]. In [9,10] it was proved that it is consistent withZFC +¬CH
that the Lachlan’s result holds for every superstable theory assuming |L| < 2ℵ0 . The
crucial point of the proof was a construction of locally isolated types and locally
atomic models.
In Lemma 4.5 we also have a countability assumption, that is partially removed

in Lemma 4.14 at the cost of assuming that M is |T |-compact. Is it consistent
with ZFC + ¬CH that Lemma 4.5 holds for a superstable T , assuming just that
|L| < 2ℵ0 ?
Proposition 4.12 shows that the maximal subgroups of SG,Δ(M ),Δ ∈ Inv, are

definable in Meq . The next remark shows that they are also definable in the pure
semigroup (SG,Δ(M ), ∗).
Remark 4.15. Let ϕ(x, y) be the formula

x ∗ y = y ∗ x = x ∧ ∃z(z ∗ x = x ∗ z = y).
Assume p ∈ SG (M ) [or p ∈ SG,Δ(M ), where Δ ∈ Inv] is an idempotent and
S ⊆ SG(M ) [S ⊆ SG,Δ(M ), respectively] is the maximal subgroup containing p.
Then the formula ϕ(x, p) defines S in the structure (SG (M ), ∗) [(SG,Δ(M ), ∗),
respectively].

In the next section we shall need the following lemma.

Lemma 4.16. Assume Δ ∈ Inv and B is a G(M )-subalgebra of DefG,Δ(M ) such
that the set

SB = {p ∈ SG,Δ(M ) : B = Im(dp) and dp|B permutes B}
is nonempty. Then SB is a maximal subgroup of DefG,Δ(M ).
Proof. Let p ∈ SB and let K = Ker(dp). By the proof of Corollary 4.2 we have

that

SK,B = {f ∈ End(DefG,Δ(M )) : Ker(f) = K, Im(f) = B and f|B permutes B}
is a maximal subgroup of End(DefG,Δ(M )) containing dp, hence S := d−1[SK,B] is
a maximal subgroup of SG,Δ(M ) containing p.
Since p ∈ SB was arbitrary and by Corollary 4.10,K in SK,B is determined by B,

we get that S = SB, that is, K is the common kernel of the functions dp, p ∈ SB. �

§5. ∗-powers of types. In stability theory, forking and local Morley ranks are
the main tools to measure the size of types. In our context, topological dynamics
provides some additional tools. The largest types p ∈ SG (M ) are the generic ones.
They have the largest local Morley ranks and also the smallest orbits, meaning
that for p ∈ SG (M ), p is generic if and only if the G(M )-subflow cl(G(M )p) is
minimal.
So for a type p ∈ SG (M ) the size of the set cl(G(M )p) may indicate how large

p is: the smaller cl(G(M )p), the larger p. Notice that cl(G(M )p) is determined by
the kernel Ker(dp):

cl(G(M )p) =
⋃

{SG (M ) ∩ [Uc ] : U ∈ Ker(dp)}.
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So the size of Ker(dp) is correlated with the size of p. Another object related to p is
Im(dp). Here the size of Im(dp) is inversely correlated with the size of p (we explain
it later).
The goal of this section is to compare the three ways ofmeasuring p ∈ SG(M ): by
local Morley ranks, by the size of Ker(dp), and by the size of Im(dp). First we recall
the fundamental lemma connecting forking and local Morley ranks. It appears in
[15] as Lemmas I.3.4, I.3.6, and Corollary I.3.5.
Lemma 5.1.
(1) Let Δ ⊆ L be finite, A ⊆ B ⊆ C, q(x) ∈ SΔ(B) and p(x) = q(x)|A ∈ SΔ(A).
Then q does not fork over A if and only if RMΔ(q) = RMΔ(p).

(2) Let A ⊆ B, q(x) ∈ S(B), p(x) = q(x)|A. Then q does not fork over A if and
only if RMΔ(p|Δ) = RMΔ(q|Δ) for co-finally many (equivalently: all ) finite
sets Δ ⊆ L.

(3) With the hypotheses of (2), q does not fork over A if and only if RMΔ(p) =
RMΔ(q) for co-finally many (equivalently: all ) finite sets Δ ⊆ L.

For a type p ∈ SG (M ) let
R(p) = 〈RMΔ(p) : Δ ∈ Inv〉 and R′(p) = 〈RMΔ(p|Δ) : Δ ∈ Inv〉.

For p, q ∈ SG (M ) we write R(p) ≤ R(q) when RMΔ(p) ≤ RMΔ(q) for every
Δ ∈ Inv. The notation R′(p) ≤ R′(q) has an analogous meaning. The next lemma
indicates that the independent multiplication of types ∗ increases the size of types.
Its items are essentially proved in [11] or follow from Lemma 5.1.
Lemma 5.2. Assume p, q ∈ SG (M ).
(1) R(p ∗ q) ≥ R(p) and R(p ∗ q) ≥ R(q).
(2) (1) holds also with R′ in place of R.
(3) The following conditions are equivalent
(a) R(p ∗ q) = R(q)
(b) R′(p ∗ q) = R′(q)
(c) For a |= p and b |= q, a�| Mb implies a�| Mab.

(4) The following conditions are equivalent
(a) R(p ∗ q) = R(p)
(b) R′(p ∗ q) = R′(p)
(c) For a |= p and b |= q, a�| Mb implies ab�| Mb.

∗ affects also the size of Ker(dp) and Im(dp) for p ∈ SG(M ).
Remark 5.3. Assume p, q ∈ SG (M ) or p, q ∈ SG,Δ(M ), where Δ ∈ Inv. Then
Ker(dp∗q) ⊇ Ker(dq) and Im(dp∗q) ⊆ Im(dp).
Proof. By Proposition 2.4, dp∗q = dp ◦ dq . �
This remark justifies our claim above that the size of a type p ∈ SG(M ) is
inversely correlated with the size of Im(dp). The next lemma relates the growth of
ranks, kernels, and images.
Lemma 5.4.
(1) Assume p, q ∈ SG (M ).
(a) If R(p ∗ q) = R(p), then Im(dp∗q) = Im(dp).
(b) If R(p ∗ q) = R(q), then Ker(dp∗q) = Ker(dq).
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(2) Assume p, q ∈ SG,Δ(M ), where Δ ∈ Inv.
(a) If RMΔ(p ∗ q) = RMΔ(p), then Im(dp∗q) = Im(dp).
(b) If RMΔ(p ∗ q) = RMΔ(q), then Ker(dp∗q) = Ker(dq).

Proof. (1)(a) Let a, b ∈ C be independent realizations of p, q, respectively.
Then ab |= p∗q. Let q−1 = tp(b−1/M ). By Lemma 5.2 we have that ab�| Mb, hence
ab�| Mb−1. So a = (ab)b−1 realizes bothp and (p∗q)∗q−1. Hencep = (p∗q)∗q−1.
By Remark 5.3 it follows that

Im(dp) ⊇ Im(dp∗q) ⊇ Im(dp∗q∗q−1 ) = Im(dp),
hence all these inclusions are equalities and we are done.
(1)(b) A similar proof.
(2)(a) Choose p′, q′ ∈ SG (M ) extending p, q, respectively. Let a, b ∈ C be

independent realizations of p′, q′, respectively. Let (q′)−1 = tp(b−1/M ) and q−1 =
tpΔ(b

−1/M ). So q−1 = (q′)−1|Δ.
We have that ab realizes both p ∗ q and p′ ∗ q′. We claim that

p ∗ q ∗ q−1 = p.
To compute p ∗ q ∗ q−1 = (p ∗ q) ∗ q−1 we pick a b′ |= q′ with b′�| Mab. Then
ab(b′)−1 |= p ∗ q ∗ q−1. Since ab�| Mb′, we have that RMΔ(tpΔ(ab/Mb′)) =
RMΔ(tpΔ(ab/M )). Since RMΔ(p ∗ q) = RMΔ(p), we have that
RMΔ(tpΔ(ab/Mb)) = RMΔ(tpΔ(a/Mb)) = RMΔ(tpΔ(a/M )) = RMΔ(tpΔ(ab/M )).

Let rb = tpΔ(ab/Mb) and rb′ = tpΔ(ab/Mb
′). Since both b and b′ realize q′ and

MltΔ(tpΔ(ab/M )) = 1, we have that rb and rb′ are conjugate overM . Hence

p = tpΔ(abb
−1/M ) = tpΔ(ab(b

′)−1/M ) = p ∗ q ∗ q−1.
The rest is as in the proof of (1)(a).
(2)(b) A similar proof. �

Assume p ∈ SG (M ) (or p ∈ SG,Δ(M ), where Δ ∈ Inv). Consider the sequence
of types p∗n = p ∗ · · · ∗ p (n-times), n > 0. By Lemma 5.2 we get a nondecreasing
sequence of ranks R(p∗n), n > 0 (or RMΔ(p∗n)). By Remark 5.3 we get a non-
decreasing sequence of kernels Ker(dp∗n ) and nonincreasing sequence of images
Im(dp∗n). We are going to compare the growth properties of these three sequences.
We will use the following lemma, which seems also to be of independent interest.

Lemma 5.5. Let B = Im(dp). If the function dp|B : B → B is 1-1, then it is “onto”.
Proof. First we assume that p ∈ SG,Δ(M ). Suppose dp|B : B → B is 1-1, but not

“onto”. Then the sequence of algebras Im(dp∗n), n > 0, is strictly decreasing. But
the sequence of ranks RMΔ(p∗n), n > 0, eventually stabilizes (since RMΔ(x = x)
is finite), hence by Lemma 5.4 also the sequence Im(dp∗n ) eventually stabilizes, a
contradiction.
Now we deal with the case where p ∈ SG (M ). If dp|B : B → B is 1-1, but not

“onto”, then for some Δ ∈ Inv, someU ∈ B∩DefG,Δ(M ) lies outside Im(dp|B). We
consider pΔ = p|Δ. Let BΔ = Im(dpΔ). Then BΔ = B ∩DefG,Δ(M ) and dpΔ : BΔ →
BΔ is 1-1, but not “onto”, contradicting the case, where p ∈ SG,Δ(M ). �
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The next proposition shows that the sequences of kernels and images of the
functions dp∗n , n > 0, are strictly correlated. Later we shall see they are strictly
correlated also to the sequence of ranks.

Proposition 5.6. Assume n > 0. The following conditions are equivalent.

(1) Ker(dp∗n ) = Ker(dp∗(n+1)).
(2) Ker(dp) ∩ Im(dp∗n ) = {∅}.
(3) Im(dp∗n ) = Im(dp∗(n+1)).

If conditions (1)–(3) hold, then Ker(dp∗n) = Ker(dp∗m ) and Im(dp∗n ) = Im(dp∗m ) for
all m ≥ n.
Proof. (1) ⇔ (2) is trivial. For the rest of the proof let q = p∗n, B = Im(dq),
and K = Ker(dq). Notice that dq |B = (dp|B)n .
(2) ⇒ (3). By (2), dp|B : B → B is 1-1. Hence also dq |B is 1-1. It is enough to
show that dp|B : B → B is “onto”. Suppose not. Then also dq |B : B → B is not
“onto”. This contradicts Lemma 5.5.
(3) ⇒ (2). Suppose (3) holds and (2) fails. Then also Im(dq∗2 ) = B and
K ∩ B �= {∅}. It follows that for every m > 0, Im(dq∗m ) = B and the sequence
Ker(dq∗m ), m > 0, is strictly increasing.
Case 1. p ∈ SG,Δ(M ). Then q ∈ SG,Δ(M ) and by Lemma 5.4, the sequence
of kernels Ker(dq∗m ), m > 0, is eventually constant (similarly as in the proof of
Lemma 5.5), a contradiction.
Case 2. p ∈ SG(M ). Then q ∈ SG (M ). Choose a nonempty U ∈ K ∩ B.
U ∈ DefG,Δ(M ) for some Δ ∈ Inv. Let qΔ = q|Δ. We see that Im(dqΔ) = Im(dq∗2Δ )
andU ∈ Ker(dqΔ)∩Im(dqΔ), contradicting (3)⇒ (2) in the casewherep ∈ SG,Δ(M )
and n = 1.
The last clause of the proposition is easy. �

Now we focus our attention on the case where p ∈ SG,Δ(M ) and Δ ∈ Inv.
Theorem 5.7. Assume Δ ∈ Inv, p ∈ SG,Δ(M ) and n0 > 0 is minimal such that
Ker(dp∗n0 ) = Ker(dp∗(n0+1) ). Then there is a Δ-definable Δ-connected subgroup H of
G(M ) such that the types p∗n, n ≥ n0, belong to the maximal subgroupS of SG,Δ(M )
containing the generic type q ∈ SG,Δ(M ) of H . In particular, the types p∗n, n ≥ n0,
are of the form gq, where g ∈ NG(M )(H ).
Proof. Let B = Im(dp∗n0 ). By Proposition 5.6, for every n ≥ n0 we have
that B = Im(dp∗n ) and dp∗n |B permutes B. Hence by Lemma 4.16 all such types
p∗n belong to the maximal subgroup SB of SG,Δ(M ). Our theorem follows from
Proposition 4.12. �

In particular, ifRMΔ(G(M )) = d , then for every p ∈ SG,Δ(M ) and everym ≥ d
we have that p∗m belongs to a maximal subgroup of SG,Δ(M ), the same one that
contains p∗d . So SG,Δ(M ) is an epigroup (in the sense of [16]), with all its elements
having index ≤ d .
Theorem 5.7 may be also proved in a way similar as in [11], without referring to
topological dynamics. Inwhat followsweassume thatΔ∈ Inv.Also for simplicitywe
assume that G(x) ∈ Δ, where G(x) is the formula without parameters defining G .
By the results of Section 2, for p, q ∈ SG,Δ(M ) we have that p ∗ q = tpΔ(a · b/M ),
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where a and b are M -independent realizations of p and q, respectively. We can
weaken the assumption ofM -independence here.
Lemma 5.8. Assumep, q ∈ SG,Δ(M ), a |= p and b |= q. Thenp∗q = tpΔ(a ·b/M )

provided that at least one of the following conditions holds.
(1) RMΔ(tpΔ(a/Mb)) = RMΔ(p).
(2) RMΔ(tpΔ(b/Ma)) = RMΔ(q).
Notice that conditions (1) and (2) in this lemma are not equivalent. The condition

that a and b areM -independent is their common strengthening.
Let p ∈ SG,Δ(M ). We say that q ∈ SG,Δ(M ) is inverse to p if some realizations

of p and q are inverse to each other in G .Notice that there may be more than one q
inverse to p (since Δ need not be closed under group inverse). That is why we avoid
writing p−1 here.
Lemma 5.9. Assume p, q, r ∈ SG,Δ(M ), RMΔ(q ∗ r) = RMΔ(r) and p is inverse

to q. Then p ∗ q ∗ r = r.
Proof. Choose M -independent a |= q and b |= r. with a−1 |= p. Then ab

realizes q ∗ r. We have that
RMΔ(tpΔ(ab/Ma))=RMΔ(tpΔ(b/Ma))=RMΔ(tpΔ(b/M ))=RMΔ(tpΔ(ab/M )),

hence alsoRMΔ(tpΔ(ab/Ma
−1)) = RMΔ(tpΔ(ab/M )). By Lemma 5.8 we have that

b = a−1ab realizes both p ∗ q ∗ r and r, so we are done. �
Alternative proof of Theorem 5.7. Let q ∈ SG,Δ(M ) be inverse to p. Since

RM�(p∗n) = RMΔ(p∗(n+1)), also RMΔ(p∗n) = RMΔ(p∗m) for every m > n.
Indeed, by Lemma 5.9, q ∗ p∗(n+1) = p∗n. It follows that q∗(m−n) ∗ p∗m = p∗n for

every m > n, hence

RMΔ(p∗n) ≤ RMΔ(p∗m) ≤ RMΔ(q∗(m−n) ∗ p∗m) = RMΔ(p∗n).
LetH = Stab(p∗n). Since q∗n ∗p∗n ∗p∗n = p∗n , we have that q∗n ∗p∗n ∈ SH,Δ(M ).
It follows that RMΔ(H ) = RMΔ(p∗n), r := q∗n ∗ p∗n is the generic Δ-type of H
and p∗n is the generic Δ-type of a left coset of H , definable over M . Similarly we
see thatH = Stab(p∗m) for everym > n and p∗m is also the generic Δ-type of a left
coset of H .
Let m ≥ n. Choose g ∈ M in the left coset of H containing p∗m. So p∗m = gr.

Also r∗gr = gr, hence g−1rg∗r = r. It follows that g−1rg is a type in Stab(r) = H ,
also it is the generic Δ-type of g−1Hg. Hence g−1rg = r and g ∈ NG(H ). �
Corollary 5.10. Assume n > 0 and p ∈ SG,Δ(M ), where Δ ∈ Inv. The following

conditions are equivalent.
(1) Ker(dp∗n) = Ker(dp∗(n+1)).
(2) RMΔ(p∗n) = RMΔ(p∗(n+1)).

In particular, if (1) and (2) hold, then RMΔ(p∗n) = RMΔ(p∗m) for all m ≥ n.
Proof. (2)⇒ (1) follows by Lemma 5.4.
(1) ⇒ (2). If Ker(dp∗n ) = Ker(dp∗(n+1)), then by Theorem 5.7 the types p∗n and

p∗(n+1) are both left translates of the generic type q ∈ SG,Δ(M ) of some Δ-definable
Δ-connected subgroupH of G(M ). Hence RMΔ(p∗n) = RMΔ(p∗(n+1)).
The last clause of the corollary is easy. �
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Corollary 5.10 shows that also the sequence of ranks of p∗n, n > 0, is strictly
correlated to the sequences of kernels and images of dp∗n .

Corollary 5.11. Assume Δ ∈ Inv, p ∈ SG,Δ(M ) [or p ∈ SG (M )], n > 0 and p∗n
belongs to a maximal subgroup S of SG,Δ(M ) [SG (M ), respectively]. Then p∗m ∈ S
for every m ≥ n.
In the case where p ∈ SG(M ) we get a sequence of Δ-definable Δ-connected
subgroups HΔ of G(M ) such that for every Δ ∈ Inv the types (p|Δ)∗n eventually
are left translates of the generic Δ-type of HΔ. Let H =

⋂
Δ∈InvHΔ(C). So H

is a connected M -type-definable subgroup of G and the sequence p∗n, n > 0,
“converges” to translates of the generic type q of H . Namely, for every Δ ∈ Inv,
eventually the types (p|Δ)∗n are left translates of q|Δ. Hence we could say that,
considering the operation of raising p to ∗-powers, the type p is profinitely many
steps away from a translate of a generic type of a subgroup of G(M ).
In the special case whereU (G) is finite, sayU (G) = d , we get a real convergence:
there is an n ≤ d such that for everym ≥ n, p∗m is a left translate of q, providedM
is |T |+-saturated. This last fact essentially follows also from [7].
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