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We study global solution curves and prove the existence of infinitely many positive
solutions for three classes of self-similar equations with p-Laplace operator. In the
p = 2 case these are well-known problems involving the Gelfand equation, the
equation modelling electrostatic micro-electromechanical systems (MEMS), and a
polynomial nonlinearity. We extend the classical results of Joseph and Lundgren to
the case in which p �= 2, and we generalize the main result of Guo and Wei on the
equation modelling MEMS.
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1. Introduction

We consider radial solutions on a ball in R
n for three special classes of equations

involving the p-Laplace operator, those that are self-similar under scaling. We now
explain our approach for one of the classes, that involving the p-Laplace version of
the equation that arises in the modelling of electrostatic micro-electromechanical
systems (MEMS),

div(|∇u|p−2∇u) + λ
|x|α

(1 − u)q
= 0 for |x| < 1, u = 0 when |x| = 1, (1.1)

where p > 1, α > 0, q > 0, u = u(x), x ∈ R
n, n � 1 (see [6, 7, 14]). Here λ is

a positive parameter. We are looking for solutions satisfying 0 < u < 1. Radial
solutions of this equation satisfy

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ

rα

(1 − u)q
= 0 for 0 < r < 1, (1.2)

u′(0) = u(1) = 0, 0 < u(r) < 1,

with ϕ(v) = v|v|p−2. It is easy to see that u′(r) < 0 for all 0 < r < 1, which
implies that the value of u(0) gives the maximum value (or the L∞-norm) of our
solution. Moreover, u(0) is a global parameter, i.e. it uniquely identifies the solution
pair (λ, u(r)); see, for example, [10]. It follows that a two-dimensional curve in the
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(λ, u(0)) plane completely describes the solution set of (1.2). The self-similarity of
this equation allows one to parametrize the global solution curve, using the solution
of a single initial-value problem:

ϕ(w′)′ +
n − 1

t
ϕ(w′) =

tα

wq
, w(0) = 1, w′(0) = 0. (1.3)

Its solution w(t) is a positive and increasing function, which can be easily computed
numerically. Following Pelesko [14], we show that the global solution curve of (1.2)
is given by

(λ, u(0)) =
(

tα+p

wp+q−1(t)
, 1 − 1

w(t)

)
,

parametrized by t ∈ (0,∞). In particular,

λ = λ(t) = tα+p/wp+q−1(t) and λ′(t) = tα+p−1w−p−q[(α+p)w − t(p+ q −1)w′],

so that the solution curve travels to the right (respectively, left) in the (λ, u(0))
plane if (α + p)w − t(p + q − 1)w′ > 0 (respectively, (α + p)w − t(p + q − 1)w′ < 0).
This makes us interested in the roots of the function (α + p)w − t(p + q − 1)w′. If
we set this function to zero,

(α + p)w − t(p + q − 1)w′ = 0,

then the general solution of this equation is

w(t) = ctβ , β =
α + p

p + q − 1
.

Quite remarkably, if we choose the constant

c = c0 =
[

1
βp−1[(p − 1)(β − 1) + n − 1]

]1/(p+q−1)

,

then
w0(t) = c0t

β

also solves the equation in (1.3), along with w(t). We show that w(t) tends to w0(t)
as t → ∞, and the solution curve of (1.2) makes infinitely many turns if and only if
w(t) and w0(t) intersect infinitely many times. We give a sharp condition for that
to happen, thus generalizing the main result of Guo and Wei [7] to the case in which
p �= 2 (with a simpler proof). In [11] we called w(t) the generating solution, and
w0(t) the guiding solution.

We apply a similar approach to a class of equations with polynomial f(r, u) gen-
eralizing the well-known results of Joseph and Lundgren [9], and to the p-Laplace
version of the generalized Gelfand equation, where we easily recover the correspond-
ing result of Jacobsen and Schmitt [8].

For each of the three classes of equations we show that along the solution curves
(as u(0) → ∞) the solutions tend to a singular solution (for which u(r) → ∞ or
u′(r) → ∞ as r → 0). Moreover, one can calculate the singular solutions explicitly,
which is truly a remarkable feature of self-similar equations. Singular solutions were
studied previously by many authors, including Budd and Norbury [2], Merle and
Peletier [13] and Flores [5].
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2. Parametrization of the solution curves

We begin with the p-Laplace version of the generalized Gelfand equation

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λrαeu = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0, (2.1)

where ϕ(v) = v|v|p−2, p > 1. Observe that ϕ(sv) = sp−1ϕ(v) for any constant
s > 0. Assume that u(0) = a > 0. We set u = w + a, t = br. The constants a and b
are assumed to satisfy

λ = bα+pe−a.

Then (2.1) becomes

ϕ(w′)′ +
n − 1

t
ϕ(w′) + tαew = 0, w(0) = 0, w′(0) = 0. (2.2)

The solution of this problem w(t), which is a negative and decreasing function,
is defined for all t > 0, and it may be easily computed numerically. (Write this
equation as [tn−1ϕ(w′)]′ = −tn+α−1ew < 0, conclude that tn−1ϕ(w′) < 0, and then
w′(t) < 0 for all t.) We have

0 = u(1) = a + w(b),

so that a = −w(b), and then λ = bα+pew(b). The solution curve for (2.1) is

(λ, u(0)) = (bα+pew(b),−w(b)),

parametrized by b ∈ (0,∞). The solution of (2.1) at b is u(r) = w(br) − w(b). It
will be convenient to write the solution curve as

(λ, u(0)) = (tα+pew(t),−w(t)), (2.3)

parametrized by t ∈ (0,∞), and w(t) is the solution of (2.2). The solution of (2.1)
at the parameter value t is u(r) = w(tr) − w(t).

We next consider the problem

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ

rα

(1 − u)q
= 0 for 0 < r < 1, (2.4)

u′(0) = u(1) = 0, 0 < u(r) < 1,

which arises in the modelling of MEMS; see [6,7,14]. Here λ is a positive parameter,
q > 0 and α > 0 are constants, and as before ϕ(v) = v|v|p−2, p > 1. Any solution
u(r) of (2.4) is a positive and decreasing function (by the maximum principle),
so that u(0) gives its maximum value. Our goal is to compute the solution curve
(λ, u(0)). Let 1 − u = v. Then v(r) satisfies

ϕ(v′)′ +
n − 1

r
ϕ(v′) = λ

rα

vq
for 0 < r < 1, v′(0) = 0, v(1) = 1. (2.5)

Assume that v(0) = a. We scale as follows: v(r) = aw(r) and t = br. The constants
a and b are assumed to satisfy

λ = ap+q−1bα+p. (2.6)
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Then (2.5) becomes

ϕ(w′)′ +
n − 1

t
ϕ(w′) =

tα

wq
, w(0) = 1, w′(0) = 0. (2.7)

The solution of this problem is a positive increasing function that is defined for all
t > 0. We have

1 = v(1) = aw(b),

and so a = 1/w(b), and then λ = bα+p/wp+q−1(b). The solution curve (λ, u(0)) is
(

bα+p

wp+q−1(b)
, 1 − 1

w(b)

)
,

parametrized by b ∈ (0,∞). It will be convenient to write the solution curve in the
form

(λ, u(0)) =
(

tα+p

wp+q−1(t)
, 1 − 1

w(t)

)
, (2.8)

parametrized by t ∈ (0,∞). In the p = 2 case, this parametrization was first
derived by Pelesko [14] and was then used in [6]. The solution of (2.4) at t is
u(r) = 1 − w(tr)/w(t).

Finally, we consider the problem (with the constants p > 1, q > 1, α � 0)

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λrα(1 + u)q = 0 for 0 < r < 1, (2.9)

u′(0) = u(1) = 0,

which was analysed for the case in which p = 2 and α = 0 by Joseph and Lundgren
[9]. If we set 1 + u = v, then v(r) satisfies

ϕ(v′)′ +
n − 1

r
ϕ(v′) + λrαvq = 0, v′(0) = 0, v(1) = 1. (2.10)

Assuming that v(0) = a, we scale as follows: v(r) = aw(r) and t = br. The constants
a and b are assumed to satisfy

λ =
bp+α

aq−p+1 . (2.11)

Then (2.10) becomes

ϕ(w′)′ +
n − 1

t
ϕ(w′) + tαwq = 0, w(0) = 1, w′(0) = 0. (2.12)

The solution of (2.12) satisfies w′(t) < 0, so long as w(t) > 0 (the function
tn−1ϕ(w′(t)) is zero at t = 0, and its derivative is negative). It follows that either
there is a t0 such that w(t0) = 0 and w(t) > 0 on (0, t0), or w(t) > 0 on (0,∞)
and limt→∞ w(t) = a � 0. It is easy to see that a = 0 in the second case. Indeed,
assuming that a > 0, we have [tn−1ϕ(w′)]′ � −aqtn+α−1, and integrating we con-
clude that w(t) � 1−ctγ , with some c > 0 and γ = (α+p)/(p−1) > 0, contradicting
that w(t) > 0 on (0,∞).

https://doi.org/10.1017/S0308210517000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000038


Infinitely many solutions for three classes of self-similar equations 345

Lemma 2.1. Assume that
q >

np − n + p + pα

n − p
. (2.13)

Then w(t) > 0 and w′(t) < 0 on (0,∞), with limt→∞ w(t) = 0.

Proof. In view of the above remarks, we need to exclude the possibility that w(t0) =
0 and w(t) > 0 on (0, t0). Recall that for the equation

ϕ(w′)′ +
n − 1

t
ϕ(w′) + f(t, w) = 0

the Pohozhaev function

P (t) = tn[(p − 1)ϕ(w′)w′ + pF (t, w)] + (n − p)tn−1ϕ(w′)w

is easily seen to satisfy

P ′(t) = tn−1[npF (t, w) − (n − p)wf(t, w) + ptFt(t, w)],

where F (t, w) =
∫ w

0 f(t, z) dz (see, for example, [10, p. 136]). Here

P ′(t) = tn−1+α

[
np

q + 1
− (n − p) +

pα

q + 1

]
wq+1 < 0.

Since P (0) = 0 and P (t0) > 0, we have a contradiction.

As before, we have
1 = v(1) = aw(b),

and so a = 1/w(b), and then λ = bp+αwq−p+1(b). Under condition (2.13), the
solution curve (λ, u(0)) is (

bp+αwq−p+1(b),
1

w(b)
− 1

)
,

parametrized by b ∈ (0,∞). The solution at b is u(r) = w(br)/w(b) − 1. It will be
convenient to write the solution curve in the form

(λ, u(0)) =
(

tp+αwq−p+1(t),
1

w(t)
− 1

)
, (2.14)

parametrized by t ∈ (0,∞). The solution of (2.9) at t is u(r) = w(tr)/w(t) − 1.

3. The equation modelling MEMS

We consider problem (2.4), whose solution curve is given by (2.8), where w(t) is
the solution of (2.7). We have λ(t) = tα+p/wp+q−1(t), where w(t) is the solution of
(2.7), and so

λ′(t) = tα+p−1w−p−q[(α + p)w − t(p + q − 1)w′].

We are interested in the roots of the function (α + p)w − t(p + q − 1)w′. If we set
this function to zero,

(α + p)w − t(p + q − 1)w′ = 0,

https://doi.org/10.1017/S0308210517000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000038


346 P. Korman

then the general solution of this equation is

w(t) = ctβ , β =
α + p

p + q − 1
.

Quite remarkably, if we choose the constant

c = c0 =
[

1
βp−1[(p − 1)(β − 1) + n − 1]

]1/(p+q−1)

,

under the condition that

(p − 1)(β − 1) + n − 1 > 0, (3.1)

then
w0(t) = c0t

β

also solves the equation in (2.7), along with w(t). We shall show that w(t), the
solution of initial-value problem (2.7), tends to w0(t) as t → ∞, and the issue turns
out to be whether w(t) and w0(t) cross infinitely many times as t → ∞.

Lemma 3.1. Assume that w(t) and w0(t) intersect infinitely many times. Then the
solution curve of (2.4) makes infinitely many turns.

Proof. Assuming that w(t) and w0(t) intersect infinitely many times, let {tn} denote
the points of intersection. At the {tn}s, w(t) and w0(t) have different slopes (by
uniqueness for initial-value problems). Since (α+p)w0(tn)−tn(p+q−1)w′

0(tn) = 0,
it follows that (α + p)w(tn) − tn(p + q − 1)w′(tn) < 0 (respectively, (α + p)w(tn) −
tn(p + q − 1)w′(tn) > 0) if w(t) intersects w0(t) from below (respectively, above) at
tn. Hence, on any interval (tn, tn+1) there is a point t0 where (α+p)w(t0)−t0(p+q−
1)w′(t0) = 0, i.e. λ′(t0) = 0, and t0 gives a critical point. Since λ′(tn) and λ′(tn+1)
have different signs, the solution curve changes its direction over (tn, tn+1).

We shall need Sturm–Picone’s comparison theorem, which is well known (see, for
example, [12, p. 5]).

Lemma 3.2. Let u(t) and v(t) respectively be classical solutions of

(a(t)u′)′ + b(t)u = 0 (3.2)

and

(a1(t)v′)′ + b1(t)v = 0. (3.3)

Assume that the given differentiable functions a(t), a1(t) and continuous functions
b(t) and b1(t) satisfy

b1(t) � b(t) and 0 < a1(t) � a(t) for t � t0 > 0. (3.4)

In the case in which a1(t) = a(t) and b1(t) = b(t) for all t, assume additionally that
u(t) and v(t) are not constant multiples of one another. Then, for t � t0, v(t) has
a root between any two consecutive roots of u(t).
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Lemma 3.3. Consider the equation

(a0(t)(1 + f(t))v′)′ +
n − 1

t
a0(t)(1 + f(t))v′ + b0(t)(1 + g(t))v = 0, (3.5)

with given differentiable functions a0(t) > 0 and f(t), and continuous functions
b0(t) > 0 and g(t). Assume that limt→∞ f(t) = limt→∞ g(t) = 0 and that there is
an ε > 0 such that any solution of

(a0(t)(1 + ε)v′)′ +
n − 1

t
a0(t)(1 + ε)v′ + b0(t)(1 − ε)v = 0 (3.6)

has infinitely many roots. Then any solution of (3.5) has infinitely many roots.

Proof. We rewrite (3.5) in the form (3.2), with a(t) = tn−1a0(t)(1 + f(t)) and
b(t) = tn−1b0(t)(1 + g(t)), and we rewrite (3.6) in the form (3.3), with a1(t) =
tn−1a0(t)(1 + ε) and b1(t) = tn−1b0(t)(1 − ε). For large t the inequalities in (3.4)
hold and lemma 3.2 applies.

The linearized equation for (2.7) is

(ϕ′(w′)z′)′ +
n − 1

t
ϕ′(w′)z′ = −qtαw−q−1z.

At the solution w = w0(t), this becomes

(a0(t)z′)′ +
n − 1

t
a0(t)z′ + b0(t)z = 0, (3.7)

with

a0(t) = ϕ′(w′
0) = (p − 1)cp−2

0 βp−2t(p−2)(β−1)

and

b0(t) = qtαw−q−1
0 = qc−q−1

0 tα−β(q+1).

One simplifies (3.7) to read

z′′ +
[(p − 2)(β − 1) + n − 1]

t
z′ +

qβ[(p − 1)(β − 1) + n − 1]
(p − 1)t2

z = 0,

which is an Euler equation! The roots of its characteristic equation,

r(r − 1) + [(p − 2)(β − 1) + n − 1]r +
qβ[(p − 1)(β − 1) + n − 1]

p − 1
= 0,

are complex valued provided that

[(p − 2)(β − 1) + n − 2]2 <
4qβ[(p − 1)(β − 1) + n − 1]

p − 1
.

We write this inequality in the form

Aβ2 + Bβ − C > 0, (3.8)
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with A = 4(p − 1)q − (p − 1)(p − 2)2, B = 4q(n − p) − 2(p − 1)(p − 2)(n − p) and
C = (p − 1)(n − p)2. We shall have A > 0 provided that

4q − (p − 2)2 > 0. (3.9)

For (3.8) to hold, we need β = (α + p)/(p + q − 1) to be greater than the larger
root of this quadratic, i.e. β > (−B+

√
B2 + 4AC)/2A (assuming that (3.9) holds),

which gives

α + p

p + q − 1
>

(p − n)(2q − p2 + 3p − 2) + 2|n − p|
√

q(p + q − 1)
(p − 1)[4q − (p − 2)2]

. (3.10)

Theorem 3.4. Assume that q > 0, p > 1, with

(p − 1)(β − 1) + n − 1 > β, (3.11)

and that conditions (3.9) and (3.10) hold. Then the solution curve of

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ

rα

(1 − u)q
= 0 for 0 < r < 1, (3.12)

u′(0) = u(1) = 0, 0 < u(r) < 1,

makes infinitely many turns. Moreover, along this curve (as u(0) → ∞), λ → λ0 =
1/cq−1

0 = βp−1[(p − 1)(β − 1) + n − 1], and u(r) tends to 1 − rβ for r �= 0, which is
a solution of the equation in (3.12).

Proof. In view of lemma 3.1, we need to show that w(t) and w0(t) intersect infinitely
many times. Let P (t) = w(t) − w0(t). Then P (t) satisfies

(a(t)P ′)′ +
n − 1

t
a(t)P ′ + b(t)P = 0, (3.13)

where

a(t) =
∫ 1

0
ϕ′(sw′(t) + (1 − s)w′

0(t)) ds, (3.14)

b(t) = qtα
∫ 1

0

1
[sw(t) + (1 − s)w0(t)]q+1 ds. (3.15)

We claim that it is impossible for P (t) to keep the same sign over some infinite
interval (t0,∞) while tending to a constant as t → ∞. Assuming the contrary,
write

a(t) = (p − 1)(w′
0)

p−2
∫ 1

0

∣∣∣∣s w′(t)
w′

0(t)
+ (1 − s)

∣∣∣∣
p−2

ds = a0(t)(1 + o(1)),

b(t) = qtα
1

wq+1
0

∫ 1

0

1
[s(w(t)/w0(t)) + (1 − s)]q+1 ds = b0(t)(1 + o(1))

as t → ∞. (Observe that w(t)/w0(t) → 1, since P (t) tends to a constant, and
w′(t)/w′

0(t) → 1, by L’Hospital’s rule, as t → ∞.) Since Euler’s equation (3.7) has
infinitely many roots on (t0,∞), we conclude by lemma 3.3 that P (t) must vanish
on that interval too, which is a contradiction.
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Next we show that if P (t0) = 0, then P (t) remains bounded for all t > t0. Assume
that P ′(t0) < 0; the case in which P ′(t0) > 0 is similar. Then P (t) < 0 for t > t0,
with t − t0 small. From (3.13), tn−1a(t)P ′(t) is increasing for t > t0 so that

P ′(t) > − a0

a(t)tn−1 for t > t0 (with a0 = −tn−1
0 a(t0)P ′(t0) > 0).

Since solutions of the linear equation (3.13) cannot go to infinity over a bounded
interval, we may assume that t0 is large, and then, by the above, a(t) ∼ a0(t) ∼
a1t

(p−2)(β−1) for t > t0 and some a1 > 0. It follows that, for some a2 > 0,

P ′(t) > − a2

tn−1+(p−2)(β−1) = − a2

t1+ε
for t > t0, (3.16)

with ε = n − 2 + (p − 2)(β − 1) > 0, in view of (3.11). Integrating over (t0, t) and
using that n � 3, we conclude the boundedness of P (t), so long as P (t) < 0. If
another root of P (t) is encountered, we repeat the argument. Hence, P (t) remains
bounded for all t > t0.

From (3.13) we see that P (t) cannot have points of positive minimum or points
of negative maximum. We claim that if P (t) has one root, it has infinitely many
roots. Indeed, assume that P (t1) = 0, and say P ′(t1) > 0. For t > t1, P (t) remains
bounded but cannot tend to a constant. Hence, P (t) will have to turn back and
become decreasing, but it cannot have a positive local minimum or tend to a con-
stant. Hence, P (t2) = 0 at some t2 > t1, and so on.

We have P (0) = 1, so that (tn−1a(t)P ′(t))′ < 0 for small t > 0. The function
q(t) ≡ tn−1a(t)P ′(t) satisfies q(0) = 0 and q′(t) < 0, and so q(t) < 0. It follows that
P ′(t) < 0 for small t > 0. Since P (t) cannot turn around or tend to a constant, we
conclude the existence of the first root t1 of P (t), thereby implying the existence
of infinitely many roots.

We show next that w(t) → w0(t) as t → ∞. Let tk and tk+1 be two consecutive
roots of P (t) and let P ′(tk) < 0 so that P (t) < 0 on (tk, tk+1). Let τk be the unique
minimum point of P (t) on (tk, tk+1). For negative P (t) we have inequality (3.16)
with tk in place of t0. Integrating this inequality over (tk, τk), we get

P (τk) > c̄(τ−ε
k − t−ε

k ) (with some c̄ > 0),

which implies that |P (τk)| → 0 as k → ∞. The case in which P ′(tk) > 0 is similar,
so that w(t) → w0(t) along the solution curve. Since u(r) = 1 − w(tr)/w(t), it
follows that along the solution curve u(r) tends to 1−w0(tr)/w0(t) = 1− rβ , while
λ(t) tends to 1/cq−1

0 .

Observe that in the case in which β ∈ (0, 1), the limiting solution 1−rβ is singular
because u′(0) is not defined. Notice also that condition (3.11) implies (3.1). Finally,
observe that in the case in which β ∈ (0, 1), condition (3.11) implies that n � 2.
Indeed, we can rewrite (3.11) as n > 2β + p(1 − β), which is a point between p > 1
and 2.

One special case in which this theorem applies is the following. Assume that
n � p so that (3.10) becomes

α + p

p + q − 1
> (n − p)

2
√

q(p + q − 1) + p2 − 3p + 2 − 2q

(p − 1)[4q − (p − 2)2]
.
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Then (3.10) holds, provided that

2
√

q(p + q − 1) + p2 − 3p + 2 − 2q > 0,

4q > (p − 2)2,

p � n < p +
(α + p)(p − 1)[4q − (p − 2)2]

(p + q − 1)(2
√

q(p + q − 1) + p2 − 3p + 2 − 2q)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.17)

Observe that the third inequality (n � p) implies that condition (3.1) holds, and
the second inequality is just (3.9). Hence, the three inequalities in (3.17) imply the
theorem. In the p = 2 case, the first and the second inequalities hold automatically,
while the third gives Guo and Wei’s condition [7].

4. The generalized Joseph–Lundgren problem

We now study problem (2.9). Its solution curve is represented by (2.14), under condi-
tion (2.13), where w(t) is the solution of (2.12). In particular, λ(t) = tp+αwq−p+1(t),
and we wish to know how many times this function changes the direction of mono-
tonicity for t ∈ (0,∞). (Here w(t) is the generating solution of (2.12).) Compute

λ′(t) = tp+α−1wq−p(t)[(p + α)w(t) + (q − p + 1)tw′(t)],

so that we are interested in the roots of the function (p + α)w + (q − p + 1)tw′. If
we set this function to zero,

(p + α)w + (q − p + 1)tw′ = 0,

then the general solution of this equation is w(t) = at−β , with β = (p+α)/(q−p+1).
If we choose the constant a as

a = a0 = [(n − p)βp−1 − (p − 1)βp]1/(q−p+1),

then w0(t) = a0t
−β is the guiding solution of (2.12) (we have (n − p)βp−1 − (p −

1)βp > 0, under condition (2.13), if n > p).

Lemma 4.1. Assume that w(t) and w0(t) intersect infinitely many times. Then the
solution curve of (2.9) makes infinitely many turns.

Proof. Indeed, assuming that w(t) and w0(t) intersect infinitely many times, let {tn}
denote their points of intersection. At the {tn}s, w(t) and w0(t) have different slopes
(by uniqueness for initial-value problems). Since (p+α)w0(tn)+(q−p+1)tnw′

0(tn) =
0, it follows that (p+α)w(tn)+(q−p+1)tnw′(tn) > 0 (respectively, (p+α)w(tn)+
(q − p + 1)tnw′(tn) < 0) if w(t) intersects w0(t) from below (respectively, above) at
tn. Hence, on any interval (tn, tn+1) there is a point t0 where (p + α)w(t0) + (q −
p+1)t0w′(t0) = 0, i.e. λ′(t0) = 0 and t0 is a critical point. Since λ′(tn) and λ′(tn+1)
have different signs, the solution curve changes its direction over (tn, tn+1).

The linearized equation for (2.12) is

(ϕ′(w′)z′)′ +
n − 1

t
ϕ′(w′)z′ + qtαwq−1z = 0.
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At the solution w = w0(t), this becomes

(a0(t)z′)′ +
n − 1

t
a0(t)z′ + b0(t)z = 0 (4.1)

with a0(t) = ϕ′(w′
0) and b0(t) = qtαwq−1

0 . One simplifies (4.1) to Euler’s equation

z′′ +
−(β + 1)(p − 2) + n − 1

t
z′ +

qaq−p+1
0

(p − 1)βp−2t2
z = 0. (4.2)

Let us first consider the case in which p = 2, α = 0 and n > 2. Then β = 2/(q−1),
a0 = [β(n − β − 2)]1/(q−1), and (4.2) becomes

t2z′′ + (n − 1)tz′ + qβ(n − β − 2)z = 0.

Its characteristic equation

r(r − 1) + (n − 1)r + qβ(n − β − 2) = 0

has the roots

r =
−(n − 2) ±

√
(n − 2)2 − 4qβ(n − β − 2)

2
.

These roots are complex if

(n − 2)2 − 4qβ(n − 2) + 4qβ2 < 0.

On the left we have a quadratic in n−2 with two positive roots. The largest value of
n−2 for which this inequality holds corresponds to the larger root of this quadratic,
i.e.

n − 2 <
4q

q − 1
+ 4

√
q

q − 1
. (4.3)

We shall show that infinitely many solutions occur if (4.3) holds and

q >
n + 2
n − 2

. (4.4)

(The last condition ensures that the generating solution w(t) is defined for all t > 0,
by lemma 2.1.) In terms of n, conditions (4.3) and (4.4) imply that

2 + 2q

q − 1
< n < 2 +

4q

q − 1
+ 4

√
q

q − 1
, (4.5)

which is the condition from [9] (and implies that n > 2). Thus we shall recover the
following classical theorem of Joseph and Lundgren [9].

Theorem 4.2. Assume that conditions (4.3) and (4.4) hold (or (4.5) holds). Then
the solution curve of (2.9) makes infinitely many turns. Moreover, along this curve
(as u(0) → ∞), λ → λ0 = aq−1

0 and u(r) tends to r−β − 1 for r �= 0, which is a
singular solution of the equation in (2.9).
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We shall give a proof of a more general result below.
For general p and α, the characteristic equation for (4.2) is

r(r − 1) + Ar + B = 0, (4.6)

with A = −β(p − 2) + n − p + 1 and B = (q(n − p)/(p − 1))β − qβ2. The roots of
(4.6),

r =
−(A − 1) ±

√
(A − 1)2 − 4B

2
,

are complex provided that
(A − 1)2 − 4B < 0,

which simplifies to
(n − p)2 − θ(n − p) + γ < 0, (4.7)

with
θ = 2β(p − 2) +

4qβ

p − 1
, γ = (p − 2)2β2 + 4qβ2. (4.8)

On the left in (4.7) we have a quadratic in n−p with two positive roots. The largest
value of n − p for which the inequality (4.7) holds corresponds to the larger root of
this quadratic, i.e.

n − p <
θ +

√
θ2 − 4γ

2
. (4.9)

We shall show that infinitely many solutions occur if conditions (2.13) and (4.9)
hold. In terms of n, conditions (2.13) and (4.9) imply that

pq + p + pα

q − p + 1
< n < p +

θ +
√

θ2 − 4γ

2
. (4.10)

The first inequality in (4.10) implies that

(β + 1)(p − 2) < n − 2, (4.11)

which in turn gives that n > p.
The critical exponent in (4.9) was computed earlier by Cabré and Sanchón in the

context of semi-stable and extremal solutions of p-Laplace equations in [3], where
the authors considered equations on general domains and more general f(u); see
also [1, 4].

Theorem 4.3. Assume that limt→∞(w(t)/w0(t)) = 1 (in the p = 2 case, this fol-
lows by [1, lemma 2.2]). Assume also that conditions (2.13) and (4.9) hold (or
(4.10) holds). Then the solution curve of

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λrα(1 + u)q = 0 for 0 < r < 1, (4.12)

u′(0) = u(1) = 0,

makes infinitely many turns. Moreover, along this curve (as u(0) → ∞), λ → λ0 =
aq−1
0 and u(r) tends to r−β −1 for r �= 0, which is a singular solution of the equation

in (4.12).
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Proof. In view of lemma 4.1, we need to show that w(t) and w0(t) intersect infinitely
many times, and they tend to each other as t → ∞. Let P (t) = w(t) − w0(t). Then
P (t) satisfies

(a(t)P ′)′ +
n − 1

t
a(t)P ′ + b(t)P = 0, (4.13)

where

a(t) =
∫ 1

0
ϕ′(sw′(t) + (1 − s)w′

0(t)) ds, (4.14)

b(t) = qtα
∫ 1

0
[sw(t) + (1 − s)w0(t)]q−1 ds. (4.15)

We claim that it is impossible for P (t) to keep the same sign over some infinite
interval (t0,∞). Assuming the contrary, write (a0(t) and b0(t) were defined in (4.1))

a(t) = (p − 1)(−w′
0)

p−2
∫ 1

0

∣∣∣∣s w′(t)
w′

0(t)
+ (1 − s)

∣∣∣∣
p−2

ds = a0(t)(1 + o(1)),

b(t) = qtαwq−1
0

∫ 1

0

[
s

w(t)
w0(t)

+ (1 − s)
]q−1

ds = b0(t)(1 + o(1))

as t → ∞. We have w(t)/w0(t) → 1, and then w′(t)/w′
0(t) → 1, by L’Hospital’s rule,

as t → ∞. Since Euler’s equation (3.7) has infinitely many solutions on (tk,∞),
we conclude by lemma 3.3 that P (t) must vanish on that interval too, which is
a contradiction. It follows that P (t) has infinitely many roots, which implies that
w(t) and w0(t) have infinitely many points of intersection, and hence the solution
curve makes infinitely many turns.

Since u(r) = w(tr)/w(t) − 1, it follows that along the solution curve u(r) tends
to w0(tr)/w0(t) − 1 = r−β − 1 for r �= 0.

5. The generalized Gelfand problem

We now use the representation (2.3) for the solution curve of (2.1). In particular,
λ(t) = tα+pew(t), where w(t) is the generating solution of (2.2), and the issue is
how many times this function changes its direction of monotonicity for t ∈ (0,∞).
Compute

λ′(t) = tew(α + p + tw′),

so that we are interested in the roots of the function α + p + tw′. If we set this
function to zero,

α + p + tw′ = 0,

then the solution of this equation is of course w(t) = a − (α + p) ln t. Quite sur-
prisingly, if we choose the constant a = a0 = ln[(n − p)(α + p)p−1], assuming that
n > p, then

w0(t) = ln[(n − p)(α + p)p−1] − (α + p) ln t

is a solution of the equation in (2.2)! We shall show that w(t) (the solution of
initial-value problem (2.2)) tends to w0(t) as t → ∞, and give a condition for w(t)
and w0(t) to cross infinitely many times as t → ∞.
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Lemma 5.1. Assume that w(t) and w0(t) intersect infinitely many times. Then the
solution curve of (2.1) makes infinitely many turns.

Proof. Indeed, assuming that w(t) and w0(t) intersect infinitely many times, let {tn}
denote the points of intersection. At the {tn}s, w(t) and w0(t) have different slopes
(by uniqueness for initial-value problems). Since α + p + tnw′

0(tn) = 0, it follows
that α+p+ tnw′(tn) > 0 (respectively, α+p+ tnw′(tn) < 0) if w(t) intersects w0(t)
from below (respectively, above) at tn. Hence, on any interval (tn, tn+1) there is a
point t0 where α + p + t0w

′(t0) = 0, i.e. λ′(t0) = 0, and t0 is a critical point. Since
λ′(tn) and λ′(tn+1) have different signs, the solution curve changes its direction
over (tn, tn+1).

The linearized equation for (2.2) is

(ϕ′(w′)z′)′ +
n − 1

t
ϕ′(w′)z′ + tαewz = 0.

At the solution w = w0(t) this becomes

(a0(t)z′)′ +
n − 1

t
a0(t)z′ + b0(t)z = 0, (5.1)

with

a0(t) = ϕ′(w′
0) =

(p − 1)(p + α)p−2

tp−2 and b0(t) = tαew0 =
(n − p)(p + α)p−1

tp
.

Simplifying (5.1) gives

(p − 1)t2z′′ + (p − 1)(n − p + 1)tz′ + (n − p)(p + α)z = 0,

which is Euler’s equation! Its characteristic equation

(p − 1)r(r − 1) + (p − 1)(n − p + 1)r + (n − p)(p + α) = 0

has the roots

r =
−(p − 1)(n − p) ±

√
(p − 1)(n − p)[(p − 1)(n − p) − 4(p + α)]

2(p − 1)
.

The roots are complex if n − p > 0 and the quantity in the square brackets is
negative (the opposite inequalities lead to a vacuous condition), i.e. when

p < n <
p2 + 3p + 4α

p − 1
. (5.2)

We now easily recover the following result of Jacobsen and Schmitt [8], which
was a generalization of the famous theorem of Joseph and Lundgren [9].

Theorem 5.2. Assume that condition (5.2) holds. Then the solution curve of

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λrαeu = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0, (5.3)

makes infinitely many turns. Moreover, along this curve (as u(0) → ∞), λ → ea0 =
(n − p)(p + α)p−1 and u(r) tends to −(p + α) ln r for r �= 0, which is a singular
solution of the equation in (5.3).
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Proof. We follow the proof of the theorem 3.4. In view of lemma 5.1, we need to
show that w(t) and w0(t) intersect infinitely many times. Let P (t) = w(t) − w0(t).
Then P (t) satisfies

(a(t)P ′)′ +
n − 1

t
a(t)P ′ + b(t)P = 0, (5.4)

where

a(t) =
∫ 1

0
ϕ′(sw′(t) + (1 − s)w′

0(t)) ds, (5.5)

b(t) = tα
∫ 1

0
esw(t)+(1−s)w0(t) ds. (5.6)

Compared with the proof of the theorem 3.4, we have a complication here: in the
case in which P (t) tends to a constant p0 as t → ∞, we cannot conclude that
b(t) = b0(t)(1 + o(1)), unless p0 = 0.

We claim that it is impossible for P (t) to keep the same sign over some infinite
interval (t0,∞) while tending to a constant p0 �= 0 as t → ∞. Assume, on the
contrary, that P (t) > 0 on (t0,∞) and limt→∞ P (t) = p0 > 0. We may assume that

P (t) > 1
2p0 > 0 on (t1,∞) with some t1 > t0. (5.7)

Write (5.4) as
(tn−1a(t)P ′)′ = −tn−1b(t)P. (5.8)

As before,
a(t) = a0(t)(1 + f(t)) with f(t) → 0 as t → ∞. (5.9)

Writing b(t) = tαew0(t)
∫ 1
0 esP (t) ds, we see that

b(t) = b0(t)(p1 + g(t)) (5.10)

with p1 =
∫ 1
0 esp0 ds > 1, and g(t) → 0 as t → ∞. By (5.7), (5.8) and (5.10),

(tn−1a(t)P ′)′ < −c1t
n−p−1 on (t1,∞)

for some constant c1 > 0. Integrating this inequality over (t1, t), we get

tn−1a(t)P ′ < c2 − c3t
n−p on (t1,∞) (5.11)

for some constants c2 > 0 and c3 > 0 (using that n > p). By (5.9),

a(t) > c4t
−p+2 on (t2,∞)

for some constants c4 > 0 and t2 > t1. Using this in (5.11), we have

P ′ <
c2

c4
t−n+p−1 − c3

c4
t−1 on (t2,∞).

Integrating this over (t2, t) and using that n > p,

P (t) < c5 +
c2

c4(−n + p)
t−n+p − c3

c4
ln t < c5 − c3

c4
ln t
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for some constant c5 > 0. Hence, P (t) has to vanish at some t > t2, contradicting
the assumption that P (t) > 0 on (t0,∞). This proves that p0 = 0. We conclude
that p1 = 1 in (5.10), and the rest of the proof is similar to that of theorem 3.4.

If p = 2 and α = 0, condition (5.2) becomes 2 < n < 10, the classical condition
of Joseph and Lundgren [9].
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